2粗大误差的判别
粗大误差判别准则在H—ADCP流速关系率定中的应用比较
粗大误差判别准则在H—ADCP流速关系率定中的应用比较【摘要】在现代流量测验过程中,声学多普勒流速剖面仪(Acoustic Doppler Current Profiler)简称为ADCP,因具有高效、经济、快速、精确的特点,得到广泛应用。
其中水平式ADCP(H-ADCP)则是通过测量代表流层的流速,进而推算得到断面流量。
因H-ADCP本身测验方法的限制,在代表流速关系率定时,存在粗大误差的可能,使得关系线偏离,最终导致流量测验准确度降低。
本文将以粗大误差判别的几种准则为切入点,分析和比较其在H-ADCP流速关系率定中的应用。
【关键词】流量测验;粗大误差;水平式ADCPA Comparative Investigation on Application of Gross Error Criterion in H-ADCP Calibration of Velocity RelationsAbstracts:In the process of contemporary discharge measurement,Acoustic Doppler Current Profiler (ADCP)has been widely applied,as it owns such features as high efficiency,low cost,rapid speed,and precise accuracy. Among which,Horizontal Acoustic Doppler Current Profiler (H-ADCP)can calculate the section flows by means of testing the velocity of representative flow layer. However,due to the limitation of the H-ADCP,the calibration of representative velocity relations shows the possibility of gross error,which leads to the departure of relations curve. In this case,the accuracy of discharge measurement will be diminished. This investigation will be carried out from the standards of gross error evaluation,and its application in H-ADCP calibration of velocity relations will be analyzed and compared.Keyword:Discharge Measurement;Gross Error;H-ADCP1、引言声学多普勒流速剖面仪(Acoustic Doppler Current Profiler)简称为ADCP,它利用多普勒效应原理进行流速测量。
四种判别粗大误差准则的比较与讨论
除ꎬ后者更为严格 [5] ꎮ 笔者通过阅读文献发现ꎬ
收稿日期: 2017 ̄04 ̄23 基金项目: 广东省教育科研 十二五 规划 2012 年度研究项目(2012JK241) ∗通讯联系人
106
四种判别粗大误差准则的比较与讨论
除ꎮ 莱依达准则一般适用于测量次数较多的情况 1.3㊀ 肖维勒准则 ( n ⩾ 50) ꎮ 对于可疑数据 x m ꎬ若其残差满足 xm - x > ωn S
2㊀ 四种判断粗大误差准则的比较
2.1㊀ 四种判别粗大误差准则的归纳 准则 的 思 维 方 法 可 以 概 括 为: 首 先 求 出 测 量 值 x 1 ꎬx 2 ꎬ������ꎬx n 的样本均值 x 和样本标准差 S ꎬ 对于 第 i 次测量值ꎬ如果满足: x m - x > KS (9) 观察(3) ㊁(4) ㊁(5) 和 (8) 式ꎬ 不难发现ꎬ 四种
ꎻ另一种方式是比较统计临界值ꎬ
1 ð ( xi - x ) n ̄1 1.1㊀ 格拉布斯准则 xm - x
=
(2)
根据格拉布斯准则 [6ꎬ7] :若统计量 > G ( n ꎬa ) (3) S 则 x m 为异常值ꎬ须剔除ꎮ 式中 G ( nꎬa) 为统 Gm =
计量的临界值ꎬ根据测量次数和取定的显著水平 1.2㊀ 莱依达准则 足下式 a ( 一般为 0.05 或 0.01) ꎬ通过查表 [8] 可知临界值 G ( n ꎬa ) ꎮ 根据莱依达准则 [9] ꎬ测量值 x m 的残余误差满 x m - x > 3S (4) 则认为 x m 是含有粗大误差的异常值ꎬ 须剔
99.7%) ㊁格拉布斯准则( 显著水平为 0.01㊁0.05) ㊁t
㊀ ㊀ 利用 EXCEL 画出莱依达准则 ( 置信概率为 检验法准则( 显著水平为 0.01㊁0.05) 和肖维勒准 则在测量次数落在区间 3 ~ 100 中的 K ̄n 曲线如 图 1 所示
粗大误差的判别
先将以上数据以一个行向量的形式输入一个新打开的MATLAB文件,存盘名为:count2.dat,
数据之间用空格隔开。
loadcount2.dat
sort(count2)
h=sum(count2)
j=mean(count2)
f=std(count2)
m=min(count2)
g=(j-m)./f
19.9920
g =
3.1202
实验设备
计算机及MATLAB软件
结论
用软件实现粗大误差的初步判断
实验日期
2015年11月6日
实验者
比较计算出的g和从书中4-1查得的
G(α,n)=G(0.01,20)=2.884
可知:g=3.1202>2.884
可知:测量列中的最小值含有粗大误差,剔除后,重新ห้องสมุดไป่ตู้n=19计算j,f,再找m重复进行以上步骤,直到没有粗大误差为止
验证结果
h =
399.9980
j =
19.9999
f =
0.0025
m =
实验名称
粗大误差的判别
实验性质
验证
内容提要
用格拉布斯准则判断测量列是否含有粗大误差
实验要求
用MATLAB编程
测量数据(mm)
20.002 20.000 20.000 20.001 20.000 19.998 19.998 20.000 20.001 19.998 20.002 20.002 20.000 20.004 20.000 20.002 19.992 19.998 20.002 19.998
粗大误差判断准则
粗大误差判断准则
摘要: 当在测量数据中发现某个数据可能是异常数据时,一般不要不加分析就轻易将该数据直接从测量记录中删除,最好能分析出该数据出现的主客观原因。
判断粗大误差可从定性分析和定量判断两方面来考虑。
定性分析就是对测量环境、测量条...
当在测量数据中发现某个数据可能是异常数据时,一般不要不加分析就轻易将该数据直接从测量记录中删除,最好能分析出该数据出现的主客观原因。
判断粗大误差可从定性分析和定量判断两方面来考虑。
定性分析就是对测量环境、测量条件、测量设备、测量步骤进行分析,看是否有某种外部条件或测量设备本身存在突变而瞬时破坏;测量操作是否有差错或等精度测量过程中是否存在其他可能引发粗大误差的因素;也可由同一操作者或另换有经验操作者再次重复进行前面的(等精度)测量,然后再将两组测量数据进行分析比较,或再与由不同测量仪器在同等条件下获得的结果进行对比,以分析该异常数据出现是否“异常”,进而判定该数据是否为粗大误差。
这种判断属于定性判断,无严格的规则,应细致和谨慎地实施。
定量判断,就是以统计学原理和误差理论等相关专业知识为依据,对测量数据中的异常值的“异常程度”进行定量计算,以确定该异常值是否为应剔除的坏值。
这里所谓的定量计算是相对上面的定性分析而言,它是建立在等精。
笔记五、粗大误差的处理方法
当测量列中,有 2 个以上的测量值含有粗大误差时,判别时,应该 先剔除含有最大误差的测得值,然后再重新计算测量列中的算术平 均值、 标准差; 然后再对余下的测得值进行判别, 直至所有测得值都 不含粗大误差为止。
r0 (n, ) ;
判断最大值 x( n ) :计算极差比 rij ,若 rij r0 (n, ) ,则该值含 有粗大误差,应剔除;否则保留。 判断最小值 x(1) :计算极差比 rij ,若 rij r0 (n, ) ,则该值含 有粗大误差,应剔除;否则保留。 剔除完数据后,再重新排序计算最大值、最小值极差,查表 得临界统计量 r0 (n ' , ) (注意:次数发生了变化) ,重复上述判 断方法,直至最大、最小值不含有粗大误差为止。 参数选择: ①测量次数 n 7 ,使用 r10 判断; 8 n 10 ,使用 r11 判断; 测量次数 11 n 13 ,使用 r21 判断; n 14 ,使用 r22 判断;
x(1) x
所以应该先怀疑 x(1) : g(1)
20.404 20.30 3.15 0.033
选取显著度 0.05 ,查表得 g(0) (15,0.05) 故此测量值含有粗大误差, 应该 g(1) 3.15 g(0) (15,0.05) 2.41 , 剔除。 剔除后再重新计算平均值、标准差: x 20.411 , ' 0.016 计算 g( n )
x1 , x2 ,..., xn
计算平均值、残余差、标准差:
x
1 v2 x , vi =xi x , = n 1 n
将测量值 xi (i=1,2,3…n)按照从小到大进行排序,找到最小值
x(1) 和最大值 x(n)
测量中粗大误差的非统计判定方法
59科技资讯 S CI EN CE & T EC HNO LO GY I NF OR MA TI ON工 程 技 术1 前言以往我们采用的粗差判别准则如莱以特准则、罗曼诺夫斯基准则、格鲁布斯准则、狄克逊准则均采用统计的方法来剔除粗差的,统计的方法是假定测量数据服从某种正态分布,然后检验测量值是否含有粗差,这种方法均要求大样本的数据,即需要测量次数足够多,测量数据个数趋于无穷大,但实际测量中由于条件有限,获得的测量数据个数往往较少,不能保证其满足某种概率分布,若此时仍采用统计方法来判别其是否含有粗大误差,则不一定会获得可靠的判别结果,亦难以有效的将含有粗差的数据剔除出去;相反,很有可能将不含有粗差的数据误认为是异常值而剔除掉,这就是通常我们采用统计的方法对小样本数据进行粗差判定时的弊端。
鉴于上面的情况我们尝试采用非统计的判定方法来对粗大误差进行剔除。
非统计的判定方法对于测量值个数没有过多的限制,对测量数据也没有分布要求计算简单可行,经过多个实例进行计算,取得了较好的判别结果。
1.1误差研究的意义人类为了认识自然与改造自然,而需要不断地对自然界的各种现象进行测量和研究,由于实验方法和实验设备的不完善、周围环境的影响,以及受人们认识能力所限等,测量和实验所得数据与被测量的真值之间,不可避免地存在着差异,这在数值上表现为误差。
研究误差的意义在于以下几点。
(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据。
(3)正确组织实验过程,合理设计仪器或选用一起和测量方法,以便在最经济的条件下,得到理想的结果。
研究误差的目的在于以下几个方面。
(1)正确掌握测量误差来源,分析误差的性质,以减少或消除误差;(2)正确处理测量数据,合理评价测量结果;(3)优化实验设计,合理选用仪器及其测量方法,提高测量技术水平。
1.2粗大误差的产生1.2.1粗大误差的定义粗大误差是指由于测量人员的主观原因或客观外界条件的原因而引起的歪曲测量结果的数据。
判断粗大误差的三个准则
判断粗大误差的三个准则
判断粗大误差的三个准则包括:
1. 实质性误差:通过对数据进行验证和比对,确定是否存在实质性误差。
其中包括数值的偏离和异常值,以及与其他相关数据的不一致性。
2. 逻辑一致性:对数据进行逻辑分析,判断数据之间是否存在逻辑矛盾或不一致的情况。
例如,某个数据值远远超出合理范围,或者一个事件的发生时间在前后存在矛盾。
3. 内在规律性:根据统计原理和经验规律,对数据进行分析,判断数据是否符合预期的分布或趋势。
如果数据的分布与预期不符,或者存在异常的波动,可能存在粗大误差。
这三个准则可以帮助我们发现可能存在的粗大误差,并进行相应的修正和调整,以提高数据的准确性和可靠性。
粗大误差的判断方法
粗大误差的判断方法
粗大误差啊,这可是个很关键的东西呢!它就像是混入珍珠中的一粒沙子,会让整个结果都变得不准确。
那怎么来判断它呢?这可得好好说道说道。
咱先来说说直观判断法,就好像你一眼就能看出一个人是不是生病了一样。
如果某个测量值明显偏离了其他数据,那它很可能就是粗大误差呀!这不是很明显嘛!比如一群人都在说正常的话,突然有个人大喊大叫一些不着边际的,那他不就很突出嘛!
再来讲讲统计判别法,这就好比是给数据做个“体检”。
通过计算一些统计指标,来看看有没有异常的数据。
如果某个值超出了正常范围,那它可能就是那个“捣乱分子”。
就好像在一个班级里,大家的成绩都在一个范围内波动,突然有个人考了个超级高或者超级低的分数,那是不是就很显眼呀!
还有什么呢?对了,还有格拉布斯准则!这就像是个严格的法官,对数据进行严格的审查。
如果某个值被它判定为异常,那几乎就可以确定是粗大误差了。
想象一下,数据们排着队接受审查,那个不符合标准的一下子就被揪出来了,是不是很形象!
莱以特准则也不能落下呀!它就像是个敏锐的侦探,能从众多数据中发现那个“不寻常”。
一旦它锁定了目标,那这个粗大误差可就无处遁形啦!
你说判断粗大误差重要不重要?要是不把它找出来,那得出的结论能靠谱吗?能放心使用吗?肯定不行呀!所以我们一定要掌握这些判断方法,就像战士要有锋利的武器一样。
只有这样,我们才能在数据的海洋中准确地航行,不会被粗大误差这股“暗流”给带偏了呀!总之,粗大误差的判断方法可太重要啦,我们可不能马虎对待呀!。
判定粗大误差的两个准则
判定粗大误差的两个准则
1. Grubbs' test (格拉布斯检验):是一种统计方法,用于检测数据集中是否存在异常值。
该方法适用于正态分布的数据集,适用于含有一个极端值的数据集。
根据格拉布斯检验,可以通过比较极端值与均值或者一组数据极端值之间的差与标准差的比较,来确定是否存在异常值。
2. Studentized residual test(标准化残差检验):用于检查是否具有异常值,主要用于检查线性回归模型是否正确。
标准化残差是观测值与模型预测值之间的标准化差异,其分布应为标准正态分布。
标准化残差的大小超过2.5时,通常被认为是异常值。
如果数据集中有多个异常值,则可能需要使用其他技术来检查数据集中的任何异常值。
4第三章粗大误差
计算结果
测量电阻的极限误差
t0.05 9 s 0.14 0.2
10 故该电阻的测量结果为
101.3 0.2
总结
(1)大样本情形(n>50),用3σ准则最简单方 便;30<n<50情形,用Grubbs准则效果较好;
3 n 30 情形,用Grubbs准则适用于剔除单个
异常值,用Dixon准则适用于剔除多个异常值。
三、判别粗大误差应注意的几个问题
(五)全部测量数据的否定
➢ 若在有限次的测量列中,出现两个以上异 常值时,通常可认为整个测量结果是在不 正常的条件下得到的,对此应改进完善测 量方法,重新进行有效测量。
欢迎进入下一章的学习: 《非等精度测量》
二、增加测量次数,继续观察
如果在测量过程中,发现可疑测量值又 不能充分肯定它是异常值时,可以在维 持等精密度测量条件的前提下,多增加 一些测量次数。根据随机误差的对称性, 以后的测量很可能出现与上述结果绝对 值相近仅符号相反的另一测量值,此时 它们对测量结果的影响便会彼此近于抵 消。
三、用统计方法进行判别
在测量完毕后,还不能确定可疑测量 值是否为含有粗大误差的异常值时, 可按照依据统计学方法导出的粗大误 差判别准则进行判别、确定。
四、保留不剔,确保安全
利用上述三种原则还不能充分肯定 的可疑值,为保险起见,一般以不 剔除为好。
第三节 粗大误差的统计判别方法
一、统计方法的基本思想
给定一个显著性水平,按一定分布确定一个 临界值,凡超过这个界限的误差,就认为它 不属于随机误差的范畴,而是粗大误差,该 数据应予以剔除.
xn xn2 xn x3
与
r22
x3 x1 xn2 x1
n 14 ~ 30
判断准则:
粗大误差判断准则
粗大误差判断准则摘要: 当在测量数据中发现某个数据可能是异常数据时,一般不要不加分析就轻易将该数据直接从测量记录中删除,最好能分析出该数据出现的主客观原因。
判断粗大误差可从定性分析和定量判断两方面来考虑。
定性分析就是对测量环境、测量条...当在测量数据中发现某个数据可能是异常数据时,一般不要不加分析就轻易将该数据直接从测量记录中删除,最好能分析出该数据出现的主客观原因。
判断粗大误差可从定性分析和定量判断两方面来考虑。
定性分析就是对测量环境、测量条件、测量设备、测量步骤进行分析,看是否有某种外部条件或测量设备本身存在突变而瞬时破坏;测量操作是否有差错或等精度测量过程中是否存在其他可能引发粗大误差的因素;也可由同一操作者或另换有经验操作者再次重复进行前面的(等精度)测量,然后再将两组测量数据进行分析比较,或再与由不同测量仪器在同等条件下获得的结果进行对比,以分析该异常数据出现是否“异常”,进而判定该数据是否为粗大误差。
这种判断属于定性判断,无严格的规则,应细致和谨慎地实施。
定量判断,就是以统计学原理和误差理论等相关专业知识为依据,对测量数据中的异常值的“异常程度”进行定量计算,以确定该异常值是否为应剔除的坏值。
这里所谓的定量计算是相对上面的定性分析而言,它是建立在等精度测量符合一定的分布规律和置信概率基础上的,因此并不是绝对的。
下面介绍两种工程上常用的粗大误差判断准则。
1.拉伊达准则拉伊达准则是依据对于服从正态分布的等精度测量,其某次测量误差|Xi -X0|大于3σ的可能性仅为0.27%。
因此,把测量误差大于标准误差σ(或其估计值)的3 倍的测量值作为测量坏值予以舍弃。
由于等精度测量次数不可能无限多,因此,工程上实际应用的拉伊达准则表达式为(1)式中,Xk 为被疑为坏值的异常测量值;为包括此异常测量值在内的所有测量值的算术平均值;为包括此异常测量值在内的所有测量值的标准误差估计值;KL(=3)为拉伊达准则的鉴别值。
粗大误差理论
n
v
2 i
i1
n 2
根据测量次数n和选取的显著度 ,即可由表查得t分布的
检误验差系,数剔K除(n,x。是j)若正确xj的 x,,则否K认则为认测为量不值x j含含有有粗粗x大j 大误差,
应予保留。
3、格罗布斯准则
设对某量作多次等精度独立测量,得 x1,x2,...x,n
当x 服j 从正态分布时,计算
随机误差在一定的置信概率下的确定置信限
2、防止与消除粗差的办法 对粗差,除了设法从测量结果中发现和鉴别
而加以剔除外,更重要的是要加强测量者的工 作责任心和以严格的科学态度对待测量工作; 此外,还要保证测量条件的稳定,或者应避免 在外界条件发生激烈变化时进行测量。如能达 到以上要求,一般情况下是可以防止粗差产生 的。
◆罗曼诺夫斯基准则又称t检验准则,其特点是首先剔除一 个可疑的测得值,然后按t分布检验被剔除的测得值是否 含有粗大误差。
设对某量作多次等精度独立测量,得
x1,x2,...x,n
若认为测量值
x
为可疑数据,将其剔除后计算平均值(计
j
x 算时不包括 j)
x
1 n 1
n i 1
xi
i j
并求得测量列的标准差(计算时不包括vj x)j x
x
1 n
x
vi xi x
v2
n 1
为了检验 xi(i1,2中,..是.n,)否存在粗大误差,将 按大x小i 顺
序排列成顺序统计量 x i, 而 x1x2.. .xn
格罗布斯导出了gn xn及 x
g的1 分x布x,1 取定显著
度 (一般为或),可以得到格罗布斯系数
g0(n,)
而
P(xnxg0(n,))
粗大误差
所有 14 个|Vi’|值均小于 3σ’ ,故无再需剔除的坏值。 表 4-4 测量顺序 测 得 值 例 4-1 数据表 (℃) 按 15 个数据计算 按 14 个数据计算
ti
vi = t - t
i
15
vi 2 10 6
vi ' = ti - t14
所有|V i’|值均小于 Z cσ’ ,故已无坏值。 (3)按格拉布斯准则 以 n=15 取置信概率 P ɑ=0.99,查表 4-2 得 G 值为 2.70。
Gσ=2.7×0.033=0.09<|V8|
故 t8 应剔除,再按 n=14,β=0.99 查表 4-2,得 G 值为 2.66。
Gσ’=2.66×0.016=0.04
再取一个 x ' j 值继续判断,直到数据不含粗大误差为止。 表 4-3 t 检验准则中的系数 k 值 ɑ n 4 5 6 7 8 9 10 11 12 ɑ 0.05 4.97 3.56 3.04 2.78 2.62 2.51 2.43 2.37 2.33 0.01 11.46 6.53 5.04 4.36 3.96 3.71 3.54 3.41 3.31 n 13 14 15 16 17 18 19 20 21 0.05 2.29 2.26 2.24 2.22 2.20 2.18 2.17 2.16 2.15 0.01 3.23 3.17 3.12 3.08 3.04 3.01 3.00 2.95 2.93 n 22 23 24 25 26 27 28 29 30 ɑ 0.05 2.14 2.13 2.12 2.11 2.10 2.10 2.09 2.09 2.08 0.01 2.91 2.90 2.88 2.86 2.85 2.84 2.83 2.82 2.81
判别粗大误差的准则
判别粗大误差的准则引言在测量和统计领域,精确度和准确度是非常重要的概念。
准确度是指测量结果与真实值之间的接近程度,而精确度是指多次测量结果之间的一致性。
然而,在实际应用中,由于各种原因,可能会出现误差,其中包括粗大误差。
粗大误差是指显著偏离真实值的异常观测值或数据点。
它可能由仪器故障、操作失误、环境变化等多种因素引起。
为了保证数据的可靠性和准确性,判别并排除这些粗大误差是必要的。
本文将介绍判别粗大误差的准则,并提供一些常用的方法和技术来检测和处理这些异常观测值。
判别粗大误差的准则1. 样本点与平均值之间的偏离程度判断一个样本点是否为粗大误差可以通过计算其与平均值之间的偏离程度来进行。
常用的方法有使用标准差或者残差来衡量。
•标准差:计算所有样本点与平均值之间的差异,并根据标准差的大小来判断是否为粗大误差。
一般来说,如果一个样本点与平均值之间的差异超过平均差异的两倍或三倍,就可以被视为粗大误差。
•残差:对于回归分析等情况,可以计算每个样本点的残差(观测值与拟合值之间的偏差),并根据残差的大小来判别是否为粗大误差。
通常情况下,如果一个样本点的残差超过平均残差的两倍或三倍,就可以被视为粗大误差。
2. 离群点检测离群点是指在数据集中与其他数据点明显不同的观测值。
离群点可能是由于异常情况、错误测量、记录错误等原因导致。
判别离群点可以使用以下方法:•离群因子(Outlier Factor):通过计算每个观测值周围其他观测值的密度来判断其是否为离群点。
如果一个观测值周围其他观测值的密度较低,则可以被认为是离群点。
•基于距离的方法:通过计算观测值与其他观测值之间的距离来判断其是否为离群点。
如果一个观测值与其他观测值之间的距离明显大于平均距离,则可以被认为是离群点。
•箱线图(Box Plot):通过绘制数据的箱线图来判断是否存在离群点。
箱线图展示了数据的四分位数和异常值,如果一个观测值超过上下四分位数的1.5倍或3倍,可以被视为离群点。
笔记五、粗大误差的处理方法
1 n xi n 1 i 1
i j
v
标准差
i 1 i j
n
2
i
n 1 根据测量次数 n,选取显著度 ,查表得到检验系数
K (n, ) ,若被剔除测量值 x j 满足如下:
x j x K ,则认为含有粗大误差,剔除 x j 是正确的
例子 2:试用此法判断上述例子 1 中的测量值中有无粗大误差?
查表,显著度 =0.05 ,统计临界值 r0 (n, ) r0 (14,0.05) 0.546 判断最大值 x (14) : r22
'
x( n ) x( n2) x( n ) x(3)
x '(14) x '(12) x (14) x (3)
' '
20.43 20.43 0 20.43 20.39
'
x(n) x
'
'
20.43 20.411 1.18 0.016
查表得 g(0) (15-1,0.05) 2.37 g(15) 1.18 则 x(15) 不含有粗大误差,应保留。 ➢ 狄克松准则 适用范围:测量次数少,但可靠性要求高。 优点:判断测量列中的粗大误差的速度较快 判别方法: 测量值: x1 , x2 ,...xn ;次数为 n 将测量值按照从小到大排列: x(1) , x(2) ,...x( n) 选定显著度 (一般为 0.01 或 0.05) ,查表得到临界统计量
判别 r22 0 r0 (15,0.05) 0.525 ,故 x '(14) 不含粗大误差,应保留 判断最小值 x '(1) : r22
1.2.3 粗大误差判别
1.2.3 粗大误差判别
肖维勒准则:假设多次重复测量所得n个测量 值中, 某个测量值的残余误差|vi|>Zcσ,则剔 除此数据。实用中Zc<3, 所以在一定程度上弥 补了3σ准则的不足。
3
1.2.3 粗大误差判别
格拉布斯准则:某个测量值的残余误差的绝对值|vi| >Gσ, 则判断此值中含有粗大误差,据中某个测量值的残余误差的绝对值v则该测量值为可疑值坏值应剔除
1.2.3 粗大误差判别
1. 3σ准则 2. 肖维勒准则 3. 格拉布斯准则
1
1.2.3 粗大误差判别
3σ准则(莱以达准则):如果一组测量数据中某个 测量值的残余误差的绝对值|vi|>3σ时, 则该测量值 为可疑值(坏值), 应剔除。最常用,应用于测量次 数充分多的情况。
4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
验证结果
h =399.9980
j =19.9999
f =0.0025
m =19.9920
g = 3.100
f = 0.0026
m =19.9920
g = 3.1245
实验设备
计算机及MATLAB软件
结论
用软件实验粗大误差的初步判别
实验日期
2011年9月27日
实验者
090212629张宇驰
实验程序
先将以上数据以一个行向量的形式输入一个新打开的MATLAB文件,存盘名称为:count2.dat,数据之间用空格隔开
程序:
load count2.dat
>> sort(count2)
>> h=sum(count2)
>> j=mean(count2)
>> f=std(count2)
>> m=min(count2)
实验报告单
实验名称
粗大误差的判别
实验性质
验证
内容提要
用格拉布斯准则判断测量列是否含有粗大误差
实验要求
用MATTALB编程
测量数据(mm)
20.002,20.000,20.000,20.001,20.000,19.998,19.998,20.000,20.001,19.998,
20.002,20.002,20.000,20.004,20.000,20.002,19.992,19.998,20.002,19.998
>> g=(j-m)./f
clear
load count2.dat
sort(count2)
h=sum(count2)
j=mean(count2)
f=std(count2)
m=min(count2)
g=(j-m)./f
比较计算出的g和从书中表4-1查得的G( ,n)=G(0.01,20)=2.884
可知:g=3.1202>2.884