2017-2018学年北师大版七年级数学上第二章有理数及其运算章末综合检测试卷含答案

合集下载

北师大七年级数学上册第2章有理数及其运算测试卷

北师大七年级数学上册第2章有理数及其运算测试卷

《第二章有理数及其运算》章末测试卷一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣32.2的相反数是()A.B.C.﹣2 D.23.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.﹣4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.在有理数中,绝对值等于它本身的数有()A.1个 B.2个 C.3个 D.无穷多个7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣68.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=99.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作.12.已知|a|=4,那么a=.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.比较大小:3223.15.若(a﹣1)2+|b+2|=0,那么a+b=﹣1.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.计算:﹣8﹣6+22﹣9.19.计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.计算:(﹣+﹣)×(﹣12).22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.2的相反数是()A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.在有理数中,绝对值等于它本身的数有()A.1个 B.2个 C.3个 D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.10.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.计算:﹣8﹣6+22﹣9.【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。

北师大版七年级上册第二章有理数及其运算单元测试题含答案

北师大版七年级上册第二章有理数及其运算单元测试题含答案

北师大版七年级上册第二章有理数及其运算单元测试题一、选择题(每小题4分,共32分)1.计算-2-2的结果是( )(A) 0 (B)-4 (C)4 (D) 不能确定2.3的相反数是( )(A) -3 (B)31 (C)3 (D)-31 3.有理数3的倒数是( )(A)-31 (B)31 (C)-3 (D)3 4.|-5|的值是( )(A) -51 (B)51 (C) 5 (D) -5 5.在2.5,-2.5,0,3这四个数种,最小的数是( )(A) 2.5 (B) -2.5 (C)0 (D)36.下列计算的结果是-1的是( )(A)-3-2 (B)(-3)×(-31) (C)2012)1(- (D)(-4)÷4 7.某星球的体积约为66354213km ,用科学计数法(保留三个有效数字)表示为a ×n 103km ,则a,n 的值分别为( )(A)a=6.63,n=4 (B) a=6.64,n=4(C) a=6.63,n=6 (D) a=6.64,n=68.a,b,c三个数在数轴上的位置如图1,下列结论正确的是( )(A)a>b (B)abc>0 (C)cb >1 (D)a+c=0二、填空题(每小题4分,共32分)9.计算:-2+1= .10.已知有理数a,b互为倒数,则ab b a )(+的值为 . 11.若x+9是-18的相反数,则x-9= .12.已知|m-5|=5-m,则最大的整数m值为 .13.将数2985421保留两个有效数字,表示为 .14.设1a =0,2a =21,3a =32,则2013a = . 15.比较-(-5)与-|-5|的大小,结论是 . 16. 已知ab<0,则a a || +b b ||的值为 .三、解答题(共56分)17.(9分)将下列各数在数轴上表示出来,并用">"连接起来.-3,43,+2,0,-618.(9分)计算:(1)(-2)+5-3+12;(2)4+3×32÷(-41)+2)2(19.(9分)已知有理数:+2,-3,+4,-2,+3,0,小明,小亮,小萍,将它们分成了如下三类:小明分成两类:+2,-3,-2,+3和+4,0,小亮分成三类:+2,+4,+3;0和 ;小萍分成两类:+2,-2,+4,0,和+3,-3,回答:(1)小明,小萍的分类标准是什么? (2)将小亮的分类填充完整;(3)在小明的分类中,可以反映出 的特点.A.倒数 B.相反数 C. 正数 D.绝对值20.(9分)红星中学初一四班的数学兴趣小组的同学们,正在讨论一道题:………(1)请问第10个正方形中的内容是什么?(2)其中有一个正方形如下,则表中的A,B,C分别是多少?(用n表示出来)21.(10分)已知整数1a ,2a ,3a ,4a ……,满足下列条件:1a =0,2a =-|1a +1|,3a =-|2a +1|,4a =-|3a +1|……,依次类推,(1)求11a 的值;(2)2013a 的值为( )(A)-1005 (B)-1006 (C)-1007 (D)-2013拓展创新题(满分20分)22.小明的家位于学校的正西方向,且离学校5千米,以学校为中心,规定向东为正方向. 小米家的位置是-40千米,小亮家的位置是-3千米,小东家的位置是+12千米 (1)表示出小明家的位置;(2)+12千米的意义是什么吗?(3)指出距离学校最远和最近的家.备选题选择:1.等式[(-8)-△]÷(-2043)=0,则△表示的数是( ) (A)8 (B)-8 (C)2043 (D)0 2.已知|y|=6,x的相反数为6,则x-y的值为( )(A)0 (B)-12 (C)-12或0 (D)12或0填空题1.设绝对值小于10的所有整数的积记作x,所有整数的和记作y,所有整数的差记作m,则mx +xy-2013y= . 2.有一个数记作m×n 10,已知m+n=20,若m,n都是正整数,则最大的数是 ,最小的数是 .解答题:在数轴上,点A表示的数为-3,点B表示的数为-6,点C表示的数为4,点D表示的数为6.(1)计算:AB之间的距离为 ,CD之间的距离为 ;(2)化简:|-6|-|-3|,|6|-|4|;(3)比较(1),(2),我们得到数轴上,同号两数之间的距离等于 . (4)请你设计一种方案,求数轴上异号两数之间的距离如何表达.参考答案:一、选择题1.B.2. (A) 3. (B) 4.C. 5 (B) 6.(D)7. D.8.(D)二、填空题)9.-1.10.a+b.11.0.12.5.13.3.0×610.14.2013a =20132012. 15.-(-5)>-|-5|16. 0.三、解答题17.解:数轴表示如下:+2>43>0>-3>-618.解:(1)(-2)+5-3+12=[(-2)+(-3)+5]+12=0+12=12;(2)4+3×32÷(-41)+2)2( =4+2÷(-41)+4 =4+2×(-4)+4=8+(-8)=0.19.解:(1)小明的分类标准是绝对值是否相等,小萍的分类标准是自然数的奇偶性 (2)-3,-2;(3)B.20.解:(1)第10个正方形中的内容是:(2)因为数的变化规律是,左上角的数字等于序号数,右边相邻的数小1,右下角的数字是其相反数,其下面的数是其倒数,所以正方形中的数A=n 1,B=n 1-1,C=-n 1. 21.解:(1)1a =0,2a =-|0+1|=-1,3a =-|-1+2|=-1,4a =-|-1+3|=-2,规律是右下角码的一半的相反数,是这个字母表示的数,与这个偶数相邻的后一个字母所表示的数,与这个偶数角码表示的数相等,因为10a =-5,所以11a =-5;(2) (B)拓展创新题(满分20分)22.解:(1)表示出小明家的位置是-5千米;(2)+12千米的意义是在学校东边12千米处;(3)距离学校最远的是小米加,最近的是小亮的家.备选题答案:选择题1.(B)2. (C)填空题:1.0.2.最大的数1×1910.最小的数是9×1110.解答题解:(1)计算:AB之间的距离为3,CD之间的距离为2;(2)化简:|-6|-|-3|=3,|6|-|4|=2;(3)比较(1),(2),我们得到数轴上,同号两数之间的距离等于绝对值较大的数减去绝对值较小的数.(4)方案如下:(a)计算:AC之间的距离,AD之间的距离;(b)化简:|4|+|-3|,|6|+|-3|;(c)比较(a),(b),我们得到数轴上,异号号两数之间的距离等于绝对值较大的数加上绝对值较小的数.。

北师大版初中数学七年级上册 第2章 有理数及其运算测试卷(3)含答案

北师大版初中数学七年级上册 第2章 有理数及其运算测试卷(3)含答案

《第二章有理数及其运算》章末测试卷一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣182.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和84.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.26.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为07.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.89.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣110.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定二、填空题(每空3分)11.计算:|﹣(+4.8)|=;0﹣(﹣2019)=.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为米.13.平方得的数是,立方得﹣8的数是.14.绝对值不大于3的所有整数是,其和是,积是.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?参考答案一、把正确的答案选在括号里(每题3分)1.某地一天最高气温23摄氏度,最低气温﹣5摄氏度,这天的温差是()摄氏度.A.18 B.28 C.﹣28 D.﹣18【考点】有理数的减法.【分析】根据有理数的减法,可得答案.【解答】解:由题意,得23﹣(﹣5)=23+5=28,故选:B.【点评】本题考查了有理数的减法,利用有理数的减法:减去一个数等于加上这个数的相反数是解题关键.2.两个有理数a与b,a+b=0,a与b的关系是()A.一正一负B.互为倒数C.互为相反数D.都是零【考点】倒数;相反数.【分析】根据互为相反数的和为零,可得答案.【解答】解:由,a+b=0,a与b的关系互为相反数,故选:B.【点评】本题考查了相反数,利用互为相反数的和为零是解题关键.3.下列各对数中,互为相反数的是()A.﹣0.01和0.1 B.和C.﹣0.125和 D.﹣0.125和8【考点】相反数.【分析】根据相反数的定义,可以得到哪个选项是正确.【解答】解:﹣0.01和0.1不是相反数,和互为倒数,不是相反数,﹣0.125和互为相反数,﹣0.125和8不是互为相反数,故选C.【点评】本题考查相反数,解题的关键是明确相反数的定义.4.如果两个数的积为负数,和也为负数,那么这两个数()A.都是负数B.都是正数C.一正一负,且负数的绝对值大D.一正一负,且正数的绝对值大【考点】有理数的乘法;有理数的加法.【分析】两个数的积为负数说明这两数异号,和也为负数说明这两数中负数的绝对值大.【解答】解:∵两个数的积为负数,∴这两数异号;又∵和也为负数,∴这两数中负数的绝对值较大.故选C.【点评】本题主要考查了有理数的加法与乘法的符号法则.两数相乘,异号得负;绝对值不相等的异号两数相加,取绝对值较大的加数的符号.5.设a是最小的自然数,b是最小的正整数,c是最大的负整数,则a、b、c三数之和为()A.﹣1 B.0 C.1 D.2【考点】有理数的加法;有理数.【分析】最小的自然数是0,最小的正整数是1,最大的负整数是﹣1,依此可得a、b、c,再相加可得三数之和.【解答】解:由题意可知:a=0,b=1,c=﹣1,a+b+c=0.故选:B.【点评】考查了有理数的加法,此题的关键是知道最小的自然数是0,最小的正整数是1,最大的负整数是﹣1.6.下列说法正确的是()A.﹣a一定是负数B.a的绝对值等于aC.﹣b是b的相反数D.0的倒数为0【考点】倒数;相反数;绝对值.【分析】根据各个选项中的说法可以判断哪个选项是正确的.【解答】解:当a=﹣2时,﹣a=2,故选项A错误;当a=﹣2时,|﹣2|=2,故选项B错误;﹣b的相反数是b,故选项C正确;0没有倒数,故选项D错误;故选C.【点评】本题考查倒数、相反数、绝对值,解题的关键是明确它们各自的定义.7.4个有理数相乘,积的符号是负号,则这4个有理数中,负数有()A.1个或3个B.1个或2个C.2个或4个D.3个或4个【考点】有理数的乘法.【专题】计算题.【分析】根据多个数字相乘积为负数,得到负因式个数为奇数个,即可确定出结果.【解答】解:4个有理数相乘,积的符号是负号,则这4个有理数中,负数有1个或3个.故选A.【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.8.若|x﹣2|+|y+6|=0,则x+y的值是()A.4 B.﹣4 C.﹣8 D.8【考点】非负数的性质:绝对值.【分析】根据已知等式,利用非负数的性质求出x,y的值,即可确定出x+y的值.【解答】解:∵|x﹣2|+|y+6|=0,∴x﹣2=0,y+6=0,解得x=2,y=﹣6,则x+y=2﹣6=﹣4.故选:B.【点评】此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.9.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或﹣1【考点】数轴.【专题】计算题.【分析】在数轴上找出表示2的点,向左或向右移动3个单位即可得到结果.【解答】解:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选D【点评】此题考查了数轴,熟练掌握数轴的意义是解本题的关键.10.若一个有理数的绝对值等于3,则这个数可能是()A.3 B.﹣3 C.±3 D.无法确定【考点】绝对值.【分析】根据绝对值的意义得到|3|=3,|﹣3|=3.【解答】解:∵|3|=3,|﹣3|=3,∴绝对值等于3的有理数为±3.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.二、填空题(每空3分)11.计算:|﹣(+4.8)|= 4.8;0﹣(﹣2019)=2019.【考点】有理数的减法.【分析】首先将绝对值里面的进行化简,然后再去掉绝对值符号即可;根据有理数的减法法则计算即可求解.【解答】解:|﹣(+4.8)|=4.8;0﹣(﹣2014)=2014.故答案为:4.8;2014.【点评】本题考查了绝对值的求法,有理数的减法,属于基础题,比较简单.12.一艘潜艇正在水下执行任务,所处位置记作﹣50米,距它正上方30米处,有一条鲨鱼正好游过,这条鲨鱼所处位置为﹣20米.【考点】正数和负数.【分析】潜艇所在高度是﹣50米,如果一条鲨鱼在艇上方30m处,根据有理数的加法法则即可求出鲨鱼所在高度.【解答】解:∵潜艇所在高度是﹣50米,鲨鱼在潜艇上方30米处,∴鲨鱼所在高度为﹣50+30=﹣20(米).故答案为:﹣20.【点评】此题主要考查了正负数能够表示具有相反意义的量、有理数的加法等知识,解题关键是正确理解题意,根据题意列出算式解决问题.13.平方得的数是±,立方得﹣8的数是﹣2.【考点】有理数的乘方.【专题】计算题.【分析】利用平方根及立方根的定义即可得到结果.【解答】解:平方得的数是±,立方得﹣8的数是﹣2.故答案为:﹣;﹣2.【点评】此题考查了有理数的乘方,熟练掌握平方根及立方根的定义是解本题的关键.14.绝对值不大于3的所有整数是±3,±2,±1,0,其和是0,积是0.【考点】绝对值;有理数的加法;有理数的乘法.【分析】首先找出绝对值不大于3的所有整数为:±3,±2,±1,0,再求和与积即可.【解答】解:绝对值不大于3的所有整数是:±3,±2,±1,0,3+2+1+0+(﹣1)+(﹣2)+(﹣3)=0,3×2×1×0×(﹣1)×(﹣2)×(﹣3)=0,故答案为::±3,±2,±1,0;0;0.【点评】此题主要考查了绝对值,关键是掌握绝对值的概念,数轴上某个数与原点的距离叫做这个数的绝对值.15.我校勤工俭学基地预计今年可收入12800,把这个数用科学记数法表示为:1.28×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:12800=1.28×104,故答案为:1.28×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题16.(8分)把下列各数填在相应的横线上.,﹣3.15,6,,﹣7,0,﹣100,50%,78,π(1)正整数:6,78(2)整数:6,﹣7,0,﹣100,78(3)负分数:﹣3.15(4)非负数:,6,,050%,78,π.【考点】有理数.【分析】根据题目中的数据可以分别得到正整数、整数、负分数、非负数分别包括哪些数.【解答】解:(1)正整数:6,78;(2)整数:6,﹣7,0,﹣100,78;(3)负分数:﹣3.15;(4)非负数:,6,,050%,78,π.故答案为:(1)6,78;(2)6,﹣7,0,﹣100,78;(3)﹣3.15;(4),6,,050%,78,π.【点评】本题考查有理数,解题的关键是明确有理数的划分,可以判断一个数属于哪一类型.17.(8分)把下列各数表示到数轴上,并将它们从小到大用“<”连接.﹣1,0,4,﹣3,2.5.【考点】有理数大小比较;数轴.【分析】首先在数轴上表示出各数的位置,再根据当数轴方向朝右时,右边的数总比左边的数大利用<连接即可.【解答】解:如图所示:,﹣3<﹣1<0<2.5<4.【点评】此题主要考查了有理数的比较大小,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.18.(16分)计算题:(1)﹣20﹣(﹣15)+(﹣12)﹣(+5);(2)(﹣+)×(﹣24);(3);(4)﹣12﹣[1+12÷(﹣6)]2×(﹣)2.【考点】有理数的混合运算.【分析】(1)先去括号,再从左到右依次计算即可;(2)根据乘法分配律进行计算即可;(3)先算乘除,再算加减即可;(4)先算括号里面的,再算乘方,乘除,最后算加减.【解答】解:(1)原式=﹣20+15﹣12﹣5=﹣5﹣12﹣5=﹣22;(2)原式=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣8+6﹣9=﹣11;(3)原式=23×(﹣5)﹣(﹣3)×=23×(﹣5)+118=﹣115+118=3;(4)原式=﹣1﹣[1﹣2]2×(﹣)2=﹣1﹣[﹣]2×=﹣1﹣×=1﹣1=0.【点评】本题考查的是实数的混合运算,熟知实数混合运算的法则是解答此题的关键.19.(6分)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:2、﹣1、0、3、﹣2、﹣3、1、0(1)这8名男生共做了多少个俯卧撑?(2)这8名男生的达标率是百分之几?【考点】正数和负数.【分析】(1)根据题意可以求得这8名男生共做了多少个俯卧撑;(2)根据题目中的数据可以计算出这8名男生的达标率.【解答】解:(1)7×8+[2+(﹣1)+0+3+(﹣2)+(﹣3)+1+0]=56+0=56(个)即这8名男生共做了56个俯卧撑;(2)达标率是:,即这8名男生的达标率是62.5%.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义.20.(8分)某年国庆节日,学校放假八日,高速公路免费通行,各地风景区游人如织.其中,闻名于西南的珠江源头风景区,在9月30日的游客人数为1000人,接下来的七天中,每天的游客人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数).(1)10月3日的人数为1151人.(2)假期里,游客人数最多的是10月2日,达到1209人.游客人数最少的是10月7日,达到1011人.(3)请问珠江源头风景区在这八天内一共接待了多少游客?【考点】正数和负数.【分析】(1)根据表格可以解答本题;(2)根据表格中的数据可以解答本题;(3)根据表格可以解答本题.【解答】解:(1)10月3日的人数为:1000+31+178﹣58=1151(人),故答案为:1151;(2)由表格可知,10月2日人数最多,最多为:1000+31+178=1209(人),由表格可知,10月7日人数最少,最少为:1000+31+178﹣58﹣8﹣1﹣16﹣115=1011(人),故答案为:2,1209,7,1011;(3)1000+1000×7+(31+178﹣58﹣8﹣1﹣16﹣115)=1000+7000+11=8011(名)即珠江源头风景区在这八天内一共接待了8011名游客.【点评】本题考查正数和负数,解题的关键是明确题意,找出所求问题需要的条件.。

北师大版数学七年级上册第二章《有理数及其运算》综合检测卷(含答案)

北师大版数学七年级上册第二章《有理数及其运算》综合检测卷(含答案)

北师大版数学七年级上册第二章《有理数及其运算》综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.如果+10%表示“增加10%”,那么“减少8%”可以记作( )A .-18%B .-8%C .+2%D .+8%2.数轴上点A ,B 表示的数分别为5,-3,它们之间的距离可以表示为( )A .-3+5B .-3-5C .35-+D .35--3.-32-的相反数是( ) A .32 B .-23 C .23 D .-32 4.下列四个数中,最小的数是( )A .-2B .0C .1D .-15.国家提倡“低碳减排”.某公司计划在海边建风能发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示为( )A .213×106B .21.3×107C .2.13×108D .2.13×1096.已知x -2的相反数是3,则x 2的值为( )A .25B .1C .-1D .-257.A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到达点B 时,点B 所表示的数为( )A .2B .-6C .2或-6D .以上都不对8.数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >-4B .0>bdC .0>+c bD .b a > 二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上.9.-3的相反数是________,-0.5的倒数是________.10.如图,数轴上点A 所表示的数的绝对值为________. 第8题图11.计算-(-2)+2-,其结果为________.12.计算:(-2)2×(1-34)=_________. 13.已知x =4,y =21,且xy <0,则x y 的值为___________. 14.定义运算“@”的运算法则为x @y =xy -1,则(2@3)@4=_________.15.已知a ,b 互为相反数,且b a -=6,则b -1=_________.三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.计算:(1)-9+5×(-6)-(-4)2÷(-8);(2)0.25×(-2)2-224()13⎡⎤÷-+⎢⎥⎣⎦+(-1)2020.17.计算6÷(-12+13),方方同学的计算过程如下:原式=6÷(-12)+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.第10题图18.一名足球守门员练习折返跑,从球门线出发,向前记为正,返回记为负,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少?(3)守门员全部练习结束后,他共跑了多少米?19.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,设点A,B,C所对应的数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.参考答案一、选择题:1.B 2.D 3.A 4.A 5.C 6.B 7.C 8.D二、填空题:9.3,-2 10.2 11.4 12.1 13.-8 14.19 15.2或-4三、解答题:16.(1)-37; (2)-817.方方的计算过程不正确.正确的过程如下:原式=6÷(-36+26)=6÷(-16)=6×(-6)=-36 18.(1) ∵ (+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,∴守门员最后回到了球门线的位置;(2)∵5+(-3)=2,2+10=12,12+(-8)=4,4+(-6)=-2,-2+12=10,10+(-10)=0,∴守门员离开球门线的最远距离为12米;(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米)答:他共跑了54米.19.(1)若以B 为原点,则点A 所对应的数为-2,点C 所对应的数为1,此时,p =-2+0+1=-1,若以C 为原点,则点A 所对应的数为-3,点B 所对应的数为-1,此时,p =-3+(-1)+0=-4;(2)①若原点O 在图中数轴上点C 的右边,且CO =28,则点C 所对应的数为-28,点B 所对应的数为-29,点A 所对应的数为-31, 此时,p =(-31)+(-29)+(-28)=-88;②若若若O 若若若若若若若A 若若若若若CO =28若若若C 若若若若若若28若若B 若若若若若若27若若A 若若若若若若25若若若若p =28+27+25=80.。

20172018秋北师大版七年级数学上第二章有理数及其运算单元测试

20172018秋北师大版七年级数学上第二章有理数及其运算单元测试

七年级数学(上)单元评估试卷第二 章有理数及其运算(总分: 100 分;时间: 60 分钟)一、 (每小 3 分,共 30 分)号1 23456789101.中国人很早开始使用 数,中国古代数学著作《九章算 》的 “方程 ”一章:假如收入 100元 作 +100 元.那么 - 80 元表示( )A .支出 20 元B .收入 20 元C .支出 80 元D .收入 80 元2.以下 法正确的选项是()A .分数都是有理数B .-a 是 数C .有理数不是正数就是 数D . 等于自己的数是正数3. - 5 的倒数是()11A .- 5B .5C .- 5D .5 4. 据 ,2015 年 “十 ?一”国 假期 ,衢州市共招待国内外旅客 319 万人次,与 2014年同比增 16.43%,数据 319 万用科学 数法表示 ()A . 3.19 ×105B .3.19 ×106C . 0.319 ×107D .319×1065. (a —1) 2+ b2 =0, a b 2017的 是 ()A . 1B .-1C .0D .没法确立6.以下各 数中,数 相等的是()A.-3 2与-23-2与-32-3与(-2)3D.( - ×2)3与- 3×23.B.( 3)C. 23 7. 以下各式的 便运算正确的选项是 ()A.( 5) ( 4)1 (5) (4)14 ;4B.(6)(1 3 3) (6) 1 ( 6 )3 ( 6 ) 32 8 4 28 1 41C .51050.1 105D . ( 71 ) 1271 1212668. 多 多与北京的 差 - 12 (正数表示同一 刻多 多比北京 早的 ( ) ),假如北京 是9 月 2 日 9:00,那么多 多 是().A.9 月 1 日 9:00 B .9 月 1 日 21:00C .9 月 2 日 3:00D .9 月 2 日 21:009. 有理数 a , b 在数 上的地点如 所示,| a+b|+| a b| 化 的 果 ( )A . 2bB . 2aC .2bD .010. 一 点 P 从距原点 1 个 位的 M 点 向原点方向跳 ,第一次跳 到OM 的中点 M,第二次从 M 1 跳到 OM 1 的中点 M 2 ,第三次从点 M 2 跳到 OM 2 的中点 M 3 ,这样不断跳 下去, 第 n 次跳 后, 点到原点O 的距离 ( )A .1nB .1n 1C . ( 1)n 1D. 1n 2 2 22二、填空 (每小 3 分,共 18 分)11. 直接写出答案:(1)|2 | | 3| =_____; (2) 5 7 =____;(3)11 12 =________;3 23212. 把以下七个数填入它所属的会集内:0 ,, 22,+(-4),-2 3,-( -3 ),274(1)非 整数会集 { ⋯ } (2)有理数会集: {⋯ }(3)分数会集: {⋯} 13.定 a ★b=a 2-b , ( 0★1)★ 2016= .14. 依据如 所示的操作步 ,若 入 x 的 -6, 出的 .15. 算 1-2+3-4+5-6+⋯ +2015-2016 的 果是 .16. 若 a 、b 、c 都不等于 0,且 + +的值可能是 。

北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)

北师大版七年级数学上册第二章《有理数及其运算》检测试卷(含答案)

北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。

【七年级数学】2018七年级数学上册第二章有理数及其运算检测题(北师大版有答案)

【七年级数学】2018七年级数学上册第二章有理数及其运算检测题(北师大版有答案)

2018七年级数学上册第二章有理数及其运算检测题(北师
大版有答案)
第二有理数及其运算检测题
(本检测题满分100分,时间90分钟)
一、选择题(每小题3分,共30分)
1(2018 湖北宜昌中考)陆地上最高处是珠穆朗玛峰的峰顶,高出海平面约8 844 ,记为+8 844 ;陆地上最低处是地处亚洲西部的死海,低于海平面约415 ,记为()
A415 B-415 c±415 D-8 844
2(2018 重庆中考)在-4,0,-1,3这四个数中,最大的数是()
A-4 B0 c-1 D3
3下列运算正确的是()
A B
c D
4计算的值是()
A0 B
c D
5(2018 东泰安中考)若()-(-2)=3,则括号内的数是()
A -1B1c5D-5
6下列说法中正确的有()
①同号两数相乘,符号不变;
②异号两数相乘,积取负号;
③互为相反数的两数相乘,积一定为负;
④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.
A1个 B2个 c3个 D4个
7气象部门测定发现高度每增加1 ,气温约下降5 ℃.现在地面气温是15 ℃,那么。

北师大版七年级上册数学第二章有理数及其运算单元综合测试(含答案)

北师大版七年级上册数学第二章有理数及其运算单元综合测试(含答案)

第二章有理数及其运算 单元综合测试一.选择题1.下列运算中正确的个数有(6÷3×X= - 6,④74 - 22÷70=l32. 下列计算结果为负数的是(3・若“是最大的负整数,b 是绝对值最小的有理数,C 是倒数等于它本身的自然数,则 α2°,7+2O18Z>+c 2019的值为(4. 一块长方形菜地,长20米,宽是长的3,下面求长方形菜地面积的算式正确的是( 4B. 20×^-+204D. (20x 邑>20) ×245. 下列计算中,错误的是(A. - 62= - 366•计•算2?x ( -2) Sl ■引的结果是(7•随着全球疫情持续蔓延,中国政府在做好国内疫情防控的基础上,尽己所能为国际社会提供支持和帮助,从海关统计的数据上看,2020年3月1日至4月25日,全国共验放出 口主要防疫物资价值550亿元,将550亿用科学记数法表示为()A ・ 5.5×1O ,0B ・ 5.5×10πC ・ 5.5×10,2D ・ 5.5×10l98. ∖uMb ∖=∖a+h ∖.则⑴ b 关系是( ) A. 心方的绝对值相等 B. a, 〃异号 C. α+b 的和是非负数A. 1个B. 2个C. 3个D. 4个 ①(-5) +5=0,②-3+2= - 1.⑧-A ・-2- ( -3)B. ( -3) 2C. - I 2D ・-5× ( -7)A. 2017B. 2018C. 2019D ・0A. 20x34C. 20× (20x3)4C. ( -4) '= -64D. (-1)I(X)+ ( - 1)Io(X)=OB. A. -21B. 35C. ■35D. -29D ・心方同号或英中至少一个为零9. 如图,四个有理数在数轴上的对应点分别为点M, P, M互为相反数,则图中表示绝对值最大的有理数的点是()3/ P NQA.点MB.点PC.点N10. 立义a*b = 3a - b. U^b=b - cr.则下列结论正确的有(① 3*2=11・ ② 2㊉(-1) = -5.③ (2*2)θ (Z Θ丄)=-聖1.3 5 24 25④ 若 a*b = b*a,则 a=h.A ・1个B. 2个C. 3个二•填空题11. _____________________________________________________________ 如果把一个物体向前移动5加记作+5rn.那么这个物体向后移动4加记作 __________________ m .12・A 、B 、U D 、E 是数轴上的五个点,点/U B 、C 所表示的数分别为■丄、3、垄,将2 4数轴沿着点D 折叠后,点A 与点E 重合,此时点C 到点E 和点B 的距离相等,那么点D 所表示的数是 _________ .13. 如图,化简代数式∖a+b ∖ - k/ - 1 Mb - 21的结果是 .—I _____________ _________ L-£_>-2 -1 O 1214. 计算:(-1) ,+ ( - 1) 2+ ( - 1) 3+...+ ( - 1) 203O= ___ . 15. 使用科学计算器开机后进行如下按键操作:则输岀结果是 ________ .E3ΘΞE]□ΞΞΠSΞΞ16. 计算:20212-4×1010×1011= _____ .17. 若“是最大的负整数,b 是绝对值最小的有理数,数C 在数轴上对应的点与原点的距离为 1 > 则 u+/?2+ICl= __ ・18. 计算 ------- 国空 -------- = _______ .2020 2-2019× 2021Q ,若点P ,Q 表示的有理数D •点Q)个・D. 4个三.解答题19•现有15箱苹果,以每箱25畑为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:标准质虽的差(单位:畑)-2 -1 O 2 2.5 31.5箱数13 2 2241(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重虽共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?20.在单位长度为1的数轴上,点A表示的数为-2.5,点B表示的数为4.(1)求AB的长度;(2)若把数轴的单位长度扩大30倍,点A、点B所表示的数也相应的发生变化,已知点M是线段AB的三等分点,求点M所表示的数.21.已知有理数“、b、C在数轴上的位置如图所示:(1)____________________________________ 判断正负,用“>"、“V"或“="填空:a+b _______________________________________ 0, U - b_____ 0, u+b+c0:(2)化简:0+cl - lα+b+d+lα - b∖.---- •—β----- •- •---- •-- • >CAb0 a 122.王红有2000元钱,打算存入银行两年,有两种储蓄方式:一种是存两年期的,年利率是2.25%;另一种是先存一年期的,年利率是1.75%,第一年到期后连本带息继续存入一年.两年后,哪种储蓄方式得到的利息多一些?23.计算:(I)⅛)×(-⅜)+(-⅛)÷⅜(2)4+(-2) 2×5 - I - 2.5÷5L24.计算(1)( -4) - (+13) + ( -5) - ( -9) +7:(2)甘_3. 3-(-6)-(-資)十4十3. 3;(3)-81÷ (-2^) ×j÷ (-16):⑷(-24)×(l∙∣+2∣-0.75)∙25.发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一. 例1.计算:32x11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352;例2・计算:57x11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1) 43x11= _______ :(2)69×11=______ :(3)98× ( - 11) = ____ ・探究:一个两位数,十位上的数字是皿,个位上的数字是“,这个两位数乘11. (1)若m+n<↑O,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10.直接写出计算结果中十位上的数字・参考答案1.B2.C3・D4.C5.D6.D7. A8.D9. A10.B11・-412.2 或§413.314.O15.1716.117.O18.202019.解:(1) 3- ( -2) =5 (千克)・答:最重的一箱比最轻的一箱重5千克:(2)-2+ ( - 1.5x3) + ( - 1×2) +0x2+ (0×2) +2×2+2.5×4+3×l =8.5 (千克)・答:与标准质屋相比,15箱苹果的总重量共计超过8.5千克;(3)25x15+8.5=383.5 (千克)383.5x8=3068 (元)・答:这15箱苹果全部售出共可获利3068元.20•解:(1) AB=4- ( -2.5) =6.5(2)若把数轴的单位长度扩大30倍n点A所表示的数为30x ( - 2.5 ) = - 75,点B所表示的数为30x4=120n线段AB上靠近A的三等分点所表示的数为120-(-75) +( -75) =- 10,线段ABk 3 靠近B的三等分点所表示的数为120 - ≡-(-75)M=553.•・点M所表示的数为-10或55答:(1)AB的长度为6.5(2)点M所表示的数为-10或5521 •解:(1)根据数轴可知:0<u<L -l<bV0, c< - 1,且k∕l<l∕?L则u+b<O, a - b>0, a+b+c<0↑故答案为:V, >, V・(2) ∖a+c∖ - ∖a+b+c∖+∖cι - b∖=-a ・ c+a+b+c+a - b=G22.解:第一种2000×2.25%×2=90 (元),第二种2000×1.75%×l =35 (元),(2000+35) ×1.75%×1≈35.61 (元),35+35.61=70.61 (元〉,贝IJ 90 元>70.61 元,答:存两年期的得到的利息多一些.23•解:(I)原式=5χZ-5χ2Z5 3 5 3_4 345 5=・6;(2)原式=4+4x5 - I - —I2=4+20 - 0.5= 23.5 ・24.解:(1) ( -4) - (+13) + ( -5) - ( -9) +7=-4 - 13 - 5+9+7=-22+16= -6;(2)3-(-6)-(-嚣)+4+3. 3=(6‰3^.) + ( -33+3.3) + (6+4)4 4= 10+0+10= 20;(3)-81÷ (-2-∣) ×-∣∙÷ (-16)=・81× ( - —) ×-× ( - -i-)9 9 16=-1;⑷(-24)×(l-∣+2∣-0.75)=- 33 - 56+18=-71.25.解:尝试:(1) 43x11=473;(2)69x11=759;(3)98× ( - 11) = - 1078;探究:(1)若m+n<∖Q,计算结果的百位、十位、个位上的数字分别是加,m+n, n,验证:这个两位数为10加初,根据题意得:(10m+n) ×11=(10∕n+n) (10+1)= IOo加+10 (m+n) +n,则若∕n+n<10,百位、十位、个位上的数字分别是〃?,m+n t m(2)若加+zι≥10,十位上数字为m+n - 10.答案为:尝试:(1)473; (2) 759: (3) - 1078.。

北师大版七年级数学上册第二章有理数及其运算综合测试试卷(含答案详解)

北师大版七年级数学上册第二章有理数及其运算综合测试试卷(含答案详解)

七年级数学上册第二章有理数及其运算综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.10:00 B.12:00 C.15:00 D.18:002、如图,数轴上点A,B表示的数互为相反数,且AB=4,则点A表示的数是()A.4 B.-4 C.2 D.-23、数轴上表示-3的点到原点的距离是()A.-3 B.3 CD.134、212⎛⎫--⎪⎝⎭的倒数是()A.-4 B.14-C.14D.45、若a<0<b<c,则()A .a +b +c 是负数B .a +b -c 是负数C .a -b +c 是正数D .a -b -c 是正数6、徐志摩的《泰山日出》一文描写了“泰山佛光”壮丽景象.若1月份的泰山山脚平均气温为9℃,山顶平均气温为-2℃,则山脚平均气温与山顶平均气温的温差是( )A .11℃B .-11℃C .7℃D .-7℃7、地球绕太阳公转的速度约为110000km/h ,数字110000用科学记数法表示应为( )A .61.110⨯B .41110⨯C .51.110⨯D .60.1110⨯8、实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .||1a <B .0ab >C .0a b +>D .11a ->9、数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是( ).A .-5B .-1C .1D .5 10、计算2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( ) A .23 B .32 C .23- D .32- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、1米长的小棒,第1次截去一半,第二次截去剩下部分的一半,如此截下去,第8次后剩下的小棒长_______________米.2、巴黎与北京的时间差为﹣7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是_________.3、给出下列各数:4.443,0,3.1159,1000-,722,其中有理数的个数是m ,非负数的个数是n ,则m n +=______. 4、计算:()06--=_________.5、某工厂前年的产值为500万元,去年比前年的产值增加了10%,如果今年的产值估计比去年也增加了10%,那么该工厂今年的产值将是__________万元.三、解答题(5小题,每小题10分,共计50分)1、计算: (1)40+123()634-+×12; (2)(﹣1)2021+|﹣9|×23+(﹣3)÷15. 2、据不完全统计,某市至少有6×105个水龙头漏水,这些水龙头每月流失的总水量约1.68×105立方米.(1)每个水龙头每月的漏水量约多少立方米?(结果精确到0.1立方米)(2)如果该市每立方米水费是1.9元,这些水龙头一年漏水量的总水费是多少万元?3、阅读材料,探究规律,完成下列问题.甲同学说:“我定义了一种新的运算,叫*(加乘)运算.“然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:()()2*35++=+;()()1*910--=+;()()3*69-+=-;()()4*48+-=-;()0*11+=;()0*77-=.乙同学看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)请你根据甲同学定义的*(加乘)运算的运算法则,计算下列式子:()()27-*-=______;()()43+*-=______;()05*-=______.请你尝试归纳甲同学定义的*(加乘)运算的运算法则:两数进行*(加乘)运算时,__________________________________.特别地,0和任何数进行*(加乘)运算, ________________________.(2)我们知道有理数的加法满足交换律和结合律,这两种运算律在甲同学定义的*(加乘)运算中还适用吗?请你任选一个运算律,判断它在*(加乘)运算中是否适用,并举例验证.(举一个例子即可)4、某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下(单位:km )15+,2-,5+,1-,10+,3-,2-,12+,4+,5-,6+(1)收工时,检修小组在A 地的哪一边,距A 地多远?(2)若汽车每千米耗油3升,已知汽车出发时邮箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?5、数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|31|-可以理解为数轴上表示 3 和 1 的两点之间的距离;|31|+可以理解为数轴上表示 3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为: 4-(-3) . 根据以上阅读材料探索下列问题:(1)数轴上表示 3 和 9 的两点之间的距离是 ;数轴上表示 2 和﹣5 的两点之间的距离是 ;(直接写出最终结果)(2)①若数轴上表示的数 x 和﹣2 的两点之间的距离是 4,则 x 的值为 ;②若 x 为数轴上某动点表示的数,则式子|1||3|x x ++-的最小值为 .-参考答案-一、单选题1、C【分析】根据北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,逐项判断出莫斯科时间,即可求解.【详解】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,所以A. 当北京时间是10:00时,莫斯科时间是5:00,不合题意;B. 当北京时间是12:00时,莫斯科时间是7:00,不合题意;C. 当北京时间是15:00时,莫斯科时间是10:00,符合题意;D. 当北京时间是18:00时,不合题意.故选:C【考点】本题考查了有理数减法的应用,根据北京时间推断出莫斯科时间是解题关键.2、D【解析】【分析】根据数轴上点A ,B 表示的数互为相反数,可设点A 表示的数是a ,则点B 表示的数是a - ,从而得到4a a --= ,即可求解.【详解】解:∵数轴上点A ,B 表示的数互为相反数,∴可设点A 表示的数是a ,则点B 表示的数是a - ,∵AB =4,∴4a a --= ,解得:2a =- .【考点】本题主要考查了相反数的性质,数轴上两点间的距离,利用数形结合思想解答是解题的关键.3、B【解析】【分析】由题意可知表示-3的点与原点的距离是-3的绝对值以此分析即可.【详解】解:在数轴上表示-3的点与原点的距离是|-3|=3.故选:B.【考点】本题考查有理数与数轴,熟记数轴的特点以及绝对值的几何意义是解题的关键.4、A【解析】【分析】根据有理数的乘方和倒数定义计算即可.【详解】解:211=24⎛⎫---⎪⎝⎭,14-的倒数为-4;故选:A.【考点】本题考查了有理数的乘方和倒数的定义,解题关键是明确倒数的定义,熟练运用相关法则进行计算.5、B【解析】【分析】根据有理数加减法法则可判定求解.【详解】解:∵a <0<b <c ,∴a +b +c 可能是正数,负数,或零,故A 选项说法错误;b -c =b +(-c )为负数,∴a +b -c 是负数,故B 选项说法正确;a -b +c 可能是正数,负数,或零,故C 选项说法错误;a -b -c 是负数,故D 选项说法错误;故选:B .【考点】本题主要考查有理数的加减法,掌握有理数加减法法则是解题的关键.6、A【解析】【分析】根据题意,用最高温度减去最低温度即可.【详解】解:∵山脚平均气温为9℃,山顶平均气温为-2℃,∴山脚平均气温与山顶平均气温的温差是()9211--=℃,故选:A .本题考查了有理数减法的应用,理解题意是解题的关键.7、C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时, n 是正数,当原数的绝对值<1时,n 是负数.【详解】将110000用科学记数法表示为:51.110⨯,故选:C .【考点】本题考查科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,表示时关键要正确确定a 的值以及n 的值.8、D【解析】【分析】直接利用a ,b 在数轴上位置进而分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 错误;因为a <0,b >0,所以0ab <,故选项B 错误;因为a <0,b >0,所以0a b +<,故选项C 错误;因为a <0,则11a ->,故选项D 正确;【考点】此题主要考查了根据点在数轴的位置判断式子的正误,正确结合数轴分析是解题关键.9、B【解析】【分析】根据数轴上点的坐标特点及平移的性质解答即可.【详解】解:根据题意:数轴上2所对应的点为A,将A点左移3个单位长度,得到点的坐标为2-3=-1,故选:B.【考点】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识.10、D【解析】【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】解:201920202022 21.5(1)3⎛⎫-⨯⨯-⎪⎝⎭,=2019202021.513⎛⎫-⨯⨯ ⎪⎝⎭=2020201922 1.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个, =2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个, =32-, 故选:D .【考点】本题考查了有理数的混合运算,解题关键是熟练依据乘方的意义进行简便运算,准确进行计算.二、填空题1、1256【解析】【分析】第1次剩下的小棒长为12,第2次剩下的小棒长为211()42=,确定变化规律计算即可. 【详解】∵第1次剩下的小棒长为12,第2次剩下的小棒长为211()42=, ∴第8次后剩下的小棒长为81()2=1256, 故答案为:1256. 【考点】 本题考查了规律探索问题,正确理解题意,探索发现其中的规律是解题的关键.2、7月2日7时【解析】【分析】【详解】比7月2日14:00晚七小时就是7月2日7时.故答案为:7月2日7时.3、9.【解析】【分析】根据有理数是有限小数或无限循环小数,可得m 的值,根据大于或等于零的数是非负数,可得n 的值,根据有理数的加法,可得答案.【详解】解:因为4.443,0,3.1159,1000-,722,是有理数, 所以m 5=,因为4.443,0,3.1159,722是非负数, 所以n 4=,所以m n 549+=+=,故答案为:9.【考点】本题考查了有理数,利用了有理数的定义是解题的关键.4、6【解析】【分析】根据负有理数的减法法则计算即可.【详解】()--=+=.06066故答案为:6.【考点】本题考查负有理数的减法计算,关键在于熟练掌握计算法则.5、605.【解析】【分析】先求出去年的产值=前年的产值×(1+增长率),再用公式今年的产值=去年的产值×(1+增长率),求出今年的产值.【详解】解:去年比前年的产值增加了10%,去年的产值为:500×(1+10%)=550万元,今年的产值估计比去年也增加了10%,今年的产值为:550×(1+10%)=605万元.故答案为:605.【考点】本题考查增长率问题,掌握增长率的解题方法,抓住第二年的产值=第一年的产值×(1+增长率)是解题关键.三、解答题1、 (1)43(2)﹣10【解析】(1)解:40+123()634-+×12=40+16×12﹣23×12+34×12=40+2﹣8+9 =43;(2)解:(﹣1)2021+|﹣9|×23+(﹣3)÷15=(﹣1)+9×23+(﹣3)×5=(﹣1)+6+(﹣15)=﹣10.【考点】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.2、(1)0.3立方米;(2)383.04万元【解析】【分析】【详解】【分析】(1)根据除法的意义列式计算即可;(2)根据“单价×数量=总价”列式计算即可.(1)(1.68×105)÷(6×105)≈0.3(立方米);每个水龙头每月的漏水量约0.3立方米;(2)1.68×105×12×1.9÷10000=383.04(万元).答:这些水龙头一年漏水量的总水费约383.04万元.3、 (1) +9 7- 5 同号得正,异号得负,并把绝对值相加 等于这个数的绝对值(2)加乘运算满足交换律,不满足结合律,举例见解析.【解析】【分析】(1)根据题干提供的运算特例的运算特点分别进行计算,再归纳可得:加乘运算的运算法则;(2)对于加乘运算的交换律, 可举例()()35,-*-()()53,-*-进行运算后再判断,对于加乘运算的结合律,可举例()()035,*-*-⎡⎤⎣⎦035, 进行运算后再判断即可.(1)解:根据加乘运算的运算法则可得: ()()279-*-=+;()()437+*-=-;()055*-=.归纳可得:两数进行*(加乘)运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行*(加乘)运算,等于这个数的绝对值.(2)解:加法的交换律仍然适用,例如:()()358,-*-=()()538,-*-=所以()()()()3553,-*-=-*-故加法的交换律仍然适用.加法的结合律不适用,例如:()()()035358,*-*-=*-=-⎡⎤⎣⎦035088,所以()()()()035035,*-*-≠*-*-⎡⎤⎡⎤⎣⎦⎣⎦故加法的结合律不适用.【考点】本题考查的是新定义运算,同时考查的是有理数的加法运算,绝对值的含义,理解新定义,归纳总结运算法则是解本题的关键.4、(1)东边,39千米;(2)需要中途加油,应加15升.【解析】【分析】(1)将所有数相加,根据计算结果即可得出答案.(2)将所有行驶数据的绝对值相加得出行驶总里程,每千米油耗乘总里程得出总油耗,和180比较大小得出答案.【详解】解:(1)15(2)5(1)10(3)(2)124(5)639+-++-++-+-+++-+=(千米)收工时,检修小组在A 地的东边,距A 地39千米.(2)1525110321245665+-++-++-+-+++-+=(千米)365=195⨯(升),195180>,195180=15-(升)收工前需要中途加油,应加15升.【考点】本题考查了有理数加减乘除混合运算的实际应用,读懂题意并准确计算是解题关键.5、 (1)6,7;(2)①-6或2;②4【解析】【分析】(1)直接根据数轴上两点之间的距离求解即可;(2)①根据数轴上两点之间的距离公式列绝对值方程,然后解方程即可;②由于所给式子表示x 到-1和3的距离之和,当x 在-1和3之间时和最小,故只需求出-1和3的距离即可.(1)解:数轴上表示 3 和 9 的两点之间的距离是|9-3|=6,数轴上表示 2 和﹣5 的两点之间的距离是|2-(-5)|=7,故答案为:6,7;(2)解:①根据题意,得:|x -(-2)|=4,∴|x +2|=4,∴x +2=-4或x +2=4,解得:x =-6或x =2,故答案为:-6或2;②∵|1||3|x x ++-表示x 到-1和3的距离之和,∴当x 在-1和3之间时距离和最小,最小值为|-1-3|=4,故答案为:4.【考点】本题考查数轴上两点之间的距离,会灵活运用数轴上两点之间的距离解决问题是解答的关键.。

北师大版七年级数学上册第二章有理数及其运算测试题及答案

北师大版七年级数学上册第二章有理数及其运算测试题及答案

七年级上第二章《有理数及其运算》综合测试一、选一选(每小题3分,共30分)1.下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()A.哈尔滨 B.广州 C.武汉 D.北京2.下列各数中互为相反数的是()A.12与0.2 B.13与-0.33 C.-2.25与124D.5与-(-5)3.对于(-2)4与-24,下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同,结果相等D.它的意义不同,结果不等4.下列四个数中,在-2到0之间的数是()A.-1 B. 1 C.-3 D.3 5.下列计算错误的是()A.0.14=0.0001B.3÷9×(-19)=-3C.8÷(-14)=-32D.3×23=246.若x是有理数,则x2+1一定是()A.等于1B.大于1C.不小于1D.不大于17.在数轴上与-3的距离等于4的点表示的数是 ( )A .1B .-7C .1或-7D .无数个8.两个有理数的积是负数,和也是负数,那么这两个数( )A. 都是负数B. 其中绝对值大的数是正数,另一个是负数C. 互为相反数D. 其中绝对值大的数是负数,另一个是正数9.一个有理数的绝对值等于其本身,这个数是( )A 、正数B 、非负数C 、零D 、负数10.四个互不相等整数的积为9,则和为( )A .9B .6C .0D .3-二、填一填(每小题3分,共30分)1.一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是________.2.用“<”“=”或“>”号填空:-2_____0 98- _____109- -(+5) _____-(-|-5|) 3.计算:737()()848-÷-= ;232(1)---= . 4.若a 与-5互为相反数,则a =_________;若b 的绝对值是21-,则b =_________. 5.如果n >0,那么n n= ,如果n n=-1,则n 0。

北师大版七年级上册数学 第二章 有理数及其运算 单元综合测试(含解析)

北师大版七年级上册数学 第二章 有理数及其运算 单元综合测试(含解析)

第二章有理数及其运算单元综合测试一.选择题1.下列说法中,正确的为()A.一个数不是正数就是负数B.0是最小的数C.正数都比0大D.﹣a是负数2.如图,A,B,C,D是数轴上的四个点,其中最适合表示数π的点是()A.点A B.点B C.点C D.点D3.下列说法正确的是()A.若两个数的绝对值相等,则这两个数必相等B.若两数不相等,则这两数的绝对值一定不相等C.若两数相等,则这两数的绝对值相等D.两数比较大小,绝对值大的数大4.若x=|﹣2|,|y|=3,则x﹣y的值为()A.﹣1B.5C.﹣1或5D.±1或±55.将式子﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)写成省略加号的形式,正确的是()A.﹣+5﹣+6﹣10B.﹣﹣5﹣+6﹣10C.﹣5﹣+6﹣10D.+5﹣+6﹣106.下列计算:①;②;③(﹣0.2)3=0.008;④﹣32=9;⑤.其中正确的是()A.1个B.2个C.3个D.4个7.如果|a+2|+(b﹣1)2=0,那么(a+b)2019的值等于()A.1B.﹣2019C.﹣1D.20198.2020年是“双11”的第12个年头,受前期疫情影响消费习惯发生大幅改变以及直播电商的快速发展,今年双11人们消费热情空前高涨.阿里巴巴数据显示,在11日0分26秒,天猫双11达到58.3万笔/秒的订单创建新峰值.把58.3万这个数据用科学记数法表示为()A.583×103元B.5.83×106元C.5.83×105元D.0.583×106元9.下列变形正确的是()A.B.C.D.10.设,利用等式(n≥3),则与A最接近的正整数是()A.18B.20C.24D.25二.填空题11.若上升15米记作+15米,那么下降2米记作米.12.点A表示数轴上的一个点,将点A向右移动5个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.13.数轴上有点A和点B,点A到原点的距离为m,点B到原点的距离为n,且点B在点A 的左边,若m<n,则点A与点B的距离等于.14.比较大小:﹣﹣;﹣(﹣0.3)|﹣|.(填“<”,“=”,“>”)15.如图,化简代数式|b﹣a|﹣|a﹣1|+|b+2|的结果是.16.把(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)写成省略加号和的形式为.17.以下四个数:﹣22、(﹣1)3、﹣(+5).(﹣)2其中正数有个.18.若a、b互为相反数,c、d互为倒数,那么(a+b)2+|﹣cd|=.19.在长为20米、宽为15米的长方形地面上修筑一条宽度为2米的道路(图中阴影部分),余下部分作为耕地,则耕地面积为平方米.20.有一种“二十四点”游戏,其游戏规则是:任取四个1~13之间的自然数,将这四个数(每个数用且只用﹣次)进行加减乘除四则运算,使其结果等于24.例如1,2,3,4可作运算:(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:①,②.③.另有四个数1,3,5,13,可通过运算式使其结果等于24.三.解答题21.某检修小组从A地出发,在东西走向的马路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中7次行驶的情况记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣2(1)这一天检修小组行驶的路程是多少?(2)求收工时距A地多远?在A地的正东方向还是正西方向?说明理由.22.计算:(1)(﹣3)+40+(﹣32)+(﹣8);(2)(﹣)÷(﹣)×(﹣);(3)(﹣24)×()+(﹣2)3;(4)﹣(﹣3)2+(﹣5)3÷(﹣2)2﹣18×|﹣(﹣)2|;(5)﹣12019﹣[﹣3×(2÷3)2﹣÷22].23.若非零数a、b互为相反数,c、d互为倒数,|m|=3,求(cd)2016+(a+b)2017+()2018+m的值.24.解答下列各题.(1)已知a、b互为倒数,c、d互为相反数,|x|=|﹣2|,求2x2﹣(ab﹣3c﹣3d)+|ab+3|的值.(2)已知当x=﹣3时,代数式ax3+bx+1的值为8,求当x=3时,代数式ax3+bx+1的值.25.规定运算△为:若a>b,则a△b=a+b;若a<b,则a△b=a×b;若a=b,则a△b=a﹣b+1.(1)计算6△(﹣4)的值;(2)计算[(﹣2)△3]+(4△4)+(7△5)的值.26.已知有理数a,b,c在数轴上的位置如图,且|a|=|b|.(1)求﹣﹣+的值.(2)化简|a﹣c|﹣2|2a﹣b|﹣.参考答案一.选择题1.解:A、0既不是正数也不是负数,故本选项不合题意;B、负数比0小,故本选项不合题意;C、正数都比0大,说法正确,故本选项符合题意;D、当a≤0时,﹣a是非负数,故本选项不合题意;故选:C.2.解:因为无理数π大于3,在数轴上表示大于3的点为点D;故选:D.3.解:A、若两个数的绝对值相等,则这两个数相等或互为相反数,故本选项不合题意;B、若两数不相等,则这两数的绝对值一定不相等,说法错误,互为相反数的两个数的绝对值相等,故本选项不合题意;C、若两数相等,则这两数的绝对值相等,说法正确,故本选项符合题意;D、两数比较大小,绝对值大的数大,说法错误,如0与﹣1,0的绝对值小于﹣1的绝对值,0>﹣1,故本选项不合题意.故选:C.4.解:∵x=|﹣2|,|y|=3,∴x=2,y=±3,当x=2,y=3时,x﹣y=2﹣3=﹣1;当x=2,y=﹣3时,x﹣y=2﹣(﹣3)=5,综上所述,x﹣y的值为﹣1或5.故选:C.5.解:﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)=﹣+5﹣+6﹣10.故选:A.6.解:①,正确;②()2=,故本选项不正确;③(﹣0.2)3=﹣0.008,故本选项不正确;④﹣32=﹣9,故本选项不正确;⑤﹣(﹣)2=﹣,故本选项不正确;其中正确的是①;故选:A.7.解:根据题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2019=(﹣2+1)2019=﹣1.故选:C.8.解:58.3万=583000=5.83×105.故选:C.9.解:A、乘除混合运算,从左到右依次计算,故A选项错误;B、除法没有分配律,故B选项错误;C、根据乘方定义,故C选项错误;D、多个数相乘,从左到右依次计算,故正确;故选:D.10.解:利用等式(n≥3),代入原式得:=48×(++…+﹣)=12×(1﹣++…+)=12×[(1++…+)﹣(+…+)]=12×(1+)而12×(1+)≈25故选:D.二.填空题11.解:若上升15米记作+15米,那么下降2米记作﹣2米.故答案为:﹣2.12.解:0+4﹣5=﹣1.故点A表示的数是﹣1.故答案为:﹣1.13.解:∵点A到原点的距离为m,点B到原点的距离为n,且点B在点A的左边,m<n,∴﹣n<0<m或﹣n<﹣m<0,当﹣n<0<m时,点A与点B的距离为m﹣(﹣n)=m+n,当﹣n<﹣m<0时,点A与点B的距离为﹣m﹣(﹣n)=﹣m+n,故答案为:m+n或﹣m+n.14.解:∵||=,|﹣|=,,∴;∵﹣(﹣0.3)=0.3,||=,∴﹣(﹣0.3)<|﹣|.故答案为:<;<.15.解:由有理数a、b、c在数轴上的位置,可得,﹣1<b<0,1<a<2,所以有b﹣a<0,a﹣1>0,b+2>0,因此|b﹣a|﹣|a﹣1|+|b+2|=a﹣b﹣(a﹣1)+(b+2)=a﹣b﹣a+1+b+2=3,故答案为:3.16.解:(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)=﹣3﹣4+6﹣7+2.故答案为:﹣3﹣4+6﹣7+2.17.解:﹣22=﹣4,(﹣1)3=﹣1,﹣(+5)=﹣5,(﹣)2=,所以四个数中正数有1个.故答案为1.18.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴原式=02+1=1.故答案为:1.19.解:根据题意可得,耕地面积为20×15﹣2×(20+15﹣2)=234平方米.答:耕地面积为234平方米.20.解:①(10﹣4)×3+6=6×3+6=18+6=24;②3×(4﹣6+10)=3×8=24;③3×6﹣4+10=18﹣4+10=24.(13﹣5)×3×1=8×3×1=24.故答案为:(10﹣4)×3+6=24;3×(4﹣6+10)=24;3×6﹣4+10=24;(13﹣5)×3×1.三.解答题21.解:(1)这一天检修小组行驶的路程为:4+7+9+8+6+5+2=41(千米),所以这一天检修小组行驶的路程为41千米;(2)﹣4+7﹣9+8+6﹣5﹣2=+1,故收工时在A的东面,距A地1千米.22.解:(1)原式=(﹣3﹣32﹣8)+40=(﹣43)+40=﹣3;(2)原式=﹣××=﹣;(3)原式=﹣24×﹣24×(﹣)﹣24×﹣8=﹣3+8﹣6﹣8=﹣9;(4)原式=﹣9﹣125×﹣18×=﹣9﹣20﹣2=﹣31;(5)原式=﹣1﹣(﹣﹣)=﹣1+=.23.解:根据题意得:a+b=0,=﹣1,cd=1,m=3或﹣3,当m=3时,原式=1+0+1+3=5;当m=﹣3时,原式=1+0+1﹣3=﹣1.24.解:(1)∵a、b互为倒数,c、d互为相反数,|x|=|﹣2|,∴ab=1,c+d=0,x2=4,∴2x2﹣(ab﹣3c﹣3d)+|ab+3|=2x2﹣[ab﹣3(c+d)]+|ab+3|=2×4﹣(1﹣3×0)+|1+3|=8﹣(1﹣0)+4=8﹣1+4=7+4=11;(2)∵当x=﹣3时,代数式ax3+bx+1的值为8,∴a×(﹣3)3+b×(﹣3)+1=8,∴﹣27a﹣3b=7,∴27a+3b=﹣7,当x=3时,ax3+bx+1=a×33+3b+1=27a+3b+1,=﹣7+1=﹣6.25.解:(1)由题意可得,6△(﹣4)=6+(﹣4)=2;(2)由题意可得,[(﹣2)△3]+(4△4)+(7△5)=(﹣2)×3+(4﹣4+1)+(7+5)=(﹣6)+1+12=(﹣5)+12=7.26.解:(1)由数轴可知:a<c<0<b,∴abc>0,则原式=﹣﹣+=﹣1﹣1+1+1=0;(2)∵a<c<0<b,且|a|=|b|>|c|,∴a﹣c<0,2a﹣b<0,a﹣c﹣b<0,则原式=c﹣a+2(2a﹣b)+=a﹣b+c.。

2018年北师大版七年级数学上册第二章有理数及其运算单元测试题及答案

2018年北师大版七年级数学上册第二章有理数及其运算单元测试题及答案

北师大版七年级数学上册第二章有理数及其运算单元测试题一、选择题(每小题3分,共30分)1.若规定向东走为正,则-8 m表示( )A.向东走8 m B.向西走8 mC.向西走-8 m D.向北走8 m2.数轴上点A,B表示的数分别为5,-3,它们之间的距离可以表示为( ) A.-3+5 B.-3-5 C.|-3+5| D.|-3-5|3.下面与-3互为倒数的数是( )A.-13B.-3 C.13D.34.如图1,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )图15.国家提倡“低碳减排”.某公司计划在海边建风能发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示为( )A.213×106 B.21.3×107C.2.13×108 D.2.13×1096.下列说法错误的有( )①-a一定是负数;②若|a|=|b|,则a=b;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数.A.1个 B.2个 C.3个 D.4个7.如图2所示,数轴上两点A,B分别表示有理数a,b,则下列四个数中最大的是( )图2A.a B.b C.1aD.1b8.已知x-2的相反数是3,则x2的值为( )A.25 B.1 C.-1 D.-259.把一张厚度为0.1 mm的纸对折8次后的厚度接近于( )A.0.8 mm B.2.6 cm C.2.6 mm D.0.18 mm10.在某一段时间内,计算机按如图3所示的程序工作,如果输入的数是2,那么输出的数是( )图3A.-54 B.54 C.-558 D.558请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.-2的相反数是________,-0.5的倒数是________.12.绝对值小于2018的所有整数之和为________.13.如图4所示,有理数a,b在数轴上对应的点分别为A,B,则a,-a,b,-b按由小到大的顺序排列是________________.图414.若两个数的积为-20,其中一个数比-15的倒数大3,则另一个数是________.15.若数轴上的点A表示的有理数是- 3.5,则与点A相距4个单位长度的点表示的有理数是__________.16.若|x|=5,y2=4,且xy<0,则x+y=________.三、解答题(共72分)17.(6分)把下列各数填入相应的集合中:-3.1,3.1415,-13,+31,0.618,-227,0,-1,-(-3).正数集合:{ ,};整数集合:{ ,};负数集合:{ ,};负分数集合:{ ,}.18.(6分)画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来.-5,2.5,-52,0,312.19.(8分)计算:(1)-24×-56+38-112;(2)-9+5×(-6)-(-4)2÷(-8);。

北师大版七年级数学上第二章有理数及其运算章末综合检测试卷含答案

北师大版七年级数学上第二章有理数及其运算章末综合检测试卷含答案

章末综合检测(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1.用-a表示的数一定是()A.负数B.负整数C.正数或负数或0D.以上结论都不对2.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.-18% B.-8%C.+2% D.+8%3.下面的说法正确的有()①一个有理数不是整数就是分数;② 0既不是整数也不是分数;③一个有理数不是正数就是负数;④一个分数不是正的就是负的.A.1个B.2个C.3个D.4个4.地球上的海洋面积约为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107B.0.36×109C.3.61×108D.3.61×1075.用科学计算器求35的值,按键顺序是()6.-|-32|的相反数是()7.A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到达点B 时,点B 所表示的数为 ( )A .2B .-6C .2或-6D .以上答案都不对8.绝对值不大于8的所有整数的和,绝对值小于6的所有负整数的积分别是 ( )A.0 0B.10 0C.0 -120D.5 1209.如果(a +1)2+(2b +3)2+|c -1|=0,那么 3ab c +a c b的值是 ( ) A.32 B.3 C . 76 D. 11610.某种品牌的同一种洗衣粉有A ,B ,C 三种袋装包装,每袋分别装有400克、300克、200克的洗衣粉,售价分别为3.5元、2.8元、1.9元.A ,B ,C 三种包装的洗衣粉,每袋的包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A ,B ,C 三种包装的洗衣粉各1 200千克,获得利润最大的是 ( )A.A 种包装的洗衣粉B.B 种包装的洗衣粉C.C 种包装的洗衣粉D.三种包装的都相同二、填空题(每小题4分,共32分)11.-31的相反数是____,-31的绝对值是____,-31的倒数是___.12.某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是_____克~____克.13.在(-1)2 017,(-1)2 018,-22,(-3)2中,最大的数与最小的数的和等于______.14.a 是最小的正整数,b 是最小的非负数,m 表示大于-4且小于3的整数的个数,则a -b +m =_____.15.已知a ,b 互为相反数,且|a -b |=6,则b -1=_____.16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….通过观察,根据所发现的规律可确定215个位上的数字是______.17.定义运算“@”的运算法则为x @y =xy -1,则(2@3)@4=______.18.已知:23C =212×3⨯=3,35C =321345⨯⨯⨯⨯=10,46C =4×3×21?3×4×5×6=15,…,观察上面的计算过程,寻找规律并计算610C =_______.三、解答题(共58分)19.(8分)把下列各数填入相应的集合内:+8.5,-321,0.3,0,-3.4,12,-9,431,-1.2,-2.(1)正数集合:{___________…};(2)整数集合:{___________…};(3)非正整数集合:{_____________…};(4)负分数集合:{ ________________…}.20.(8分)计算下列各题:(1)3.587-(-5)+(-521)+(+7)-(+341)-(+1.587);(2)(-1)5×{[-432÷(-2)2+(-1.25)×(-0.4)]÷(-91)-32}.21.(10分)阅读:比较1110与109的大小. 方法一:利用两数差的正负来判断. 因为1110-109=1101>0,所以1110>109. 方法二:利用两数商,看商是大于1还是小于1来判断.因为1110÷109=99100>1,所以1110>109. 请用以上两种方法,比较-54和-65的大小. 22.(10分)若a 与2互为相反数,c 与d 互为倒数,m 的平方与它本身相等,请你求3m -2a cd+2cd 的值. 23.(10分)为了节约用水,某城市用水标准为:居民每户用水未超过7立方米时,每立方米收水费1.00元,并加收每立方米0.2元的城市污水处理费;超过7立方米的部分每立方米收水费1.50元,并加收每立方米0.4元的城市污水处理费.李明家1月份用水10立方米,2月份用水6立方米,请你计算他家这两个月共缴水费多少元?(2)(-1)2+22_______2×(-1)×2;(3)(-3)2+312______2×(-3)×31; (4)32+32_______2×3×3;答案一、1.C 解析:当a 表示正数时,-a 表示负数;当a 表示负数时,-a 表示正数;当a 表示0时,-a 表示0.故选C.2.B3.B4.C 解析:361 000 000=3.61×108.故选C.5.A6.A 解析:-|-32|=-32,它的相反数为32.故选A.7.C 解析:点A 在数轴上移动的方向有两种情况:向左(负方向)或向右(正方向).当点A 沿数轴向左移动4个单位长度到达点B 时,点B 所表示的数为-2-4=-6;当点A 沿数轴向右移动4个单位长度到达点B 时,点B 所表示的数为-2+4=2.综上可知,点B 所表示的数为2或-6.故选C .8.C 解析:绝对值不大于8的所有整数有1,2,3,4,5,6,7,8,0,-1,-2,-3,-4,-5,-6,-7,-8,它们的和等于0.绝对值小于6的所有负整数有-1,-2,-3,-4,-5,其积为-120.故选C.9.D 解析:因为(a +1)2+(2b +3)2+|c -1|=0,所以a =-1,b =-23,c =1.所以3ab c +a c b -=1323-×(-1)⨯)(+23-1-1-=21+34=611.故选D. 10.B 解析:因为利润=售价-成本,所以A 种包装的洗衣粉每袋的利润为3.5-0.8=2.7(元),B 种包装的洗衣粉每袋的利润为2.8-0.6=2.2(元),C 种包装的洗衣粉每袋的利润为1.9-0.5=1.4(元).因为销售这三种包装的洗衣粉各1 200千克,所以A 种包装的洗衣粉获得的利润为2.7×400000 200 1=8 100 (元),B 种包装的洗衣粉获得的利润为2.2×300000 200 1=8 800 (元),C 种包装的洗衣粉获得的利润为1.4×200000 200 1=8 400(元).所以获得利润最大的是B 种包装的洗衣粉.故选B.二、11. 13 13 -312. 380 39013. 5 解析:(-1)2 017=-1,(-1)2 018=1,-22=-4,(-3)2=9,其中最大的数是9,最小的数是-4,它们的和等于5.14. 7 解析:根据题意,得a =1,b =0,m =6,则a -b +m =1-0+6=7.15. 2或-4 解析:由a ,b 互为相反数,可得a +b =0,所以a =-b .由|a -b |=6,得|-b -b |=6,|b |=3,所以b =3或b =-3.当b =3时,b -1=2;当b =-3时,b -1=-4.16. 8 解析:观察规律可得,2n 个位上的数字每4个一循环,因为15÷4=3……3,所以215个位上的数字是8.17. 19 解析:根据运算法则x @y =xy -1,知(2@3)@4=(2×3-1)×4-1=19.18. 210 解析:观察运算式子会发现分子、分母中因数的个数相同且等于等式左边符号中的上标,分子中最大的因数是左边符号中的下标,且每个因数逐次减1;分母中最小的因数是1,且每个因数逐次加1,所以610C =1098765123456⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=210. 三、19.解:(1)正数集合: {+8.5,0.3,12,431,…}.(2)整数集合:{ 0,12,-9,-2,…}.(3)非正整数集合:{ 0,-9,-2,…}.(4)负分数集合:{-321,-3.4,-1.2,…}.20.解:(1)原式=3.587+5-521+7-341-1.587=(3.587-1.587)+(5+7)+(-521-341)=541.(2)原式=-1×{[-314÷4+0.5]÷(-91)-9} =-1×[(-32)÷(-91)-9] =-1×(6-9)=-1×(-3)=3.21.解:方法一:因为54-65=-301<0,所以54<65,从而-54>-65. 方法二:因为54÷65=2524<1,所以54<65,从而-54>-65. 22.解:因为a 与2互为相反数,所以a +2=0.因为c 与d 互为倒数,所以cd =1.因为m 的平方与它本身相等,所以m =0或m =1.当m =0时,3m -2a cd++2cd =0-0+2=2; 当m =1时,3m -2a cd++2cd =13-0+2=37. 综上可知,3m -2a cd++2cd 的值为2或37. 23.解:李明家1月份应缴水费:7×(1.00+0.2)+(10-7)×(1.50+0.4)=7×1.2+3×1.9=14.1(元). 2月份应缴水费:6×(1.00+0.2)=6×1.2=7.2(元).所以小明家这两个月共缴水费14.1+7.2=21.3(元).24.解:(1)>.(2)>.(3)>.(4)=.(5)结论:对于任意有理数a,b,都有a2+b2≥2ab,当a≠b时,a2+b2>2ab;当a=b时,a2+b2=2ab.。

北师版七年级数学上册 第二章 有理数及其运算 综合测试卷(含答案)

北师版七年级数学上册   第二章 有理数及其运算    综合测试卷(含答案)

北师版数学七年级上册 第二章 有理数及其运算综合测试卷(时间90分钟,满分120分)第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分) 1.-13的绝对值是( )A .-3B .3C .-13D.132.某省政府提出2018年要实现180000农村贫困人口脱贫,数据180000用科学记数法表示为( ) A .1.8×103 B .1.8×104 C .1.8×105 D .1.8×106 3.-5的倒数是( ) A .-5 B .-15C .5 D.154.下列各式,计算结果为负数的是( ) A .-[-(-6)]+6 B .-|-5|-(+9) C .-32+(-3)2-(-5) D .[(-1)7+(-3)2]×(-1)45.在1,-1,3,-2这四个数中,互为相反数的是( ) A .1与-1 B .1与-2 C .3与-2 D .-1与-2 6.下列式子正确的是( ) A .-0.1>-0.01 B .-1>0C.12<13D .-5<3 7.如果两个有理数的绝对值相等,且这两个数在数轴上对应的两点之间的距离为4,那么这两个数分别是( )A .4和-4B .2和-2C .0和4D .0和-48.用计算器计算(-65)4的按键顺序是( ) A.(-)65x y 4= B.((-)65)x y 4= C.((-)65x y )4= D.((-)65x y 4)=9.有理数a ,b 在数轴上对应的点如图所示,在-a ,b -a ,a +b ,0中,最大的是( )A .-aB .0C .a +bD .b -a10.已知a 为有理数,且0<a <1,则a ,a 2,1a 的大小关系是( )A .a <a 2<1aB .a 2<a <1aC.1a <a <a 2D.1a<a 2<a 第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.潜水艇原停在海平面下800米处,先上浮150米,又下潜200米,这时潜水艇在海平面下________米处.12.比较大小:-5_______3,-12_______-23.(填“>”“<”或“=”)13.若|m -2|+(n +3)2=0,则n m -2n 的值是________.15.绝对值不大于5的所有负整数的和等于-15,绝对值小于5而大于2的所有整数的积是________. 16.已知|a|=3,|b|=4,且a <b ,则a -b 的值为__________.17.某公交车原坐有22人,经过4个站点时,上下车情况记录如下(上车为正,下车为负):+4,-8;-5,+6;-3,+2;+1,-7.则车上还有 人. 18.用“”定义新运算:对于任意有理数a ,b ,ab =b 2+1,例如74=42+1=17.那么53=__ __;当m 为有理数时,m (m2)=__ __.三.解答题(共9小题,66分)19. (6分)把下列各数填入相应集合的括号内: +8.5,-312,0.3,0,-3.4,12,-9,413,-1.2,-2.(1)正数集合:{ …}; (2)整数集合:{ …}; (3)非正整数集合:{ …}; (4)负分数集合:{ …}.20. (6分)化简下列各数:-|-5|;-(-3);-0.4的倒数;0的相反数;(-1)5;比-2大72的数.将化简后的各数在数轴上表示出来,再用“<”连接起来.21. (6分)计算(1)(-2)2-|-7|+3-2÷(-12);(2)-23÷(-12)2+9×(-13)2-(-1)100;(3)(-56+23)÷(-712)×72;22. (6分)今年汛期某流域发生了特大洪水,使A 水库经受了考验,水库的警戒水位高20 m ,值班人员记录了一周内水位的变化情况,如下表(单位:m).上周日刚好达到警戒水位,取警戒水位为0,“+”表示比前一天升高,“-”表示比前一天降低):(1)本周哪一天水位最高?哪一天水位最低?它们与警戒水位的距离各是多少? (2)若超过警戒水位1 m 时就需开闸放水,那么本周哪一天需要开闸放水?23. (6分)某个体儿童服装店老板以每件32元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:问服装店老板在售完这30件连衣裙后,赚了多少钱?24. (8分)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b-16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A和C相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A,C的距离和加上到两列火车尾B,D的距离和是一个不变的值(即PA+PC+PB +PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.25. (8分)(1)若a,b互为相反数,c,d互为倒数,|x|=3,试求式子2(a+b)-(-cd)101+x的值.(2)若|m|=3,|n|=4,且|n-m|=m-n,求m+n的值.26. (10分)计算: (1)-0.1-0.2+0.3+2.3;(2)34÷(-75)×(-4)×(-15);(3)-42-13×[32-(-3)3];27. (10分)先阅读材料再计算: 11×2=1-12;12×3=12-13;…; 故11×2+12×3+13×4+…+199×100=(1-12)+(12-13)+(13-14)+…+(199-1100)=1-1100=99100.根据上述材料,计算:11×2+12×3+13×4+…+12 015×2 016+12 016×2 017.参考答案:1-5DCBBA 6-10DBBDB 11. 850 12. <,> 13. 15 14. 8或2 15. 144 16. -1或-7 17. 12 18. 10,2619. (1)正数集合:{+8.5,0.3,12,413…};(2)整数集合:{0,12,-9,-2…}; (3)非正整数集合:{0,-9,-2…}; (4)负分数集合:{-312,-3.4,-1.2…}.20. 解:-|-5|=-5;-(-3)=3;-0.4的倒数是-52;0的相反数是0;(-1)5=-1;比-2大72的数是32。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章末综合检测(时间:90分钟分值:120分)一、选择题(每小题3分,共30分)1.用-a表示的数一定是()A.负数B.负整数C.正数或负数或0D.以上结论都不对2.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.-18% B.-8%C.+2% D.+8%3.下面的说法正确的有()①一个有理数不是整数就是分数;② 0既不是整数也不是分数;③一个有理数不是正数就是负数;④一个分数不是正的就是负的.A.1个B.2个C.3个D.4个4.地球上的海洋面积约为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107 B.0.36×109C.3.61×108 D.3.61×1075.用科学计算器求35的值,按键顺序是()6.-|-32|的相反数是() A.32 B.-23C.23D.-327.A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到达点B 时,点B 所表示的数为 ( ) A .2 B .-6C .2或-6D .以上答案都不对8.绝对值不大于8的所有整数的和,绝对值小于6的所有负整数的积分别是 ( )A.0 0B.10 0C.0 -120D.5 1209.如果(a +1)2+(2b +3)2+|c -1|=0,那么3ab c +a cb的值是 ( ) A.32 B.3 C . 76 D. 11610.某种品牌的同一种洗衣粉有A ,B ,C 三种袋装包装,每袋分别装有400克、300克、200克的洗衣粉,售价分别为3.5元、2.8元、1.9元.A ,B ,C 三种包装的洗衣粉,每袋的包装费用(含包装袋成本)分别为0.8元、0.6元、0.5元.厂家销售A ,B ,C 三种包装的洗衣粉各1 200千克,获得利润最大的是 ( ) A.A 种包装的洗衣粉 B.B 种包装的洗衣粉 C.C 种包装的洗衣粉 D.三种包装的都相同二、填空题(每小题4分,共32分)11.-31的相反数是____,-31的绝对值是____,-31的倒数是___. 12.某食品包装袋上标有“净含量385克±5克”,这包食品的合格净含量范围是_____克~____克.13.在(-1)2 017,(-1)2 018,-22,(-3)2中,最大的数与最小的数的和等于______.14.a 是最小的正整数,b 是最小的非负数,m 表示大于-4且小于3的整数的个数,则a -b +m =_____.15.已知a ,b 互为相反数,且|a -b |=6,则b -1=_____. 16.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….通过观察,根据所发现的规律可确定215个位上的数字是______. 17.定义运算“@”的运算法则为x @y =xy -1,则(2@3)@4=______.18.已知:23C =212×3⨯=3,35C =321345⨯⨯⨯⨯=10,46C =4×3×21?3×4×5×6=15,…,观察上面的计算过程,寻找规律并计算610C =_______.三、解答题(共58分)19.(8分)把下列各数填入相应的集合内:+8.5,-321,0.3,0,-3.4,12,-9,431,-1.2,-2.(1)正数集合:{___________…}; (2)整数集合:{___________…}; (3)非正整数集合:{_____________…}; (4)负分数集合:{ ________________…}. 20.(8分)计算下列各题:(1)3.587-(-5)+(-521)+(+7)-(+341)-(+1.587); (2)(-1)5×{[-432÷(-2)2+(-1.25)×(-0.4)]÷(-91)-32}.21.(10分)阅读:比较1110与109的大小. 方法一:利用两数差的正负来判断. 因为1110-109=1101>0,所以1110>109. 方法二:利用两数商,看商是大于1还是小于1来判断.因为1110÷109=99100>1,所以1110>109. 请用以上两种方法,比较-54和-65的大小.22.(10分)若a 与2互为相反数,c 与d 互为倒数,m 的平方与它本身相等,请你求3m -2a cd+2cd 的值.23.(10分)为了节约用水,某城市用水标准为:居民每户用水未超过7立方米时,每立方米收水费1.00元,并加收每立方米0.2元的城市污水处理费;超过7立方米的部分每立方米收水费1.50元,并加收每立方米0.4元的城市污水处理费.李明家1月份用水10立方米,2月份用水6立方米,请你计算他家这两个月共缴水费多少元? 24.(12分)比较下列四个算式结果的大小(在横线上填“>”“<”或“=”). (1)42+52_______2×4×5;(2)(-1)2+22_______2×(-1)×2; (3)(-3)2+312______2×(-3)×31; (4)32+32_______2×3×3;(5)请通过观察归纳,写出反映这种规律的一般结论.答案一、1.C 解析:当a 表示正数时,-a 表示负数;当a 表示负数时,-a 表示正数;当a 表示0时,-a 表示0.故选C. 2.B 3.B4.C 解析:361 000 000=3.61×108.故选C. 5.A6.A 解析:-|-32|=-32,它的相反数为32.故选A.7.C 解析:点A 在数轴上移动的方向有两种情况:向左(负方向)或向右(正方向).当点A 沿数轴向左移动4个单位长度到达点B 时,点B 所表示的数为-2-4=-6;当点A 沿数轴向右移动4个单位长度到达点B 时,点B 所表示的数为-2+4=2.综上可知,点B 所表示的数为2或-6.故选C .8.C 解析:绝对值不大于8的所有整数有1,2,3,4,5,6,7,8,0,-1,-2,-3,-4,-5,-6,-7,-8,它们的和等于0.绝对值小于6的所有负整数有-1,-2,-3,-4,-5,其积为-120.故选C.9.D 解析:因为(a +1)2+(2b +3)2+|c -1|=0,所以a =-1,b =-23,c =1.所以3ab c +a c b -=1323-×(-1)⨯)(+23-1-1-=21+34=611.故选D. 10.B 解析:因为利润=售价-成本,所以A 种包装的洗衣粉每袋的利润为3.5-0.8=2.7(元),B 种包装的洗衣粉每袋的利润为2.8-0.6=2.2(元),C 种包装的洗衣粉每袋的利润为1.9-0.5=1.4(元).因为销售这三种包装的洗衣粉各1 200千克,所以A 种包装的洗衣粉获得的利润为 2.7×400000200 1=8 100 (元),B 种包装的洗衣粉获得的利润为2.2×300000 200 1=8 800 (元),C 种包装的洗衣粉获得的利润为1.4×200000 200 1=8 400(元).所以获得利润最大的是B 种包装的洗衣粉.故选B.二、11. 13 13 -3 12. 38039013. 5 解析:(-1)2 017=-1,(-1)2 018=1,-22=-4,(-3)2=9,其中最大的数是9,最小的数是-4,它们的和等于5.14. 7 解析:根据题意,得a =1,b =0,m =6,则a -b +m =1-0+6=7. 15. 2或-4 解析:由a ,b 互为相反数,可得a +b =0,所以a =-b .由|a -b |=6,得|-b -b |=6,|b |=3,所以b =3或b =-3.当b =3时,b -1=2;当b =-3时,b -1=-4.16. 8 解析:观察规律可得,2n 个位上的数字每4个一循环,因为15÷4=3……3,所以215个位上的数字是8.17. 19 解析:根据运算法则x @y =xy -1,知(2@3)@4=(2×3-1)×4-1=19.18. 210 解析:观察运算式子会发现分子、分母中因数的个数相同且等于等式左边符号中的上标,分子中最大的因数是左边符号中的下标,且每个因数逐次减1;分母中最小的因数是1,且每个因数逐次加1,所以610C =1098765123456⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=210.三、19.解:(1)正数集合: {+8.5,0.3,12,431,…}.(2)整数集合:{ 0,12,-9,-2,…}. (3)非正整数集合:{ 0,-9,-2,…}. (4)负分数集合:{-321,-3.4,-1.2,…}. 20.解:(1)原式=3.587+5-521+7-341-1.587 =(3.587-1.587)+(5+7)+(-521-341) =2+12-843 =541.(2)原式=-1×{[-314÷4+0.5]÷(-91)-9} =-1×[(-32)÷(-91)-9]=-1×(6-9) =-1×(-3) =3.21.解:方法一:因为54-65=-301<0,所以54<65,从而-54>-65.方法二:因为54÷65=2524<1,所以54<65,从而-54>-65.22.解:因为a 与2互为相反数,所以a +2=0. 因为c 与d 互为倒数,所以cd =1.因为m 的平方与它本身相等,所以m =0或m =1. 当m =0时,3m -2a cd++2cd =0-0+2=2;当m =1时,3m -2a cd++2cd =13-0+2=37.综上可知,3m -2a cd++2cd 的值为2或37.23.解:李明家1月份应缴水费:7×(1.00+0.2)+(10-7)×(1.50+0.4)=7×1.2+3×1.9=14.1(元).2月份应缴水费:6×(1.00+0.2)=6×1.2=7.2(元).所以小明家这两个月共缴水费14.1+7.2=21.3(元).24.解:(1)>.(2)>.(3)>.(4)=.(5)结论:对于任意有理数a,b,都有a2+b2≥2ab,当a≠b时,a2+b2>2ab;当a=b时,a2+b2=2ab.。

相关文档
最新文档