典型环节特性测试

合集下载

典型环节的电路模拟实验

典型环节的电路模拟实验

典型环节的电路模拟实验一、实验目的1.熟悉并掌握YTZKJ-2型 信号与系统·控制理论及计算机控制技术实验装置的结构组成及使用方法。

2.通过实验进一步了解熟悉各典型环节的模拟电路及其特性。

3.测量各典型环节的阶跃响应曲线,了解相关参数的变化对其动态特性的影响。

二、实验设备1.YTZKJ-2型 信号与系统·控制理论及计算机控制技术实验装置 2.双踪慢扫描示波器1台(可选) 三、实验内容1.设计并构建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数的变化对其输出响应的影响; 四、实验原理自控系统是由比例、积分、惯性环节等按一定的关系连接而成。

熟悉这些惯性环节对阶跃输入的响应,对分析线性系统将是十分有益的。

1.比例(P )环节比例环节的传递函数与方框图分别为K )s (u )s (u )s (G i o ==其模拟电路(后级为反相器)和单位阶跃响应曲线分别如图1-1所示。

其中K=12R R ,这里取 R 1=100K ,R 2=200K ,R 0=200K 。

通过改变电路中R1、R2的阻值,可改变放大系数。

图1-1 比例环节的模拟电路图和单位阶跃响应曲线 2.积分(I)环节积分环节的传递函数为 Ts1(s)u (s)u G(s)i o ==图1-2积分环节的方框图对应的方框图如图1-2所示。

它的模拟电路和单位阶跃响应分别如图1-3所示图1-3积分环节的模拟电路图和单位阶跃响应曲线其中 T=RC ,这里取 C=10uF,R=100K,R 0=200K 。

通过改变R 、C 的值可改变响应曲线的上升斜率。

3.比例积分(PI)环节积分环节的传递函数与方框图分别为)CSR 1(1R R CSR 1R R CSR 1CS R ui(s)uo(s)G(s)21211212+=+=+==其模拟电路和单位阶跃响应分别如图1-4所示. 其中12R R K =,T=R 1C ,这里取C=10uF, R 1=100K ,R 2=100K ,R 0=200K 。

控制工程基础实验指导书(答案) 2讲解

控制工程基础实验指导书(答案) 2讲解

实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。

2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。

3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。

4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。

5、学会使用Matlab软件来仿真二阶系统,并观察结果。

二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。

三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。

图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。

调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。

(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。

(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。

典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告

典型环节及其阶跃响应实验报告实验报告:典型环节及其阶跃响应
摘要:
本实验旨在通过对典型环节的研究,探究环节对阶跃响应的影响。

通过实验数据的收集和分析,我们成功地建立了模型,并在此基础上进行了进一步探究。

实验操作:
1. 环节参数测量
本实验分别测量了三类环节的参数:惯性环节、比例环节和一阶惯性环节。

在测量期间,我们对示波器进行了正确连接,以确保实验数据的准确性。

2. 阶跃响应测试
我们在实验中使用了脉冲信号作为输入,并记录了系统的阶跃
响应。

3. 数据分析
我们使用MATLAB软件对实验数据进行了分析,并绘制了相
应的图表。

通过对图表的观察,我们可以清晰地看到各个环节对
系统响应的影响。

结果与讨论:
通过对典型环节的实验研究,我们得出了以下结论:
1. 惯性环节会显著影响系统的阶跃响应。

惯性越大,系统的响
应越迟缓,稳态误差也增加。

2. 比例环节是最简单的环节,但是其特性并不适合所有的系统。

在一些情况下,比例环节的加入会加剧系统的振荡。

3. 一阶惯性环节的响应相对较为平滑,且稳态误差也较小。

但是在某些情况下,一阶惯性环节的响应速度可能会比较慢。

结论:
本实验成功研究了典型环节对阶跃响应的影响。

我们成功地建立了模型,并通过对实验数据的分析,得出了较为准确的结论。

我们相信,这些研究成果将会对相关学科的研究和开发产生积极的推动作用。

自控实验典型环节频率特性的测试

自控实验典型环节频率特性的测试

实验三 典型环节频率特性的测试一、实验目的1. 掌握典型环节频率特性曲线的测试方法。

2. 根据实验求得的频率特性曲线求取传递函数。

二、实验设备:TKKL-1实验箱一台,超低频示波器一台。

三、实验内容1. 惯性环节的频率特性测试。

2. 由实验测得的频率特性曲线求传递函数。

四、实验原理1. 系统的频率特性一个稳定的线性系统,在正弦信号作用下,它的稳态输出是与输入信号同频率的正弦信号,振幅与相位一般与输入信号不同。

测取不同频率下系统的输出、输入信号的幅值比和相位差,即可求得这个系统的幅频特性和相频特性。

设输入信号t X t x m ωωsin )(=,那么输出信号为)sin()()sin()(ϕωωϕωω+=+=t j G Xm t Y t y m 。

幅频特性 XmYm j G =)(ω, 相频特性)()(ωϕω=∠j G2. 频率特性测试——李沙育图形法将)(t x ω、)(t y ω分别输入示波器的X 、Y 轴,可得如下李沙育图形如图5-1。

①幅频特性测试:由 mm m m X Y X Y j G 22)(==ω,有 m mX Y A L 22lg 20)(lg 20)(==ωω〔dB 〕改变输入信号的频率,即可测出相应的幅值比,测试原理示意图如图5-2。

. 图5-1 李沙育图形 图5-2 幅频特性测试图②相频特性测试:⎩⎨⎧+==)sin()(sin )(ϕωωωωt Y t y t X t x m m , 当0=t ω时,⎩⎨⎧==ϕsin )0(0)0(m Y y xf(Hz) 1234567891011121214152Ym 〔V 〕 2Xm 〔V 〕 2Ym/2Xm20lg(2Ym/2Xm)ω有mm Y y Y y 2)0(2sin )0(sin )(11--==ωϕ 其中,)0(2y 为椭圆与Y 轴相交点间的长度, 上式适用于椭圆的长轴在一、三象限;当椭圆的 长轴在二、四象限时相位ϕ的计算公式变为图5-3相频特性测试图(李沙育法)相频特性记录表3. 惯性环节:电路如图5-4,传递函数为102.011)()()(+=+==s Ts K s u s u s G i o 假设取C=0.1uF ,R 1=100K ,R 2=200K ,那么系统的转折频率为T f T π2/1==7.96Hz 。

控制工程基础实验指导书[答案解析]

控制工程基础实验指导书[答案解析]

控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。

目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。

二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。

三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。

四、实验步骤简述实验操作的步骤以及操作中特别注意事项。

五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。

六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。

七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。

格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。

二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。

三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z1和Z2为复数阻抗,它们都是R 、C 构成。

图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。

1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V 实验参数:(1) R 1=100K R 2=100K C=1µ f23、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µ f (2) R=100K C=2µ f 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V 实验参数:12(2)R1=100K R2=200K C=1µ f四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。

自动控制原理实验-典型环节及其阶跃响应

自动控制原理实验-典型环节及其阶跃响应

6.比例+积分环节
四、实验结果及总结 1.各环节的响应曲线如上所示。
实验体会:通过这次实验,我们学会了如何构成典型环节的模拟电路及用计算机测量各典型环 节的阶跃响应曲线。在本次实验中出现了波形失真的情况,一开始找不到解决的办法,后
来我们不断的调节参数,才得到正确的波形,也明白了,只有理解并掌握了原理才能做出 正确的实验结果。
实验中心2013年11月4日年级专学院机电姓名学号业班实验课程名称成绩指导实验项目名称典型环节及其阶跃响应教师一实验目的二实验原理实验相关基础知识理论三实验过程原始记录程序界面代码设计调试过程描述等四实验结果及总结一实验目的1
广州大学学生实验报告
开课学院及实验室:实验中心
2013 年 11 月 4 日
图2-3 G(S)=-1/TS T=RC
4.微分环节的模拟电路及其传递函数如图2-4。
图2-4
G(S)=-RCS 5.比例+微分环节的模拟电路及其传递函数如图2-5。
图2-5
G(S)=-K(TS+1) K=R /R ,T=R C
21
2
6.比例Байду номын сангаас积分环节的模拟电路及其传递函数如图2-6。
图2-6
G(S)=K(1+1/TS) K=R /R , T=R C
惯性环节 8.连接被测量典型环节的模拟电路(图2-2)。电路的输入 U1接 A/D、D/A 卡的 DAl 输 出,电路的输出 U2接 A/D、D/A 卡的 ADl 输入。检查无误后接通电源。 9.实验步骤同4~7。
积分环节 10.连接被测量典型环节的模拟电路(图2-3)。电路的输入 Ul 接 A/D、D/A 卡的 DAl 输出,电路的输出 U2接 A/D、D/A 卡的 ADl 输入。检查无误后接通电源。 11.实验步骤同4~7。

实验一 控制系统典型环节的模拟实验

实验一 控制系统典型环节的模拟实验

实验一控制系统典型环节的模拟实验一、实验目的1.掌握控制系统中各典型环节的电路模拟及其参数的测定方法。

2.测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。

二、实验内容1.对表一所示各典型环节的传递函数设计相应的模拟电路(参见表二)2.测试各典型环节在单位阶跃信号作用下的输出响应。

3.改变各典型环节的相关参数,观测对输出响应的影响。

三、实验内容及步骤1.观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。

①准备:使运放处于工作状态。

将信号发生器单元U1的ST端与+5V端用“短路块”短接,使模拟电路中的场效应管(K30A)夹断,这时运放处于工作状态。

②阶跃信号的产生:电路可采用图1-1所示电路,它由“阶跃信号单元”(U3)及“给定单元”(U4)组成。

具体线路形成:在U3单元中,将H1与+5V端用1号实验导线连接,H2端用1号实验导线接至U4单元的X端;在U4单元中,将Z端和GND端用1号实验导线连接,最后由插座的Y端输出信号。

以后实验若再用阶跃信号时,方法同上,不再赘述。

实验步骤:①按表二中的各典型环节的模拟电路图将线接好(先接比例)。

(PID先不接)②将模拟电路输入端(U i)与阶跃信号的输出端Y相连接;模拟电路的输出端(Uo)接至示波器。

③按下按钮(或松开按钮)SP时,用示波器观测输出端的实际响应曲线Uo(t),且将结果记下。

改变比例参数,重新观测结果。

④同理得积分、比例积分、比例微分和惯性环节的实际响应曲线,它们的理想曲线和实际响应曲线参见表三。

2.观察PID环节的响应曲线。

实验步骤:①将U1单元的周期性方波信号(U1 单元的ST端改为与S端用短路块短接,S11波段开关置于“方波”档,“OUT”端的输出电压即为方波信号电压,信号周期由波段开关S11和电位器W11调节,信号幅值由电位器W12调节。

以信号幅值小、信号周期较长比较适宜)。

②参照表二中的PID模拟电路图,按相关参数要求将PID电路连接好。

典型环节的电路模拟实验

典型环节的电路模拟实验

典型环节的电路模拟实验要求:1.设计各种典型环节的模拟电路。

2.完成各种典型环节模拟电路的阶跃特性测试,并研究参数变化对典型环节阶跃特性的影响。

3.在MA TLAB 软件上,填入各个环节的实际(非理想)传递函数参数,完成典型环节阶跃特性的软件仿真研究,并与电路模拟研究的结果作比较。

1.比例(P)环节的传递函数、方块图、模拟电路和阶跃响应 比例环节的传递函数为:K s U s U i O =)()( 其方块图、模拟电路和阶跃响应,分别如图1.1.1、图1.1.2和图1.1.3所示,于是01R R K =。

实验参数取R 0=100k ,R 1=200k ,R=10k 。

实验接线如下图:实验结果如图:2.积分(I)环节的传递函数、方块图、模拟电路和阶跃响应 积分环节的传递函数为:Ts s U s U i O 1)()(= 其方块图、模拟电路和阶跃响应,分别如图1.2.1、图1.2.2和图1.2.3所示,于是C R T 0=, 实验参数取R 0=100k ,C =1uF ,R=10k 。

实验接线如下图:实验结果如图:3.比例积分(PI)环节的传递函数、方块图、模拟电路和阶跃响应比例积分环节的传递函数为:TsK U U i O 1+=其方块图、模拟电路和阶跃响应,分别如图1.3.1、图1.3.2和图1.3.3所示,于是01R R K =,C R T 0=实验结果如图:4.比例微分(PD)环节的传递函数、方块图、模拟电路和阶跃响应比例微分环节的传递函数为:)1(Ts K U U iO += 其方块图和模拟电路分别如图1.4.1、图1.4.2所示。

其模拟电路是近似的(即实际PD环节),取321,R R R >>,则有C R R R R T R R R K 2121021,+=+=,实验参数取R 0=10k ,R 1=10k ,R 2=10k ,R 3=1K ,C =10uF ,R=10k 。

对应理想的和实际的比例微分(PD )环节的阶跃响应分别如图1.4.3a 、图1.4.3b 所示。

典型非线性及采样环节的模拟实验

典型非线性及采样环节的模拟实验
典型非线性环节的模拟实验
一、实验目的 熟悉典型非线性环节的模拟电路。 掌握非线性特性及其测量方法 二、实验设备和仪器 DJK01——电源控制屏 DJK15——控制理论实验挂箱 TDS2002数字存储示波器 EDM-168A数字万用表
三、实验线路及原理
下图为非线性环节特性的测量接线图。信号发生器 的输出同时接到非线性环节的输入端和示波器的X 轴,非线性环节的输出接至示波器的Y轴。X轴选 择开关置于停止扫描位置,(即XY工作方式)这 样在示波器上就能显示出相应的非线性特性。要测 试的非线性特性有下列五种。
信号的采样与恢复实验
一、实验目的 1. 掌握连续信号的采样和恢复的实验电路。 2. 通过本实验,加深学生对采样定理的理解。 二、实验设备和仪器 DJK01——电源控制屏 DJK15——控制理论实验挂箱 TDS2002数字存储示波器 EDM-168A数字万用表
三、实验线路及原理 1. 信号的采样
采样器的作用是把连续信号变为脉冲或数字序列。下图给出 了一个连续信号f(t)经采样器采样后变为离散信号的过程。 图中 f(t) 为被采样的连续信号, δ(t)为周期性窄脉冲信号,
或近似地表示为:
R式中T为采样周期。 可近似地右图的R-C 网络来实现。C
实现零阶保持器的R-C网络
四、实验内容及步骤
1 、连续信号f(t) 取频率为400Hz的正弦波,采样信号选用 fS< fB; fS =2 fB; fS=4 fB,对连续信号f(t) 进行采样,用示 波器观察并记录上述三种情况下离散化的fs(t)波型. fB 为连续信号f(t) 的频率.), 观察并记录恢复后的信号 波形,并分析信号的恢复和失真情况.
fs(t)为采样后的离散信号, 它用下式来表征: fs(t)= f(t) δ(t)

自动控制实验指导

自动控制实验指导

实验一 控制系统典型环节的模拟一、实验目的1、熟悉超低频扫描示波器的使用方法;2、掌握用运放组成控制系统典型环节的电子模拟电路;3、测量典型环节的阶跃响应曲线;4、通过本实验了解典型环节中参数的变化对输出动态性能的影响。

二、实验仪器1、控制理论电子模拟试验箱一台;2、超低频慢扫描双踪示波器一台;3、万能表一只。

三、实验原理以运算放大器为核心元件,由其不同的输入R-C 网络和反馈R-C 网络构成控制系统的各种典型环节。

四、实验内容1、示波器的调节:打开双踪示波器,选CH1作为触发信号,DC/AC 档选择DC 档,y轴衰减细调和x 轴扫描时间细调均打到校正位置。

“+” “-”触发选择“-”触发位置,Y 1、Y 2探头在没特殊说明下均选⨯1档。

2、典型环节的测量 (a):比例环节(图1-1)1)(1=s G 2)(2=s G图1-1 比例环节原理图分别选择两组不同的R1,R2将所测量的结果填入下表1-1:表1-1分别画出K=1,K=2的阶跃响应波形,并比较二者的差别:(b): 积分环节(图1-2)s s G 1.0/1)(1= s s G 2.0/1)(2=图1-2 积分环节原理图分别选择R=100k Ω,R=200 k Ω作为参数,画出相应的阶跃响应波形图,并观察波形分析积分环节的特点。

(c):惯性环节(图1-3)11.01)(1+=s s G 101.01)(2+=s s G图1-3 惯性环节的原理图分别选择不同参数:C 1=1µF,C 2=0.1µF,画出相应的阶跃响应波形图,观察时间常数τ和上升时间s t 填入下表1-2,并和实际计算值比较是否吻合。

表1-2其阶跃响应的波形图:(d):微分环节(图1-4)21.0)(1+=s s G 101.0)(2+=s s G图1-4微分环节的原理图按照图1-4接好线路,示波器探头Y 2选⨯10档,y 轴衰减粗调打1V 位置,分别选择R=51 K Ω,C=1µF,Rf=100K Ω和R=100 K Ω,C=0.1µF,Rf=100K Ω两组参数,观察示波器画出阶跃响应波形并比较两组不同参数的差别。

实验报告3

实验报告3

广西大学实验报告纸姓名:潘恒康何凡凡(双语)梁潇指导老师:胡立坤何小阳成绩:学院:电气工程学院专业:自动化班级:自112实验内容:典型环节的特性测试2013/9/26同组人:【实验时间】2013年9月26日【实验地点】综合楼808【实验目的】1、了解labACT试验箱的模拟电路的基本组成、工作原理及使用方法;2、掌握典型环境传递函数及模拟电路的构成方法;3、熟悉各种典型环节的阶跃响应曲线;4、理解各个典型环节在系统中所起的作用;【实验设备与软件】1、Multisim10电路设计与仿真软件2、LABact实验台与虚拟示波器【实验原理】在实际生产中系统往往是很复杂的,但不管多么复杂的系统,在分析的时候都可以看成是由不同的基本环节构成。

例如:由电子线路组成的放大器是最常见的比例环节;积分和惯性环节也是非常常见的,如液位控制系统中阀控液压缸可以看成积分环节;而直流电机的励磁电路就是一个惯性环节。

比例环节可以改变输入信号的放大倍数;积分环节具有记忆能力,常用来改善系统的稳定性;微分环节则常用来改善系统的动态特性。

了解各个基本环节的特性对了解系统有很大的帮助。

【实验内容、方法、过程与分析】1、实验内容分别在Multisim 10和labACT模拟试验箱上观测记录比例(K)、积分))((1-sTi、比例积分))(1(1-+sTi 、惯性环节))1((1-+Ts的阶跃响应曲线。

(自行选择参数值)2、实验方法对原理图的构造思路做简要描述。

由此得到理图如下:图 1 原理图(1)比例环节(2)积分环节(3)比例积分环节(4)惯性环节3、实验过程先在Multisim中进行仿真,仿真电路图如下:(1)比例(K)的仿真电路图:运行仿真,得到以下仿真曲线:根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:的仿真电路图:(2)积分))((1Tsi运行仿真,得到以下仿真曲线:根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:的仿真电路图:(3)比例积分)T+s)1(1-(i运行仿真,得到以下仿真曲线:根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:(4)惯性环节)+Ts的仿真电路图:((1-)1运行仿真,得到以下仿真曲线:根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:实验测量的数据如下表:(给定电压为V)表1:实验内容2的数据记录表格的时间常数,如实记录平稳时间。

实验四典型环节和系统频率特性的测量

实验四典型环节和系统频率特性的测量

实验四 典型环节和系统频率特性的测量一、实验目的1.了解典型环节和系统的频率特性曲线的测试方法;2.根据实验求得的频率特性曲线求取相应的传递函数。

二、实验设备同实验一三、实验内容1.惯性环节的频率特性测试;2.二阶系统频率特性测试;3.无源滞后—超前校正网络的频率特性测试;4.由实验测得的频率特性曲线,求取相应的传递函数;5.用软件仿真的方法,求取惯性环节和二阶系统的频率特性。

四、实验原理设G(S)为一最小相位系统(环节)的传递函数。

如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m ①由式①得出系统输出,输入信号的幅值比 )()(ωωj G Xmj G Xm Xm Ym == ② 显然,)(ωj G 是输入X(t)频率的函数,故称其为幅频特性。

如用db (分贝)表示幅频值的大小,则式②可改写为XmYm j G Lg L lg 20)(20)(==ωω ③ 在实验时,只需改变输入信号频率ω的大小(幅值不变),就能测得相应输出信号的幅值Ym ,代入上式,就可计算出该频率下的对数幅频值。

根据实验作出被测系统(环节)的对数幅频曲线,就能对该系统(环节)的数学模型作出估计。

关于被测环节和系统的模拟电路图,请参见附录。

五、实验步骤1.熟悉实验箱上的“低频信号发生器”,掌握改变正弦波信号幅值和频率的方法。

利用实验箱上的模拟电路单元,设计一个惯性环节(可参考本实验附录的图4-4)的模拟电路。

电路接线无误检查后,接通实验装置的总电源,将直流稳压电源接入实验箱。

2.惯性环节频率特性曲线的测试把“低频函数信号发生器”的输出端与惯性环节的输入端相连,当“低频函数信号发生器”输出一个幅值恒定的正弦信号时,用示波器观测该环节的输入与输出波形的幅值,随着正弦信号频率的不断改变,可测得不同频率时惯性环节输出的增益和相位(可用“李沙育”图形),从而画出环节的频率特性。

控制工程基础实验指导书(答案)

控制工程基础实验指导书(答案)

控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院 系: 专业班级: 姓 名: 学 号:实验日期: 实验地点: 合作者: 指导教师:本实验项目成绩: 教师签字: 日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。

目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。

二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。

三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。

四、实验步骤简述实验操作的步骤以及操作中特别注意事项。

五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。

六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。

七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。

格式如下作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的、掌握比例、积分、实际微分及惯性环节的模拟方法; 、通过实验熟悉各种典型环节的传递函数和动态特性; 、了解典型环节中参数的变化对输出动态特性的影响。

二、实验仪器、控制理论电子模拟实验箱一台;、超低频慢扫描数字存储示波器一台;、数字万用表一只;、各种长度联接导线。

三、实验原理以运算放大器为核心元件,由其不同的 输入网络和反馈网络组成的各种典型环节,如图 所示。

图中 和 为复数阻抗,它们都是 、 构成。

图 运放反馈连接基于图中 点为电位虚地,略去流入运放的电流,则由图 得:21()o i u ZG s u Z ==-( ) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。

、比例环节实验模拟电路见图 所示图 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号: 实验参数:( ) 1 2 ( ) 1 2 、 惯性环节实验模拟电路见图 所示图 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入: 实验参数:( )12( )2、积分环节实验模拟电路见图 所示图 积分环节传递函数:21111()Z CSG sZ R RCS TS=-=-=-=阶跃输入信号:实验参数:( )( )、比例微分环节实验模拟电路见图 所示图 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 D 112R R 阶跃输入信号: 实验参数:( ) 1 2 ( ) 1 2 四、实验内容与步骤、分别画出比例、惯性、积分、比例微分环节的电子电路; 、熟悉实验设备并在实验设备上分别联接各种典型环节;、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。

实验三 典型环节(或系统)的频率特性测量

实验三  典型环节(或系统)的频率特性测量

实验三 典型环节(或系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据实验所得频率特性曲线求取传递函数的方法。

二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成典型二阶系统开环频率特性曲线的测试。

3.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。

三、实验原理及说明1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线:对于1)(+=Ts Ks G 的一阶惯性环节,其幅相频率特性曲线是一个半圆,见图3.1。

取ωj s =代入,得)()(1)(ωϕωωωj e r T j Kj G =+=(3-2-1)在实验所得特性曲线上,从半园的直径(0)r ,可得到环节的放大倍数K ,K =(0)r 。

在特性曲线上取一点k ω,可以确定环节的时间常数T ,kk tg T ωωϕ)(-=。

(3-2-2)实验用一阶惯性环节传递函数为12.01)(+=s s G ,其中参数为R 0=200K Ω,R 1=200K Ω,C=1uF ,参数根据实验要求可以自行搭配,其模拟电路设计参阅下图3.2。

在进行实验连线之前,先将U13单元输入端的100K 可调电阻顺时针旋转到底(即调至最大),使输入电阻R 0的总阻值为200K;其中,R1、C1在U13单元模块上。

U8单元为反相器单元,将U8单元输入端的10K 可调电阻逆时针旋转到底(即调至最小),使输入电阻R 的总值为10K;注明:所有运放单元的+端所接的100K 、10K 电阻均已经内部接好,实验时不需外接。

图3.22.实验用典型二阶系统开环传递函数参数、电路设计及其幅相频率特性曲线:对于由两个惯性环节组成的二阶系统,其开环传递函数为12)1)(1()(2221++=++=Ts s T Ks T s T K s G ξ )1(≥ξ 令上式中 s j ω=,可以得到对应的频率特性 )(22)(12)(ωϕωωξωωj e r T j T Kj G =++-=二阶系统开环传递函数的幅相频率特性曲线,如图所示。

控制工程基础实验指导书(答案)

控制工程基础实验指导书(答案)

控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。

目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。

二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。

三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。

四、实验步骤简述实验操作的步骤以及操作中特别注意事项。

五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。

六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。

七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。

格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。

二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。

三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z1和Z2为复数阻抗,它们都是R 、C 构成。

图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。

1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µf 3、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µf (2) R=100K C=2µf 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V实验参数:(1)R1=100K R2=100K C=1µf(2)R1=100K R2=200K C=1µf四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。

实验四典型环节和系统频率特性的测量

实验四典型环节和系统频率特性的测量

一、实验目的1、了解典型环节系和统的频率特性曲线的测量方法2、根据实验求得的频率特性曲线求取传递函数二 实验设备1、THBDC-1型 控制理论·计算机控制技术实验平台2、PC 机一台(含“THBDC-1”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线三 实验内容(1)惯性环节的频率特性测试R1=R2=100K C=1uF R0=200K闭环传递函数为=)()(0S U S U i 1+TS K =实验记录Bode 图理论计算数据(2)二阶系统OP1,惯性环节,10.2S+1 ;OP2,积分环节,1S 10.1S ;OP3,反相,(-1);25100:()52552X R K G S S S ==+⨯⨯+ ωn=2.236 ζ=1.118250R 10:()502505020X K G S S ==+⨯⨯+ ωn=7.071 ζ=0.3536实验记录波特图 Rx=100K实验记录波特图 Rx=10K仿真波特图 Rx=100K 仿真波特图 Rx=10K校正前观察响应曲线为校正后串联一个惯性装置波特图校正前后对比思考题:1、根据上位机测得的Bode图的幅频特性,就能确定系统(或环节)的相频特性,试问这在什么系统时才能实现?必须在开环二阶系统中,而且只能确定最小相位系统。

2、实验时所获得的性能指标为何与设计时确定的性能指标有偏差?因为在设计时,很多计算采用的近似计算,同时实验时用的电阻元件参数与设计不完全一致。

3.什么是超前校正装置和滞后校正装置,他们各利用矫正装置的什么特性对系统进行校正?答:超前校正装置用于改善系统的动态性能,实现在系统静态性能不受损的前提下,提高系统的动态性能。

通过加入超前校正环节,利用其相位超前特性来增大系统的相位裕度,改变系统的开环频率特性。

一般使校正环节的最大相位超前角出现在系统新的穿越频率点。

而滞后校正装置则通过加入滞后校正环节,使系统的开环增益有较大幅度增加,同时又使校正后的系统动态指标保持原系统的良好状态。

自动控制理论实验指导(新)解析

自动控制理论实验指导(新)解析
的方框图,其中T=R0C。由图图2-1一阶系统模拟电路图
2-2得:
图2-3为一阶系统的单位阶跃响应曲线。
当t= T时,C(T)=1–e-¹=0.632。这表示当C(t)上升到稳定值的63.2%时,对应的时间就是一阶系统的时间常数T,根据这个原理,由图2-3可测得一阶系统的时间常数T。由上式(1)可知,系统的稳态值为1,因而该系统的跟踪阶跃输入的稳态误差ess = 0。
令G(S)=1/(0.5S+1),则其相应的模拟电路如图6-2所示。测量时示波器的X轴停止扫描,把扫频电源的正弦信号同时送到被测环节的输入端和示波器的X轴,被测环节的输出送到示波器的Y轴,如图6-3所示。
(实验时取R1=R2=510K,C=1uF)
图4-2惯性环节的模拟电路图
图4-3相频特性测试的接线图
四、实验内容与步骤
1、根据图3-1,调节相应的参数,使系统的开环传递函数为:
2、令ui(t)=1V,在示波器上观察不同K(K=10,5,2,0.5)时的单位
阶跃响应的波形,并由实验求得相应的Mp、tp和ts的值。
3、调节开环增益K,使二阶系统的阻尼比=1/2 =0.707,观察并记录
此时的单位阶跃响应波形和Mp、tp和ts的值。
3、把实测求得的传递函数与理论值进行比较,并分析产生差异的原因。
2)、数字示波器一台
三、实验原理
以运算放大器为核心元件,由其不同的R-C输入网络和反馈网络组成的各种典型环节,如图1-1所示。图中Z1和Z2为复数阻抗,它们都是由R、C构成。
基于图中A点的电位为虚地,略去流入运放的电流,则由图1-1得:
由上式可求得由下列模拟电
路组成的典型环节的传递函数及
其单位阶跃响应。
当扫频电源输出一个正弦信号,则在示波器的屏幕上呈现一个李沙育图形------椭圆。据此,可测得在该输入信号频率下得相位值:

特性试验安全操作规程

特性试验安全操作规程

特性试验安全操作规程一、总则特性试验是对某一产品或系统的特性进行测试和验证,确保其达到预期的性能和安全标准。

为保障试验人员的安全和测试过程的顺利进行,制定以下特性试验安全操作规程。

二、试验前准备1. 在进行特性试验前,试验人员必须穿戴符合安全要求的个人防护装备,包括防护眼镜、安全帽、手套等。

2. 确保试验设备和仪器的全部功能正常,并按照规定进行校准和检查。

3. 在试验现场设置明显的安全警示标志,确保人员能够清晰地看到并遵守安全操作规程。

4. 确保试验场所的通风良好,排除可能产生的有害气体和烟尘。

三、试验操作1. 在试验操作过程中,严禁单人独立操作,必须有两人以上进行监控和协助。

2. 在试验操作前,试验人员必须参加相关的安全培训,了解试验过程和安全警示事项。

3. 试验前需明确试验的具体目的和要求,按照试验方案进行操作,严禁随意更改试验条件。

4. 在试验过程中,试验人员必须遵守操作规程和标准操作程序,严禁违反试验要求进行操作。

5. 对于可能引发危险的试验操作,应事先进行风险评估,并采取相应的防护措施。

6. 当试验过程中出现异常情况或危险情况时,应立即停止试验,并采取相应的安全措施。

7. 在试验操作结束后,应及时清理试验现场,确保试验设备和仪器的安全和完好。

四、事故处理1. 如果发生试验事故,试验人员必须立即向负责人报告,并按照紧急处理流程进行操作。

2. 在事故处理过程中,试验人员必须保证自身的安全,并积极参与事故处理工作。

3. 在事故处理过程中,必要时可以请求相关专业人员的支援和协助,确保事故处理的及时有效。

五、个人防护和紧急救援1. 在试验过程中,试验人员必须佩戴符合安全标准的个人防护装备,并妥善使用。

2. 在试验过程中,如发生紧急情况,试验人员必须按照紧急救援程序进行操作,并立即向负责人汇报。

3. 在试验现场设置明显的急救箱和灭火器等器材,以备紧急情况的处理。

六、总结特性试验的安全操作是保障试验人员和设备安全的重要环节,试验人员必须严格遵守相关的操作规程和安全要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西大学实验报告纸
姓名XXX 指导老师:成绩:
学院:电气工程学院专业:自动化班级:112
实验内容:典型环节的特性测试2013/9/26
同组人:XXX XXX
【实验时间】2013年9月26日
【实验地点】综合楼808
【实验目的】
1、了解labACT试验箱的模拟电路的基本组成、工作原理及使用方法;
2、掌握典型环境传递函数及模拟电路的构成方法;
3、熟悉各种典型环节的阶跃响应曲线;
4、理解各个典型环节在系统中所起的作用;
【实验设备与软件】
1、Multisim10电路设计与仿真软件
2、LABact实验台与虚拟示波器
【实验原理】
在实际生产中系统往往是很复杂的,但不管多么复杂的系统,在分析的时候都可以看成是由不同的基本环节构成。

例如:由电子线路组成的放大器是最常见的比例环节;积分和惯性环节也是非常常见的,如液位控制系统中阀控液压缸可以看成积分环节;而直流电机的励磁电路就是一个惯性环节。

比例环节可以改变输入信号的放大倍数;积分环节具有记忆能力,常用来改善系统的稳定性;微分环节则常用来改善系统的动态特性。

了解各个基本环节的特性对了解系统有很大的帮助。

【实验内容、方法、过程与分析】
1、实验内容
分别在Multisim 10和labACT模拟试验箱上观测记录比例(K)、积分)
)
((1-
s
T
i
、比例积
分)
)
(
1(1-
+s
T
i 、惯性环节)
)
1
((1-
+Ts的阶跃响应曲线。

(自行选择参数值)
2、实验方法
对原理图的构造思路做简要描述。

由此得到理图如下:
图 1 原理图
3、实验过程
先在Multisim中进行仿真,仿真电路图如下:
(1)比例(K)的仿真电路图:
运行仿真,得到以下仿真曲线:
根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:
的仿真电路图:
(2)积分)
)
((1
T
s
i
运行仿真,得到以下仿真曲线:
根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:
的仿真电路图:
(3)比例积分)
+s
T
1(1-
(
)
i
运行仿真,得到以下仿真曲线:
根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:
(4)惯性环节)
+Ts的仿真电路图:
((1-
1
)
运行仿真,得到以下仿真曲线:
根据原理图,在LABact试验箱中验证,示波器输出波形曲线如下:
实验测量的数据如下表:(给定电压为V)
表1:实验内容2的数据记录表格
的时间常数,如实记录平稳时间。

表2:实验内容3的数据记录
3、实验分析:
(1)记录好实验过程中出现的各种问题并解释出现这种现象的原因(如果有的话)。

(2)分析实验内容2各种输出波形的特点,并分析内容3中不同时间常数对平稳值到达时间的影响。

【实验总结】。

相关文档
最新文档