初中数学有理数基础测试题附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学有理数基础测试题附答案
一、选择题
1.若30,a -=则+a b 的值是( )
A .2
B 、1
C 、0
D 、1-
【答案】B
【解析】
试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.
2.下列等式一定成立的是( )
A =
B .11=
C 3=±
D .6=-
【答案】B
【解析】
【分析】
根据算术平方根、立方根、绝对值的性质逐项判断即可.
【详解】
321-=,故错误;
B. 11=,故正确;
3=, 故错误;
D. ()66=--=,故错误;
故答案为:B.
【点睛】
本题考查了算术平方根的概念、立方根的概念、绝对值的性质,解题的关键是熟练掌握其定义和性质.
3.若︱2a ︱=-2a ,则a 一定是( )
A .正数
B .负数
C .正数或零
D .负数或零
【答案】D
【解析】
试题分析:根据绝对值的意义,一个正数的绝对值是本身,0的绝对值是0,一个负数的绝对值是其相反数,可知a 一定是一个负数或0.
故选D
4.如图是张小亮的答卷,他的得分应是( )
A.40分B.60分C.80分D.100分
【答案】A
【解析】
【分析】
根据绝对值、倒数、相反数、立方以及平均数进行计算即可.
【详解】
解:①若ab=1,则a与b互为倒数,
②(-1)3=-1,
③-12=-1,
④|-1|=-1,
⑤若a+b=0,则a与b互为相反数,
故选A.
【点睛】
本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.5.下列各数中,最大的数是()
A.
1
2
-B.
1
4
C.0 D.-2
【答案】B
【解析】
【分析】
将四个数进行排序,进而确定出最大的数即可.【详解】
11
20
24
-<-<<,
则最大的数是1
4
,
故选B.
【点睛】
此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.
6.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )
A .2
B .2-
C .2±
D .12
± 【答案】C
【解析】
【分析】
与原点距离是2的点有两个,是±2.
【详解】
解:与原点距离是2的点有两个,是±2.
故选:C.
【点睛】
本题考查数轴的知识点,有两个答案.
7.下面说法正确的是( )
A .1是最小的自然数;
B .正分数、0、负分数统称分数
C .绝对值最小的数是0;
D .任何有理数都有倒数
【答案】C
【解析】
【分析】
0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注
【详解】
最小的自然是为0,A 错误;
0是整数,B 错误;
任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;
0无倒数,D 错误
【点睛】
本题是有理数概念的考查,主要需要注意0的特殊存在
8.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005
B .2006
C .2007
D .2008
【答案】C
【解析】
【分析】
先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.
【详解】
∵a-2007≥0,
∴a ≥2007,
∴20062007a a a -+-=可化为a 2006a 2007a -+-=,
∴20072006a -=,
∴a-2007=20062,
∴22006a -=2007.
故选C .
【点睛】
本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.
9.2019-的倒数是( )
A .2019
B .-2019
C .12019
D .12019
- 【答案】C
【解析】
【分析】
先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.
【详解】 2019-=2019,2019的倒数为
12019
故选C
【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.
10.已知有理数a 、b 在数轴上的位置如图所示,则下列代数式的值最大的是( )
A .a +b
B .a ﹣b
C .|a +b |
D .|a ﹣b |
【答案】D
【解析】
【分析】
根据数轴确定出a 是负数,b 是正数,并且b 的绝对值大于a 的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.
【详解】
由图可知,a<0,b>0,且|b|>|a|,
∴−a
A. a+b>0,
B. a−b<0,