数学奥林匹克专题讲座 第04讲 整数的分拆
小学奥数数论之整数分拆之最值应用(学生版)
5-2-2.整数分拆之最值应用教学目标1.熟练掌握整除的性质;2.运用整除的性质解最值问题;3.整除性质的综合运用求最值.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、2、3、5系列【例 1】要使156a b c分别是多少?abc能被36整除,而且所得的商最小,那么,,【例 2】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【巩固】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?【例 3】各位数码是0、1或2,且能被225 整除的最小自然数是多少?【例 4】在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
小学奥数知识点趣味学习——整数的分拆
小学奥数知识点趣味学习——整数的分拆整数分拆内容概述:1.一般的有,把一个整数表示成两个数相加,当两个数相近或相等的时候,乘积最大。
也就是把整数分拆成两个相等或者相差1的两个整数。
2.一般的有,把自然数m分成n个自然数的和,使其乘积最大,则先把m进行对n的带余除法,表示成m=np+r,则分成r个(p+1),(n-r)个P。
3.把自然数S (S>1)分拆为若干个自然数的和(没有给定是几个),则分开的数当中最多有两个2,其他的都是3,这样它们的乘积最大。
4.把自然数分成若干个互不相等的整数,则先把它表示成2+3+4+5+…+n形式,当和等于原数则可以,若不然,比原数大多少除去等于它们差的那个自然数。
如果仅大于1,则除去2,再把最大的那个数加1。
5.若自然数N有k个大于1的奇约数,则N共有k种表示为两个或两个以上连续自然数之和的方法。
即当有m个奇约数表示的乘积,则有奇约数个奇约数。
6.共轭分拆.我们通过下面一个例子来说明共轭分拆:如:10=4+2+2+1+1,我们画出示意图,我们将其翻转(将图左上到右下的对角线翻转即得到):,可以对应的写成5+3+l+1,也是等于10,即是10的另一种分拆方式。
我们把这两种有关联的分拆方式称为互为共轭分拆。
典型例题:1.写出13=1+3+4+5的共轭分拆。
【分析与解】画出示意图,翻转得到,对应写为4+3+3+2+1=13,即为13=1+3+4+5的共轭分拆。
2.电视台要播出一部30集电视连续剧,若要每天安排播出的集数互不相等。
则该电视连续剧最多可以播出几天?【分析与解】由于希望播出的天数尽可能地多,若要满足每天播出的集数互不相等的条件下,每天播出的集数应尽可能地少。
选择从1开始若干连续整数的和与30最接近(小于30)的情况为1+2+3+4+5+6+7=28,现在就可以播出7天,还剩下2集,由于已经有2集这种情况,就是把2集分配到7天当中又没有引起与其他的几天里播出的集数相同.于是只能选择从后加.即把30表示成:30=1+2+3+4+5+6+9或30=1+2+3+4+5+7+8即最多可以播出7天。
第四讲集合分划和整数分拆
4.2第二类Stirling数的性质
定理 1 第二类Stirling数S(n,k)满足递推关系 S(n+1,k)=S(n,k-1)+kS(n,k). 证明:易验证k=n+1成立;k>n+1时也成立.
当1≤k≤n时 取n+1元集A的某一元素a,将A的k-划分分成两类: 一类是a作为单独一块的,一类是a不是单独一块的.第一 类的划分数为S(n,k-1),第二类的划分分成两步来实现,一 步为将A中除了元素a划分成k块,第二步将a放入某一块 中.由乘法原理得第二类的划分数为kS(n,k).最后由加 法原理,定理得证.
例如: 4=4 =3+1=2+2 =2+1+1 =1+1+1+1
显然有
(1)B(n,k)=0 (k>n); (2)B(n,1)=1; (3)B(n,n)=1;
(4)B(n)=B(n,1)+B(n,2)+…+B(n,n).
定理 5
正整数n的无序k分拆的个数B(n,k)满足递推关系 B(n+k,k)=B(n,1)+B(n,2)+…+B(n,k). 证明:我们考虑所有n的分成至多k个分部的分拆,这样的
定理 3 第二类Stirling数S(n,k)满足 S(n+1,k)=C(n,k-1)S(k-1,k-1)+C(n,k)S(k,k-
1)+…+C(n,n)S(n,k-1).
证明:S(n+1,k)是集合A={a1,a2,..,an,an+1}的k分划数。 对于A的一个k分划,设包含an+1的那块是B,则其余的k-1 块构成了A\B的一个k-1分划。反过来,给定A的一个含
小学奥数整数拆分的要点及解题技巧
【导语】数学给予⼈们的不仅是知识,更重要的是能⼒,这种能⼒包括观察实验、收集信息、归纳类⽐、直觉判断、逻辑推理、建⽴模型和精确计算。
这些能⼒和培养,将使⼈终⾝受益。
以下是整理的相关资料,希望对您有所帮助。
【篇⼀】 ⼀、概念:把⼀个⾃然数(0除外)拆成⼏个⼤于0的⾃然数相加的形式。
⼆、类型----⽅法 1、基本型 2、造数型 3、求加数最多 ⽅法:1+2+3+……接近结果但是不超过已知数为⽌,再补差 4、两数型 (1)和不变:差⼩积⼤,差⼤积⼩ (2)积不变:差⼤和⼤,差⼩和⼩ 5、拆数型 积(1)允许相同:多3少2没有1 (2)不允许相同:从2连续拆分2+3+4+……刚好超过⽬标数为⽌ 1)超⼏就去⼏ 2)多1去2,差1补尾【篇⼆】 例题 例1、若⼲只同样的盒⼦排成⼀列,⼩明把42个同样的⼩球放在这些盒⼦⾥然后外出,⼩聪从每只盒⼦⾥取出⼀个⼩球,然后把这些⼩球放到⼩球最少的盒⼦⾥去,在把盒⼦从新排列了⼀下。
⼩明回来,仔细查看,没有发现友⼈动过⼩球和盒⼦。
问:⼀共有多少只盒⼦? 分析:设原来⼩球数最少的盒⼦⾥装有a只⼩球,现在增加到了b只,但⼩明发现没有⼈动过⼩球和盒⼦,这说明现在⼜有了⼀只装有a个球的盒⼦,这只盒⼦原来装有a+1个⼩球, 同理,现在另有⼀个盒⼦⾥装有a+1个⼩球,这只盒⼦⾥原来装有a+2个⼩球。
依此类推可知:原来还有⼀个盒⼦⾥装有a+3个⼩球,a+4个⼩球等等,故原来那些盒⼦⾥装有的⼩球数是⼀些连续⾃然数。
现在这个问题就变成了:将42分拆成若⼲个连续整数的和,⼀共有多少种分法,每⼀种分法有多少个加数? 因为42=6×7,故可将42看成7个6的和,⼜: (7+5)+(8+4)+(9+3) 是六个6,从⽽: 42=3+4+5+6+7+8+9 ⼀共有7个加数;⼜因为42=14×3,可将42写成13+14+15,⼀共有3个加数; ⼜因为42=21×2,故可将42写成9+10+11+12,⼀共有4个加数。
六年级奥数之整数分拆
整数分拆1.写出13=1+3+4+5的共轭分拆.2.电视台要播出一部30集电视连续剧,若要每天安排播出的集数互不相等.则该电视连续剧最多可以播出几天?3.若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。
再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?4.机器人从自然数1开始由小到大按如下规则进行染色:凡能表示为两个不同合数之和的自然数都染成红色,不符合上述要求的自然数染成黄色(比如23可表示成两个不同合数15和8之和,23要染红色;1不能表示为两个不同合数之和,1染黄色).问:要染成红色的数由小到大数下去,第2000个数是多少?请说明理由.5.在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.(1)请写出只有3种这样的表示方法的最小自然数.(2)请写出只有6种这样的表示方法的最小自然数.6.从整数1开始不改变顺序的相加,中途分为两组,使每组的和相等.如从1到3的话,1+2=3;从1到20的话:1+2+3+...+14=15+16+17+ (20)请问:除上述两例外,能够列出这样的最短的整数算式是从1到几?7.把一个整数写成非零自然数的和的形式.如果所用的几个自然数相同,只是写的顺序不同,也只算做一种方法.另外,只使用一个自然数,也算做一种方法.8.洗衣服要打好肥皂,揉搓得很充分,再拧一下,当然不可能全拧干.假设使劲拧紧后,衣服上还留有1千克带污物的水.现在有清水18千克,假设每次用来漂洗的水都是整数千克,试问留下的污物最少是洗涤前的几分之几?。
整数分拆的组合方法研究
整数分拆的组合方法研究整数分拆是一个在数论和组合数学中备受关注的问题。
它通过将一个正整数拆分为若干个正整数的和来研究整数的组合方法。
本文将对整数分拆的组合方法进行深入研究,并探究其中的原理和应用。
一、整数分拆的定义与基本概念在开始研究整数分拆的组合方法之前,我们先来了解一下整数分拆的定义和基本概念。
整数分拆指的是将一个正整数n表示成一系列正整数的和,其中被表示的正整数顺序无关,且相同的拆分顺序被视为同一种分法。
例如,对于正整数n=5,它的分拆方式有5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1等,总共有7种不同的分拆方式。
二、整数分拆的递归关系与生成函数整数分拆的递归关系和生成函数是研究整数分拆的重要工具。
1. 递归关系整数分拆的递归关系可以描述为下式:P(n, k) = P(n-1, k-1) + P(n-k, k)其中P(n, k)表示将n拆分为不超过k的正整数之和的分拆数。
2. 生成函数整数分拆的生成函数用于求解拆分数的总和。
它的定义如下:G(x) = 1/(1-x) * 1/(1-x^2) * 1/(1-x^3) * ...其中G(x)表示整数分拆数的生成函数。
三、整数分拆的应用整数分拆不仅在数论和组合数学中有重要应用,还广泛应用于其他领域。
1. 数论中的应用整数分拆在数论中有广泛的应用。
例如,它可以用于证明数学命题或寻找数学规律。
同时,整数分拆也与质数、约数等数论问题紧密相关。
2. 组合数学中的应用整数分拆在组合数学中有重要的应用。
它可以用于求解组合数和排列数等问题,并且与划分数、组合恒等式等数学理论有密切联系。
3. 计算机科学中的应用整数分拆在计算机科学中也有广泛的应用。
它可以用于算法设计、密码学、数据压缩等方面。
例如,整数分拆可以应用于分析算法的时间复杂度和空间复杂度。
四、整数分拆的算法与实现为了研究整数分拆的组合方法,研究者们提出了多种算法和实现方式。
六年级奥数不定方程与整数分拆讲座范文整理
六年级奥数不定方程与整数分拆讲座不定方程与整数分拆求二元一次方程与多元一次方程组的自然数解的方法,与此相关或涉及整数分拆的数论问题.补充说明:对于不定方程的解法,本讲主要利用同余的性质来求解,对于同余性质读者可参考《思维导引详解》五年级[第15讲余数问题].解不定方程的4个步骤:①判断是否有解;②化简方程;③求特解;④求通解.本讲讲解顺序:③包括1、2、3题④②①包括4、5题③包括6、7题,其中③④步骤中加入百鸡问题.复杂不定方程:⑧、⑨、⑩依次为三元不定方程、较复杂不定方程、复杂不定方程.整数分拆问题:11、12、13、14、15..在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?【分析与解】设这个两位数为,则数字和为,这个数可以表达为有即,亦即.,因此只能为0的整数,且不能为9到0注意到和都是1、2、3或4,相应地的取值为2、4、6、8.综上分析,满足题目条件的两位数共有4个,它们是12、24、36和48..设A和B都是自然数,并且满足,那么A+B等于多少?【分析与解】将等式两边通分,有3A+llB=17,显然有B=l,A=2时满足,此时A+B=2+1=3..甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?【分析与解】设购买甲级铅笔支,乙级铅笔支.有7+3=50,这个不定方程的解法有多种,在这里我们推荐下面这种利用余数的性质来求解的方法:将系数与常数对3取模:得=2,所以可以取2,此时取12;还可以取2+3=5,此时取5;即、,对应为14、10所以张明用5角钱恰好可以买这两种不同的铅笔共14支或10支..有纸币60张,其中1分、l角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元?【分析与解】设1分、1角、1元和10元纸币分别有a张、b张、c张和d张,列方程如下:由得③注意到③式左边是9的倍数,而右边不是9的倍数,因此无整数解,即这些纸币的总面值不能恰好为100元.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?【分析与解】24厘米与36厘米都是12的倍数,所以截成若干根这两种型号的短管,截去的总长度必是12的倍数,但374被12除余2,所以截完以后必有剩余.剩余管料长不小于2厘米.另一方面,374=27×12+4×12+2,而36÷12=3,24÷12=2,有3×9+2×2=31.即可截成9根36厘米的短管与2根24厘米的短管,剩余2厘米.因此剩余部分的管子最少是2厘米..某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【分析与解】设男职工人,孩子人,则女职工3-人,那么有=216,化简为=216,即=72.有.但是,女职工人数为必须是自然数,所以只有时,满足.那么男职工数只能为12名.一居民要装修房屋,买来长0.7米和o.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:o.7+o.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【分析与解】设0.7米,0.8米两种木条分别,根,则0.7+0.8=3.46,…即7+8=34,36,37,38,39将系数,常数对7取模,有≡6,l,2,3,4,于是最小分别取6,1,3,4.但是当取6时,8×6=48超过34,无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封角,她共用了1元2角2分.那么小萌寄的这3种信的总和最少是多少封?【分析与解】显然,为了使3种信的总和最少,那么小萌应该尽量寄最贵的挂号信,然后是航空信,最后才是平.信.但是挂号信、航空信的邮费都是整数角不会产生几分.所以,2分,10+2分应该为平信的邮费,最小取3,才是8的倍数,所以平信至少要寄4封,此时剩下的邮费为122-32=90,所以再寄4封挂号信,航空信1封即可.于是,小萌寄的这3种信的总和最少是4+1+4=9封.有三堆砝码,堆中每个砝码重3克,第二堆中每个砝码重5克,第三堆中每个砝码重7克.现在要取出最少个数的砝码,使它们的总重量为130克.那么共需要多少个砝码?其中3克、5克和7克的砝码各有几个?【分析与解】为了使选取的砝码最少,应尽可能的取7克的砝码.130÷7:18……4,所以3克、5克的砝码应组合为4克,或4+7克重.设3克的砝码个,5克的砝码个,则.当=0时,有,无自然数解;当=1时,有,有=2,=1,此时7克的砝码取17个,所以共需2+1+17=21个砝码,有3克、5克和7克的砝码各2、1、17个.当>1时,7克的砝码取得较少,而3、5克的砝码却取得较多,不是最少的取砝码情形.所以共需2+1+17=20个砝码,有3克、5克和7克的砝码各2、1、17个.0.5种商品的价格如表8—1,其中的单位是元.现用60元钱恰好买了10件商品,那么有多少种不同的选购方式?【分析与解】设B、c、D、E、A商品依次买了b、c、d、e、则有=60.=310,显然只能取0,1,2.Ⅰ有=310,其中d可取0,1,2,3,4.当d=0时,有=310,将系数,常数对6取模得:≡4,于是最小取4,那么有18b=310-43×4=138,b不为自然数.所以d=0时。
2019-2020年二年级数学 奥数讲座 整数的分拆
2019-2020年二年级数学奥数讲座整数的分拆例1 小兵和小军用玩具枪做打靶游戏,见下图所示。
他们每人打了两发子弹。
小兵共打中6环,小军共打中5环。
又知没有哪两发子弹打到同一环带内,并且弹无虚发。
你知道他俩打中的都是哪几环吗?解:已知小兵两发子弹打中6环,要求每次打中的环数,可将6分拆6=1+5=2+4;同理,要求小军每次打中的环数,可将5分拆5=1+4=2+3。
由题意:没有哪两发子弹打到同一环带内并且弹无虚发,只可能是:小兵打中的是1环和5环,小军打中的是2环和3环。
例2 某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?解:这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆。
7=1+2+49=1+810=2+813=1+4+814=2+4+815=1+2+4+8外星人可按以上方式付款。
例3 有人以为8是个吉利数字,他们得到的东西的数量都能要够用“8”表示才好。
现有200块糖要分发给一些人,请你帮助想一个吉利的分糖方案。
解:可以这样想:因为200的个位数是0,又知只有5个8相加才能使和的个位数字为0,这就是说,可以把200分成5个数,每个数的个位数字都应是8。
这样由8×5=40及200-40=160,可知再由两个8作十位数字可得80×2=160即可。
最后得到下式:88+88+8+8+8=200。
例4 试将100以内的完全平方数分拆成从1开始的一串奇数之和。
解:1=1×1=12=1(特例)4=2×2=22=1+39=3×3=32=1+3+516=4×4=42=1+3+5+725=5×5=52=1+3+5+7+936=6×6=62=1+3+5+7+9+1149=7×7=72=1+3+5+7+9+11+1364=8×8=82=1+3+5+7+9+11+13+1581=9×9=92=1+3+5+7+9+11+13+15+17100=10×10=102=1+3+5+7+9+11+13+15+17+19。
学而思奥数 三年级下学期 第四讲.整数拆分.强化挑战篇
第四讲整数拆分
篇
强化挑战篇
强化挑战
1、将10拆分成4个自然数相加的形式,问共有多少种拆分方法?请全部写出。
(0除外)
2、有3个工厂共订300份《广州日报》,每个工厂最少订99份,最多订101份。
问:共有多少种不同的订法?
3、有一部25集的电视剧,分6天播出。
如果每天至少播一集,且每天播的数量都互不相同,问一共有多少种分法?
4、小玲用70元钱买了甲、乙、丙、丁4种书,共10册。
已知甲、乙、丙、丁这4种书每本价格分别为3元、5元、7元、11元,而且每种书至少买了一本。
那么,共有多少种不同的购买方法?
5、将2013拆分成2个自然数相加的形式,使这两个自然数的乘积最大,请问是哪两个自然数?如果将2013拆分成7个自然数相加的形式,使这些自然数的乘积最大,请问是哪7个自然数呢?
6、将2013拆分成若干个自然数相加的形式,使得这些自然数的乘积最大,请写出你的拆分方法。
7、将2013拆成若干个不同的自然数相加的形式,使得这些自然数之积最大,请写出你的拆分方法。
小学奥数 整数分拆与不定方程
整数分拆与不定方程【内容概述】整数分拆:就是把一个自然数表示为若干个自然数的和的形式,每一种表示方法,及时自然数的一个分拆。
不定方程:含有未知数的等式叫做方程,对一个方程而言,若未知数的个数超过一个,统称为不定方程。
整数的分拆:例1 电视台要播出一部30集的电视连续剧,若要每天安排的集数互不相等,则该电视连续剧最多可以播出几天?例2 把12分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何分拆?例3 试把1999分拆成8个自然数之和,使其乘积最大。
例4 把14分拆成若干个自然数之和,再求出这些数的积,要使得到的积最大,应该把14如何分拆?这个最大的乘积应该是多少?例5 将35拆成若干个互不相等的自然数之和,且使这些自然数的乘积最大,该乘积是多少?例6 396拆成若干个连续自然数和的形式,试问有多少种不同的方法?例7 用6米长的篱笆材料在围墙角修建如下图的鸡圈,问鸡圈的长和宽分别是多少时(包括正方形),鸡圈的面积最大?例8 用6米长的篱笆材料靠墙修建如下图的鸡圈,问鸡圈的长和宽分别是多少时(包括正方形),鸡圈的面积最大?不定方程:例1 已知61375=+y x ,请你写出一组整数解。
例2 已知21346=+y x ,请你写出一组整数解。
例3 已知5494563=+y x ,请你写出一组整数解。
例4 求解不定方程5494563=+y x 的解(至少5组)。
运用:例5 中华牌2B 铅笔7角钱一支,2H 铅笔3角钱一支。
高莎莎用5元钱恰好可以买两种铅笔共多少支?例6 庙里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,一天里共吃了722个馒头。
问:庙里至少有多少个和尚?练习:1.将2006分拆成8个自然数和的形式,使其乘积最大。
2.将1976分拆成若干个正整数之和,再将其相乘,试求所有这种乘积中的最大值。
3.将16分拆成若干个整数和的形式,再将其相乘,试求所有这种乘积中的最大值。
小学奥数整数拆分的知识点
小学奥数整数拆分的知识点
小学奥数关于整数拆分的知识点
整数拆分是小学奥数数论模块的重要知识点,小学奥数题所谓整数拆分就是把把一个自然数(0除外)拆成几个大于0的自然数相加的.形式。
下面一起来看看!
一、概念:
把一个自然数(0除外)拆成几个大于0的自然数相加的形式。
二、类型----方法
1、基本型
2、造数型
3、求加数最多
方法:1+2+3+……接近结果但是不超过已知数为止,再补差
4、两数型
(1)和不变:差小积大,差大积小
(2)积不变:差大和大,差小和小
5、拆数型
积最大(1)允许相同:多3少2没有1
(2)不允许相同:从2连续拆分2+3+4+……刚好超过目标数为止
1)超几就去几
2)多1去2,差1补尾
三年级小学奥数题及解析:裂项与拆分
有40枚棋子分别放入8个盒子里,要使每个盒子里都有棋子,那么其中的一个盒子里,最多能有多少棋子?
考点:整数的裂项与拆分.
分析:要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.
解答:解:因为要使每个盒子里都有棋子,那么每个盒子里面至少有1个球,而要使其中的一个盒子的球最多,则另外的7个盒子里面的球分别为1,
即40=1+1+1+1+1+1+1+33,所以最多的盒子里面有33个球.
答:其中的一个盒子里,最多能有33枚棋子.
奥数题点评:关键是理解题意得出7个盒子里面的球分别为1,求出最多的盒子里面球的个数.。
六年级奥数整数的裂项与拆分
六年级奥数整数的裂项与拆分六年级奥数整数的裂项与拆分若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析:设原来小球数最少的`盒子里装有a只小球,现在增加了b 只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成若干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.。
整数拆分奥数综合解析
整数拆分奥数综合解析
整数拆分奥数综合解析
有多少种方法可以把6表示为若干个自然数之和?
解:根据分拆的'项数分别讨论如下:
①把6分拆成一个自然数之和只有1种方式;
②把6分拆成两个自然数之和有3种方式
6=5+1=4+2=3+3;
1+3+3+2+1+1=11种不同的方法.
③把6分拆成3个自然数之和有3种方式
6=4+1+1=3+2+1=2+2+2;
④把6分拆成4个自然数之和有2种方式
6=3+1+1+1=2+2+1+1;
⑤把6分拆成5个自然数之和只有1种方式
6=2+1+1+1+1;
⑥把6分拆成6个自然数之和只有1种方式
6=1+1+1+1+1+1.因此,把6分拆成若干个自然数之和共有
第四讲 整数的拆分之欧阳理创编
第四讲整数的拆分笔记总结整数的拆分:把自然数分成为若干个自然数之和,每一种表示方法就是一种拆分。
【要求】1.拆成的数的和必须等于这个数n。
2.不允许重复(排列顺序不一样的重复也不可以):例如:3=2+1.3=1+2只能算一种拆分。
【要点】1.被拆的数 2.拆成多少个数 3.特殊要求一、整数分拆中的计数问题(几种、多少个这样的问题称为计数问题)例1有多少种方法可以把6表示为若干个自然数之和?(不加限制条件的分拆,称为无限制分拆)分类(枚举)法:只能拆成2个至6个数的和。
2个数:6=5+1=4+2=3+3 3个数:6=4+1+1=3+2+1=2+2+24个数:6=3+1+1+1=2+2+1+1; 5个数:6=2+1+1+1+1 6个数:6=1+1+1+1+1+1因此,把6分拆成若干个自然数之和共有1+3+3+2+1+1=11种不同的方法。
例2 有多少种方法可以把1994表示为两个自然数之和?解法:采用枚举法并考虑到加法交换律:1994=1993+1=1992+2=…=998+996=997+997因此,一共有997种方法可以把1994写成两个自然数之和.【拆成2个数规律】:n是双数,有n÷2种拆分;n是单数,有(n-1)÷2种拆分.二、整数分拆中的最值问题(最大和最小的两种极端情况,称为最值问题)例3 50最多能拆成多少个不同的正整数之和?拆“50”没有个数限制,但要求拆成的数个数最多-------也就是尽量拆的最小50=1+2+3+4+5+6+7+8+9+5 最多拆成9个。
例4 试把14分拆为两个自然数之和,使它们的乘积最大14=1+13,1×13=13;14=2+12,2×12=24;14=3+11,3×11=33;14=4+10,4×10=40;14=5+9,5×9=45;14=6+8,6×8=48;14=7+7,7×7=49.[结论] 拆成两个数,差越小时,乘积越大;差越大时,乘积越大。
小学奥数数论讲义 4-整数分拆之最值与应用强化篇
一、拆分的基础知识 整数的拆分问题常常以计数问题、最值问题等形式出现,因此除了掌握有关的等差数列、数的整除、平均数等基本知识外,还要求掌握加法原理、乘法原理、枚举法、筛选法等基本的记数原理和方法。
二、拆分基本方法1.题目要求拆质数且乘积最大——若可以拆相同的数字就按照“多拆3,少拆2,不拆1——拆分后乘积最大”原则。
2.若题目要求拆成若干个互不相同的自然数之和——要求这些自然数的乘积尽量大应将数列拆分成:a =2+3+4+…的形式,但是实际计算的时候会发现一般不能拆成恰好相同,则:⑴当多0时,将a 拆成a =2+3+4+…+ (n -1) +n ;⑵当多1时,将a 拆成a =3+4+5+…+ (n -1) +( n -1);⑶当多2,3,…,n -1中的数时,就将该数从2,3,…,n -1,n 中删除,其余数即为所拆之数。
例如:将30拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,应怎样拆?2+3+4+5+6+7+8=35比30大5,故将5去掉30被拆成2+3+4+6+7+8【例1】将15拆分成2个数的和,并且使这2个数的乘积最大,应该怎样拆分?最大值是多少?【巩固1】把11拆分成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何拆分?【巩固2】试把14拆分为两个自然数之和,使它们的乘积最大。
【例2】试把14拆分为3个自然数之和,使它们的乘积最大。
【巩固】试把19拆分为3个自然数之和,使它们的乘积最大。
【例3】试把1999拆分为8个自然数的和,使其乘积最大。
整数分拆之最值与应用【巩固】试把1553拆分为6个自然数的和,使其乘积最大。
【例4】将一根长144厘米的铁丝,做成长和宽都是整数的长方形,共有种不同的做法,其中面积最大的是哪一种长方形?【巩固】有长方形和正方形三块地。
它们的周长是100米,它们的一条边长分别是30米,28米和25米。
这三块中哪一块地最大?面积是多少?【例5】把14拆分成若干个自然数的和,再求出这些数的积,要使得到的积最大,应该把14如何拆分?这个最大的乘积是多少?【巩固】分别拆分2001、1994、1993三个数,使拆分后的积最大。
《数学奥林匹克专题讲座》第04讲 整数
《数学奥林匹克专题讲座》第04讲整数4讲整数的分拆整数的分拆,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。
在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。
例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。
如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。
由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。
例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有多少种分拆的办法?例如:5=1+1+1+1+1=1+1+1+2, =1+2+2 =1+1+3=2+3 =1+4,共有6种分拆法(不计分成的整数相加的顺序)。
例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。
问:有多少种不同的支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。
因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。
当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2), 23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。
三年级数学奥数讲义-整数的分拆(PDF,通用版,无答案)
【例1】(★★) 将12分拆成三个不同的正整数相加之和,共有多少种不同的分拆 方式,请把它们一一列出。
【例2】(★★ ★) 将15分拆成不大于9的三个不同的自然数【0除外】之和有多少种 不同分拆方式,请一一列出。
【例3】(★★★) 古代有孔融让梨的佳话,现在乐乐老师准备在七个装有梨的盘子 中取梨,每个盘子中分别装有1个、2个、3个、5个、6个、7个和9 个梨.她要从这些盘子中取出15个梨,但要求每个盘子中的梨要么 都拿,要么都不拿。共有多少种不同的拿法?
【本讲总结】 一、概念 整数的拆分: 把一个自然数(0 除外)拆分成几个自然数相加的形式 核心思想: 有序、全面 二、基本型
三、告知最大数
四、求加数的最多个数
五、拆成两个数
1.和一定,差小积大
2.积一定,差小和小
六、拆成多个数,乘积最大
1.相同:3,少2,无1
2.不相同:
2
1
【例4】(★★★) 100这个数最多能写成多少个不同的正整数之和?
【例5】(★★★★) ⑴两个非零自然数的和是14,这两个数分别是多少时,它们的积 最大?最大是多少? ⑵两个自然数的积为40,这两个数分别为多少时,它 们的和最小? 最小为多少?这两个数分别为多时, 它们的和最大,最大是多 少?
【拓展】(★★★) 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互 不相等,则该电视连续剧最多可以播几天?
【例6】(★★★★★) ⑴将10分成若干个自然数的和(允许有相同的),使得 这些自然数 的乘积达到最大,这个乘积是什么? ⑵将10分成若干个自然数的和(不允许有相同的),使得这些自然 数的乘积达到最大,这个乘积是什么? ⑶将13分成若干个自然数的和(不允许有相同的),使得这些自然 数的乘积达到最大,这个乘积是什么?
【数学】二年级数学奥数讲座整数的分拆
【关键字】数学二年级整数的分拆例1 小兵和小军用玩具枪做打靶游戏,见下图所示。
他们每人打了两发子弹。
小兵共打中6环,小军共打中5环。
又知没有哪两发子弹打到同一环带内,并且弹无虚发。
你知道他俩打中的都是哪几环吗?解:已知小兵两发子弹打中6环,要求每次打中的环数,可将6分拆6=1+5=2+4;同理,要求小军每次打中的环数,可将5分拆5=1+4=2+3。
由题意:没有哪两发子弹打到同一环带内并且弹无虚发,只可能是:小兵打中的是1环和5环,小军打中的是2环和3环。
例2 某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?解:这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆。
7=1+2+49=1+810=2+813=1+4+814=2+4+815=1+2+4+8外星人可按以上方式付款。
例3 有人以为8是个吉利数字,他们得到的东西的数量都能要够用“8”表示才好。
现有200块糖要分发给一些人,请你帮助想一个吉利的分糖方案。
解:可以这样想:因为200的个位数是0,又知只有5个8相加才能使和的个位数字为0,这就是说,可以把200分成5个数,每个数的个位数字都应是8。
这样由8×5=40及200-40=160,可知再由两个8作十位数字可得80×2=160即可。
最后得到下式:88+88+8+8+8=200。
例4 试将100以内的完全平方数分拆成从1开始的一串奇数之和。
解:1=1×1=12=1(特例)4=2×2=22=1+39=3×3=32=1+3+516=4×4=42=1+3+5+725=5×5=52=1+3+5+7+936=6×6=62=1+3+5+7+9+1149=7×7=72=1+3+5+7+9+11+1364=8×8=82=1+3+5+7+9+11+13+1581=9×9=92=1+3+5+7+9+11+13+15+17100=10×10=102=1+3+5+7+9+11+13+15+17+19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学奥林匹克专题讲座第4讲整数的分拆整数的分拆,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。
在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。
例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。
如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。
由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。
例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有多少种分拆的办法?例如:5=1+1+1+1+1=1+1+1+2,=1+2+2 =1+1+3=2+3 =1+4,共有6种分拆法(不计分成的整数相加的顺序)。
例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。
问:有多少种不同的支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。
因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。
当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2),23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。
当使用4枚5分币时,5×4=20,23-20=3,所以最多使用1枚2分币,或不使用,从而可有23=20+(2+1),23=20+(1+1+1),共2种支付方法。
总共有5种不同的支付方法。
说明:本题是组合学中有限条件的整数分拆问题的一个特例。
例3 把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?解:37=3+5+29=2+5+7+23=3+11+23,=2+3+13+19=5+13+19=7+11+19=2+5+11+19=7+13+17=2+5+13+17=2+7+11+17,共10种不同拆法,其中3×5×29=435最小。
说明:本题属于迄今尚无普遍处理办法的问题,只是硬凑。
比37小的最大质数是31,但37-31=6,6不能分拆为不同的质数之和,故不取;再下去比37小的质数是29,37-29=8,而8=3+5。
其余的分拆考虑与此类似。
例4 求满足下列条件的最小自然数:它既可以表示为9个连续自然数之和,又可以表示为10个连续自然数之和,还可以表示为11个连续自然数之和。
解:9个连续自然数之和是其中第5个数的9倍,10个连续自然数之和是其中第5个数和第6个数之和的5倍,11个连续自然数之和是其中第6个数的11倍。
这样,可以表示为9个、10个、11个连续自然数之和的数必是5,9和11的倍数,故最小的这样的数是[5,9,11]=495。
对495进行分拆可利用平均数,采取“以平均数为中心,向两边推进的方法”。
例如,495÷10=49.5,则10个连续的自然数为45,46,47,48,49,(49.5),50,51,52,53,54。
于是495=45+46+ (54)同理可得495=51+52+...+59=40+41+ (50)例5 若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每只盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去,再把盒子重排了一下。
小聪回来,仔细查看,没有发现有人动过小球和盒子。
问:一共有多少只盒子?分析与解:设原来小球数最少的盒子里装有a只小球,现在增加到了b只,由于小明没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,这只盒子里原来装有(a+1)个小球。
同理,现在另有一个盒子里装有(a+1)个小球,这只盒子里原来装有(a+2)个小球。
依此类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数。
现在这个问题就变成了:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?因为42=6×7,故可将42看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数。
又因42=14×3,故可将42写成13+14+15,一共有3个加数。
又因42=21×2,故可将42写成9+10+11+12,一共有4个加数。
于是原题有三个解:一共有7只盒子、4只盒子或3只盒子。
例6 机器人从自然数1开始由小到大按如下规则进行染色:凡能表示为两个不同合数之和的自然数都染成红色,不符合上述要求的自然数染成黄色(比如23可表示为两个不同合数15和8之和,23要染红色;1不能表示为两个不同合数之和,1染黄色)。
问:被染成红色的数由小到大数下去,第2000个数是多少?请说明理由。
解:显然1要染黄色,2=1+1也要染黄色,3=1+2,4=1+3=2+2,5=1+4=2+3,6=1+5=2+4=3+3,7=1+6=2+5=3+4,8=1+7=2+6=3+5=4+4,9=1+8=2+7=3+6=4+5,11=1+10=2+9=3+8=4+7=5+6。
可见,1,2,3,4,5,6,7,8,9,11均应染黄色。
下面说明其它自然数n都要染红色。
(1)当n为大于等于10的偶数时,n=2k=4+2(k-2)。
由于n≥10,所以k≥5,k-2≥3,2(k-2)与4均为合数,且不相等。
也就是说,大于等于10的偶数均能表示为两个不同的合数之和,应染红色。
(1)当n为大于等于13的奇数时,n=2k+1=9+2(k-4)。
由于n≥13,所以k≥6,k-4≥2,2(k-4)与9均为合数,且不相等。
也就是说,大于等于13的奇数均能表示为两个不同的合数之和,应染红色。
综上所述,除了1,2,3,4,5,6,7,8,9,11这10个数染黄色外,其余自然数均染红色,第k个染为红色的数是第(k+10)个自然数(k≥2)。
所以第2000个染为红色的数是2000+10=2010。
下面看一类有规律的最优化问题。
例7 把12分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何分拆?分析与解:把12分拆成两个自然数的和,当不考虑加数的顺序时,有1+11,2+10,3+9,4+8,5+7,6+6六种方法。
它们的乘积分别是1×11=11,2×10=20,3×9=27,4×8=32,5×7=35,6×6=36。
显然,把12分拆成6+6时,有最大的积6×6=36。
例8 把11分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何分拆?分析与解:把11分拆成两个自然数的和,当不考虑加数的顺序时,有1+10,2+9,3+8,4+7,5+6五种方法。
它们的乘积分别是1×10=10,2×9=18,3×8=24,4×7=28,5×6=30。
显然,把11分拆成5+6时,有最大的积5×6=30。
说明:由上面的两个例子可以看出,在自然数n的所有二项分拆中,当n是偶数2m时,以分成m+m时乘积最大;当n是奇数2m+1时,以分成m+(m+1)时乘积最大。
换句话说,把自然数S(S>1)分拆为两个自然数m与n的和,使其积mn最大的条件是:m=n,或m=n+1。
例9 试把1999分拆为8个自然数的和,使其乘积最大。
分析:反复使用上述结论,可知要使分拆成的8个自然数的乘积最大,必须使这8个数中的任意两数相等或差数为1。
解:因为1999=8×249+7,由上述分析,拆法应是1个249,7个250,其乘积249×2507为最大。
说明:一般地,把自然数S=pq+r(0≤r<p,p与q是自然数)分拆为p个自然数的和,使其乘积M为最大,则M为q p-r×(q+1)r。
例10 把14分拆成若干个自然数的和,再求出这些数的积,要使得到的积最大,应该把14如何分拆?这个最大的乘积是多少?分析与解:我们先考虑分成哪些数时乘积才能尽可能地大。
首先,分成的数中不能有1,这是显然的。
其次,分成的数中不能有大于4的数,否则可以将这个数再分拆成2与另外一个数的和,这两个数的乘积一定比原数大,例如7就比它分拆成的2和5的乘积小。
再次,因为4=2×2,故我们可以只考虑将数分拆成2和3。
注意到2+2+2=6,2×2×2=8;3+3=6,3×3=9,因此分成的数中若有三个2,则不如换成两个3,换句话说,分成的数中至多只能有两个2,其余都是3。
根据上面的讨论,我们应该把14分拆成四个3与一个2之和,即14=3+3+3+3+2,这五数的积有最大值3×3×3×3×2=162。
说明:这类问题最早出现于1976年第18届国际数学奥林匹克试卷中。
该试卷第4题是:若干个正整数的和为1976,求这些正整数的积的最大值。
答案是2×3658。
这是由美国提供的一个题目,时隔两年,它又出现在美国大学生数学竞赛中。
1979年美国第40届普特南数学竞赛A-1题是:求出正整数n及a1,a2,…,a n的值,使a1+a2+…+a n=1979且乘积最大。
答案是n=660。
1992年武汉市小学数学竞赛第一题的第6题是:将1992表示成若干个自然数的和,如果要使这些数的乘积最大,这些自然数是____。
答案:这些数应是664个3。
上述三题的逻辑结构并不随和的数据而改变,所以分别冠以当年的年份1976,1979和1992,这种改换数据的方法是数学竞赛命题中最简单的方法,多用于不同地区不同级别不同年份的竞赛中,所改换的数据一般都是出于对竞赛年份的考虑。
将上述三题的结论推广为一般情形便是:把自然数S(S>1)分拆为若干个自然数的和:S=a1+a2+…+a n,则当a1,a2,…,a n中至多有两个2,其余都是3时,其连乘积m=a1a2…a n有最大值。