坐标系与参数方程早练专题练习(四)附答案高中数学
《坐标系与参数方程》练习题(含详解)
数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x t t y t =+⎧⎨=-⎩为参数,则直线的斜率为( ) A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( ) A.1(,2 B .31(,)42- C. D.3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y =5.点M的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x t t y t=+⎧⎨=-⎩为参数的斜率为______________________。
2.参数方程()2()t t t t x e e t y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。
3.已知直线113:()24x t l t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。
4.直线122()112x t t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩为参数被圆224x y +=截得的弦长为______________。
5.直线cos sin 0x y αα+=的极坐标方程为____________________。
新北师大版高中数学高中数学选修4-4第二章《参数方程》检测卷(含答案解析)(4)
一、选择题1.点(, )A x y 是曲线2cos 13sin x y θθ=+⎧⎨=+⎩,(θ为参数)上的任意一点,则2 -x y 的最大值为( ) AB5C .3D3+2.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.CD.±3.4sin 4πθ⎛⎫=+ ⎪⎝⎭与直线122{12x y =-=(t 为参数)的位置关系是( ) A .相切 B .相离C .相交且过圆心D .相交但不过圆心4.在方程sin {cos 2x y θθ==(θ为参数)所表示的曲线上的点是 ( )A .(2,7)B .12(,)33C .(1,0)D .11(,)225.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) ABCD6.参数方程2cos sin x y θθ=⎧⎨=⎩(θ为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( ) A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆7.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x ty t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A.⎡⎢⎣⎦ B .0tan 60x = C.D .:::2x r r q q q e αα==8.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线2:cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠9.把曲线12cos 2sin x C y θθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为2C 为 A .221241x y +=B .224413y x +=C .2213y x +=D .22344x y +=10.直线320{20x tsin y tcos =+=- (t 为参数)的倾斜角是( )A .20B .70C .110D .16011.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为( )A .24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B .24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b12.已知点A 是曲线2213x y +=上任意一点,则点A到直线sin()6πρθ+=的距离的最大值是( )A.2BCD.二、填空题13.点(),M x y 为此曲线()2234x y ++=上任意一点,则x y +的最大值是______.14.已知直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),则圆心C 到直线l 的距离为___________. 15.坐标系与参数方程选做题)直线截曲线(为参数)的弦长为___________ 16.设点(),x y 是曲线C 2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且02θπ≤<)上的任意一点,则yx的最大值为________. 17.已知在极坐标系中,曲线C 的极坐标方程是2sin 4cos 0ρθθ+=,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,直线l 的参数方程是1123x t t y ⎧=-+⎪⎪⎨⎪=⎪⎩(为参数),M (03l 与曲线C 的公共点为P ,Q ,则11PM QM+=_______ 18.直线:30l x y ++=被圆14cos :24sin x C y θθ=-+⎧⎨=+⎩(θ为参数)截得的弦长为______.19.曲线4cos 2sin x y θθ=⎧⎨=⎩上的点到直线220x y +=的最大距离为__________.20.圆1212x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数)被直线0y =截得的弦长为__________.三、解答题21.已知直线l 过定点()1,1P ,且倾斜角为4π,以坐标原点为极点,x 轴的正半轴为极轴的坐标系中,曲线C 的极坐标方程为22cos 3ρρθ=+. (1)求曲线C 的直角坐标方程与直线l 的参数方程:(2)若直线l 与曲线C 相交于不同的两点A 、B ,求AB 及PA PB ⋅的值.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为1123x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数)(1)将直线l 的参数方程化为极坐标方程;(2)设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.23.在直角坐标系xOy 中,直线l 经过点()3,0P,倾斜角为6π,曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于A ,B 两点,求PA PB +的值.24.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线C 按伸缩变换公式12x x y y =⎧''⎪⎨=⎪⎩,变换得到曲线E(1)求E 的普通方程;(2)直线l 过点()0,2M -,倾斜角为4π,若直线l 与曲线E 交于,A B 两点,N 为AB 的中点,求OMN 的面积.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,0απ≤<).在以O 为极点,x 轴正半轴为极轴的极坐标中,曲线C :4cos ρθ=.(1)当4πα=时,求C 与l 的交点的极坐标; (2)直线l 与曲线C 交于A ,B 两点,线段AB 中点为(1,1)M ,求||AB 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】利用曲线的参数方程得32co sin -32s x y θθ=+-化简求解即可 【详解】由题()32cos 3sin 23-s x y θθθϕ=+-=++ 故当()cos 1θϕ+=时,2 -x y3+ 故选D 【点睛】本题考查参数方程求最值,考查辅助角公式,是基础题2.D解析:D 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。
2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)
2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。
高中数学选修44坐标系与参数方程练习题含详解1
数学选修 4-4坐标系与参数方程[ 基础训练 A 组]一、选择题1.若直线的参数方程为x 1 2t (t 为参数 ) ,则直线的斜率为( )y 2 3t A .2B .2 3 D .333C .222.以下在曲线x sin 2( 为参数 ) 上的点是()ycossinA .(1,2)B . (3,1)C . (2, 3)D . (1,3)24 23.将参数方程x 2 sin 2为参数 ) 化为一般方程为(y sin2( )A . y x2B . y x 2C . y x 2(2 x 3)D . yx 2(0 y 1)4.化极坐标方程2cos0 为直角坐标方程为()A . x 2y 20或 y 1B . x 1C . x 2 y 20或 x 1D . y 15.点 M 的直角坐标是 (1, 3) ,则点 M 的极坐标为()A . (2,) B . (2,) C . (2,2)D . (2,2 k),( k Z )33336.极坐标方程cos 2sin 2 表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线x 3 4t (t 为参数 ) 的斜率为 ______________________。
y 4 5t2.参数方程x e te t) (t 为参数) 的一般方程为 __________________。
y2(e te t3.已知直线 l 1 :x 1 3ty 2 (t 为参数 ) 与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,4t则 AB_______________。
x 2 1 t4.直线2(t 为参数 ) 被圆 x 2 y 2 4 截得的弦长为 ______________。
y1 1t25.直线 x cos y sin 0 的极坐标方程为 ____________________ 。
三、解答题1.已知点 P(x, y) 是圆 x 2y 2 2y 上的动点,( 1)求 2xy 的取值范围;( 2)若 xy a 0恒建立,务实数 a 的取值范围。
高考理科数学一轮复习专题训练:选修4-4坐标系与参数方程(含详细答案解析)
第16单元 选修4-4 坐标系与参数方程(基础篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线11x ty =+=-+⎧⎪⎨⎪⎩的斜率为( )A .1B .1- CD.【答案】C【解析】由11x ty =+=-+⎧⎪⎨⎪⎩,可得1y =,斜率k C .2.点A 的极坐标为,则A 的直角坐标为( )ABCD【答案】D【解析】 设点(),A x y ,根据直角坐标与极坐标之间的互化公式,52sin 16y π==,即点A的坐标为(),故选D . 3.在极坐标系中,方程sin ρθ=表示的曲线是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】方程sin ρθ=,可化简为2sin ρρθ=,即22x y y +=. 整理得2211y 24x ⎛⎫+-= ⎪⎝⎭,表示圆心为10,2⎛⎫⎪⎝⎭,半径为12的圆.故选B .4.参数方程()sin cos22x y ααα⎧=+⎪⎨⎪=⎩为参数的普通方程为( ) A .221y x -=B .221x y -=C .(221y x x -=D .(221x y x -=【答案】C【解析】由题意可知:21sin x α=+,2222sin 1y y x α=+⇒-=,且y ⎡⎣,据此可得普通方程为(221y x x -=≤.故选C .5.点M 的直角坐标是(-,则点M 的极坐标为( )A .2,3π⎛⎫⎪⎝⎭B .2,3π⎛⎫- ⎪⎝⎭C .22,3π⎛⎫⎪⎝⎭D .()π2,2π3k k ⎛⎫+∈ ⎪⎝⎭Z【答案】C【解析】由于222x y ρ=+,得24ρ=,2ρ=,由cos x ρθ=,得1cos 2θ=-,结合点在第二象限,可得23θπ=,则点M 的坐标为22,3π⎛⎫⎪⎝⎭,故选C . 6.与极坐标2,6π⎛⎫- ⎪⎝⎭表示的不是同一点的极坐标是( )A .72,6π⎛⎫⎪⎝⎭B .72,6π⎛⎫- ⎪⎝⎭C .112,6π⎛⎫-- ⎪⎝⎭D .132,6π⎛⎫- ⎪⎝⎭【答案】B【解析】点2,6π⎛⎫- ⎪⎝⎭在直角坐标系中表示点()1-,而点72,6π⎛⎫- ⎪⎝⎭在直角坐标系中表示点(),所以点2,6π⎛⎫- ⎪⎝⎭和点72,6π⎛⎫- ⎪⎝⎭表示不同的点,故选B .7.点P 的直线坐标为(),则它的极坐标可以是( )A .26π⎛⎫⎪⎝⎭,B .26π⎛⎫- ⎪⎝⎭, C .526π⎛⎫⎪⎝⎭,D .526π⎛⎫- ⎪⎝⎭, 【答案】C【解析】2ρ==,tan θ=,因为点在第二象限,故取526k θπ=π+,k ∈Z ,故选C . 8.圆半径是1,圆心的极坐标是()1,π,则这个圆的极坐标方程是( ) A .cos ρα=- B .sin ρα= C .2cos ρα=- D .2sin ρα=【答案】C【解析】极坐标方程化为直角坐标方程可得圆心坐标为()1,0-, 则圆的标准方程为:()2211x y ++=,即2220x y x ++=,化为极坐标方程即:22cos 0ρρθ+=,整理可得:2cos ρα=-.故选C .9.若曲线21x ty t =-=-+⎧⎨⎩(t 为参数)与曲线ρ=B ,C 两点,则BC 的值为( )A B C D 【答案】C【解析】曲线21x ty t =-=-+⎧⎨⎩的普通方程为10x y +-=,曲线ρ=228x y +=,圆心O 到直线的距离为d ==又r =BC ==C . 10.已知曲线C 的参数方程为4cos 2sin x y θθ==⎧⎨⎩(θ为参数),则该曲线离心率为( )A B .34C D .12【答案】A【解析】由题得曲线C 的普通方程为221164x y +=,所以曲线C 是椭圆,4a =,c =所以椭圆的离心率为e A . 11.在极坐标系中,设圆:4cos C ρθ=与直线():4l θρπ=∈R 交于A ,B 两点,则以线段AB 为直径的圆的极坐标方程为( )A .22sin 4ρθπ⎛⎫=+ ⎪⎝⎭B .22sin 4ρθπ⎛⎫=- ⎪⎝⎭C .22cos 4ρθπ⎛⎫=+ ⎪⎝⎭D .22cos 4ρθπ⎛⎫=-- ⎪⎝⎭【答案】A【解析】以极点为坐标原点,极轴为x 轴的正半轴,建立直角坐标系,则由题意,得圆C 的直角坐标方程2240x y x +-=,直线的直角坐标方程y x =. 由2240x y x y x+-==⎧⎨⎩,解得00x y =⎧⎨=⎩或22x y =⎧⎨=⎩,所以()00A ,,()22B ,, 从而以AB 为直径的圆的直角坐标方程为()()22112x y -+-=, 即2222x y x y +=+.将其化为极坐标方程为()22cos sin 0ρρθθ-+=,即()2cos sin 22sin 4ρθθθπ⎛⎫=+=+ ⎪⎝⎭,故选A .12.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线:2cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠【答案】C【解析】()2222:2cos 211C x y x x y ρθ=⇒+=⇒-+=,所以223141k k k +<⇒<-+,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在直角坐标系中,点()21-,到直线2:x tl y t=-⎧⎨=⎩(t 为参数)的距离是__________.【答案】22【解析】直线一般方程为20x y +-=,利用点到直线距离公式122d -=2.14.极坐标方程()cos sin 10ρθθ+-=化为直角坐标方程是_______. 【答案】10x y +-=【解析】极坐标方程即()cos sin 10ρθθ+-=,则直角坐标方程是10x y +-=.15.在极坐标系中,直线()cos sin 0a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.【答案】1+【解析】圆2cos ρθ=,转化成22cos ρρθ=,用222x y ρ=+,cos x ρθ=,sin y ρθ=,转化成直角坐标方程为()2211x y -+=, 把直线()cos sin a ρθθ+=的方程转化成直角坐标方程为0x y a +-=, 由于直线和圆相切,∴利用圆心到直线的距离等于半径,1=,解得1a =±0a >,则负值舍去,故1a =1+16上,求点P 到直线3424x y -=的最大距离是________.【解析】设点P 的坐标为()4cos 3sin θθ,, 则点P 到直线3424x y -=的时,d 取得最大值为三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在极坐标系下,已知曲线1C :cos sin ρθθ+=和曲线2C :(sin )4ρθπ-(1)求曲线1C 和曲线2C 的直角坐标方程;(2)当()0θ∈π,时,求曲线1C 和曲线2C 公共点的一个极坐标.【答案】(1)1C :220x y x y +--=,2C :10x y -+=;(2)1,2π⎛⎫⎪⎝⎭. 【解析】(1)圆O :cos sin ρθθ+=,即2cos sin ρρθρθ+=, 曲线1C 的直角坐标方程为22x y x y ++=,即220x y x y --+=, 曲线2C:sin 4ρθπ⎛⎫-= ⎪⎝⎭sin cos 1ρθρθ-=,则曲线2C 的直角坐标方程为:1y x -=,即10x y -+=. (2)由22010x y x y x y ⎧-⎨-+⎩+-==,得0x y ⎧⎨⎩==1,则曲线1C 和曲线2C 公共点的一个极坐标为1,2π⎛⎫⎪⎝⎭.18.(12分)已知曲线1C 的极坐标方程是1ρ=,在以极点O 为原点,极轴为x 轴的正半轴的平面 直角坐标系中,将曲线1C 所有点的横坐标伸长为原来的3倍,得到曲线2C . (1)求曲线2C 的参数方程; (2)直线l 过点()1,0M ,倾斜角为,与曲线2C 交于A 、B 两点,求 【答案】(1)3cos sin x y θθ==⎧⎨⎩,(θ为参数);(2)85.【解析】(1)曲线1C 的直角坐标方程为221x y +=,曲线2C 的直角坐标方程为∴曲线2C 的参数方程为3cos sin x y θθ==⎧⎨⎩,(θ为参数).(2)设l 的参数方程为代入曲线2C 的方程19.(12分)在平面直角坐标系中,曲线1C 的方程为2219x y +=.以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为28sin 150ρρθ-+=. (1)写出曲线1C 的参数方程和曲线2C 的直角坐标方程; (2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最大值.【答案】(1)1C :3cos sin x y ϕϕ==⎧⎨⎩(ϕ为参数),2C :()2241x y +-=;(2)1.【解析】(1)曲线1C 的参数方程为3cos sin x y ϕϕ==⎧⎨⎩,(ϕ为参数), 2C 的直角坐标方程为228150x y y +-+=,即()2241x y +-=.(2)由(1)知,曲线2C 是以()20,4C 为圆心,1为半径的圆.设()3cos ,sin P ϕϕ,则2PC ==.当1sin 2ϕ=-时,2PC = 又因为21PQ PC ≤+,当且仅当P ,Q ,2C 三点共线,且2C 在线段PQ 上时,等号成立.所以max 1PQ =.20.(12分)在平面直角坐标系xoy 中,已知曲线1C 的参数方程为12cos 2sin x y θθ=+=⎧⎨⎩(θ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求曲线1C 的普通方程;(2)极坐标方程为2sin 3ρθπ⎛⎫+= ⎪⎝⎭l 与1C 交P ,Q 两点,求线段PQ 的长.【答案】(1)()2214x y -+=;(2)2.【解析】(1)曲线1C 的参数方程为12cos 2sin x y θθ=+=⎧⎨⎩(θ为参数),可得1cos 2x θ-=,sin 2yθ=.因为22sin cos 1θθ+=,可得()2214x y -+=, 即曲线1C 的普通方程:()2214x y -+=.(2)将2sin 3ρθπ⎛⎫+= ⎪⎝⎭l 化为普通方程可得:2sin cos 2cos sin 33ρθρθππ+=y =,因为直线l 与1C 交P ,Q 两点,曲线1C 的圆心()10,,半径2r =, 圆心到直线l的距d =所以线段PQ的长2==.21.(12分)在直角坐标系xOy 中,直线l的参数方程为221x y =-=-+⎧⎪⎪⎨⎪⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2232cos 1ρθ=+.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 相交于M ,N 两点,求MON △的面积.【答案】(1)2213y x +=;(2)34. 【解析】(1)因为()222232cos 132cos 1ρρθθ=⇒+=+, 所以曲线C 的直角坐标方程为2213y x +=.(2)将直线l的参数方程21x y ==-+⎧⎪⎪⎨⎪⎪⎩(t 为参数)代入曲线C 的直角坐标方程,得250t +=,设M ,N 两点对应的参数分别为1t ,2t,则12t t +=,125t t ⋅=, 于是MN =, 直线l 的普通方程为10x y +-=,则原点O 到直线l的距离d ==,所以1324MON S MN d =⋅=△. 22.(12分)在直角坐标系xOy 中.直线1C :2x =-,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4θρπ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积. 【答案】(1)1C :cos 2ρθ=-,2C :22cos 4sin 40ρρθρθ--+=;(2)12.【解析】(1)因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(2)将4θπ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ=故12ρρ-=,即MN =由于2C 的半径为1,所以2C MN △是直角三角形,其面积为12.第16单元 选修4-4 坐标系与参数方程(提高篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线314x t y t ==-⎧⎨⎩()t 为参数与圆3cos 3sin x y b θθ==+⎧⎨⎩()θ为参数相切,则b =( ) A .4-或6 B .6-或4 C .1-或9 D .9-或1【答案】A【解析】把直线314x t y t ==-⎧⎨⎩()t 为参数与圆3cos 3sin x y b θθ==+⎧⎨⎩()θ为参数的参数方程分别化为普通方程得:直线4330x y +-=;圆()229x y b +-=.∵此直线与该圆相切,∴22033343b +-=+,解得4b =-或6.故选A .2.椭圆的参数方程为5cos 3sin x y θθ=⎧⎨⎩=()θ为参数,则它的两个焦点坐标是( ) A .()4, 0± B .()0,4± C .()5, 0± D .()0,3±【答案】A【解析】消去参数可得椭圆的标准方程221259x y +=,所以椭圆的半焦距4c =,两个焦点坐标为()4, 0±,故选A .3.直线的参数方程为=31+3x ty t=⎧⎪⎨⎪⎩()t 为参数,则直线l 的倾斜角大小为( )A .6πB .3πC .23π D .56π 【答案】C310x y +-=, 所以直线的斜率3k =-,从而得到其倾斜角为23π,故选C . 4.在平面直角坐标系xOy 中,曲线C 的参数方程为1cos sin x y αα=+=⎧⎨⎩()α为参数.若以射线Ox 为极轴建立极坐标系,则曲线C 的极坐标方程为( ) A .sin ρθ= B .2sin ρθ= C .cos ρθ= D .2cos ρθ=【答案】D【解析】由1cos sin x y αα=+=⎧⎨⎩()α为参数得曲线C 普通方程为()2211x y -+=, 又由cos sin x y ρθρθ=⎧⎨⎩=,可得曲线C 的极坐标方程为2cos ρθ=,故选D . 5.在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .()0θρ=∈R 和cos 2ρθ=B .()2πθρ=∈R 和cos 2ρθ=C .()0θρ=∈R 和cos 1ρθ=D .()2πθρ=∈R 和cos 1ρθ=【答案】B【解析】如图所示,在极坐标系中,圆2cos ρθ=是以()10,为圆心,1为半径的圆 故圆的两条切线方程分别为()2πθρ=∈R ,cos 2ρθ=,故选B .6.已知M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,则M 点关于直线2θπ=的对称点坐标为( )A .2,6π⎛⎫⎪⎝⎭B .2,6π⎛⎫- ⎪⎝⎭C .2,6π⎛⎫- ⎪⎝⎭D .112,6π⎛⎫- ⎪⎝⎭【答案】A【解析】M 点的极坐标为2,6π⎛⎫-- ⎪⎝⎭,即为52,6π⎛⎫⎪⎝⎭,∴M 点关于直线2θπ=的对称点坐标为2,6π⎛⎫⎪⎝⎭,故选A . 7.在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x y αα==+⎧⎨⎩()α为参数,在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为()cos sin 10ρθθ-+=,则1C 与2C 的交点个数为( )A .0B .1C .2D .3【答案】C【解析】()221:11C x y +-=,2:10C x y -+=,圆心()10,1C 到直线2C 的距离22011011d -+==+,∴两曲线相交,有2个交点.故选C .8.若曲线C 的参数方程为2cos 12sin x y θθ==+⎧⎨⎩,22θ⎛⎫ππ⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭参数,则曲线C ( )A .表示直线B .表示线段C .表示圆D .表示半个圆【答案】D【解析】将参数方程2cos 12sin x y θθ==+⎧⎨⎩,22θ⎛⎫ππ⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭参数消去参数θ可得()2214x y +-=.又,22θππ⎡⎤∈-⎢⎥⎣⎦,∴02cos 2x θ≤=≤.∴曲线C 表示圆()2214x y +-=的右半部分.故选D .9.已知M 为曲线3sin :cos x C y θθ=+⎧⎨=⎩()θ为参数上的动点,设O 为原点,则OM 的最大值是( ) A .1 B .2 C .3 D .4【答案】D【解析】从曲线C 的参数方程中消去θ,则有()2231x y -+=,故曲线C 为圆,而3OC =, 故OM 的最大值为3314r +=+=,故选D .10.已知在平面直角坐标系xOy 中,曲线C 的参数方程为4cos sin x y αα==⎧⎨⎩()α为参数,M 是曲线C 上的动点.以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线的极坐标方程为2sin cos 20ρθρθ+=,则点M 到T 的距离的最大值为( )A .1345+B .245+C .445+D .65【答案】B【解析】由曲线的极坐标方程为2sin cos 20ρθρθ+=, 可得曲线T 的直角坐标方程为2200y x +-=,由曲线C 的参数方程4cos sin x y αα==⎧⎨⎩,设曲线上点M 的坐标为()4cos sin αα,,由点到直线的距离公式可得()20sin 204cos 2sin 2055d αθαα+-+-当()sin 1αθ+=-时,d 20202455+=+B .11.在平面直角坐标系xOy 中,曲线C 的参数方程是2cos 2sin x y θθ==⎧⎨⎩()θ为参数,以射线Ox 为极轴建立极坐标系,直线l 的极坐标方程是cos sin 30ρθρθ--=,则直线l 与曲线C 相交所得的弦AB 的长为( ) A .810B .10 C .10 D .85【答案】C【解析】曲线C 的参数方程是2cos 2sin x y θθ==⎧⎨⎩()θ为参数,化为普通方程为:22x 4y +=,表示圆心为(0)0,,半径为2的圆.直线l 的极坐标方程是cos sin 30ρθρθ--=,化为直角坐标方程即为30x y --=.圆心到直线的距离为362d ==. 直线与曲线相交所得的弦的长为264102⎛⎫- ⎪ ⎪⎝⎭C .12.已知点(),P x y 在曲线2cos sin x y θθ=-+=⎧⎨⎩[)(),2θθ∈ππ为参数,且上,则点P 到直线21x ty t =+=--⎧⎨⎩()t 为参数的距离的取值范围是( ) A .3232,22⎡⎤-⎢⎥⎢⎥⎣⎦B .32321,122⎡⎤--+⎢⎥⎢⎥⎣⎦ C .(2,22⎤⎦D .322,12⎛⎤+ ⎥ ⎥⎝⎦【答案】D【解析】直线21x ty t =+=--⎧⎨⎩()t 为参数的普通方程为10x y +-=,点P 到直线距离为2sin 332sin 2cos sin 144222θθθθπ⎛⎫π⎛⎫+--+ ⎪ ⎪-++-⎝⎭⎝⎭==, 因为[),2θππ∈,所以2sin 1,42θ⎡⎫π⎛⎫+∈-⎪⎢ ⎪⎪⎝⎭⎢⎣⎭,因此取值范围是322,12⎛⎤+ ⎥ ⎥⎝⎦,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在极坐标系中,点23π⎛⎫⎪⎝⎭,与圆4cos ρθ=的圆心的距离为_________.【答案】2【解析】由题得点P 的坐标为()1,3,∵4cos ρθ=,∴24cos ρρθ=,∴224x y x +=,∴()2224x y -+=. ∴圆心的坐标为20(,),∴点P 到圆心的距离为()()2221032-+-=,故答案为2.14.若点()3,P m 在以F 为焦点的抛物线244x t y t ==⎧⎨⎩()t 为参数上,则PF 等于_________.【答案】4【解析】抛物线244x t y t==⎧⎨⎩()t 为参数可化为24y x =,∵点()3,P m 在以F 为焦点的抛物线244x t y t==⎧⎨⎩,()t 为参数上,∴24312m =⨯=,∴()323P ,, ∵()10F ,,∴()222234PF =+=,故答案为.15.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位. 已知直线极坐标方程为()4θρπ=∈R ,它与曲线23cos 23sin x y αα=+=-+⎧⎨⎩()α为参数相交于两点A 、B , 则AB =__________. 【答案】2 【解析】∵4ρ=π,利用cos x ρθ==,sin y ρθ==进行化简, ∴0x y -=,23cos 23sin x y αα=+=-+⎧⎨⎩()α为参数,相消去α可得圆的方程为()()22229x y -++=得到圆心()22-,,半径为3,圆心()22-,到直线0x y -=的距离222d ==,∴2222982AB r d =-=-=,∴线段AB 的长为2,故答案为2.16.在平面直角坐标系xOy 中,已知抛物线24 4x ty t⎧=⎪⎨⎪⎩=()t 为参数的焦点为F ,动点P 在抛物线上. 以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,动点Q 在圆()8cos 150ρρθ-+=上, 则PF PQ +的最小值为__________. 【答案】4【解析】∵抛物线的参数方程为24 4x ty t ⎧=⎪⎨⎪⎩=()t 为参数, ∴抛物线的普通方程为24y x =,则()1,0F ,∵动点Q 在圆()8cos 150ρρθ-+=上,∴圆的标准方程为()2241x y -+= 过点P 作PA 垂直于抛物线的准线,垂足为A ,如图所示:∴PF PQ PA PQ +=+,分析可得:当P 为抛物线的顶点时,PA PQ +取得最小值, 其最小值为4.故答案为4.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系. 已知曲线C 的极坐标方程为4cos ρθ=,直线l 的参数方程为1cos 63sin6x t y t π⎧=+⎪⎪⎨π⎪=-⎪⎩()t 为参数.(1)求曲线C 的直角坐标方程;(2)若点P 在曲线C 上,且P 到直线l 的距离为1,求满足这样条件的点P 的个数.【答案】(1)()2224x y -+=;(2)3个. 【解析】(1)由4cos ρθ=得24cos ρρθ=,故曲线C 的直角坐标方程为:224x y x +=,即()2224x y -+=. (2)由直线l 的参数方程消去参数t 得()331y x +=-,即340x y --=. 因为圆心()20C ,到直线的距离为2304113d -⋅-==+,d 恰为圆C 半径的12,所以满足这样条件的点P 的个数为3个.18.(12分)在平面直角坐标系xoy 中,倾斜角为2ααπ⎛⎫≠ ⎪⎝⎭的直线l 的参数方程为1cos sin x t y t αα=+=⎧⎨⎩()t 为参数.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为:l 2cos 4sin 0ρθθ-=. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点()10P ,,若点M 的极坐标为12π⎛⎫⎪⎝⎭,,直线l 经过点M 且与曲线C 相交于A ,B 两点, 设线段AB 的中点为Q ,求PQ 的值.【答案】(1)():tan 1l y x α=-,2:4C x y =;(2)32 【解析】(1)消去直线l 的参数方程1cos sin x t y t αα=+=⎧⎨⎩中的参数t ,得到直线l 的普通方程为()tan 1y x α=-,把曲线C 的极坐标方程:l 2cos 4sin 0ρθθ-=左右两边同时乘以ρ, 得到22cos 4sin 0ρθρθ-=,利用公式cos sin x y ρθρθ==⎧⎨⎩代入,化简出曲线C 的直角坐标方程24x y =.(2)点M 的直角坐标为()01,,将点M 的直角坐标为()01,代入直线():tan 1l y x α=-中, 得tan 1α=-,即:10l x y +-=,联立方程组2104x y x y +-=⎧⎨=⎩,得AB 中点坐标为()23Q -,,从而PQ =.19.(12分)已知曲线C 的参数方程为3cos 2sin x y θθ==⎧⎨⎩()θ为参数,在同一平面直角坐标系中,将曲线C 上的点按坐标变换1'31'2x x y y ⎧=⎪⎪⎨⎪=⎪⎩得到曲线'C .(1)求'C 的普通方程;(2)若点A 在曲线'C 上,点()30B ,,当点A 在曲线'C 上运动时,求AB 中点P 的轨迹方程. 【答案】(1)221x y +=;(2)223124x y ⎛⎫-+= ⎪⎝⎭.【解析】(1)将3cos 2sin x y θθ==⎧⎨⎩代入1'31'2x x y y⎧=⎪⎪⎨⎪=⎪⎩,得'C 的参数方程为cos sin x y θθ==⎧⎨⎩,∴曲线'C 的普通方程为221x y +=. (2)设()P x y ,,()00A x y ,,又()30B ,,且AB 中点为P ,∴00232x x y y =-=⎧⎨⎩,又点A 在曲线'C 上,∴代入'C 的普通方程2201x y +=得()()222321x y -+=, ∴动点P 的轨迹方程为223124x y ⎛⎫-+= ⎪⎝⎭.20.(12分)在直角坐标系xOy 中,曲线1C 的参数方程为2sin x y αα==⎧⎪⎨⎪⎩()α为参数.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线22:4cos 2sin 40C ρρθρθ+-+=. (1)写出曲线1C ,2C 的普通方程;(2)过曲线1C 的左焦点且倾斜角为4π的直线l 交曲线2C 于A ,B 两点,求AB .【答案】(1)2211204:x y C +=,()()222:211C x y ++-=;(2.【解析】(1)222225cos cos sin 122sin 25y x y αααα=⎛⎫⇒+=+= ⎪ ⎧⎪⎨⎪⎩⎪=⎝⎭⎝⎭,即曲线1C 的普通方程为221204x y +=,∵222x y ρ=+,cos x ρθ=,sin y ρθ=,曲线2C 的方程可化为224240x y x y ++-+=, 即()()222:211C x y ++-=.(2)曲线1C 左焦点为()40-,直线的倾斜角为4απ=,2sin cos αα==,∴直线l 的参数方程为2422x y ⎧⎪⎪⎨=-+=⎪⎪⎩()t 为参数将其代入曲线2C 整理可得23240t t -+=,∴()2324420∆=--⨯=>.设A ,B 对应的参数分别为1t ,2t ,则∴1232t t +=124t t =. ∴()()22121212432442AB t t t t t t =-=+-=-⨯21.(12分)在平面直角坐标系xOy 中,曲线1C 过点()1P a ,,其参数方程为221x a y =+=+⎧⎪⎪⎨⎪⎪⎩()t a ∈R 为参数,,以O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3cos 0ρθθρ+-=. (1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)求已知曲线1C 和曲线2C 交于A ,B 两点,且3PA PB =,求实数a 的值. 【答案】(1)1:10C x y a --+=,22:3C y x =;(2)1348a =或712. 【解析】(1)1C 的参数方程221x a y =+=+⎧⎪⎪⎨⎪⎪⎩,消参得普通方程为10x y a --+=, 2C 的极坐标方程化为222cos 3cos 0ρθρθρ+-=即23y x =.(2)将曲线的参数方程标准化为221x a t y t =+=+⎧⎪⎪⎨⎪⎪⎩()t a ∈R 为参数,代入曲线22:3C y x = 得22260t t a -+-=,由()()2241260a ∆=--⨯->,得14a >, 设A ,B 对应的参数为1t ,2t ,由题意得123t t =即123t t =或123t t =-,当123t t =时,1212123226t t t t t t a ⎧=+==-⎪⎨⎪⎩,解得131448a =>,当123t t =-时,1212123226t t t t t t a=⎧-+==-⎪⎨⎪⎩解得712a =,综上:1348a =或712. 22.(12分)在直角坐标系xOy 中,曲线C 的参数方程为2cos 3sin x y αα==⎧⎪⎨⎪⎩[]()0αα∈π为参数,,,以原点为极点,以x 轴非负半轴为极轴,建立极坐标系. (1)写出曲线C 的极坐标方程;(2)设直线10:l θθ=(0θ为任意锐角)、20:2l θθπ=+分别与曲线C 交于A ,B 两点,试求AOB △面积的最小值.【答案】(1)[]()2221203cos 4sin ρθθθ=∈π+,;(2)127. 【解析】(1)由22cos sin 1αα+=,将曲线C 的参数方程2cos 3sin x y αα==⎧⎪⎨⎪⎩,消参得()221043x y y +=≥,又cos x ρθ=,sin y ρθ=,所以2222cos sin 143ρθρθ+=,化简整理得曲线的极坐标方程为[]()2221203cos 4sin ρθθθ=∈π+,.① (2)将0θθ=代入①式得,22220123cos 4sin A OA ρθθ==+,同理222222000012123sin 4cos 3cos 4sin 22B OB ρθθθθ===ππ+⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,于是22220000223cos 4sin 3sin 4cos 117121212A B θθθθρρ+++=+=,由于2271111212A B A B ρρρρ⎛⎫=+≥⋅ ⎪⎝⎭(当且仅当A B ρρ=时取“=”), 故247A B ρρ⋅≥,11227AOB A B S ρρ=⋅≥△.。
坐标系与参数方程练习(含答案)
坐标系与参数方程练习(含答案)
坐标系与参数方程(巩固训练)
1.(2016·全国卷Ⅱ)在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程.
(2)直线l的参数方程是
,求l的斜率.
2.(2016·合肥二模)在直角坐标系xOy中,曲线
C:(α为参数),在以O为极点,x轴的非负半轴为极轴的(t为参数),l与C交于A,B两点,|AB|=极坐标系中,直线l:ρsinθ+ρcosθ=m.
(1)若m=0,判断直线l与曲线C的位置关系.
(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围.
3.(2016·全国卷Ⅲ)在直角坐标系xOy中,曲线C1的参数方程为
(α为参数).以坐标原点为极点,以x轴的正半轴为极轴建
立极坐标系,曲线C2的极坐标方程为ρsin
(1)写出C1的普通方程和C2的直角坐标方程.
(2)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标.
=2.。
参数方程练习题
参数方程一、选择题1.直线34x t y t =-⎧⎨=+⎩,(t 为参数)上与点(3,4)P 的距离等于 )A .)3,4(B .)5,4(-或)1,0(C .)5,2(D .)3,4(或)5,2(2.已知直线t ty t x (12⎩⎨⎧+=+=为参数)与曲线C :03cos 42=+-θρρ交于B A ,两点, )A .1 BC 3.曲线θθθ(sin 2cos 1⎩⎨⎧+=+-=y x 为参数)的对称中心( )A 、在直线y=2x 上B 、在直线y=-2x 上C 、在直线y=x-1上D 、在直线y=x+1上4.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) C 、圆 D 、射线二、解答题5.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是记射线OM :与C 分别交于点O ,P ,与l 交于点Q ,求PQ 的长.6.选修4−4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x+6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,∣AB ∣l 的斜率.7.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a. 8.选修4-4:坐标系与参数方程.已知直线l 的参数方程为431x t ay t =-+⎧⎨=-⎩(t 为参数),在直角坐标系xOy 中,以O 点为极点,x 轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M 的方程为26sin 8ρρθ-=-.(1)求圆M 的直角坐标方程;(2)若直线l 截圆M 所得弦长为,求实数a 的值. 9.(本小题满分10分)已知在直角坐标系xOy 中,圆C 的参数方程为12cos (2sin x y θθθ=+⎧⎨=⎩为参数). (1)以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; (2)直线l 的坐标方程是,且直线l 与圆C 交于,A B 两点,试求弦AB 的长.10.(2014•大武口区校级一模)已知直线的极坐标方程为,圆M 的参数方程为(其中θ为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程; (Ⅱ)求圆M 上的点到直线的距离的最小值.11.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线 l 的参数方程为 1cos sin x t y t αα=+⎧⎨=⎩(t 为参数, 0απ<<),曲线C 的极坐标方程为2sin 4cos ρθθ=.(Ⅰ)求曲线C 的直角坐标方程。
坐标系与参数方程早练专题练习(四)带答案高中数学
高中数学专题复习《坐标系与参数方程》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( ) A .21 B .22 C .1 D .2(汇编天津理,1)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin0a ρθρθ++= 相切,求实数a 的值。
3.曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是_____.(汇编上海理,8)评卷人得分 三、解答题4.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫==-= ⎪⎝⎭. (I)求1C 与2C 交点的极坐标;(II)设P 为1C 的圆心,Q 为1C 与2C 交点连线的中点.已知直线PQ 的参数方程为 ()3312x t a t R b y t ⎧=+⎪∈⎨=+⎪⎩为参数,求,a b 的值. (汇编年高考辽宁卷(文))选修4-4:坐标系与参数方程5.已知动点,P Q 都在曲线2cos :2sin x C y ββ=⎧⎨=⎩(β为参数)上,对应参数分别为βα=与)20(2πααβ<<=,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. (汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—4;坐标系与参数方程6.在平面直角坐标系xOy 中,过椭圆221124y x +=在第一象限处的一点( )P x y ,分别作x 轴、y 轴的两条垂线,垂足分别为M N 、,求矩形PMON 周长最大值时点P 的坐标.7.已知点(,)P x y 在椭圆2211612x y +=上, 试求z =23x y -最大值.8.求曲线C 1:⎩⎨⎧x =2t 2+1,y =2t t 2+1.被直线l :y =x -12所截得的线段长.9.已知圆C 的参数方程为()为参数θθθ⎩⎨⎧+=+=sin 23,cos 21y x ,若P 是圆C 与x 轴正半轴的交点,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.AC解析:D解析:设曲线上的点到两坐标轴的距离之和为d∴d =|x |+|y |=|co s θ|+|sin θ|设θ∈[0,2π] ∴d =sin θ+cos θ=2sin (θ+4π)∴d m a x =2.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.,圆的普通方程为:,直线的普通方程为:,又圆与直线相切,所以解得:,或。
(压轴题)高中数学高中数学选修4-4第一章《坐标系》检测卷(含答案解析)(4)
一、选择题1.已知点P 的极坐标是1,2π⎛⎫⎪⎝⎭,则过点P 且垂直极轴的直线方程是( ) A .12ρ=B .1cos 2ρθ=C .12cos ρθ=-D .2cos ρθ=-2.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴,建立极坐标系,则曲线3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的点到曲线cos sin 4ρθρθ+=的最短距离是( ). A .1B .2C .22D .323.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14B .334- C .234- D .134.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C 的极坐标方程为2cos ρθ=。
若射线3πθ=与曲线1C 和曲线2C 分别交于,A B 两点(除极点外),则AB 等于( )A .31-B .31+C .1D .35.如图所示,极坐标方程sin (0)a a ρθ=>所表示的曲线是( )A .B .C .D .6.在极坐标系中,曲线46sin πρθ⎛⎫=+ ⎪⎝⎭关于( ) A .直线23πθ=对称 B .直线56πθ=对称 C .点2,3π⎛⎫⎪⎝⎭中心对称 D .极点中心对称7.已知点P 的极坐标是π2,6⎛⎫⎪⎝⎭,则过点P 且平行极轴的直线方程是( ) A .ρ1=B .ρsin θ=C .1ρsin θ=-D .1ρsin θ=8.将直角坐标方程y x =转化为极坐标方程,可以是( ) A .1ρ=B .ρθ=C .1()R θρ=∈D .()4R πθρ=∈9.在极坐标系中,点到直线的距离是( ).A .B .C .D .10.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( ) A .x 2+y 2=0或y =1 B .x =1 C .x 2+y 2=0或x =1 D .y =111.已知曲线C 的极坐标方程为2cos ρθ=,则曲线C 的直角坐标方程为A .22(1)4x y -+=B .22(1)4x y +-=C .22(1)1x y -+=D .22(1)1y x +-=12.将曲线22(1sin )2ρθ+=化为直角坐标方程为A .2212y x +=B .2212x y +=C .2221x y +=D .2221x y +=二、填空题13.已知圆的极坐标方程为4cos ρθ=,圆心为C ,点P 的极坐标为2π2,3⎛⎫⎪⎝⎭,则CP 的长度为______________.14.在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q 距离的最小值为_________.15.在极坐标系中,O 为极点,点A 为直线:sin cos 2l ρθρθ=+上一点,则||OA 的最小值为______.16.若直线l 的极坐标方程为ρcos ()324πθ-=C :ρ=1上的点到直线l 的距离为d ,则d 的最大值为________.17.在极坐标系中,圆2cos ρθ=的圆心到直线sin 1ρθ=的距离为______. 18.在平面直角坐标系中,倾斜角为4π的直线l 与曲线C :2cos 1sin x y αα=+⎧⎨=+⎩ (α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.19.在平面直角坐标系xOy 中,已知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=4cosθ,直线l 与曲线C 交于A ,B 两点,则线段AB 的长为__. 20.(坐标系与参数方程选做题)已知圆C 的圆心为(6,)2π,半径为5,直线(,)2r πθαθπρ=≤<∈被圆截得的弦长为8,则α=_____.三、解答题21.在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 、B 的极坐标分别为()2,A π,22,4B π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为2sin ρθ=. (1)求AOB 的面积;(2)求直线AB 被曲线C 截得的弦长. 22.在平面直角坐标系xOy 中,圆C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),以点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)过极点O 作直线与圆C 交于点A ,求OA 的中点所在曲线的极坐标方程.23.在直角坐标系xOy 中,直线1:1C x =,圆()222:23C x y -+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系 (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设2C ,3C 的交点为,M N ,试求2C MN ∆的面积.24.以平面直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,C 的极坐标方程为8cos ρθ=. (1)求曲线C 的直角坐标方程;(2)经过点()1,1Q 作直线l 交曲线C 于M ,N 两点,若Q 恰好为线段MN 的中点,求直线l 的方程.25.在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数),过原点O 且倾斜角为α的直线l 交M 于A 、B 两点.(1)求l 和M 的极坐标方程;(2)当04πα⎛⎤∈ ⎥⎝⎦,时,求OA OB +的取值范围.26.已知在平面直角坐标系xOy 中,直线l的参数方程为4x ty =-⎧⎪⎨=+⎪⎩(t 为参数),曲线1C 的方程为22(1)1y x +-=以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线l 和曲线1C 的极坐标系方程;(2)曲线2C :0,02πθαρα⎛⎫=><< ⎪⎝⎭分别交直线l 和曲线1C 交于A 、B ,求22OBOA +的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把极坐标化为直角坐标,求出直线的直角坐标方程,再化为极坐标方程. 【详解】1,2P π⎛⎫⎪⎝⎭的直角坐标是1,02⎛⎫- ⎪⎝⎭,∴过P 且与极轴垂直的直线的直角坐标方程为12x =-,其极坐标方程为1cos 2ρθ=-,即12cos ρθ=-.故选:C . 【点睛】本题考查求直线的极坐标方程,解题时利用极坐标与直角坐标的互化求解.2.B解析:B 【分析】根据cos ,sin x y ρθρθ==,计算出直线的直角坐标方程,然后假设曲线上任意一点),sin Pαα,根据点到直线的距离公式以及辅助角公式进行计算即可.由cos ,sin x y ρθρθ==,则曲线cos sin 4ρθρθ+=的直角坐标方程为40x y +-=设曲线曲线sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的任意一点位),sin Pαα则点P到直线的距离位d ==所以当sin 13πα⎛⎫+= ⎪⎝⎭时,min d 故选:B 【点睛】本题考查极坐标方程与普通方程的转化以及使用参数方程来解决点到直线的最值问题,重在计算,考查逻辑推理以及计算能力,属中档题.3.B解析:B 【分析】求出直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫ ⎪⎝⎭,然后利用三角形的面积公式121sin 23S πρρ=可得出结果. 【详解】设直线0θ=与直线cos sin 1ρθρθ+=交点的极坐标()1,0ρ,则1cos01ρ=,得11ρ=. 设直线3πθ=与直线cos sin 1ρθρθ+=交点的极坐标2,3πρ⎛⎫⎪⎝⎭, 则22cossin133ππρρ+=,即22112ρρ=,得21ρ=.因此,三条直线所围成的三角形的面积为)12113sin 1123224S πρρ==⨯⨯⨯=故选B. 【点睛】 本题考查极坐标系中三角形面积的计算,主要确定出交点的极坐标,并利用三角形的面积公式进行计算,考查运算求解能力,属于中等题.4.A【分析】 把3πθ=分别代入2sin ρθ=和2cos ρθ=,求得,A B 的极经,进而求得AB ,得到答案. 【详解】 由题意,把3πθ=代入2sin ρθ=,可得2sin33A πρ==,把3πθ=代入2cos ρθ=,可得2cos13B πρ==,结合图象,可得31A B AB ρρ=-=-,故选A .【点睛】本题主要考查了简单的极坐标方程的应用,以及数形结合法的解题思想方法,着重考查了推理与运算能力,属于基础题.5.C解析:C 【解析】 【分析】把极坐标方程化为直角坐标方程即可。
坐标系与参数方程早练专题练习(二)附答案高中数学
所以圆心(-1,0)到直线距离为2,|PQ|的最小值为2-1=1.……………………10分
9.已知A是曲线ρ=3cosθ上任意一点,求点A到直线ρcosθ=1距离的最大值和最小值。
将极坐标方程转化成直角坐标方程:
ρ=3cosθ即:x2+y2=3x,(x- )2+y2=
ρcosθ=1即x=1直线与圆相交。
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.C
解析:D
解析:把已知方程化为标准方程,得 +(y+sinθ)2=1.
∴椭圆中心的坐标是( cosθ,-sinθ).
其轨迹方程是 θ∈[0, ].
即 +y2=1(0≤ ,-1≤y≤0).
第II卷(非选择题)
请点击修改第II卷的文字说明
当x=0时,y=0;
当 时, .………………………………………6分
从而 .………………………………………8分
∵原点 也满足 ,
∴曲线C的参数方程为 ( 为参数).……………………………10分
8.(选修4—4:坐标系与参数方程)
解:以极点为原点,极轴所在直线为 轴建立直角坐标系.将曲线 与曲线 分别化为直角坐标方程,得直线方程 ,圆方程 .……6分
评卷人
得分
二、填空题
2.
3.
评卷人
得分
三、解答题
4.
5.
6.曲线 的直角坐标方程 ,曲线 的直角坐标方程是抛物线 ,…4分
设 , ,将这两个方程联立,消去 ,
得 , .……………………………………6分
.…………8分
∴ , .………………………………………………………10分
坐标系与参数方程早练专题练习(一)含答案高中数学
(Ⅱ)若 在其定义域内为单调增函数,求 的取值范围.
6.已知直线 的极坐标方程是 .以极点为平面直角坐标系的原点,极轴为 轴的正半轴,建立平面直角坐标系,在曲线 上求一点,使它到直线 的距离最小,并求出该点坐标和最小距离.
7.在平面直角坐标系 中,椭圆C的参数方程为 ,其中 为参数.以O为极点, 轴正半轴为极轴建立极坐标系,直线l的极坐标方程为 .求椭圆C上的点到直线l距离的最大值和最小值.
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.曲线的参数方程是 (t是参数,t≠0),它的普通方程是()
A.(x-1)2(y-1)=1B.y=
评述:本题重点考查参数方程与普通方程的互化,考查等价转化的能力.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
2.
3.
评卷人
得分
三、解答题
4.解:由题意,得曲线 : , 切线为 的斜率 ,
切线为 的方程为: ,即 ,
切线为 的极坐标方程: .……………………………………………………………10分
5.
(理)在直角坐标系xOy中,曲线C1的参数方程为 (α为参数),M是C1上的动点,P点满足 ,P点的轨迹为曲线C2.
(Ⅰ)求C2的参数方程;
(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ= 与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|值.(本题满分14分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.选修4—4参数方程与极坐标
解由题设知,圆心 2分
∠CPO=60°,故过P点的切线的倾斜角为30° 4分
设 是过P点的圆C的切线上的任一点,
则在△PMO中,∠MOP=
由正弦定理得 8分
,即为所求切线的极坐标方程. 10分
二、填空题
2.,圆的普通方程为:,直线的普通方程为:,又圆与直线相切,所以解得:,或。
解析: ,圆 的普通方程为: ,
直线 的普通方程为: ,
又圆与直线相切,所以 解得: ,或 。
3.(0,1)解析:将参数方程化为普通方程:(y-1)2=4(x+1)该曲线为抛物线y2=4x分别向左,向上平移一个单位得来.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.AC
解析:D
解析:设曲线上的点到两坐标轴的距离之和为d
∴d=|x|+|y|=|cosθ|+|sinθ|
设θ∈[0, ]
∴d=sinθ+cosθ= sin(θ+ )
∴dmax= .
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
( )求 与 交点的极坐标;
( )设 为 的圆心, 为 与 交点连线的中点.已知直线 的参数方程为
,求 的值.(汇编年高考辽宁卷(文))选修4-4:坐标系与参数方程
5.已知动点 都在曲线 为参数 上,对应参数分别为 与 , 为 的中点.
(Ⅰ)求 的轨迹的参数方程;
(Ⅱ)将 到坐标原点的距离 表示为 的函数,并判断 的轨迹是否过坐标原点.(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))选修4—4;坐标系与参数方程
此时,点 .(10分)
7.解:根据椭圆的参数方程,可设点 是参数 ……………………………5分
则 ,即 最大值为10………………………10分
8.解:C1: . 得t= ,代入①,化简得x2+y2=2x.
又x= ≠0,∴C1的普通方程为(x-1)2+y2=1(x≠0).……………………6分
圆C1的圆心到直线l:y=x- 的距离d= = .
解析:(0,1)
解析:将参数方程化为普通方程:(y-1)2=4(x+1)
该曲线为抛物线y2=4x分别向左,向上平移一个单位得来.
评卷人
得分
三、解答题
4.
5.
6.命题立意:本题主要考查椭圆的参数方程的应用,考查运算求解能力.
解:设 ( 为参数),(4分)
则矩形 周长为 ,(8分)
所以,当 时,矩形 周长取最大值4,
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1.曲线 (θ为参数)上的点到两坐标轴的距离之和的最大值是()
A. B. C.1D. (汇编天津理,1)
第分
二、填空题
2.在极坐标系中,已知圆 与直线 相切,求实数 的值。
3.曲线 (t为参数)的焦点坐标是_____.(汇编上海理,8)
评卷人
得分
三、解答题
4.在直角坐标系 中以 为极点, 轴正半轴为极轴建立坐标系.圆 ,直线 的极坐标方程分别为 .
6.在平面直角坐标系xOy中,过椭圆 在第一象限处的一点 分别作 轴、 轴的两条垂线,垂足分别为 ,求矩形 周长最大值时点 的坐标.
7.已知点 在椭圆 上,试求 最大值.
8.求曲线C1: 被直线l:y=x- 所截得的线段长.
9.已知圆C的参数方程为 ,若P是圆C与x轴正半轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为 ,求直线 的极坐标方程.