一维连续小波变换的matlab基础程序实现
Matlab中的小波变换技术详解
Matlab中的小波变换技术详解1. 引言小波变换是一种数学工具,可将任意信号分解成不同尺度和频率成分。
它在信号处理、图像压缩等领域得到广泛应用。
Matlab作为一种功能强大的数值计算和数据可视化软件,提供了丰富的小波变换函数和工具箱。
本文将详细介绍Matlab中小波变换的原理、应用和实现方法。
2. 小波变换原理小波变换利用小波函数的一组基来表示信号。
小波函数是一种局部振荡函数,具有时域和频域局部化的特性。
通过将信号与小波函数进行内积运算,可以得到不同尺度和频率的小波系数,从而揭示信号的局部特征。
小波变换具有多分辨率分析的优势,能够在时间和频率上同时提供较好的分析结果。
3. 小波变换函数在Matlab中,可以使用wavelet工具箱提供的函数来进行小波变换。
最常用的函数是cwt,用于连续小波变换。
通过设置小波函数、尺度范围和采样频率等参数,可以得到连续小波系数矩阵。
另外,还有其他函数如dwt、idwt用于离散小波变换和反离散小波变换。
4. 小波函数小波变换的关键在于选择合适的小波函数。
常用的小波函数有多种,如哈尔、Daubechies、Symlets等。
这些小波函数在时域和频域上都有不同的特性,适用于不同类型的信号。
Matlab提供了丰富的小波函数库,可以根据需要选择合适的小波基函数。
5. 小波分析与信号处理小波变换在信号处理中有广泛的应用。
它可以用于信号去噪、特征提取、边缘检测等方面。
通过对小波系数进行阈值去噪,可以有效地去除信号中的噪声。
小波变换还能够提取信号的局部特征,捕捉信号的边缘信息。
此外,小波变换还可以用于图像压缩、图像分割等领域。
6. Matlab中的小波分析实例为了更好地理解Matlab中小波变换的应用,下面将给出一个实例。
假设我们有一个包含某种周期性成分和噪声的信号,我们希望通过小波变换将其分解成不同尺度的成分,并去除噪声。
首先,我们使用Matlab中的cwt函数对信号进行连续小波变换,并得到小波系数矩阵。
MATLAB小波变换指令及其功能介绍(超级有用)解读
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
小波变换的matlab实现
举例: A1=upcoef('a','cA1','db1',1,ls); D1=upcoef('d','cD1','db1',1,ls);
subplot(1,2,1);plot(A1);title('Approximation A1')
subplot(1,2,2);plot(D1);title('Detail D1')
重构原始信号
*
2D图形接口
*
显示
*
小波分析用于信号处理
01
信号的特征提取
信号处理
常用信号的小波分析
GUI进行信号处理
*
正弦波的线性组合
S(t)=sin(2t)+sin(20t)+sin(200t)
*
2019
间断点检测
01
2020
波形未来预测
02
2021
各分信号的频率识别
03
2022
信号从近似到细节的迁移
*
多尺度二维小波
命令:wavedec2
格式: [C, S]=wavedec2(X,N,’wname’) [C, S]=wavedec2(X,N,Lo_D,Hi_D)
*
[C,S] = wavedec2(X,2,'bior3.7'); %图像的多尺度二维小波分解
提取低频系数
命令:appcoef2 格式: 1. A=appcoef2(C,S,’wname’,N) 2. A=appcoef2(C,S,’wname’) 3. A=appcoef2(C,S,Lo_R,Hi_R) 4. A=appcoef2(C,S,Lo_R,Hi_R,N) cA2 = appcoef2(C,S,'bior3.7',2); %从上面的C中提取第二层的低频系数
MATLAB小波变换指令及其功能介绍(超级有用)
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
小波包变换matlab程序
小波包变换matlab程序小波包变换是一种信号分析的方法,可以对信号进行多尺度的分解与重构。
在Matlab中,我们可以使用Wavelet Toolbox来实现小波包变换。
本文将介绍小波包变换的原理以及如何在Matlab中进行实现。
我们来了解一下小波包变换的原理。
小波包变换是基于小波变换的一种扩展方法,它在小波变换的基础上进一步增加了尺度的变化。
小波包变换通过不断地分解和重构信号,可以得到信号的不同频率成分。
在小波包变换中,我们可以选择不同的小波基函数和分解层数,以得到适合信号特征的频率分解结果。
在Matlab中,我们可以使用Wavelet Toolbox中的函数实现小波包变换。
首先,我们需要通过调用`wavedec`函数对信号进行小波分解。
该函数的输入参数包括信号、小波基函数、分解层数等。
通过调用该函数,我们可以得到信号在不同频率尺度上的系数。
接下来,我们可以选择一些感兴趣的频率尺度,对系数进行进一步的分解。
在Matlab中,我们可以使用`wprcoef`函数对系数进行小波包分解。
该函数的输入参数包括小波包分析对象、系数所在的频率尺度等。
通过调用该函数,我们可以得到信号在指定频率尺度上的小波包系数。
除了分解,小波包变换还可以进行重构。
在Matlab中,我们可以使用`waverec`函数对系数进行小波重构。
该函数的输入参数包括小波包系数、小波基函数等。
通过调用该函数,我们可以得到信号的重构结果。
在实际应用中,小波包变换可以用于信号的特征提取、信号去噪等。
通过分解信号,我们可以得到不同频率尺度上的信号成分,从而对信号进行分析和处理。
在Matlab中,我们可以通过可视化小波包系数的方法,对信号进行频谱分析。
通过观察小波包系数的幅值和相位信息,我们可以了解信号的频率成分及其变化规律。
总结一下,在Matlab中实现小波包变换的步骤如下:1. 调用`wavedec`函数对信号进行小波分解,得到信号在不同频率尺度上的系数。
小波变换matlab
小波变换是一种在信号和图像处理中广泛应用的工具。
在Matlab 中,你可以使用内置的函数来进行小波变换。
以下是一个基本的示例,显示了如何在Matlab中使用小波变换:
```matlab
首先,我们需要导入图像或者信号
I = imread('lena.bmp'); 导入图像
转换为灰度图像
I = rgb2gray(I);
使用'sym4'小波基进行小波分解
[C, S] = wavedec2(I, 1, 'sym4');
显示小波分解的结果
figure, wave2gray(C, S, -6);
```
在这个例子中,我们首先导入了图像,然后将其转换为灰度图像。
接着,我们使用`wavedec2`函数和`'sym4'`小波基进行小波分解。
最后,我们使用`wave2gray`函数显示小波分解的结果。
这只是使用Matlab进行小波变换的一个基本示例。
实际上,你
可以根据你的需求来选择不同的小波基(例如'haar'、'Daubechies'、'Symlet'、'Coiflet'等)以及进行不同级别的小波分解。
同时,Matlab也提供了其他的小波变换函数,例如`wavelet`和`wfilters`等,可以满足不同的需求。
MATLAB小波变换指令及其功能介绍(超级有用)(可编辑修改word版)
MATLAB 小波变换指令及其功能介绍1一维小波变换的 Matlab 实现(1)dwt 函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号 X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2)idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换(1)wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即: ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab 实现(2)dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
MATLAB小波变换指令及其功能介绍(超级有用)
MATLAB小波变换指令及其功能介绍1一维小波变换的Matlab实现(1)dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和N维DFT说明:[cA,cD]=dwt(X,'wname')使用指定的小波基函数'wname'对信号X进行分解,cA、cD分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D)使用指定的滤波器组Lo_D、Hi_D对信号进行分解。
(2)idwt函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数fft、fft2和fftn分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname')由近似分量cA和细节分量cD经小波反变换重构原始信号X。
'wname'为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R)用指定的重构滤波器Lo_R和Hi_R经小波反变换重构原始信号X。
X=idwt(cA,cD,'wname',L)和X=idwt(cA,cD,Lo_R,Hi_R,L)指定返回信号X中心附近的L个点。
2二维小波变换的Matlab实现二维小波变换的函数别可以实现一维、二维和N维DFT函数名函数功能---------------------------------------------------dwt2二维离散小波变换wavedec2二维信号的多层小波分解idwt2二维离散小波反变换waverec2二维信号的多层小波重构wrcoef2由多层小波分解重构某一层的分解信号upcoef2由多层小波分解重构近似分量或细节分量detcoef2提取二维信号小波分解的细节分量appcoef2提取二维信号小波分解的近似分量upwlev2二维小波分解的单层重构dwtpet2二维周期小波变换idwtper2二维周期小波反变换-----------------------------------------------------------(1)wcodemat函数功能:对数据矩阵进行伪彩色编码函数fft、fft2和fftn分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵X的编码矩阵Y;NB伪编码的最大值,即编码范围为0~NB,缺省值NB=16;OPT指定了编码的方式(缺省值为'mat'),即:别可以实现一维、二维和N维DFTOPT='row',按行编码OPT='col',按列编码OPT='mat',按整个矩阵编码函数fft、fft2和fftn分ABSOL是函数的控制参数(缺省值为'1'),即:ABSOL=0时,返回编码矩阵ABSOL=1时,返回数据矩阵的绝对值ABS(X)1.离散傅立叶变换的Matlab实现(2)dwt2函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname'对二维信号X进行二维离散小波变幻;cA,cH,cV,cD分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)使用指定的分解低通和高通滤波器Lo_D和Hi_D分解信号X。
MATLAB 小波变换 指令及其功能介绍
MATLAB 小波变换指令及其功能介绍3. 图像小波变换的 Matlab 实现函数 fft、fft2 和 fftn 分析3.1 一维小波变换的 Matlab 实现(1) dwt 函数 Matlab功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维 DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
1. 离散傅立叶变换的 Matlab实现3.2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT-------------------------------------------------函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换 Matlabwaverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量1. 离散傅立叶变换的Matlab实现detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构1. 离散傅立叶变换的 Matlab实现dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换-------------------------------------------------------------函数 fft、fft2 和 fftn 分(1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
(完整word版)MATLAB小波变换指令及其功能介绍(超级有用)
MATLAB小波变换指令及其功能介绍1 一维小波变换的 Matlab 实现(1) dwt函数功能:一维离散小波变换格式:[cA,cD]=dwt(X,'wname')[cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname'对信号X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数功能:一维离散小波反变换格式:X=idwt(cA,cD,'wname')X=idwt(cA,cD,Lo_R,Hi_R)X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分X=idwt(cA,cD,Lo_R,Hi_R,L)说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
'wname' 为所选的小波函数X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和Hi_R 经小波反变换重构原始信号 X 。
X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。
2 二维小波变换的 Matlab 实现二维小波变换的函数别可以实现一维、二维和 N 维 DFT函数名函数功能---------------------------------------------------dwt2 二维离散小波变换wavedec2 二维信号的多层小波分解idwt2 二维离散小波反变换waverec2 二维信号的多层小波重构wrcoef2 由多层小波分解重构某一层的分解信号upcoef2 由多层小波分解重构近似分量或细节分量detcoef2 提取二维信号小波分解的细节分量appcoef2 提取二维信号小波分解的近似分量upwlev2 二维小波分解的单层重构dwtpet2 二维周期小波变换idwtper2 二维周期小波反变换----------------------------------------------------------- (1) wcodemat 函数功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式:Y=wcodemat(X,NB,OPT,ABSOL)Y=wcodemat(X,NB,OPT)Y=wcodemat(X,NB)Y=wcodemat(X)说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现一维、二维和 N 维 DFTOPT='row' ,按行编码OPT='col' ,按列编码OPT='mat' ,按整个矩阵编码函数 fft、fft2 和 fftn 分ABSOL 是函数的控制参数(缺省值为 '1'),即:ABSOL=0 时,返回编码矩阵ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)1. 离散傅立叶变换的 Matlab实现(2) dwt2 函数功能:二维离散小波变换格式:[cA,cH,cV,cD]=dwt2(X,'wname')[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。
matlab 连续小波变换
MATLAB 连续小波变换简介连续小波变换(Continuous Wavelet Transform,CWT)是一种广泛应用于信号处理和图像处理领域的数学工具。
MATLAB是一种强大的数值计算和科学编程语言,也提供了丰富的工具箱以支持小波变换和相关分析。
本文将介绍 MATLAB 中如何进行连续小波变换,并说明其基本原理和算法,以帮助读者理解连续小波变换的概念和应用。
连续小波变换原理连续小波变换是一种将信号分解成一系列不同尺度的小波基函数的过程。
它可以提供时间和频率域上的局部信息,并且在处理非平稳信号时具有重要的作用。
连续小波变换通过将信号与不同尺度和平移的小波基函数进行卷积来实现。
对于一个连续的信号 x(t),连续小波变换可以表示为:其中,ψ(a, b) 是小波基函数,a 是尺度因子,b 是平移因子,* 表示卷积操作。
通过改变 a 和 b 的值,可以得到在不同时间和频率分辨率上的频谱图。
MATLAB 中的连续小波变换在 MATLAB 中,进行连续小波变换需要使用 Wavelet Toolbox。
该工具箱提供了一系列函数来实现小波分析和小波变换。
以下是在 MATLAB 中进行连续小波变换的基本步骤:1.导入信号数据:首先,需要将待处理的信号数据导入 MATLAB。
可以使用load函数或者直接在代码中定义一个信号向量。
2.创建小波对象:使用wavelet函数来创建一个小波对象。
可以选择不同类型的小波,如‘haar’、‘db4’、‘sym8’ 等。
wname = 'db4';w = wavelet(wname);3.进行连续小波变换:使用cwt函数来进行连续小波变换。
需要指定输入信号、小波对象、尺度范围和平移因子范围。
scales = 1:100;shifts = 1:100;[cfs, frequencies] = cwt(signal, scales, w, 'Shift', shifts);cfs是连续小波变换得到的系数矩阵,frequencies是对应的频率向量。
matlab实现小波变换
matlab实现小波变换小波变换(Wavelet Transform)是一种信号处理技术,可以将信号分解成不同频率和时间分辨率的成分。
在Matlab中,可以利用小波变换函数实现信号的小波分析和重构。
本文将介绍小波变换的原理和在Matlab中的使用方法。
一、小波变换原理小波变换是一种时频分析方法,通过对信号进行多尺度分解,可以同时观察信号的时间和频率信息。
小波变换使用小波函数作为基函数,将信号分解成不同频率的子信号。
小波函数是一种具有有限长度的波形,可以在时间和频率上进行局部化分析。
小波变换的主要步骤包括:选择小波函数、信号的多尺度分解、小波系数的计算和重构。
1. 选择小波函数:小波函数的选择对小波变换的结果有重要影响。
常用的小波函数有Haar小波、Daubechies小波、Symlet小波等。
不同的小波函数适用于不同类型的信号,选择合适的小波函数可以提高分析的效果。
2. 信号的多尺度分解:信号的多尺度分解是指将信号分解成不同尺度的成分。
小波变换采用层级结构,每一层都将信号分解成低频和高频两部分。
低频表示信号的平滑部分,高频表示信号的细节部分。
3. 小波系数的计算:小波系数表示信号在不同尺度和位置上的强度。
通过计算每一层的小波系数,可以得到信号在不同频率上的能量分布。
4. 信号的重构:信号的重构是指将分解得到的小波系数合成为原始信号。
小波重构的过程是小波分析的逆过程,通过将每一层的低频和高频合并,可以得到原始信号的近似重构。
二、Matlab中的小波变换在Matlab中,可以使用wavedec函数进行小波分解,使用waverec 函数进行小波重构。
具体步骤如下:1. 加载信号:需要加载待处理的信号。
可以使用load函数从文件中读取信号,或者使用Matlab中自带的示例信号。
2. 选择小波函数:根据信号的特点和分析目的,选择合适的小波函数。
Matlab提供了多种小波函数供选择。
3. 进行小波分解:使用wavedec函数进行小波分解,指定分解的层数和小波函数名称。
小波变换matlab程序
小波变换matlab程序小波变换是一种信号处理技术,它可以将信号分解成不同频率的成分,并且可以在不同时间尺度上进行分析。
在Matlab中,可以使用内置的小波变换函数来实现这一技术。
下面是一个简单的小波变换Matlab程序示例:matlab.% 生成一个示例信号。
t = 0:0.001:1; % 时间范围。
f1 = 10; % 信号频率。
f2 = 50; % 信号频率。
y = sin(2pif1t) + sin(2pif2t); % 信号。
% 进行小波变换。
[c, l] = wavedec(y, 3, 'db1'); % 进行3层小波分解,使用db1小波基函数。
% 重构信号。
yrec = waverec(c, l, 'db1'); % 使用小波系数和长度进行信号重构。
% 绘制原始信号和重构信号。
subplot(2,1,1);plot(t, y);title('原始信号');subplot(2,1,2);plot(t, yrec);title('重构信号');这个程序首先生成了一个包含两个频率成分的示例信号,然后使用`wavedec`函数对信号进行小波分解,得到小波系数和长度。
接着使用`waverec`函数对小波系数和长度进行信号重构,最后绘制了原始信号和重构信号的对比图。
小波变换在信号处理、图像处理等领域有着广泛的应用,可以用于信号去噪、特征提取、压缩等方面。
通过Matlab中的小波变换函数,我们可以方便地进行小波分析和处理,从而更好地理解和利用信号的特性。
matlab 连续小波变换
matlab 连续小波变换连续小波变换是一种信号分析的方法,可以将信号分解为不同频率的子信号。
MATLAB提供了一些用于执行连续小波变换的函数,如cwt、icwt、wscal 和 wavefun。
下面将简要介绍这些函数。
1. cwtcwt函数执行连续小波变换,并返回一组连续小波系数,其中包含了不同尺度和频率的信息。
使用该函数时,需要指定要分析的信号、小波的类型、尺度范围以及分析的步长。
例如,下面的代码可以计算一组Morlet小波的连续小波系数:```matlabt = 0:0.1:10;x = sin(t).*exp(-t/3);scales = 1:0.5:5;coefs = cwt(x,scales,'morl');```2. icwticwt函数用于将连续小波系数转换为原始信号。
使用该函数时,需要指定连续小波系数、小波的类型以及原始信号的长度。
例如,下面的代码可以将上一步骤计算出来的连续小波系数转换为原始信号:```matlabrecon = icwt(coefs,'morl',1:length(x));```3. wscalwscal函数用于对连续小波系数进行标度,从而将其转换为相对幅度。
使用该函数时,需要指定要标度的系数以及要使用的小波类型。
例如,下面的代码将上一步骤计算出来的连续小波系数标度为相对幅度:```matlabcoefscales = wscal(coefs,'morl',scales);```4. wavefunwavefun函数用于生成指定的小波函数。
使用该函数时,需要指定要生成的小波类型、尺度和位置。
例如,下面的代码可以生成一组尺度为2和4的Haar小波:```matlab[psi,x] = wavefun('haar',2);plot(x,psi);hold on;[psi,x] = wavefun('haar',4);plot(x,psi);```综上所述,MATLAB提供了一些实用的函数用于执行连续小波变换。
关于小波分析的matlab程序
关于小波分析的matlab程序小波分析是一种在信号处理和数据分析领域中广泛应用的方法。
它可以匡助我们更好地理解信号的时域和频域特性,并提供一种有效的信号处理工具。
在本文中,我将介绍小波分析的基本原理和如何使用MATLAB编写小波分析程序。
一、小波分析的基本原理小波分析是一种基于窗口函数的信号分析方法。
它使用一组称为小波函数的基函数,将信号分解成不同频率和不同时间尺度的成份。
与傅里叶分析相比,小波分析具有更好的时频局部化性质,可以更好地捕捉信号的瞬时特征。
小波函数是一种具有局部化特性的函数,它在时域上具有有限长度,并且在频域上具有有限带宽。
常用的小波函数有Morlet小波、Haar小波、Daubechies小波等。
这些小波函数可以通过数学运算得到,也可以通过MATLAB的小波函数库直接调用。
小波分析的基本步骤如下:1. 选择合适的小波函数作为基函数。
2. 将信号与小波函数进行卷积运算,得到小波系数。
3. 根据小波系数的大小和位置,可以分析信号的时频特性。
4. 根据需要,可以对小波系数进行阈值处理,实现信号的去噪和压缩。
二、MATLAB中的小波分析工具MATLAB提供了丰富的小波分析工具箱,可以方便地进行小波分析的计算和可视化。
下面介绍几个常用的MATLAB函数和工具箱:1. `waveinfo`函数:用于查看和了解MATLAB中可用的小波函数的信息,如小波函数的名称、支持的尺度范围等。
2. `wavedec`函数:用于对信号进行小波分解,得到小波系数。
3. `waverec`函数:用于根据小波系数重构原始信号。
4. `wdenoise`函数:用于对小波系数进行阈值处理,实现信号的去噪。
5. 小波分析工具箱(Wavelet Toolbox):提供了更多的小波分析函数和工具,如小波变换、小波包分析、小波阈值处理等。
可以通过`help wavelet`命令查看工具箱中的函数列表。
三、编写小波分析程序在MATLAB中编写小波分析程序可以按照以下步骤进行:1. 导入信号数据:首先需要导入待分析的信号数据。
一维连续小波变换实验报告
连续小波变换实验报告实验目的:通过matlab 编程实现一维连续小波变换,更好地理解连续小波变换的算法和作用,以及小波系数矩阵的含义。
同时通过小波系数矩阵对原始信号进行频谱分析,并了解小波小波系数在尺度和位移两个分量上的意义。
实验原理:一维连续小波变换公式:()1*2(,)f t b W a b af t dt a ψ+∞--∞-⎛⎫= ⎪⎝⎭⎰当小波函数()t ψ为实函数时(,)f W a b ()12(,)f t b W a b af t dt a ψ+∞--∞-⎛⎫== ⎪⎝⎭⎰在给定尺度下,对待分析信号()f t 和小波函数()t ψ按照s t nT =,s b nT =进行采样,其中s T 为采样间隔,则小波变换可近似如下:()12()(,)s f s sn n k T W a b T af nT a ψ-⎛⎫-= ⎪⎝⎭∑ =()12nn k T af n a ψ--⎛⎫∆ ⎪⎝⎭∑对给定的a 值,依次求出不同a 值下的一组小波系数,由于数据采样间隔∆t 为0.03(常量),所以可以把这个系数忽略,并通过公式下面对小波变换矩阵进行归一化处理。
(,)(,)min*255max minm n wfab m n I -=-实验结果:50100150200250300350400-20-15-10-55101520ORIGINAL DATATIMEA M P L I T U D ECOEFFS ABSOLUTETIMES C A L E5010015020025030035040010203040506070实验程序及注释(1)主程序load('data.mat'); n=length(dat); amax=70; %尺度a 的长度 a=zeros(1,amax);wfab=zeros(amax,n); %小波系数矩阵,均以零矩阵形式赋初值 mexhab=zeros(1,n); %某尺度下小波系数 for s=1:amax %s 表示尺度 for k=1:n mexhab(k)=mexh(k/s); endfor t=1:n % t 表示位移wfab(s,t)=(sum(mexhab.*dat))/sqrt(s); %将积分用求和代替 mexhab=[mexh(-1*t/s),mexhab(1:n-1)]; %mexhab 修改第一项并右移 end endwfab_abs=abs(wfab);figure(3); %画三维图 colormap(pink(255)); surfc(wfab_abs);400TRANSLATIONSCALEA M P L I T U D Exlabel('TRANSLATION')ylabel('SCALE')zlabel('AMPLITUDE')for index=1:amax %小波系数矩阵归一化处理max_coef=max(wfab_abs(index,:));min_coef=min(wfab_abs(index,:));ext=max_coef-min_coef;wfab_abs(index,:)=255*(wfab_abs(index,:)-min_coef)/ext; endfigure(1);plot(dat); %画原始数据图title('ORIGINAL DATA');xlabel('TIME')ylabel('AMPLITUDE')figure(2);image(wfab_abs); %画尺寸-位移图colormap(pink(255));title('COEFFS ABSOLUTE');xlabel('TIME')ylabel('SCALE')(2)墨西哥帽小波函数function Y=mexh(x) %单独用.M文件定义此函数if abs(x)<=5Y=((pi^(-1/4))*(2/sqrt(3)))*(1-x*x)*exp(-(x*x)/2);elseY=0;end;。
小波变换 频域 matlab
小波变换频域 matlab
小波变换是一种常用的信号分析工具,它将信号分解成不同频率的小波,可以用来处理非平稳的信号。
在 MATLAB 中使用小波变换进行频域分析,可以通过以下步骤来实现:
1. 加载信号数据,使用 load 命令将数据读入到 MATLAB 中。
2. 选择小波基函数,MATLAB 内置了多种小波基函数,如 haar、db1、db2 等,可根据具体需求选择不同的基函数。
3. 进行小波分解,使用 wavedec 命令对信号进行小波分解,可以得到不同频率的小波系数。
4. 对小波系数进行可视化,使用 plot 命令将小波系数绘制成图像,可以观察到不同频率的成分。
5. 进行小波重构,使用 waverec 命令对小波系数进行重构,得到复原后的信号。
6. 对复原后的信号进行频域分析,可以使用 fft 命令对信号进行傅里叶变换,得到信号的频谱图。
以上是使用小波变换进行频域分析的基本步骤和命令,需要根据具体信号和分析目的进行适当的调整和优化。
matlab对信号小波变换
matlab对信号小波变换(原创版)目录一、引言二、小波变换概述三、MATLAB 对信号进行小波变换的方法四、小波变换在信号处理中的应用五、结论正文一、引言在信号处理领域,小波变换被广泛应用于信号分析、特征提取、压缩等领域。
小波变换是一种时频分析方法,可以同时获取信号的频率信息和时间信息。
MATLAB 作为信号处理的常用软件,提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。
本文将介绍如何使用 MATLAB 对信号进行小波变换,以及小波变换在信号处理中的应用。
二、小波变换概述小波变换是一种短时傅里叶变换,它可以将信号分解为不同频率的小波函数,并获得信号在不同时间尺度上的频率信息。
小波变换具有良好的局部特性和多尺度特性,可以有效地分析信号的局部特征和多尺度特征。
三、MATLAB 对信号进行小波变换的方法在 MATLAB 中,可以使用 Wavelet Toolbox 提供的函数对信号进行小波变换。
以下是一个简单的示例:1.导入信号:使用 wavread 函数读取音频信号。
2.对信号进行小波分解:使用 wavedec 函数对信号进行小波分解,得到小波系数。
3.提取小波系数:使用 waveget 函数提取指定层数的小波系数。
4.对小波系数进行处理:例如,可以对小波系数进行幅度模长处理,得到信号的能量分布情况。
5.重构信号:使用 waverec 函数根据小波系数重构信号。
四、小波变换在信号处理中的应用小波变换在信号处理中有广泛的应用,例如:1.信号压缩:通过对信号进行小波分解,可以得到信号的频谱特征,然后根据频谱特征设计合适的量化方案,对信号进行压缩。
2.信号去噪:通过对信号进行小波分解,可以将信号中的噪声分离出来,然后对噪声进行抑制或去除,从而提高信号的质量。
3.信号特征提取:通过对信号进行小波分解,可以获得信号在不同时间尺度上的频率信息,从而提取信号的特征。
五、结论MATLAB 提供了丰富的函数和工具箱,可以方便地对信号进行小波变换。
一维连续小波变换的matlab基础程序实现
小波变换实验二连续小波变换1、实验目的本实验的目的在于充分理解连续小波变换的算法和作用,利用matlab程序实现对一维信号进行连续小波变换,进而在程序的编辑过程理解一位连续小波变换的小波系数矩阵的含义。
同时通过对预算的到的小波系数矩阵进行分析解释,得到原始信号的频谱分布以及了解小波系数在尺度和位移两个分量上的意义。
2、实验原理、实验编程思路1、根据书本的理论知识,知道一维连续小波变换的公式为:实际在编程过程当中,对于上式中积分的求解可以采用将积分函数离散化,通过求和来实现求积分,离散的过程如下式:本实验中,根据题目可以知道采样的时间间隔为0.03s,即上式中Δt,在实际编程当中为了计算方便可以省略掉这个时间常数,所以在编程过程当中使用的公式实际为:2、小波函数的选取:使用墨西哥草帽(mexhat)小波来进行小波变换,墨西哥草帽的函数为(支撑区间为-5—5):对于连续小波函数的采样间隔,根据不同的尺度参量来进行采样,比如尺度为i,实际对应小波的采样间隔取k/i,以保持和原信号在不同尺度上的同步。
3、程序运算简化:在程序设计过程当中,如果对于小波系数的每一个系数都按照公式来计算,算法的时间复杂度应当为o(n3)。
但通过对公式的分析,不难看出,对于同意尺度a,相邻的两个小波系数之间的求和项,只有第一项或者最后一项或者二者都不同,所以在下一个系数求解的时候可以减少一次循环,从而将时间复杂度降到o(n2),运算效率大大提高。
4、在程序设计的过程当中,还分别对原信号进行傅里叶分析和直接的cwt变换,将得到的结果与设计的连续小波变换程序进行比对分析。
3、实验程序和结果墨西哥草帽小波参数获取函数:mexh.m连续小波变换主函数:mexh-cwt.m傅里叶分析和cwt分析:fft cwt result.m1、利用mexh-cwt.m对源数据进行分析得到的结果:原信号波形图小波系数矩阵及原信号的三个主成分小波系数矩阵的三维视图功率谱图和功率等值线图从上述的小波变换结果,特别是小波系数矩阵的信息中可以看出,原始信号主要有三个平率不同且时域分布也不同的主成份组成,从图中可以定性地看出,频率最高的成分1始终出现在整个信号段,而频率次之的成分2只在信号刚开始的阶段出现,频率最低的成分3基本上在成分2消失之后开始出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波变换实验二
连续小波变换
一、实验目的
本实验的目的在于充分理解连续小波变换的算法和作用,利用matlab 程序实现对一维信号进行连续小波变换,进而在程序的编辑过程理解一位连续小波变换的小波系数矩阵的含义。
同时通过对预算的到的小波系数矩阵进行分析解释,得到原始信号的频谱分布以及了解小波系数在尺度和位移两个分量上的意义。
二、实验原理、实验编程思路
1、根据书本的理论知识,知道一维连续小波变换的公式为:
实际在编程过程当中,对于上式中积分的求解可以采用将积分函数离散化,通过求和来实现求积分,离散的过程如下式:
本实验中,根据题目可以知道采样的时间间隔为0.03s ,即上式中Δt ,在实际编程当中为了计算方便可以省略掉这个时间常数,所以在编程过程当中使用的公式实际为:
2、小波函数的选取:使用墨西哥草帽(mexhat )小波来进行小波变换,墨西哥草帽的函数为(支撑区间为-5—5):
dt a b t t f a f b a W b a f
⎰∞
∞-->==<)()(1,),(,ϕϕ)(
)()()(),(21
)1(21a
b t k t k f t a t a b t a t f b a W k k t k t k f -∆⨯∆∆=∆-⨯=∑∑⎰-∆+∆-ϕϕ)()(),(21
a
b k k f a b a W
k f -⨯=∑-ϕ⎪⎩⎪⎨⎧≤-=-else x e x mexh x ,05,)1(222
对于连续小波函数的采样间隔,根据不同的尺度参量来进行采样,比如尺度为i,实际对应小波的采样间隔取k/i,以保持和原信号在不同尺度上的同步。
3、程序运算简化:
在程序设计过程当中,如果对于小波系数的每一个系数都按照公式来计算,算法的时间复杂度应当为o(n3)。
但通过对公式的分析,不难看出,对于同意尺度a,相邻的两个小波系数之间的求和项,只有第一项或者最后一项或者二者都不同,所以在下一个系数求解的时候可以减少一次循环,从而将时间复杂度降到o(n2),运算效率大大提高。
4、在程序设计的过程当中,还分别对原信号进行傅里叶分析和直接的cwt 变换,将得到的结果与设计的连续小波变换程序进行比对分析。
三、实验程序和结果
墨西哥草帽小波参数获取函数:mexh.m
连续小波变换主函数:mexh-cwt.m
傅里叶分析和cwt分析:fft cwt result.m
1、利用mexh-cwt.m对源数据进行分析得到的结果:
原信号波形图
小波系数矩阵及原信号的三个主成分
小波系数矩阵的三维视图
功率谱图和功率等值线图
从上述的小波变换结果,特别是小波系数矩阵的信息中可以看出,原始信号主要有三个平率不同且时域分布也不同的主成份组成,从图中可以定性地看出,频率最高的成分1始终出现在整个信号段,而频率次之的成分2只在信号刚开始的阶段出现,频率最低的成分3基本上在成分2消失之后开始出现。
这些信息都是从单纯的傅里叶频谱分析中无法得到的。
2、利用fft cwt result.m对原信号进行频谱分析和算法校验:
从上述傅里叶频谱分析图中同样可以看出信号的三个主成份,且对应频率近似分别为:0.651Hz、1.237Hz、2.604Hz。
在小波变换中,每个尺度对应0.03s,上述三个频率对应周期分别为:1.536s、0.808s、0.384。
对应到尺度域上容易计算的对应的尺度间隔分别为:51.2、26.9、12.8。
再次观察小波系数,分析得到的三个主成份对应的尺度间隔基本吻合,也验证了我们计算得到的结果。