温度控制直流电动机转速
直流电动机有哪几种调速方法各有哪些特点答:直流电动机有三种
![直流电动机有哪几种调速方法各有哪些特点答:直流电动机有三种](https://img.taocdn.com/s3/m/85b1eb719a6648d7c1c708a1284ac850ad020427.png)
直流电动机有哪几种调速方法?各有哪些特点?答:直流电动机有三种调速方法:1)调节电枢供电电压U ;2)减弱励磁磁通Φ;3)改变电枢回路电阻R 。
特点:对于要求在一定范围内无极平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(额定转速)以上作小范围的弱磁升速。
晶闸管—电动机系统当电流断续时机械特性的显著特点是什么?答:电流断续时的电压、电流波形图(Ⅰ10P 、Ⅱ 12P )(三相零式为例)。
断续时,0d u 波形本身与反电势E 有关,因而就与转速n 有关,而不是像电流连续时那样只由控制角α决定的常值。
机械特性呈严重的非线性,有两个显著的特点:第一个特点是当电流略有增加时,电动机的转速会下降很多,即机械特性变软。
当晶闸管导通时,整流电压波形与相电压完全一致,是电源正弦电压的一部分。
当电流断续后,晶闸管都不导通,负载端的电压波形就是反电势波形。
电流波形是一串脉冲波,其间距为︒120,脉冲电流的底部很窄。
由于整流电流平均值d I 与电流波形包围的面积成正比,如果电流波形的底部很窄,为了产生一定的d I ,各相电流峰值必须加大,因为RE u i d d -=,而整流输出的瞬时电压d u 的大小由交流电源决定,不能改变。
也就是说应使E 下降很多即转速下降很多,才能产生一定的d I ,这就是电流断续时机械特性变软的原因。
第二个特点是理想空载转速0n 升高。
因为理想空载时0=d I ,所以2m a x 02U u E d ==,所以0n 升高。
简述直流PWM 变换器电路的基本结构。
答:直流 PWM 变换器基本结构如图所示,包括 IGBT 和续流二极管。
三相交流电经过整流滤波后送往直流 PWM 变换器,通过改变直流 PWM 变换器中 IGBT 的控制脉冲占空比来调节直流 PWM 变换器输出电压大小,二极管起续流作用。
Ug0Ton T t 直流PWM 变换器基本结构直流PWM 变换器输出电压的特征是什么?答:频率一定、宽度可调的脉动直流电压。
直流电动机的PWM调压调速原理
![直流电动机的PWM调压调速原理](https://img.taocdn.com/s3/m/0d241896370cba1aa8114431b90d6c85ec3a88c8.png)
直流电动机的PWM调压调速原理
直流电动机的PWM调压调速是指通过调节脉宽调制(PWM)信号的占空比,控制直流电动机的电压和转速。
其原理是利用数字信号的高低电平与时间的对应关系,通过高电平和低电平的时间比例来控制脉冲信号的平均值,从而实现对电动机的调压和调速。
具体来说,PWM调压调速主要包括以下几个步骤:
1.信号发生器:使用微控制器或其他信号发生器产生一个固定频率的方波信号,通常频率为几千赫兹到几十千赫兹。
这个信号称为PWM基准信号。
2.调制器:通过控制占空比,将PWM基准信号转换为调制后的PWM信号。
占空比是指高电平持续的时间与一个周期的比值。
例如,占空比为50%的PWM信号表示高电平和低电平持续时间相等。
调制器可以是硬件电路或者软件控制的。
3.电压调节:将调制后的PWM信号经过滤波器平滑输出,形成电压调节信号。
滤波器通常使用低通滤波器,将PWM信号的高频成分滤除,得到平均电压。
4.转速控制:通过调节占空比,改变PWM信号的高电平时间,从而改变直流电动机的平均电压。
占空比越大,输出电压就越高;占空比越小,输出电压就越低。
5.转速反馈:为了实现闭环控制,通常需要通过传感器获取直流电动机的转速,并将转速信息反馈给调速控制器。
调速控制器会根据反馈信号与设定的转速进行比较,调节占空比控制电动机的转速。
总结起来,PWM调压调速原理就是通过调节PWM信号的占空比控制直流电动机的电压和转速。
通过改变占空比,可以改变PWM信号的高电平时间,从而改变电动机的平均电压和转速。
同时,结合转速反馈,可以实现封闭环控制,使电动机的转速能够与设定值保持一致。
直流电机调速公式
![直流电机调速公式](https://img.taocdn.com/s3/m/e4809c05e418964bcf84b9d528ea81c758f52efa.png)
直流电机调速公式
直流电机调速公式是用来描述直流电机转速与电压和负载之间的关系的数学公式。
直流电机调速是指通过调节电压或改变负载来控制电机的转速。
直流电机调速公式可以用以下方式表示:
N = k * V / Φ
其中,N表示电机的转速,k是一个常数,V表示电压,Φ表示磁通量。
这个公式可以解释为:电机的转速与电压成正比,与磁通量成反比。
当电压增加时,电机转速也会增加;当磁通量增加时,电机转速会减小。
直流电机调速公式的推导基于电机的基本原理和电磁感应定律。
直流电机是通过电流在电枢线圈中产生的磁场和永磁体之间的相互作用来产生转矩的。
当电压和负载发生变化时,电机内部的磁场也会发生变化,从而影响电机的转速。
调速公式的推导过程比较复杂,需要考虑电机的内部结构、磁场分布、电流分布等因素。
在实际应用中,可以通过调节电压或改变负载来实现对电机转速的控制。
例如,通过增加电压可以提高电机的转速,而通过改变负载可以降低电机的转速。
直流电机调速公式在工业生产和科学研究中具有重要意义。
它可以
帮助工程师和研究人员设计和优化电机控制系统,实现精确的转速调节。
同时,它也为电机的故障诊断和维修提供了理论基础。
直流电机调速公式是描述电机转速与电压和负载之间关系的重要工具。
掌握和理解这个公式可以帮助人们更好地理解和应用直流电机调速技术。
通过合理地调节电压和负载,可以实现对电机转速的精确控制,满足不同应用场景的需求。
直流电动机的调速
![直流电动机的调速](https://img.taocdn.com/s3/m/69d51c73f46527d3240ce03a.png)
一概述随着电力电子器件的发展,大功率变流技术前进到一个以弱电为控制,强电为输出的新时代。
直流电机调速系统由于它在技术性能与经济指标上具有优越性,实施技术上也比较成熟,因此在冶金、机械、矿山、铁道、纺织、化工、造纸及发电设备等行业都得到了广泛的应用,已成为工业自动控制领域一个及其重要的组成部分。
一般工业生产中大量应用各种交直流电动机。
直流电动机有良好的调速性能,三相交流桥式全控整流是目前在各种整流电路中应用最为广泛的电力电子电路,在运用到在直流电机调速时可以采用这种电路。
三相交流桥式全空整流最初用途是传动控制,但目前应用的新领域是各种直流电源设计。
前者是三相交流桥式全控整流电路的传统领域,后者则是它当前和未来发展的新领域。
而高频、大功率、高可靠性开关电源是当今电源变换技术发展的重要方向之一。
从我国的实际情况来看很好地采用三相桥式全控整流给直流电机调速仍然有很广泛的应用市场。
这对改善我国科技现状水平,提高经济效益将起着重要作用,所以研究三相桥是全控整流直流调速系统有着深远的意义,它不仅能够大大改善各种机车的调速系统,为其提高安全、快速、低损耗的调速装置,在解决目前国际各国所面临的能源无谓的消耗起到立竿见影的效果。
二设计的总体思路2.1 直流电动机的调速方法采用改变电动机端电压调速的方法。
当额定励磁保持不变,理想空载转速n随U减小而减小,各特性线斜率不变,由此可实现额定转速以下大范围平滑调速,并且在整个调速范围内机械特性硬度不变。
变电压调速要有可调的直流电源,根据供电电源的种类分两种情况:一是采用可控变流装置,将交流电转变为可调的直流电。
二是采用直流斩波器,在具有恒定直流供电电源的地方,实现脉冲调压调速由于工矿企业中大多为交流电源,因此前一种情况应用最广。
晶闸管变流装置输出的直流脉动电压U加在电抗器L和电动d机电枢两端,L起滤波作用以及保持电流连续。
改变晶闸管触发电路的移相控制电压U,就可改变触发脉冲的控制角。
PID控制PWM调节直流电机速度
![PID控制PWM调节直流电机速度](https://img.taocdn.com/s3/m/f38f46c20508763231121241.png)
第三项起微分控制作用,称为微分(D)项 即
(1.10)
这三种作用可单独使用(微分作用一般不单独使用)或合并使用,常用的组合有:
P控制: (1.11)
PI控制: (1.12)
PD控制: (1.13)
PID控制: (1.14)
式(1.7)的输出量 为全量输出,它对于被控对象的执行机构每次采样时刻应达到的位置。因此,式(1.7)又称为位置型PID算式。
模板
本次设计主要研究的是PID控制技术在运动控制领域中的应用,纵所周知运动控制系统最主要的控制对象是电机,在不同的生产过程中,电机的运行状态要满足生产要求,其中电机速度的控制在占有至关重要的作用,因此本次设计主要是利用PID控制技术对直流电机转速的控制。其设计思路为:以AT89S51单片机为控制核心,产生占空比受PID算法控制的PWM脉冲实现对直流电机转速的控制。同时利用光电传感器将电机速度转换成脉冲频率反馈到单片机中,构成转速闭环控制系统,达到转速无静差调节的目的。在系统中采128×64LCD显示器作为显示部件,通过4×4键盘设置P、I、D、V四个参数和正反转控制,启动后通过显示部件了解电机当前的转速和运行时间。因此该系统在硬件方面包括:电源模块、电机驱动模块、控制模块、速度检测模块、人机交互模块。软件部分采用C语言进行程序设计,其优点为:可移植性强、算法容易实现、修改及调试方便、易读等。
PID调节器的参数整定方法有很多,但可归结为理论计算法和工程整定法两种。用理论计算法设计调节器的前提是能获得被控对象准确的数学模型,这在工业过程中一般较难做到。因此,实际用得较多的还是工程整定法。这种方法最大优点就是整定参数时不依赖对象的数学模型,简单易行。当然,这是一种近似的方法,有时可能略嫌粗糙,但相当适用,可解决一般实际问题。下面介绍两种常用的简易工程整定法。
转速电流反馈控制直流调速系统
![转速电流反馈控制直流调速系统](https://img.taocdn.com/s3/m/848ec900e55c3b3567ec102de2bd960591c6d97a.png)
•
对负载变化起抗扰作用。
•
其输出限幅值决定电动机允许的最大电流。
第27页/共134页
2. 电流调节器的作用
•
在转速外环的调节过程中,使电流紧紧跟随其给定电压(即外环调节器的输出
量)变化。
•
对电网电压的波动起及时抗扰的作用。
•
在转速动态过程中,保证获得电机允许的最大电流。
•
当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。
等
于
I
dm不
变,
• 转速波形先是缓慢升速,然后以恒加速上升,产生超调后,到
达给定值n*。
• 起动过程分为电流上升、恒流升速和转速调节三个阶段,
• 转速调节器在此三个阶段中经历了不饱和、饱和以及退饱和三 种情况。
第15页/共134页
第16页/共134页
图3-6 双闭环 直流调速系统 起动过程的转 速和电流波形
(1) 转速调节器不饱和
• 两个调节器都不饱和,稳态时,它们的输入偏差电压都是零。
U
* n
Un
n
n0
•
U
* i
Ui
I d
n
U
* n
n0
I d I dm
(3-1)
第7页/共134页
( 2 ) 转 速调 节器饱 和 • ASR输出达到限幅值时,转速外环呈开环状态,转速的变化对转速环不再产生影响。
第35页/共134页
返回目录
3.3 调节器的工程设计方法
• 必要性: 用经典的动态校正方法设计调节器须同时解决稳、准、快、抗干扰等各方
面相互有矛盾的静、动态性能要求,需要设计者有扎实的理论基础和丰富的 实践经验,而初学者则不易掌握,于是有必要建立实用的设计方法。
直流电动机的调速方法
![直流电动机的调速方法](https://img.taocdn.com/s3/m/30c9cdc9ed3a87c24028915f804d2b160a4e8640.png)
直流电动机的调速方法直流电动机是一种常见的电动机,广泛应用于工业生产和家用电器中。
在实际应用中,往往需要对直流电动机进行调速,以满足不同工况下的需求。
下面将介绍几种常见的直流电动机调速方法。
一、电压调制调速。
电压调制调速是通过改变电动机的供电电压来实现调速的方法。
当电动机的供电电压改变时,电动机的转速也会相应地改变。
这种方法简单易行,成本低廉,但是调速范围有限,且效果不够理想。
二、串联电阻调速。
串联电阻调速是通过串联电阻来改变电动机的电枢电流,从而实现调速的方法。
串联电阻越大,电动机的电枢电流越小,转速也会相应地减小。
这种方法调速范围较大,但是效率较低,且需要考虑电阻的散热和功率损耗的问题。
三、场励调速。
场励调速是通过改变电动机的励磁电流来实现调速的方法。
当励磁电流增大时,磁场增强,电动机的转速也会增大。
这种方法调速范围广,效率较高,但是需要专门的励磁设备和控制系统。
四、PWM调速。
PWM调速是通过改变电动机的供电脉冲宽度来实现调速的方法。
通过控制开关器件的导通时间,可以改变电动机的平均电压,从而实现调速。
这种方法调速范围广,效率高,但是需要专门的PWM控制器和反馈系统。
五、变频调速。
变频调速是通过改变电动机的供电频率来实现调速的方法。
通过变频器控制电源的频率,可以实现电动机的调速。
这种方法调速范围广,效率高,但是设备成本较高。
综上所述,直流电动机有多种调速方法,每种方法都有其适用的场合和特点。
在实际应用中,需要根据具体情况选择合适的调速方法,以实现最佳的调速效果。
希望本文对直流电动机的调速方法有所帮助。
直流电机调速方案设计
![直流电机调速方案设计](https://img.taocdn.com/s3/m/fe5cede0af45b307e87197f3.png)
直流电机调速方案设计直流电机是将直流电能转换为机械能的电动机。
因其良好的调速性能而在电力拖动中得到广泛应用。
下面就随小编一起去阅读直流电机调速方案设计,相信能带给大家帮助。
本文以AT89S51单片机为核心,提出了基于直流电机调速与测速系统的设计方案,然后给出了系统的主电路结构,以及驱动电路设计和系统软件设计。
本方案充分利用了单片机的优点,具有频率高、响应快的特点。
直流电机是工业生产中常用的驱动设备,具有良好的起动、制动性能。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成。
控制系统的硬件部分复杂、功能单一,调试困难。
本方案采用单片机控制系统,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
P W M简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种技术,广泛应用在测量、功率控制与变换等许多领域中。
脉宽调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极的偏置,改变晶体管导通时间。
是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
PWM可以应用在许多方面,如电机调速、温度控制、压力控制等。
在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。
通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。
因此,PWM又被称为“开关驱动装置”.PWM的占空比决定输出到直流电机的平均电压。
所以通过调节占空比,可以实现调节输出电压无级连续调节。
整个系统由输入电路、PWM调制、测速电路、驱动电路、控制部分及显示等部分组成,PWM调制选用AT89S51单片机通过软件实现频率和占空比的调节。
直流电机调速的设计方案驱动电路用光耦隔离保护电路,控制部分由单片机和外围电路组成,实现各种控制要求,外围电路主要完成对输入信号的采集、操作、对速度进行控制,显示部分采用四位共阳数码管。
直流电动机控制系统
![直流电动机控制系统](https://img.taocdn.com/s3/m/b21aa17f86c24028915f804d2b160b4e767f81b4.png)
直流电动机控制系统直流电动机是一种基本的电机类型,应用非常广泛。
而直流电动机控制系统则是控制直流电动机的关键工具。
本文将介绍直流电动机控制系统的工作原理、基本组成部分以及应用场景。
工作原理直流电动机控制系统的工作原理基于电流和电磁场的相互作用。
当通电后,电动机内的电流会在电磁铁中产生磁场。
这个磁场会作用于转子,导致它开始旋转。
而直流电动机控制系统的目的就是在保持稳定的基础上,改变电流的方向和大小,进而实现电机的转速控制。
组成部分直流电动机控制系统包含多个组成部分,下面将逐一介绍。
电源电源是直流电动机控制系统不可或缺的一个部分。
它提供了系统所需的电能,通常使用的是交流电源。
电动机电动机是直流电动机控制系统的核心,负责产生转动力。
根据控制系统的不同,会有不同规格的电机,例如不同转速和转矩。
电机驱动器电机驱动器是用来控制电流的方向和大小,改变电机的转速。
通常是由开关管、驱动电路以及电源组成。
传感器和反馈传感器和反馈是直流电动机控制系统中非常重要的部分,它可以检测电机的状态并将信息反馈给控制系统。
常用的传感器包括转速传感器、温度传感器等。
控制器控制器是直流电动机控制系统的大脑,根据传感器和反馈的信息来决定电机所要做的动作,例如改变电流的方向和大小,控制电机的运转。
应用场景直流电动机控制系统可以应用于许多领域,例如工业制造、航空和交通运输等。
在工业制造中,它可以应用于机械加工、制造生产线等设备;在航空中,它可以应用于航空器的起飞和着陆;在交通运输中,它可以应用于电动车辆、电动自行车和其他交通工具上。
直流电动机控制系统是控制电机的重要工具。
本文介绍了直流电动机控制系统的工作原理、基本组成部分以及应用场景。
希望本文能帮助您更好地了解直流电动机控制系统的基本知识,从而更好地应用于实际生产和生活中。
基于51单片机的温控智能电风扇讲解
![基于51单片机的温控智能电风扇讲解](https://img.taocdn.com/s3/m/21180c58c5da50e2524d7f91.png)
浙江理工大学《单片机系统设计及应用实验》设计报告题目:基于51单片机的温控智能电风扇专业:机械电子工程班级:机电11(1)班姓名:叶惠芳学号:2011330300302指导教师:袁嫣红机械与自动控制学院2014 年7 月3 日目录摘要 (4)第一章课程设计的目标及主要内容 (5)1.1课程设计的目标及意义 (5)1.2温控智能电风扇的主要内容和技术关键 (5)1.2.1课程设计的主要内容 (5)1.2.2技术关键 (5)第二章温控智能电风扇控制系统硬件设计 (6)2.1课程设计总体硬件设计 (6)2.2芯片及主要器件选择 (6)2.2.1控制核心的选择 (6)2.2.2温度传感器的选用 (7)2.2.3显示电路 (7)2.3芯片及器件介绍 (7)2.3.1 AT89C51单片机 (7)2.3.2 L298芯片介绍 (8)2.3.3 DS18B20温度传感器 (9)2.3.4LED数码管简介 (11)2.4主要硬件电路 (12)2.4.1温度检测电路设计 (12)2.4.2 电机调速电路设计 (12)2.4.3 PWM调速原理 (13)2.4.4 LED数码管显示电路及按键电路 (13)第三章温控智能电风扇控制系统软件设计与实现 (14)3.1 主程序 (14)3.2 数字温度传感器模块 (14)3.3电机调速与控制子模块 (16)第四章调试结果与总结 (16)4.1 调试结果 (16)4.2 课程设计总结 (20)参考文献 (21)附录一 (23)附录二 (24)附录三 (25)摘要电风扇与空调的降温效果不同,相较于空调的迅速降低环境温度不同,电风扇更加温和,适宜于体质较弱的老人与小孩。
并且,电风扇价格实惠,使用简单。
现在市面上的电风扇大多只能手动调速,还外加一个定时功能。
对于温差较大的夜晚,若不能及时改变风速大小后停止,很容易感冒着凉。
所以本课程设计以AT89C51为核心控制系统根据外界温度的变化对电风扇进行转速控制,以实现自动换挡功能。
直流电机的调速方法
![直流电机的调速方法](https://img.taocdn.com/s3/m/b73cae1a844769eae109ed03.png)
第八章直流调速系统8.1 概述调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统。
但是主要形式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
因此,我们先着重讨论直流调速8.1.1直流电机的调速方法根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:(1)调节电枢供电电压U。
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩系统来说,这种方法最好。
变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。
(2)改变电动机主磁通。
改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。
(3)改变电枢回路电阻。
在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。
但是只能进行有级调速么调速作用;还会在调速电阻上消耗大量电能。
改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动速配合使用,在额定转速以上作小范围的升速。
因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。
直流电动机调速原理
![直流电动机调速原理](https://img.taocdn.com/s3/m/211e7f03f011f18583d049649b6648d7c1c7088a.png)
直流电动机调速原理
调速是指改变电机的工作频率,使其能够轻松地承受任何负荷,以达到最佳运行效果的一种技术。
直流电动机调速技术是指通过改变直流电动机的电压或频率来改变电机的转速和输出功率的技术。
二、调速原理
1、改变电压调速
直流电动机的转速与电压成正比,因此,通过改变电压来改变直流电动机的转速。
直流电动机的工作频率与它的电压成反比,因此,通过改变电压来改变直流电动机的工作频率。
2、改变频率调速
当变频器的输出频率改变时,电机的转速也会相应的改变。
这是由于电机的转速与频率成反比,因此,可以通过改变变频器的输出频率来控制直流电动机的转速。
三、调速方式
1、电压调速
电压调速是指改变直流电动机的输入电压来改变电机的转速的
一种调速方式。
电压调速可以通过变压器、控制开关或变频器来实现。
2、变频调速
变频调速是通过改变调速装置的输出频率来控制电机转速的一
种调速方式。
常用的变频调速装置有变频器、分频装置和旋钮式调速装置等。
总结:直流电动机调速是指通过改变直流电动机的电压或频率来
改变电机的转速和输出功率的技术。
改变直流电动机的电压可以实现电压调速,而改变直流电动机的频率可以实现变频调速,从而达到最佳的运行效果。
自动控制原理[胥布工]1-3章习题与解答习题课后校对稿
![自动控制原理[胥布工]1-3章习题与解答习题课后校对稿](https://img.taocdn.com/s3/m/9557a889011ca300a7c39042.png)
第1章习题及解答1-1 试举出日常生活中所见到的开环控制系统和闭环控制系统各一例,并分别说明其工作原理。
答:开环控制系统与闭环控制系统的差别在于有没有将输出量反馈到输入端的反馈通道。
家庭空调的温度控制就是一个闭环控制系统,其原理是当室内温度升高或降低时,温度传感器将检测到的实际温度反馈到系统输入端与参考输入给定的期望温度比较求得偏差,温度控制器根据偏差信号产生控制作用控制压缩机制冷量,从而维持室温在期望值附近。
在要求不高的场合,有些简单的传送带系统是由电动机带动的开环控制系统。
工作原理很简单,只需闭合电源开关,则电动机带动传送带运行,传送带上负载变化会引起传送速度变化。
1-2 试说明开环控制和闭环控制的优缺点。
答:开环控制系统的控制精度主要取决于系统本身参数的稳定程度,没有抵抗外部干扰的能力,因此,在实际工作环境中,难以达到很高的控制精度。
开环控制系统的优点是结构简单,成本较低,缺点是抗扰性能差。
对于参数稳定的系统,在外部干扰较弱或控制精度要求不高的场合,开环控制系统仍被大量使用。
闭环控制系统利用反馈信号得到的偏差来产生控制作用,也称为反馈控制系统。
这种基于偏差的闭环控制系统具有较强的抵抗外部和内部扰动的能力,并使其对内部参数的变化没有开环控制系统那么敏感,换句话说,要达到较高的控制精度,闭环控制系统对其内部参数的精度要求没有开环控制系统那么高。
由于增加了反馈元件和比较元件等,闭环控制系统的结构相对复杂,成本也有所增加,特别地,当控制装置的参数配合不当时,可能会出现系统内部信号剧烈振荡,甚至发散导致系统不稳定而无法工作的情况。
闭环控制系统的稳定性问题是开环控制系统没有的独特现象。
闭环控制系统的优点:具有很强的自动纠偏能力和较高的控制精度;缺点:由于采用了反馈装置,设备增多,结构复杂,成本增加,同时存在稳定性问题。
闭环控制系统具有的自动纠偏能力和较高的控制精度是开环控制系统无法替代的,因而在控制工程实际中获得了最广泛的应用。
直流电机的调速方法
![直流电机的调速方法](https://img.taocdn.com/s3/m/f70a5c55da38376bae1fae01.png)
第八章直流调速系统概述调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。
电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机械中广泛采用电气方法调速。
由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。
当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速系统。
但是就目前来看,直流调速系统仍然是自动调速系统的主要形式。
在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。
而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。
因此,我们先着重讨论直流调速系统。
8.1.1直流电机的调速方法根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:(1)调节电枢供电电压U。
改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。
对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。
变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。
(2)改变电动机主磁通。
改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。
变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。
(3)改变电枢回路电阻。
在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。
但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。
温度控制直流电动机转速电路的实现
![温度控制直流电动机转速电路的实现](https://img.taocdn.com/s3/m/19c6ed772f60ddccda38a0e9.png)
科技风2019年10月科技创新DOI:10.19392/ki.1671-7341.201928005温度控制直流电动机转速电路的实现罗菲杨晓燕蔡武德!云南师范大学物理与电子信息学院云南昆明650500摘要:利用51单片机作为主控模块,以DS18B20数字式温度传感器为温度采集模块。
单片机根据DS18B20温度传感器采集的温度信息产生PWM信号,并将PWM信号送到直流电动机驱动芯片上,实现温度对直流电动机转速的智能控制。
关键词:单片机;数字温度传感器;直流电动机;转速控制1绪论温度采集及控制技术广泛应用于生产生活中,比如农业的温室大棚、工业的生产材料工厂等。
⑴在本设计中,选用DS18B20温度传感器,可省去传统的信号放大、A/D转换等外围电路。
⑵该电路控制系统能将数字温度传感器采集到的温度信息送给单片机处理,通过软件编写控制程序,由单片机产生控PWM信号,进而控制直流电动机的转速。
采用单片机为核心构成的温度控制系统,不仅结构简单、而且还降低系统成本、节约了资源、提高了工作效率。
⑶2电路系统的总体设计方案电路系统结构如图1所示,主要包含6个模块:AT89S51主控模块、电机驱模块、温度显示模块、电源及直流电动机部分。
AT89S51单片机根据DS18B20温度传感器采集到的温度信息,对直流电动机进行转速的控制。
当DS18B20温度传感器采集到的温度"60'时,电动机全速正转;当采集到的温度在10' ~60'之间时,电动机逐渐加速正转;当采集到的温度#10'时,电动机实现反转,并且达到全速。
图1系统框图3硬件电路硬件电路如图2所示,AT89S51作为主控制芯片,外围由DS18B20数字温度传感器、LM1602液晶显示器、L9110驱动芯 片和直流电动机等器件构成。
DS18B20温度传感器引脚DQ接AT89S51单片机的P2.0端,将温度信息送入单片机。
单片根据预设的温度范围,产生PWM(脉冲宽度调制)信号。
直流电机调速控制
![直流电机调速控制](https://img.taocdn.com/s3/m/f2bd0384336c1eb91b375d90.png)
直流电机调速控制摘要:当今,自动化控制系统已经在各行各业得到了广泛的应用与发展,而直流电动机控制作为电气传动主流,在现代化生产中起着主要作用。
长期以来,直流电动机因转速调节比较灵活,方法简单,易于大范围内平滑调速,控制性能好等特点,一直在传动领域占有统治地位。
随着现代化生产规模的不断扩大,各个行业对直流电动机的需求日益则增大,并对其提出了更高的要求。
为此,研究并制造高性能、高可靠的直流电动机控制有着十分重要的现实意义。
关键词:直流电动机;PWM控制技术;晶闸管;调速一、直流电动机的结构和基本原理直流电动机由定子和转子两部分构成,其间有一定的气隙,其构造的主要特点是具有一个带换向器的电枢。
对于一台最简单的两极直流电机模型,它的固定部分(定子)上装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁芯。
定子与转子之间有一气隙。
在电枢铁芯上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。
换向片之间互相绝缘,由换向片构成的整体称为换向器。
换向器固定在转轴上,换向片与转轴之间也互相绝缘。
在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。
直流电机如果去掉原动机,并给两个电刷加上直流电源,则会有直流电流从一个电刷A流入,经过线圈从另一个电刷 B 流出,根据电磁力定律,载流导体受到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。
如果转子转到电刷 A 和换向片2接触时,电刷 B 和换向片1接触,直流电流从电刷 A 流入,从电刷 B 流出。
此时载流导体受到电磁力作用,方向同样由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。
二、直流电机的调速原理直流电机转速n的表达式为:n =,式中:U-电枢端电压;I-电枢电流;R-电枢电路总电阻;Φ-每极磁通量;K-与电机结构有关的常数。
直流电机的额定转速
![直流电机的额定转速](https://img.taocdn.com/s3/m/180c2a7a0a4c2e3f5727a5e9856a561252d32131.png)
直流电机的额定转速直流电机的额定转速是指在额定工作条件下,电机所能达到的稳定转速。
直流电机是一种将直流电能转换为机械能的电动机,广泛应用于工业生产、交通运输等领域。
额定转速是电机设计时确定的重要参数,对于电机的运行性能和使用效果具有重要影响。
直流电机的额定转速是根据电机的设计规格和工作要求确定的。
在设计电机时,制造商会根据电机的功率、转矩、电压等参数,计算出电机的额定转速。
额定转速通常以每分钟转数(rpm)表示,是电机在额定电压下达到的稳定转速。
通过额定转速,用户可以了解电机在正常工作状态下的运行速度,从而选择合适的电机来满足实际需求。
直流电机的额定转速直接影响着电机的输出功率和效率。
在额定转速下,电机能够输出额定功率,并保持较高的效率。
如果超过额定转速,电机可能会出现过载运行,导致电机过热、损坏甚至发生安全事故。
因此,在使用直流电机时,必须严格控制电机的转速,以确保电机的安全运行和长期稳定性。
直流电机的额定转速也与电机的结构和制造工艺密切相关。
不同类型的直流电机,如永磁直流电机、励磁直流电机等,其额定转速可能有所不同。
在制造过程中,电机的转子、定子、磁场等部件的设计和加工质量,直接影响着电机的额定转速和性能表现。
因此,选择优质的直流电机产品,对于保证电机的额定转速和使用寿命至关重要。
用户在选用直流电机时,应根据实际需求和工作环境来选择合适的额定转速。
不同的应用场景对电机的转速要求有所不同,有的需要高速运转,有的需要低速高转矩。
因此,在选购直流电机时,除了关注额定转速外,还应考虑电机的功率、效率、质量、维护保养等因素,全面评估电机的性能和适用性,以确保电机的稳定运行和长期可靠性。
直流电机的额定转速是电机设计和制造的重要参数,直接关系到电机的运行性能和使用效果。
用户在选用直流电机时,应了解电机的额定转速,并根据实际需求选择合适的电机产品,以确保电机的安全稳定运行,提高工作效率和生产效益。
希望本文对读者对直流电机的额定转速有所了解和帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度控制直流电机转速设计报告院系:物电学院专业:电子信息工程学号:201000920146姓名:赵婧摘要本文是对直流电机PWM调速器设计的研究,主要实现对电机的控制。
本课程设计主要是实现PWM调速器的正转、反转、加速、减速、停止等操作。
并实现电路的仿真。
为实现系统的微机控制,在设计中,采用了AT89C51单片机作为整个控制系统的控制电路的核心部分,配以各种显示、驱动模块,实现对电动机转速参数的显示。
单片机在程序控制下,H型驱动电路完成电机正反转控制.在设计中,采用PWM 调速方式,通过改变PWM的占空比从而改变电动机的电枢电压,进而实现对电动机的调速。
设计的整个控制系统,在硬件结构上采用了大量的集成电路模块,大大简化了硬件电路,提高了系统的稳定性和可靠性,使整个系统的性能得到提高。
关键词:AT89C51单片机;PWM调速;正反转控制;仿真。
The Design of Direct Current Motor speed Regulation System Basedon SCMChenliSchool of Information and EngineeringAbstractThis article mainly introduces the method to generate the PWM signal by using MCS-51 single-chip computer to control the speed of a D.C. motor. It also clarifies the principles of PWM and the way to adjust the duty cycle of PWM signal. In addition, IR2110 has been used as an actuating device of the power amplifier circuit which controls the speed of rotation of D.C. motor. What’s more, tachogenerator is used in this system to measure the speed of D.C. motor. The result of the measurement is sent to A/D converter after passing the filtering circuit, and finally the feedback single is stored in the single-chip computer and participates in a PI calculation. As for the software, this article introduces in detail the idea of the programming and how to make it.Key words:PWM signal,tachogenerator,PI calculation1系统论述1.1 设计思路直流电机PWM控制系统的主要功能包括:直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,还可以方便的读出电机转速的大小,能够很方便的实现电机的智能控制。
其间,还包括直流电机的直接清零、启动(置数)、暂停、连续功能。
该直流电机系统由以下电路模块组成:振荡器和时钟电路:这部分电路主要由80C51单片机和一些电容、晶振组成。
设计控制部分:主要由80C51单片机的外部中断扩展电路组成。
设计显示部分:包括液晶显示部分和LED数码显示部分。
液晶显示部分由1602LCD液晶显示模块组成。
直流电机PWM控制实现部分:主要由一些二极管、电机和L298直流电机驱动模块组成。
1.2 基本原理主体电路:即直流电机PWM控制模块。
这部分电路主要由80C51单片机的I/O端口、定时计数器、外部中断扩展等控制直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,还可以方便的读出电机转速的大小和了解电机的转向,能够很方便的实现电机的智能控制。
其间,还包括直流电机的直接清零、启动(置数)、暂停、连续功能。
其间是通过80C51单片机产生脉宽可调的脉冲信号并输入到L298驱动芯片来控制直流电机工作的。
该直流电机PWM控制系统由以下电路模块组成:设计输入部分:这一模块主要是利用带中断的独立式键盘来实现。
设计控制部分:主要由80C51单片机的外部中断扩展电路组成。
设计显示部分:包括液晶显示部分和LED数码显示部分。
液晶显示部分由1602LCD液晶显示模块组成。
直流电机PWM控制实现部分:主要由一些二极管、电机和L298直流电机驱动模块组成。
2直流电机单元电路设计与分析2.1 51单片机STC89C52RC单片机介绍STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。
主要特性如下:1.增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意选择,指令代码完全兼容传统8051.2.工作电压:5.5V~3.3V(5V单片机)/3.8V~2.0V(3V单片机)3.工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作频率可达48MHz4.用户应用程序空间为8K字节5.片上集成512字节RAM6.通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉,P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为I/O口用时,需加上拉电阻。
7.ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程序,数秒即可完成一片8.具有EEPROM功能9.具有看门狗功能10.共3个16位定时器/计数器。
即定时器T0、T1、T211.外部中断4路,下降沿中断或低电平触发电路,Power Down模式可由外部中断低电平触发中断方式唤醒12.通用异步串行口(UART),还可用定时器软件实现多个UART13.工作温度范围:-40~+85℃(工业级)/0~75℃(商业级)14.PDIP封装STC89C52RC单片机的工作模式●掉电模式:典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序●空闲模式:典型功耗2mA●正常工作模式:典型功耗4Ma~7mA掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备STC89C52RC引脚图STC89C52RC引脚功能说明VCC(40引脚):电源电压VSS(20引脚):接地P0端口(P0.0~P0.7,39~32引脚):P0口是一个漏极开路的8位双向I/O 口。
作为输出端口,每个引脚能驱动8个TTL负载,对端口P0写入“1”时,可以作为高阻抗输入。
在访问外部程序和数据存储器时,P0口也可以提供低8位地址和8位数据的复用总线。
此时,P0口内部上拉电阻有效。
在Flash ROM 编程时,P0端口接收指令字节;而在校验程序时,则输出指令字节。
验证时,要求外接上拉电阻。
P1端口(P1.0~P1.7,1~8引脚):P1口是一个带内部上拉电阻的8位双向I/O口。
P1的输出缓冲器可驱动(吸收或者输出电流方式)4个TTL输入。
对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这是可用作输入口。
P1口作输入口使用时,因为有内部上拉电阻,那些被外部拉低的引脚会输出一个电流(错误!未找到引用源。
)。
此外,P1.0和P1.1还可以作为定时器/计数器2的外部技术输入(P1.0/T2)和定时器/计数器2的触发输入(P1.1/T2EX),具体参见下表:在对Flash ROM编程和程序校验时,P1接收低8位地址。
表XX P1.0和P1.1引脚复用功能引脚号功能特性P1.0 T2(定时器/计数器2外部计数输入),时钟输出P1.1 T2EX(定时器/计数器2捕获/重装触发和方向控制)P2端口(P2.0~P2.7,21~28引脚):P2口是一个带内部上拉电阻的8位双向I/O端口。
P2的输出缓冲器可以驱动(吸收或输出电流方式)4个TTL输入。
对端口写入1时,通过内部的上拉电阻把端口拉到高电平,这时可用作输入口。
P2作为输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输出一个电流(错误!未找到引用源。
)。
在访问外部程序存储器和16位地址的外部数据存储器(如执行“MOVX @DPTR”指令)时,P2送出高8位地址。
在访问8位地址的外部数据存储器(如执行“MOVX @R1”指令)时,P2口引脚上的内容(就是专用寄存器(SFR)区中的P2寄存器的内容),在整个访问期间不会改变。
在对Flash ROM编程和程序校验期间,P2也接收高位地址和一些控制信号。
P3端口(P3.0~P3.7,10~17引脚):P3是一个带内部上拉电阻的8位双向I/O端口。
P3的输出缓冲器可驱动(吸收或输出电流方式)4个TTL输入。
对端口写入1时,通过内部的上拉电阻把端口拉到高电位,这时可用作输入口。
P3做输入口使用时,因为有内部的上拉电阻,那些被外部信号拉低的引脚会输入一个电流(错误!未找到引用源。
)。
在对Flash ROM编程或程序校验时,P3还接收一些控制信号。
P3口除作为一般I/O口外,还有其他一些复用功能,如下表所示:表XX P3口引脚复用功能引脚号复用功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 错误!未找到引用源。
(外部中断0)P3.3 错误!未找到引用源。
(外部中断1)P3.4 T0(定时器0的外部输入)P3.5 T1(定时器1的外部输入)P3.6 错误!未找到引用源。
(外部数据存储器写选通)P3.7 错误!未找到引用源。
(外部数据存储器读选通)RST(9引脚):复位输入。
当输入连续两个机器周期以上高电平时为有效,用来完成单片机单片机的复位初始化操作。
看门狗计时完成后,RST引脚输出96个晶振周期的高电平。
特殊寄存器AUXR(地址8EH)上的DISRTO位可以使此功能无效。
DISRTO默认状态下,复位高电平有效。
ALE/错误!未找到引用源。
(30引脚):地址锁存控制信号(ALE)是访问外部程序存储器时,锁存低8位地址的输出脉冲。
在Flash编程时,此引脚(错误!未找到引用源。
)也用作编程输入脉冲。
在一般情况下,ALE以晶振六分之一的固定频率输出脉冲,可用来作为外部定时器或时钟使用。
然而,特别强调,在每次访问外部数据存储器时,ALE 脉冲将会跳过。