苏教版高中数学必修五高一期中试题.docx

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料

唐玲出品

江苏省西亭高级中学2007-2008学年度第二学期

高一数学期中测试卷

命题人:徐雪梅, 审核人: 陆建和

(全卷满分:160分 考试时间:120分钟)

一、选择题:(每题5分,共70分)

1、不等式(1)(1)0x x -+<的解集为 .

2、在△ABC 中,()()a b c a b c ab +++-=若,则C ∠= .

3、等差数列{}n a 中,若14715a a a ++=,3693a a a ++=,则9S = .

4、已知a b c >>,则()()a b b c --与2

a c -的大小关系是 . 5、ABC ∆的内角,,A B C 的对边分别为,,a

b

c ,若,,a b c 成等比数列,且2c a =,则cos B = .

6、已知数列{}n a 的前n 项和2n S n =,则通项n a = .

7、已知等比数列中连续的三项为2233x x x x ++=,

,,则 . 8、在ABC ∆中,若3a =

,060A =,那么这三角形的外接圆周长为 . 9、 2312222n +++++= .

10、在数列{}n a 中, 1121()2n n n

a a a n N a ++==∈+,,则5a 等于______ _. 11、函数)1(1

12>-+-=x x x x y 的值域为_________ ___. 12、已知0

230x ax a -->的解集为 .

13、已知函数)(x f 满足2)1(=f ,6)3(=f ,且对任意的正整数x 都有)()1(2)2(x f x f x f -+=+,则=)2008(f .

14、 定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,

那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列{}a n 是等和数列,且a 12=,公和为5,那么这个数列的前21项和S 21的值为__ .

二、解答题:(共90分)

15、 (14分) 根据下列条件解三角形:

(1)3,60,1b B c ==︒=;(2)6,45,2c A a ==︒=.

16、(15分)⑴ 已知正数x 、y 满足2x +y =1,求11x y

+的最小值及对应的x 、y 值. ⑵ 若正数x 、y 满足2x+y-xy=0,求x+y 的最小值.

17、(15分)在△ABC 中,已知a 、b 、c 分别是角A 、B 、C 的对边,不等式

06sin 4cos 2≥++C x C x 对一切实数x 恒成立.

(1)求角C 的最大值;(2)若角C 取得最大值,且b a 2=,求角B 的大小.

18、(15分)已知{a n }为等差数列,111a =-,其前n 项和为n S ,若1020S =-,

(1)求数列{a n }的通项;(2)求n S 的最小值,并求出相应的n 值.

19、(15分)某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后

每年都增加4万元,每年捕鱼收益50万元.

(1)问第几年开始获利?

(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;

②总纯收入获利最大时,以8万元出售该渔船. 问哪种方案最合算?

20、定义:若数列{}n A 满足2

1n n A A =+,则称数列{}n A 为“平方递推数列”。已知数列{}n a 中,21=a ,且n n n a a a 222

1+=+其中n 为正整数. (1)设12+=n n a b 证明:数列{}n b 是“平方递推数列”,且数列{}n b lg 为等比数列;

(2)设(1)中“平方递推数列” {}n b 的前n 项之积为n T ,即n T )12()12)(12(21+++=n a a a ,求数列{}n a 的通项及n T 关于n 的表达式;

(3)记n a n T c n 12log +=,求数列{}n c 的前n 项之和n S ,并求使n S 2008>的n 的最

小值.

相关文档
最新文档