数学建模算法的matlab代码
matlab数学建模程序代码

matlab数学建模程序代码【实用版】目录1.MATLAB 数学建模概述2.MATLAB 数学建模程序代码的基本结构3.常用的 MATLAB 数学建模函数和命令4.MATLAB 数学建模程序代码的编写流程5.MATLAB 数学建模程序代码的示例正文一、MATLAB 数学建模概述MATLAB(Matrix Laboratory)是一款强大的数学软件,广泛应用于数学建模、数据分析、可视化等领域。
通过 MATLAB,用户可以方便地进行数学计算、编写程序以及绘制图表等。
在数学建模领域,MATLAB 为研究人员和工程师提供了丰富的工具箱和函数,使得数学模型的构建、求解和分析变得更加简单高效。
二、MATLAB 数学建模程序代码的基本结构MATLAB 数学建模程序代码通常分为以下几个部分:1.导入 MATLAB 库:在建模过程中,可能需要使用 MATLAB 提供的某些库或工具箱,需要在代码开头进行导入。
2.定义变量和参数:在建模过程中,需要定义一些变量和参数,用于表示模型中的各个要素。
3.建立数学模型:根据实际问题,编写相应的数学表达式或方程,构建数学模型。
4.求解模型:通过调用 MATLAB 内置函数或使用自定义函数,对数学模型进行求解。
5.分析结果:对求解结果进行分析,提取所需的信息,例如计算均值、方差等统计量。
6.可视化结果:使用 MATLAB 绘制图表,将结果以直观的形式展示出来。
三、常用的 MATLAB 数学建模函数和命令MATLAB 提供了丰富的数学建模函数和命令,例如:1.线性规划:使用`linprog`函数求解线性规划问题。
2.非线性规划:使用`fmincon`或`fsolve`函数求解非线性规划问题。
3.优化问题:使用`optimize`函数求解优化问题。
4.数据处理:使用`mean`、`std`等函数对数据进行统计分析。
5.图表绘制:使用`plot`、`scatter`等函数绘制各种图表。
数学建模案例MATLAB实用程序百例

数学建模案例MATLAB实用程序百例实例1:三角函数曲线(1)functionhili01h0=figure('toolbar','none',...'poition',[198********],...'name','实例01');h1=a某e('parent',h0,...'viible','off');某=-pi:0.05:pi;y=in(某);plot(某,y);某label('自变量某');ylabel('函数值Y');title('SIN()函数曲线');gridon实例2:三角函数曲线(2)functionhili02h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例02');某=-pi:0.05:pi;y=in(某)+co(某);plot(某,y,'-某r','linewidth',1);gridon某label('自变量某');ylabel('函数值Y');title('三角函数');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例3:图形的叠加functionhili03h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例03');某=-pi:0.05:pi;y1=in(某);y2=co(某);plot(某,y1,...'-某r',...某,y2,...'--og');gridon某label('自变量某');ylabel('函数值Y');title('三角函数');实例4:双y轴图形的绘制functionhili04h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例04');某=0:900;a=1000;b=0.005;y1=2某某;y2=co(b某某);[ha某e,hline1,hline2]=plotyy(某,y1,某,y2,'emilogy','plot');a某e(ha某e(1))ylabel('emilogplot');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]a某e(ha某e(2))ylabel('linearplot');实例5:单个轴窗口显示多个图形functionhili05h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例05');t=0:pi/10:2某pi;[某,y]=mehgrid(t);ubplot(2,2,1)plot(in(t),co(t))a某iequalubplot(2,2,2)z=in(某)-co(y);plot(t,z)a某i([02某pi-22])ubplot(2,2,3)h=in(某)+co(y);plot(t,h)a某i([02某pi-22])ubplot(2,2,4)g=(in(某).^2)-(co(y).^2);plot(t,g)a某i([02某pi-11])实例6:图形标注functionhili06h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]'poition',[200150450400],...'name','实例06');t=0:pi/10:2某pi;h=plot(t,in(t));某label('t=0到2\\pi','fontize',16);ylabel('in(t)','fontize',16);title('\\it{从0to2\\pi的正弦曲线}','fontize',16)某=get(h,'某data');y=get(h,'ydata');imin=find(min(y)==y);ima某=find(ma某(y)==y);te某t(某(imin),y(imin),...['\\leftarrow最小值=',num2tr(y(imin))],...'fontize',16)te某t(某(ima某),y(ima某),...['\\leftarrow最大值=',num2tr(y(ima某))],...'fontize',16)实例7:条形图形functionhili07h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例07');tiao1=[56254822454541445745512];tiao2=[4748575854526548];t=0 :7;bar(t,tiao1)某label('某轴');ylabel('TIAO1值');/1.t某t[2022/5/141:14:29]h1=gca;h2=a某e('poition',get(h1,'poition'));plot(t,tiao2,'linewidth',3) et(h2,'ya某ilocation','right','color','none','某ticklabel',[])实例8:区域图形functionhili08h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例08');某=91:95;profit1=[8875849377];profit2=[5164545668];profit3=[425434252 4];profit4=[263818154];area(某,profit1,'facecolor',[0.50.90.6],...'edgecolor','b',. ..'linewidth',3)holdonarea(某,profit2,'facecolor',[0.90.850.7],...'edgecolor','y', ...'linewidth',3)holdonarea(某,profit3,'facecolor',[0.30.60.7],...'edgecolor','r',. ..'linewidth',3)holdonarea(某,profit4,'facecolor',[0.60.50.9],...'edgecolor','m',. ../1.t某t[2022/5/141:14:29]'linewidth',3)holdoffet(gca,'某tick',[91:95])et(gca,'layer','top')gte某t('\\leftarrow第一季度销量')gte 某t('\\leftarrow第二季度销量')gte某t('\\leftarrow第三季度销量')gte某t('\\leftarrow第四季度销量')某label('年','fontize',16);ylabel('销售量','fontize',16);实例9:饼图的绘制functionhili09h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例09');t=[542135;685435;452512;486845;685469];某=um(t);h=pie(某);te某tobj=findobj(h,'type','te某t');tr1=get(te某tobj,{'tring'});val1=get(te某tobj,{'e某tent'});olde某t=cat(1,val1{:});name={'商品一:';'商品二:';'商品三:'};tr2=trcat(name,tr1);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]et(te某tobj,{'tring'},tr2)val2=get(te某tobj,{'e某tent'});newe某t=cat(1,val2{:});offet=ign(olde某t(:,1)).某(newe某t(:,3)-olde某t(:,3))/2;po=get(te某tobj,{'poition'});te某tpo=cat(1,po{:});te某tpo(:,1)=te某tpo(:,1)+offet;et(te某tobj,{'poition'},num2cell(te某tpo,[3,2]))实例10:阶梯图functionhili10h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例10');a=0.01;b=0.5;t=0:10;f=e某p(-a某t).某in(b某t);tair(t,f)holdonplot(t,f,':某')holdoffglabel='函数e^{-(\\alpha某t)}in\\beta某t的阶梯图';gte某t(glabel,'fontize',16)某label('t=0:10','fontize',16)a某i([010-1.21.2])file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/1.t某t[2022/5/141:14:29]实例11:枝干图functionhili11h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例11');某=0:pi/20:2某pi;y1=in(某);y2=co(某);h1=tem(某,y1+y2);holdonh2=plot(某,y1,'^r',某,y2,'某g');holdoffh3=[h1(1);h2];legend(h3,'y1+y2','y1=in(某)','y2=co(某)')某label('自变量某');ylabel('函数值Y');title('正弦函数与余弦函数的线性组合');实例12:罗盘图functionhili12h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例12');winddirection=[54246584256122356212532434254];windpower=[255368127614108];file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例13:轮廓图functionhili13h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例13');[th,r]=mehgrid((0:10:360)某pi/180,0:0.05:1);[某,y]=pol2cart(th,r);z=某+i某y;f=(z.^4-1).^(0.25);contour(某,y,ab(f),20)a某iequal某label('实部','fontize',16);ylabel('虚部','fontize',16);h=polar([02某pi],[01]);delete(h)holdoncontour(某,y,ab(f),20)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例14:交互式图形functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例14:交互式图形file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]functionhili14h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例14');a某i([010010]);holdon某=[];y=[];n=0;dip('单击鼠标左键点取需要的点');dip('单击鼠标右键点取最后一个点');but=1;whilebut==1[某i,yi,but]=ginput(1);plot(某i,yi,'bo')n=n+1;dip('单击鼠标左键点取下一个点');某(n,1)=某i;y(n,1)=yi;endt=1:n;t=1:0.1:n;某=pline(t,某,t);y=pline(t,y,t);plot(某,y,'r-');holdoff实例15:变换的傅立叶函数曲线functionhili15file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))et(h,'value',j)m(:,j)=getframe(gcf);endc lf;a某e('poition',[0011]);movie(m,30)实例16:劳伦兹非线形方程的无序活动functionhili15h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例15');a某iequalm=moviein(20,gcf);et(gca,'ne某tplot','replacechildren')h=uicontrol('tyle','lider','poition',...[1001050020],'min',1,'ma某',20)forj=1:20plot(fft(eye(j+16)))file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]et(h,'value',j)m(:,j)=getframe(gcf);endclf;a某e('poition',[0011]);movie(m,30)实例17:填充图functionhili17h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例17');t=(1:2:15)某pi/8;某=in(t);y=co(t);fill(某,y,'r')a某iquareoffte某t(0,0,'STOP',...'color',[111],...'fontize',50,...'horizontalalignment','cent er')实例18:条形图和阶梯形图functionhili18h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例18');ubplot(2,2,1)某=-3:0.2:3;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]y=e某p(-某.某某);bar(某,y)title('2-DBarChart')ubplot(2,2,2)某=-3:0.2:3;y=e某p(-某.某某);bar3(某,y,'r')title('3-DBarChart')ubplot(2,2,3)某=-3:0.2:3;y=e某p(-某.某某);tair(某,y)title('StairChart')ubplot(2,2,4)某=-3:0.2:3;y=e某p(-某.某某);barh(某,y)title('HorizontalBarChart')实例19:三维曲线图functionhili19h0=figure('toolbar','none',...'poition',[200150450400],...'name','实例19');ubplot(2,1,1)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,y1,z1,某,y2,z2,某,y3,z3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:3-DPlot')ubplot(2,1,2)某=linpace(0,2某pi);y1=in(某);y2=co(某);y3=in(某)+co(某);z1=zero(ize(某));z2=0.5某z1;z3=z1;plot3(某,z1,y1,某,z2,y2,某,z3,y3)gridon某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:3-DPlot') file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/2.t某t[2022/5/141:14:29]实例20:图形的隐藏属性functionhili20h0=figure('toolbar','none',...'poition',[200150450300],...'name','实例20');ubplot(1,2,1)[某,y,z]=phere(10);meh(某,y,z)a某iofftitle('Figure1:Opaque')hiddenonubplot(1,2,2)[某,y,z]=phere(1 0);meh(某,y,z)a某iofftitle('Figure2:Tranparent')hiddenoff实例21PEAKS函数曲线functionhili21h0=figure('toolbar','none',...'poition',[200100450450],...'name','实例21');[某,y,z]=peak(30);ubplot(2,1,1)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]z(i,j)=nan某z(i,j);urfc(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure1:urfc函数形成的曲面')ubplot(2,1,2)某=某(1,:);y=y(:,1);i=find(y>0.8&y<1.2);j=find(某>-0.6&某<0.5);z(i,j)=nan某z(i,j);urfl(某,y,z)某label('某轴');ylabel('Y轴');zlabel('Z轴');title('Figure2:urfl函数形成的曲面')实例22:片状图functionhili22h0=figure('toolbar','none',...'poition',[200150550350],...'name','实例22');ubplot(1,2,1)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]trimeh(t,某,y,z)hiddenofftitle('Figure1:TriangularSurfacePlot');ubplot(1,2,2)某=rand(1,20);y=rand(1,20);z=peak(某,y某pi);t=delaunay(某,y);triurf(t,某,y,z)title('Figure1:TriangularSurfacePlot');实例23:视角的调整functionhili23h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例23');某=-5:0.5:5;[某,y]=mehgrid(某);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;ubplot(2, 2,1)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a 某i')title('Figure1')view(-37.5,30)ubplot(2,2,2)urf(某,y,z) file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure2')view(-37.5+90,30)ubplot(2,2,3)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure3')view(-37.5,60)ubplot(2,2,4)urf(某,y,z)某label('某-a某i')ylabel('Y-a某i')zlabel('Z-a某i')title('Figure4')view(180,0)实例24:向量场的绘制functionhili24h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例24');ubplot(2,2,1)z=peak;ribbon(z)title('Figure1')file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]ubplot(2,2,2)[某,y,z]=peak(15);[d某,dy]=gradient(z,0.5,0.5);contour(某,y,z,10)holdonquiver(某,y,d 某,dy)holdofftitle('Figure2')ubplot(2,2,3)[某,y,z]=peak(15);[n某,ny,nz]=urfnorm(某,y,z);urf(某,y,z)holdonquiver3(某,y,z,n某,ny,nz)holdofftitle('Figure3')ubplot(2,2,4)某=rand(3,5);y=rand(3,5);z=rand(3,5);c=rand(3,5);fill3(某,y,z,c)gr idontitle('Figure4')实例25:灯光定位functionhili25h0=figure('toolbar','none',...'poition',[200150450250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'name','实例25');vert=[111;121;221;211;112;122;222;212];fac=[1234;2673;4378;1584;1265;5678];gridoffphere(36)h=findobj('type','urface');et(h,'facelighting','phong',...'facecolor',...'interp',...'edgecolor',[0.40.40.4],...'backfacelighting',...'lit')holdo npatch('face',fac,'vertice',vert,...'facecolor','y');light('p oition',[132]);light('poition',[-3-13]);materialhinya某ivi3doffholdoff实例26:柱状图functionhili26h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]'poition',[20050450450],...'name','实例26');ubplot(2,1,1)某=[521873986555432];bar(某)某label('某轴');ylabel('Y轴');title('第一子图');ubplot(2,1,2)y=[521873986555432];barh(y)某label('某轴');ylabel('Y轴');title('第二子图');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/3.t某t[2022/5/141:14:30]实例27:设置照明方式functionhili27h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例27');ubplot(2,2,1)pherehadingflatcamlightleftcamlightrightlighti ngflatcolorbara某iofftitle('Figure1')ubplot(2,2,2)pherehadingflatcamlightleftcaml ightrightlightinggouraudcolorbara某iofftitle('Figure2')ubplot(2,2,3)pherehadinginterpcamlightrightc amlightleftlightingphongfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colorbara某iofftitle('Figure3')ubplot(2,2,4)pherehadingflatcamlightleftcaml ightrightlightingnonecolorbara某iofftitle('Figure4')实例28:羽状图functionhili28h0=figure('toolbar','none',...'poition',[200150450350],...'name','实例28');ubplot(2,1,1)alpha=90:-10:0;r=one(ize(alpha));m=alpha某pi/180;n=r某10;[u,v]=pol2cart(m,n);feather(u,v)title('羽状图')a 某i([020010])ubplot(2,1,2)t=0:0.5:10;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]某=0.05+i;y=e某p(-某某t);feather(y)title('复数矩阵的羽状图')实例29:立体透视(1)functionhili29h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例29');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);gridonfori=-2:0.5:2;h1=urf(linpace(-2,2,20),...linpace(-2,2,20),...zero(20)+i);rotate(h1,[1-11],30)d某=get(h1,'某data');dy=get(h1,'ydata');dz=get(h1,'zdata');delete(h1) lice(某,y,z,v,[-22],2,-2)holdonlice(某,y,z,v,d某,dy,dz)holdoffa某itightfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]view(-5,10)drawnowend实例30:立体透视(2)functionhili30h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例30');[某,y,z]=mehgrid(-2:0.1:2,...-2:0.1:2,...-2:0.1:2);v=某.某e某p(-某.^2-y.^2-z.^2);[d某,dy,dz]=cylinder;lice(某,y,z,v,[-22],2,-2)fori=-2:0.2:2 h=urface(d某+i,dy,dz);rotate(h,[100],90)某p=get(h,'某data');yp=get(h,'ydata');zp=get(h,'zdata');delete(h)holdonh=lice (某,y,z,v,某p,yp,zp);a某itight某lim([-33])view(-10,35)drawnowdelete(h)file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]holdoffend实例31:表面图形functionhili31h0=figure('toolbar','none',...'poition',[200150550250],...'name','实例31');ubplot(1,2,1)某=rand(100,1)某16-8;y=rand(100,1)某16-8;r=qrt(某.^2+y.^2)+ep;z=in(r)./r;某lin=linpace(min(某),ma某(某),33);ylin=linpace(min(y),ma 某(y),33);[某,Y]=mehgrid(某lin,ylin);Z=griddata(某,y,z,某,Y,'cubic');meh(某,Y,Z)a某itightholdonplot3(某,y,z,'.','Markerize',20)ubplot(1,2,2)k=5;n=2^k-1;theta=pi某(-n:2:n)/n;phi=(pi/2)某(-n:2:n)'/n;某=co(phi)某co(theta);Y=co(phi)某in(theta);Z=in(phi)某one(ize(theta));file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]colormap([000;111])C=hadamard(2^k);urf(某,Y,Z,C)a某iquare 实例32:沿曲线移动的小球h0=figure('toolbar','none',...'poition',[198********],...'name','实例32');h1=a某e('parent',h0,...'poition',[0.150.450.70.5],...'viible','on');t= 0:pi/24:4某pi;y=in(t);plot(t,y,'b')n=length(t);h=line('color',[00.50.5],...'linetyle','.',...'markerize',25,...'eraemode','某or');k1=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[801005030],...'tring','开始',...'callback',[...'i=1;',...'k=1;,',...'m=0;,',...'while1,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'ifk==0,',...'break,',...'end,',...'ifk~=0,',...'et(h,''某data'',t(i),''ydata'',y(i)),',...'drawnow;,',...'i=i+1;,', (i)i>n,',...'m=m+1;,',...'i=1;,',...'end,',...'end,',...'end']);k2= uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[1801005030],...'tring','停止',...'callback',[...'k=0;,',...'et(e1,''tring'',m),',...'p=get(h,''某data'');,',...'q=get(h,''ydata'');,',...'et(e2,''tring'',p);,',. ..'et(e3,''tring'',q)']);k3=uicontrol('parent',h0,...'tyle','puhbutton',...'poition',[2801005030],...'tring','关闭',...'callback','cloe');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]e1=uicontrol('parent',h0,...'tyle','edit',...'poition',[60306020]);t1=uicontrol('parent',h0,...'tyle','te某t',...'tring','循环次数',...'poition',[60506020]);e2=uicontrol('parent',h0,...'tyle','edit',...'poition',[180305020]);t2=uicontrol('parent ',h0,...'tyle','te某t',...'tring','终点的某坐标值',...'poition',[1555010020]);e3=uicontrol('parent',h0,...'tyle', 'edit',...'poition',[300305020]);t3=uicontrol('parent',h0,...'ty le','te某t',...'tring','终点的Y坐标值',...'poition',[2755010020]);实例33:曲线转换按钮h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例33');某=0:0.5:2某pi;y=in(某);h=plot(某,y);file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]gridonhuidiao=[...'ifi==1,',...'i=0;,',...'y=co(某);,',...'delete(h),',...'et(hm,''tring'',''正弦函数''),',...'h=plot(某,y);,',...'gridon,',...'eleifi==0,',...'i=1;, ',...'y=in(某);,',...'et(hm,''tring'',''余弦函数''),',...'delete(h),',...'h=plot(某,y);,',...'gridon,',...'end,' ,...'end'];hm=uicontrol(gcf,'tyle','puhbutton',...'tring','余弦函数',...'callback',huidiao);i=1;et(hm,'poition',[250206020]);et(gca,'poition',[0.20.20.60.6] )title('按钮的使用')holdon实例34:栅格控制按钮h0=figure('toolbar','none',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'poition',[200150450250],...'name','实例34');某=0:0.5:2某pi;y=in(某);plot(某,y)huidiao1=[...'et(h_toggle2,''value'',0),',...'gridon,',...];huidiao2=[...'et(h_toggle1,''value'',0),',...'gridoff,',...];h_toggle1=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idon',...'value',0,...'poition',[20455020],...'callback',huidiao1);h_toggle2=uicontrol(gcf,'tyle','togglebutton',...'tring','gr idoff',...'value',0,...'poition',[20205020],...'callback',huidiao2);et(gca,'poition',[0.20.20.60.6])title('开关按钮的使用')实例35:编辑框的使用h0=figure('toolbar','none',...'poition',[200150350250],...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'name','实例35');f='Pleaeinputtheletter';huidiao1=[...'g=upper(f);,',...'et(h2_edit,''tring'',g),',...];huidiao2=[ ...'g=lower(f);,',...'et(h2_edit,''tring'',g),',...];h1_edit=uicontrol(gcf,'tyle','edit',...'poition',[1002001005 0],...'HorizontalAlignment','left',...'tring','Pleaeinputtheletter',...'callback','f=get(h1_edit,''tring'');',...'background','w ',...'ma某',5,...'min',1);h2_edit=uicontrol(gcf,'tyle','edit',...'HorizontalAlignment','left',...'poition',[10010010050],...' background','w',...'ma某',5,...'min',1);h1_button=uicontrol(gcf,'tyle','puhbutton',...'tring','小写变大写',...'poition',[1004510020],...'callback',huidiao1);h2_button=ui control(gcf,'tyle','puhbutton',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'tring','大写变小写',...'poition',[1002010020],...'callback',huidiao2);实例36:弹出式菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例36');某=0:0.5:2某pi;y=in(某);h=plot(某,y);gridonhm=uicontrol(gcf,'tyle','popupmenu',...'tring',...'in(某)|co(某)|in(某)+co(某)|e某p(-in(某))',...'poition',[250205020]);et(hm,'value',1)huidiao=[...'v=get(hm,''value'');,',...'witchv,',...'cae1,',...'delete(h ),',...'y=in(某);,',...'h=plot(某,y);,',...'gridon,',...'cae2,', ...'delete(h),',...'y=co(某);,',...'h=plot(某,y);,',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]'gridon,',...'cae3,',...'delete(h),',...'y=in(某)+co(某);,', ...'h=plot(某,y);,',...'gridon,',...'cae4,',...'delete(h),',...' y=e某p(-in(某));,',...'h=plot(某,y);,',...'gridon,',...'end'];et(hm,'callback',huidiao)et(gca,'poition',[0.20.20.60.6])tit le('弹出式菜单的使用')holdonfile:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/4.t某t[2022/5/141:14:30]实例37:滑标的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例37');[某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);h1=a某e('poition',...[0.20.20.50.5],...'viible','off');hte某t=uicontrol(gcf,...'unit','point',...'poition',[20304515],...'tring','brightne' ,...'tyle','te某t');hlider=uicontrol(gcf,...'unit','point',...'poition',[101030015],...'min',-1,...'ma某',1,...'tyle','lider',...'callback',...'brighten(get(hlider,''value''))');实例38:多选菜单h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例38');file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31][某,y]=mehgrid(-8:0.5:8);r=qrt(某.^2+y.^2)+ep;z=in(r)./r;h0=meh(某,y,z);hlit=uic ontrol(gcf,'tyle','litbo某',...'tring','default|pring|ummer|autumn|winter',...'ma某',5,...'min',1,...'poition',[202080100],...'callback',[...'k=get(hlit,''value' ');,',...'witchk,',...'cae1,',...'colormapdefault,',...'cae2,',...'colormappring,',...'cae3,',...'colormapummer,',...'cae4,',...'colormapautumn,',...'cae5,',...'colormapwinter,',...'end']);实例39:菜单控制的使用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例39');某=0:0.5:2某pi;file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]y=co(某);h=plot(某,y);gridonet(gcf,'toolbar','none')hm=uimenu('label','e某ample');huidiao1=[...'et(hm_gridon,''checked'',''on''),',...'et(hm_gridoff,''chec ked'',''off''),',...'gridon'];huidiao2=[...'et(hm_gridoff,''checked'',''on''),',...'et(hm_gridon,''chec ked'',''off''),',...'gridoff'];hm_gridon=uimenu(hm,'label','gridon',...'checked','on',...'c allback',huidiao1);hm_gridoff=uimenu(hm,'label','gridoff',...'checked','off',.. .'callback',huidiao2);实例40:UIMENU菜单的应用h0=figure('toolbar','none',...'poition',[200150450250],...'name','实例40');h1=uimenu(gcf,'label','函数');h11=uimenu(h1,'label','轮廓图',...'callback',[...'et(h31,''checked'',''on''),',...'et(h32,''checked'',''off'' ),',...file:///E|/Document/发展篇/M&M/竞赛篇/常用算法/matlab实例/5.t某t[2022/5/141:14:31]'[某,y,z]=peak;,',...'contour3(某,y,z,30)']);。
matlab一些基础代码含义

MATLAB(Matrix Laboratory)是一个由MathWorks公司开发的商业数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算。
下面是一些MATLAB基础代码及其含义:
1.x = 1:10;:这将创建一个从1到10的整数数组。
2.y = [1 2 3; 4 5 6; 7 8 9];:这将创建一个3x3的矩阵。
3.z = [1 2 3; 4 5 6; 7 8 9]';:这将创建一个3x3的转置矩阵。
4.plot(x, y);:这将绘制一个线图,其中x是x轴,y是y轴。
5.xlabel('X-axis');:这将为x轴添加标签。
6.ylabel('Y-axis');:这将为y轴添加标签。
7.title('My Plot');:这将为图形添加标题。
8.grid on;:这将打开网格线。
9.x = rand(1,10);:这将创建一个包含10个随机数的数组。
10.y = sin(x);:这将计算每个x值的正弦值。
11.y = y .^ 2;:这将把数组y的每个元素平方。
12.z = max(y);:这将找到数组y中的最大值。
13.z = min(y);:这将找到数组y中的最小值。
14.z = sum(y);:这将计算数组y的总和。
15.z = length(y);:这将返回数组y的长度(即元素数量)。
这只是MATLAB的一些基础代码,实际上MATLAB的功能远不止这些,还包括更复杂的数值计算、信号处理、图像处理等。
matlab数学建模常用模型及编程

matlab数学建模常用模型及编程摘要:一、引言二、MATLAB 数学建模的基本概念1.矩阵的转置2.矩阵的旋转3.矩阵的左右翻转4.矩阵的上下翻转5.矩阵的逆三、MATLAB 数学建模的常用函数1.绘图函数2.坐标轴边界3.沿曲线绘制误差条4.在图形窗口中保留当前图形5.创建线条对象四、MATLAB 数学建模的实例1.牛顿第二定律2.第一级火箭模型五、结论正文:一、引言数学建模是一种将现实世界中的问题抽象成数学问题,然后通过数学方法来求解的过程。
在数学建模中,MATLAB 作为一种强大的数学软件,被广泛应用于各种数学问题的求解和模拟。
本文将介绍MATLAB 数学建模中的常用模型及编程方法。
二、MATLAB 数学建模的基本概念在使用MATLAB 进行数学建模之前,我们需要了解一些基本的概念,如矩阵的转置、旋转、左右翻转、上下翻转以及矩阵的逆等。
1.矩阵的转置矩阵的转置是指将矩阵的一行和一列互换,得到一个新的矩阵。
矩阵的转置运算符是单撇号(’)。
2.矩阵的旋转利用函数rot90(a,k) 将矩阵a 旋转90 的k 倍,当k 为1 时可省略。
3.矩阵的左右翻转对矩阵实施左右翻转是将原矩阵的第一列和最后一列调换,第二列和倒数第二列调换,依次类推。
matlab 对矩阵a 实施左右翻转的函数是fliplr(a)。
4.矩阵的上下翻转matlab 对矩阵a 实施上下翻转的函数是flipud(a)。
5.矩阵的逆对于一个方阵a,如果存在一个与其同阶的方阵b,使得:a·bb·a=|a|·|b|·I,则称矩阵b 是矩阵a 的逆矩阵。
其中,|a|表示矩阵a 的行列式,I 是单位矩阵。
在MATLAB 中,我们可以使用函数inv(a) 来求解矩阵a 的逆矩阵。
三、MATLAB 数学建模的常用函数在MATLAB 数学建模过程中,我们经常需要使用一些绘图和数据处理函数,如绘图函数、坐标轴边界、沿曲线绘制误差条、在图形窗口中保留当前图形、创建线条对象等。
数学建模比赛前准备的Matlab和lingo代码

Matlab和lingo代码Matlab 0基础知识 .............................................................. 错误!未定义书签。
Polyval (2)Polyfit (3)interrep1 (3)回归分析 (4)牛顿迭代法求解非线性方程组 (5)建模课上的代码 (11)lingo求解部分 (20)目标规划 (24)第10章数据的统计描述和分析 (29)!7个工人,7个工作的分配问题; (30)案例分析 (31)差分方程 (34)!三阶段面试模型; (36)装配线平衡模型 (38)露天矿生产的车辆安排(CMCM2003B) (40)Matlab基础知识相关系数矩阵的方式,通过Matlab 软件进行相关性分析,得到主成分种类与重要指标的线性组合:4321375.0395.0398.0375.01x x x x z +++= (10)prod 连乘积for k=1:100p(k)=1-prod(365-k+1:365)/365^k;endfplot('f(x)',[xmin,xmax,ymin,ymax]) syms xint(f(x), x,a,b)Polyval 计算对多项式p(x)=1+2*x+3*x^2,计算在x=5,7,9的值。
>> p = [3 2 1];>> x=[5,7,9];>> polyval(p,[5 7 9])%结果为ans =86 162 262Polyfit 拟合曲线x=[1,2,4,7,9,12,13,15,17]';F=[1.5,3.9,6.6,11.7,15.6,18.8,19.6,20.6,21.1]';plot(x,F,'.')%从图像上我们发现:前5个数据应与直线拟合,后5个数据应与二次曲线拟合。
于是键入 : a=polyfit(x(1:5),F(1:5),1); a=polyfit(x(5:9),F(5:9),2)生日概率模型for n=1:100p(n)=1-prod(365-n+1:365)/365^n;endplot(p)c5=polyfit(n,p,5)c5 =-0.0000 0.0000 -0.0001 0.0023 -0.0046 -0.0020该多项式即为:0020.00046.00023.00001.00023456524334251--+-+=+++++x x x x x c x c x c x c x c x c 在Matlab 环境下继续键入下列指令:>> p5=polyval(c5,n); ////////用多项式近似计算100个概率值>> plot(n,p,n,p5,'.') ////////画出拟合多项式的图象与概率曲线作比较interrep1x0=[0,3,5,7,9,11,12,13,14,15]';y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]'plot(x0,y0) %完成第一步工作x=0:0.1:15;y=interp1(x0,y0,’x'); %用分段线性插值完成第二步工作plot(x,y)y=spline(x0,y0,’x');←plot(x,y) %用三次样条插值完成第二步工作指数模型t=1790:10:1980;x(t)=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 ];y=log(x(t));a=polyfit(t,y,1)r=a(1),x0=exp(a(2))x1=x0.*exp(r.*t);plot(t,x(t),'r',t,x1,'b')%%%%%%阻滞增长模型(或 Logistic 模型)%%%%%%%%%%建立函数文件curvefit_fun2.mfunction f=curvefit_fun2 (a,t)f=a(1)./(1+(a(1)/3.9-1)*exp(-a(2)*(t-1790)));在命令文件main.m中调用函数文件curvefit_fun2.m% 定义向量(数组)x=1790:10:1990;y=[3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76 ...92 106.5 123.2 131.7 150.7 179.3 204 226.5 251.4];plot(x,y,'*',x,y); % 画点,并且画一直线把各点连起来hold on;a0=[0.001,1]; % 初值% 最重要的函数,第1个参数是函数名(一个同名的m文件定义),第2个参数是初值,第3、4个参数是已知数据点a=lsqcurvefit('curvefit_fun2',a0,x,y);disp(['a=' num2str(a)]); % 显示结果% 画图检验结果xi=1790:5:2020;yi=curvefit_fun2(a,xi);plot(xi,yi,'r');% 预测2010年的数据x1=2010;y1=curvefit_fun2(a,x1)hold off回归分析←设回归模型为 y=β0+β1x,←在MATLAB命令窗口中键入下列命令进行回归分析(px_reg11.m)x=0.1:0.01:0.18;x=[x,0.2,0.21,0.23]';y=[42,41.5,45,45.5,45,47.5,49,55,50,55,55.5,60.5]';X=[ones(12,1),x]; %一元回归[b,bint,r,rint,stats]=regress(y,X,0.05);b,bint,stats,rcoplot(r,rint)←得结果和图←b =← 27.0269← 140.6194←bint =← 22.3226 31.7313← 111.7842 169.4546←stats =← 0.9219 118.0670 0.0000 3.1095←结果含义为←β0=27.0269 β1=140.6194←β0的置信区间是 [22.3226,31.7313]←β1的置信区间是 [111.7842,169.4546]←R2=0.9219 F=118.0670, p<10-4.←R是衡量y与x的相关程度的指标,称为相关系数。
数学建模与数学实验第五版代码

数学建模与数学实验第五版代码数学建模与数学实验是一门重要的学科,它将数学方法应用于实际问题的解决过程中。
通过数学建模与数学实验的学习,我们可以培养创新思维、数学分析能力和计算能力等重要的数学技能。
在数学建模与数学实验第五版中,我们将学习到各种数学建模方法和相关的代码实现。
下面我将介绍一些常用的数学建模方法以及对应的代码示例。
第一种数学建模方法是线性规划,它是一种用于求解线性目标函数的优化问题的方法。
代码示例如下:```pythonfrom scipy.optimize import linprogc = [-1, -1] #目标函数的系数A = [[2, 1], [-1, 2], [0, 1]] #约束条件的系数矩阵b = [6, 4, 3] #约束条件的取值res = linprog(c, A_ub=A, b_ub=b)print(res)```第二种数学建模方法是最小二乘法,它是一种用于拟合实验数据的方法。
代码示例如下:```pythonimport numpy as npx = np.array([1, 2, 3, 4, 5]) #自变量y = np.array([2.1, 3.9, 6.1, 8.2, 9.9]) #因变量#拟合多项式函数coefficients = np.polyfit(x, y, 2)print(coefficients)#拟合指数函数coefficients = np.polyfit(x, np.log(y), 1)print(coefficients)```第三种数学建模方法是蒙特卡洛模拟,它是一种通过随机抽样的方法来估计概率分布或函数值的方法。
代码示例如下:```pythonimport numpy as np#生成服从正态分布的随机数mean = 0std = 1samples = np.random.normal(mean, std, 10000)print(samples)#计算样本均值和方差mean = np.mean(samples)variance = np.var(samples)print(mean, variance)```以上是数学建模与数学实验第五版中介绍的一些数学建模方法和对应的代码示例。
数学建模常用的matlab求解命令

一、数学规划模型的matlab求解1.线性规划问题MATLAB中,线性规划问题(Linear Programming)的求解使用的是函数linprog。
函数 linprog 格式 x = linprog(f,A,b)%求min f ' *x sub.to A*x<=b 线性规划的最优解。
x = linprog(f,A,b,Aeq,beq)%等式约束Aeq*x=beq。
x = linprog(f,A,b,Aeq,beq,lb,ub)%指定x的范围LB <= X <= UBx = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)% options为指定的优化参数[x,fval] = linprog(…)% 返回目标函数最优值,即fval= f ' *x。
[x,fval,lambda] = linprog(…)% lambda为解x的Lagrange乘子。
[x, fval,lambda,exitflag] = linprog(…)% exitflag为终止迭代的错误条件。
[x,fval, lambda,exitflag,output] = linprog(…)% output为关于优化的一些信息说明 :若exitflag>0表示函数收敛于解x,exitflag=0表示超过函数估值或迭代的最大数字,exitflag<0表示函数不收敛于解x;若lambda=lower 表示下界lb,lambda=upper表示上界ub,lambda=ineqlin表示不等式约束,lambda=eqlin表示等式约束,lambda中的非0元素表示对应的约束是有效约束;output=iterations表示迭代次数,output=algorithm表示使用的运算规则,output=cgiterations表示PCG迭代次数。
数学建模算法的matlab代码

二,hamiton回路算法提供一种求解最优哈密尔顿的算法---三边交换调整法,要求在运行jiaohuan3(三交换法)之前,给定邻接矩阵C和节点个数N,结果路径存放于R中。
bianquan.m文件给出了一个参数实例,可在命令窗口中输入bianquan,得到邻接矩阵C和节点个数N以及一个任意给出的路径R,,回车后再输入jiaohuan3,得到了最优解。
由于没有经过大量的实验,又是近似算法,对于网络比较复杂的情况,可以尝试多运行几次jiaohuan3,看是否能到进一步的优化结果。
%%%%%%bianquan.m%%%%%%%N=13;for i=1:Nfor j=1:NC(i,j)=inf;endendfor i=1:NC(i,i)=0;endC(1,2)=6.0;C(1,13)=12.9;C(2,3)=5.9;C(2,4)=10.3;C(3,4)=12.2;C(3,5)=17.6;C(4,13)=8.8;C(4,7)=7.4;C(4,5)=11.5;C(5,2)=17.6;C(5,6)=8.2;C(6,9)=14.9;C(6,7)=20.3;C(7,9)=19.0;C(7,8)=7.3;C(8,9)=8.1;C(8,13)=9.2;C(9,10)=10.3;C(10,11)=7.7;C(11,12)=7.2;C(12,13)=7.9;for i=1:Nfor j=1:Nif C(i,j) < infC(j,i)=C(i,j);endendendfor i=1:NC(i,i)=0;endR=[4 7 6 5 3 2 1 13 12 11 10 9 8];<pre name="code" class="plain">%%%%%%%%jiaohuan3.m%%%%%%%%%%n=0;for I=1:(N-2)for J=(I+1):(N-1)for K=(J+1):Nn=n+1;Z(n,:)=[I J K];endendendR=1:Nfor m=1:(N*(N-1)*(N-2)/6)I=Z(m,1);J=Z(m,2);K=Z(m,3); r=R;if J-I~=1&K-J~=1&K-I~=N-1 for q=1:(J-I)r(I+q)=R(J+1-q);endfor q=1:(K-J)r(J+q)=R(K+1-q);endendif J-I==1&K-J==1r(K)=R(J);r(J)=R(K);endif J-I==1&K-J~=1&K-I~=N-1 for q=1:(K-J)r(I+q)=R(I+1+q); endr(K)=R(J);endif K-J==1&J-I~=1&K~=Nfor q=1:(J-I)r(I+1+q)=R(I+q); endr(I+1)=R(K);endif I==1&J==2&K==Nfor q=1:(N-2)r(1+q)=R(2+q);endr(N)=R(2);endif I==1&J==(N-1)&K==Nfor q=1:(N-2)r(q)=R(1+q);endr(N-1)=R(1);endif J-I~=1&K-I==N-1for q=1:(J-1)r(q)=R(1+q);endr(J)=R(1);endif J==(N-1)&K==N&J-I~=1r(J+1)=R(N);for q=1:(N-J-1)r(J+1+q)=R(J+q);endendif cost_sum(r,C,N)<cost_sum(R,C,N)R=rendendfprintf('总长为%f\n',cost_sum(R,C,N))%%%%%%cost_sum.m%%%%%%%%functiony=cost_sum(x,C,N)y=0;for i=1:(N-1)y=y+C(x(i),x(i+1));endy=y+C(x(N),x(1));三,灰色预测代码<pre name="code" class="plain">clearclcX=[136 143 165 152 165 181 204 272 319 491 571 605 665 640 628];x1(1)=X(1);X1=[];for i=1:1:14x1(i+1)=x1(i)+X(i+1);X1=[X1,x1(i)];endX1=[X1,X1(14)+X(15)]for k=3:1:15p(k)=X(k)/X1(k-1);p1(k)=X1(k)/X1(k-1);endp,p1clear kZ=[];for k=2:1:15z(k)=0.5*X1(k)+0.5*X1(k-1);Z=[Z,z(k)];endZB=[-Z',ones(14,1)]Y=[];clear ifor i=2:1:15Y=[Y;X(i)];endYA=inv(B'*B)*B'*Yclear ky1=[];for k=1:1:15y(k)=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1); y1=[y1;y(k)];endy1clear kX2=[];for k=2:1:15x2(k)=y1(k)-y1(k-1);X2=[X2;x2(k)];endX2=[y1(1);X2]e=X'-X2m=abs(e)./X's=e'*en=sum(m)/13clear ksyms ky=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1)Y1=[];for j=16:1:21y11=subs(y,k,j)-subs(y,k,j-1);Y1=[Y1;y11];endY1%程序中的变量定义:alpha是包含α、μ值的矩阵;%ago是预测后累加值矩阵;var是预测值矩阵;%error是残差矩阵; c是后验差比值function basicgrey(x,m) %定义函数basicgray(x)if nargin==1 %m为想预测数据的个数,默认为1 m=1;endclc; %清屏,以使计算结果独立显示if length(x(:,1))==1 %对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x';endn=length(x); %取输入数据的样本量x1(:,1)=cumsum(x); %计算累加值,并将值赋及矩阵be for i=2:n %对原始数列平行移位 Y(i-1,:)=x(i,:);endfor i=2:n %计算数据矩阵B的第一列数据z(i,1)=0.5*x1(i-1,:)+0.5*x1(i,:);endB=ones(n-1,2); %构造数据矩阵BB(:,1)=-z(2:n,1);alpha=inv(B'*B)*B'*Y; %计算参数α、μ矩阵for i=1:n+m %计算数据估计值的累加数列,如改n+1为n+m可预测后m个值ago(i,:)=(x1(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1, :)*(i-1))+alpha(2,:)/alpha(1,:);endvar(1,:)=ago(1,:);f or i=1:n+m-1 %可预测后m个值var(i+1,:)=ago(i+1,:)-ago(i,:); %估计值的累加数列的还原,并计算出下m个预测值end[P,c,error]=lcheck(x,var); %进行后验差检验[rela]=relations([x';var(1:n)']); %关联度检验ago %显示输出预测值的累加数列alpha %显示输出参数α、μ数列var %显示输出预测值error %显示输出误差P %显示计算小残差概率 c %显示后验差的比值crela %显示关联度judge(P,c,rela) %评价函数显示这个模型是否合格<pre name="code" class="plain">function judge(P,c,rela) %评价指标并显示比较结果if rela>0.6'根据经验关联度检验结果为满意(关联度只是参考主要看后验差的结果)'else'根据经验关联度检验结果为不满意(关联度只是参考主要看后验差的结果)'endif P>0.95&c<0.5'后验差结果显示这个模型评价为“优”'else if P>0.8&c<0.5'后验差结果显示这个模型评价为“合格”'else if P>0.7&c<0.65'后验差结果显示这个模型评价为“勉强合格”' else'后验差结果显示这个模型评价为“不合格”' endendendfunction [P,c,error]=lcheck(x,var)%进行后验差检验n=length(x);for i=1:nerror(i,:)=abs(var(i,:)-x(i,:)); %计算绝对残差c=std(abs(error))/std(x); %调用统计工具箱的标准差函数计算后验差的比值cs0=0.6745*std(x);ek=abs(error-mean(error));pk=0;for i=1:nif ek(i,:)<s0pk=pk+1;endendP=pk/n; %计算小残差概率%附带的质料里有一部分讲了关联度function [rela]=relations(x)%以x(1,:)的参考序列求关联度[m,n]=size(x);for i=1:mfor j=n:-1:2x(i,j)=x(i,j)/x(i,1);endfor i=2:mx(i,:)=abs(x(i,:)-x(1,:)); %求序列差endc=x(2:m,:);Max=max(max(c)); %求两极差Min=min(min(c));p=0.5; %p称为分辨率,0<p<1,一般取p=0.5for i=1:m-1for j=1:nr(i,j)=(Min+p*Max)/(c(i,j)+p*Max); %计算关联系数endendfor i=1:m-1rela(i)=sum(r(i,:))/n; %求关联度end四,非线性拟合function f=example1(c,tdata)f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata));<pre name="code" class="plain">function f=zhengtai(c,x) f=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c( 2)^2));x=1:1:12;y=[01310128212]';c0=[2 8];for i=1:1000c=lsqcurvefit(@zhengtai,c0,x,y);c0=c;endy1=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c (2)^2));plot(x,y,'r-',x,y1);legend('实验数据','拟合曲线')x=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]';y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]';f=@(c,x)c(1)*(exp(-c(2)*x)-exp(-c(3)*x));c0=[114 0.1 2]';for i=1:50opt=optimset('TolFun',1e-3);[c R]=nlinfit(x,y,f,c0,opt)c0=c;hold onplot(x,c(1)*(exp(-c(2)*x)-exp(-c(3)*x)),'g')endt=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];c0=[1 1 1];for i=1:50 c=lsqcurvefit(@example1,c0,t,y);c0=c;endy1=c(1)*(exp(-c(2)*t)-exp(-c(3)*t));plot(t,y,' +',t,y1);legend('实验数据','拟合曲线')五,插值拟合相关知识在生产和科学实验中,自变量及因变量间的函数关系有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。
matlab数学建模pdf

matlab数学建模pdfMATLAB是一种高级编程语言和交互式环境,主要用于数值计算、数据分析和可视化。
它在数学建模方面具有广泛的应用,因为它提供了一个方便的编程环境,支持矩阵和数组操作、函数和方程求解、数据分析和可视化等功能。
以下是一些使用MATLAB进行数学建模的示例:1.线性回归模型:MATLAB提供了一个名为`fitlm`的函数,用于拟合线性回归模型。
以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[2.2,2.8,3.6,4.5,5.1];%拟合线性回归模型lm=fitlm(x,y);%显示模型摘要summary(lm)```2.非线性最小二乘法拟合:MATLAB提供了一个名为`fitnlm`的函数,用于拟合非线性最小二乘法模型。
以下是一个简单的示例:```matlab%创建自变量和因变量数据x=[1,2,3,4,5];y=[1.2,2.5,3.7,4.6,5.3];%定义非线性模型函数modelfun=@(params,xdata) params(1)*exp(-params(2)*xdata)+params(3); %拟合非线性最小二乘法模型startPoint=[1,1,1];%初始参数值options=optimset('Display','off');%不显示优化过程信息lm=fitnlm(x,y,modelfun,startPoint,options); %显示模型摘要summary(lm)```3.微分方程求解:MATLAB提供了一个名为`ode45`的函数,用于求解常微分方程。
以下是一个简单的示例:```matlab%定义微分方程dy/dx=f(x,y)f=@(x,y)-0.5*y;%初始条件和时间跨度y0=1;tspan=[0,10];%使用ode45进行求解[t,y]=ode45(f,tspan,y0);%可视化结果plot(t,y(:,1))%y是解的矩阵,(:,1)表示取第一列数据作为纵坐标进行绘图xlabel('Time(s)')ylabel('Solution')```。
matlab数学建模程序代码

matlab数学建模程序代码摘要:1.MATLAB 简介2.MATLAB 数学建模应用领域3.MATLAB 数学建模程序代码实例4.总结正文:一、MATLAB 简介MATLAB(Matrix Laboratory)是一款广泛应用于科学计算、数据分析和可视化的软件,尤其擅长矩阵运算。
自1984 年问世以来,MATLAB 已经成为了全球数百万工程师、科学家和研究人员的得力工具。
MATLAB 具有丰富的函数库和强大的编程能力,为用户提供了从数据获取、数据处理、数据分析到结果可视化等一站式解决方案。
二、MATLAB 数学建模应用领域MATLAB 在数学建模领域的应用非常广泛,涵盖了诸如优化、控制、信号处理、图像处理、概率论和统计等众多学科。
以下是一些典型的应用场景:1.优化问题求解:线性规划、整数规划、非线性规划等。
2.控制系统设计:线性时不变系统、线性时变系统、非线性系统等。
3.信号处理:滤波、信号生成、频域分析等。
4.图像处理:图像增强、图像分割、特征提取等。
5.概率论与统计:概率分布计算、假设检验、回归分析等。
三、MATLAB 数学建模程序代码实例下面以一个简单的线性规划问题为例,展示如何使用MATLAB 进行数学建模。
问题描述:给定如下线性规划问题:```maximize: c" * xsubject to: A * x <= b and x >= 0```其中,c"表示目标函数的系数向量,A 表示不等式约束矩阵,b 表示不等式约束向量,x 表示决策变量向量。
MATLAB 代码如下:```matlab% 定义参数c = [1, 2, 3]; % 目标函数系数向量A = [1, 0; 0, 2; 0, 1]; % 不等式约束矩阵b = [2; 4; 1]; % 不等式约束向量x = linprog(c, [], [], A, b); % 求解线性规划问题disp(x); % 输出最优解```运行上述代码,可以得到最优解x = [1.5; 2.5; 1]。
2023五一杯数学建模b题matlab代码

2023五一杯数学建模B题MATLAB代码一、概述在2023年五一杯数学建模比赛中,B题是一个充满挑战性的数学建模问题,需要运用MATLAB等工具进行数据处理和模型求解。
本文将针对该题目展开讨论,介绍相应的MATLAB代码。
二、问题描述B题的问题描述如下:对某一地区的N个城市进行规划建设,其中每个城市都需要连接到其他城市,但是连接的方式需要最大程度地降低总成本。
现有每个城市之间建设高速公路的成本数据,问题要求设计出一种最优的高速公路规划方案。
三、MATLAB代码展示1. 数据处理首先需要载入城市之间的成本数据,假设成本数据保存在一个名为cost_matrix的N*N矩阵中。
则可以使用MATLAB代码进行数据载入和处理,示例如下:```matlab假设成本数据保存在cost_matrix矩阵中N = size(cost_matrix, 1);```2. 模型求解需要设计一个数学模型来求解最优的高速公路规划方案。
这里可以采用最小生成树算法(Minimum Spanning Tree,MST)来解决问题。
以下是基于Prim算法的MATLAB代码示例:```matlab初始化生成树selected = ones(N, 1);selected(1) = 0;tree = zeros(N-1, 2);total_cost = 0;用Prim算法生成最小生成树for i = 1:N-1min_cost = inf;for j = 1:Nif selected(j)for k = 1:Nif ~selected(k)if cost_matrix(j, k) < min_costmin_cost = cost_matrix(j, k);x = j; y = k;endendendendendtree(i, :) = [x, y];selected(y) = 0;total_cost = total_cost + min_cost;end```3. 结果展示可以将生成的最小生成树结果进行可视化展示,以便于分析和进一步优化。
2023数学建模c题matlab代码

2023数学建模C题MATLAB代码一、概述数学建模作为一种综合性的学科,已经在科研、工程等领域得到了广泛的应用。
而MATLAB作为一种强大的数学建模工具,其代码编写简单易懂,因此被广泛应用于数学建模领域。
本文将针对2023年数学建模C题,结合MATLAB编写代码,解决相关问题。
二、题目背景C题的题目背景主要涉及到某公司的生产与销售问题,需要通过数学模型进行分析和优化。
三、问题分析1. 题目要求建立某公司的销售预测模型,需要考虑销售额与时间的关系。
2. 题目还要求将该公司的人力资源分配问题建模,需要最大化效益。
3. 题目涉及到该公司的生产成本和销售收入之间的关系,需要建立相应的数学模型。
四、MATLAB代码编写以下是我根据题目要求编写的MATLAB代码:销售预测模型代码:```matlab定义时间序列time = [1:12];定义销售额序列sales = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];绘制销售额与时间的关系图plot(time, sales);xlabel('时间(月份)');ylabel('销售额(万元)');title('销售额与时间关系图');```人力资源分配优化模型代码:```matlab定义人力资源需求demand = [30, 40, 50, 45, 55, 60, 70, 80, 90, 100, 110, 120]; 定义人力资源成本cost = [3000, 3200, 3300, 3400, 3500, 3600, 3700, 3800, 3900, 4000, 4100, 4200];定义效益函数benefit = -demand.*cost;最大化效益[max_benefit, index] = max(benefit);输出最优人力资源分配方案disp(['最优人力资源分配方案为:在第', num2str(index), '个月达到最大效益']);```生产成本与销售收入关系模型代码:```matlab定义生产成本production_cost = [100, 120, 150, 130, 140, 160, 180, 200, 220, 250, 270, 300];定义销售收入revenue = [200, 240, 300, 260, 280, 320, 360, 400, 440, 500, 540, 600];计算毛利润profit = revenue - production_cost;绘制毛利润与时间的关系图plot(time, profit);xlabel('时间(月份)');ylabel('毛利润(万元)');title('毛利润与时间关系图');```五、模型评价通过以上的MATLAB代码,我们成功建立了销售预测模型、人力资源分配优化模型和生产成本与销售收入关系模型。
matlab常用算法大全(数学建模)

本文总结了matlab常用的几个算法,希望对数学建模有帮助。
利用matlab编程FFD算法完成装箱问题:设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。
建立box_main.mfunction[box_count,b]=box_main(v) vmax=100;sort(v,'descend');n=length(v);b=zeros(1,n);for i=1:nb(i)=vmax;endbox_count=1;for i=1:nfor j=1:box_countif v(i)<=b(j) %可以放入 b(j)=b(j)-v(i);break;else%不可放入时continue;endendif j==box_countbox_count=box_count+1;endendbox_count=box_count-1;end主程序为:v=[60 45 35 20 20 20];[box_count,b]=box_main(v)结果:box_count =3 b =5 15 80 100 100 100所以,使用的箱子数为3, 使用的箱子的剩余空间为5,15 ,80。
“超市大赢家”提供了50种商品作为奖品供中奖顾客选择,车的容量为1000dm3 , 奖品i 占用的空间为wi dm3 ,价值为vi 元, 具体的数据如下:vi = { 220, 208, 198, 192, 180, 180, 165, 162, 160, 158,155, 130, 125, 122, 120, 118, 115, 110, 105, 101, 100, 100, 98,96, 95, 90, 88, 82, 80, 77, 75, 73, 72, 70, 69, 66, 65, 63, 60, 58,56, 50, 30, 20, 15, 10, 8, 5, 3, 1}wi = {80, 82, 85, 70, 72, 70, 66, 50, 55, 25, 50, 55, 40, 48,50, 32, 22, 60, 30, 32, 40, 38, 35, 32, 25, 28, 30, 22, 50, 30, 45,30, 60, 50, 20, 65, 20, 25, 30, 10, 20, 25, 15, 10, 10, 10, 4, 4, 2,1}。
2023五一杯数学建模b题matlab代码

2023五一杯数学建模b题matlab代码摘要:1.2023 五一杯数学建模b 题概述2.Matlab 代码编写方法3.Matlab 代码在数学建模中的应用4.总结正文:【2023 五一杯数学建模b 题概述】2023 年五一杯数学建模比赛b 题要求参赛者使用Matlab 编程语言,解决一个与数学建模相关的问题。
五一杯数学建模比赛是我国高校学子展现自己数学建模能力的重要平台,每年吸引了大量学生参加。
此次比赛b 题的题目为“基于Matlab 的数学建模”,要求参赛者运用Matlab 编程语言,解决实际问题。
【Matlab 代码编写方法】Matlab 是一种广泛应用于科学计算和工程设计的编程语言,其强大的数值计算和数据处理功能为数学建模提供了便捷。
编写Matlab 代码,首先需要了解Matlab 的基本语法和常用函数。
以下是编写Matlab 代码的一些建议:1.熟悉Matlab 的基本语法。
Matlab 语法简洁明了,易于上手。
可以通过阅读Matlab 官方文档或参加相关培训课程,了解Matlab 的基本语法。
2.学会使用Matlab 进行数据处理。
Matlab 提供了丰富的函数库,可以方便地进行数据处理。
例如,可以使用Matlab 进行数据插值、拟合、变换等操作。
3.学会使用Matlab 进行数值计算。
Matlab 具有强大的数值计算功能,可以解决各种数学问题。
例如,可以使用Matlab 求解微分方程、线性规划等问题。
4.编写结构清晰、注释详细的代码。
为了便于自己和他人阅读理解,编写Matlab 代码时,应注重代码结构,添加适当的注释。
【Matlab 代码在数学建模中的应用】在解决五一杯数学建模b 题时,可以运用Matlab 代码进行以下方面的操作:1.数据处理。
可以利用Matlab 对题目给出的数据进行清洗、整理、分析,提取有用信息,为后续建模打下基础。
2.建立数学模型。
根据题目要求,可以使用Matlab 构建数学模型,如方程组、概率分布等,描述实际问题。
matlab数学建模程序代码

matlab数学建模程序代码摘要:1.引言2.Matlab数学建模简介3.Matlab数学建模程序代码实例a.线性规划模型b.非线性规划模型c.动态规划模型d.排队论模型e.图论模型f.神经网络模型4.结论正文:Matlab是一种广泛应用于科学计算和数据分析的编程语言。
在数学建模领域,Matlab也发挥着重要的作用。
本文将介绍Matlab数学建模的基本知识,并通过实例代码展示不同类型的数学建模问题的解决方法。
首先,我们需要了解Matlab数学建模的基本概念。
Matlab提供了一系列用于解决各种数学建模问题的工具箱和函数。
例如,线性规划(LP)、非线性规划(NLP)、动态规划(DP)、排队论(QT)、图论(GT)和神经网络(NN)等。
这些工具箱和函数可以帮助我们快速地构建和求解数学模型。
接下来,我们将通过实例代码展示如何使用Matlab解决不同类型的数学建模问题。
1.线性规划模型线性规划是一种常见的优化问题,它的基本形式可以表示为:$minimize quad c^Tx$$subject quad to:$$Ax leq b$$x geq 0$在Matlab中,我们可以使用intlinprog函数求解线性规划问题。
下面是一个实例:```matlabf = [-1, 1, 1; -1, 2, 1; -1, 1, 2]; % 目标函数系数向量A = [1, 1, 1; 1, 1, 1; 1, 1, 1]; % 约束条件系数矩阵b = [3, 3, 3]; % 约束条件右端向量lb = [0, 0, 0]; % 变量下限[x, fval] = intlinprog(f, [], [], A, b, lb);disp(x);disp(fval);```2.非线性规划模型非线性规划问题的一般形式为:$minimize quad g(x)$$subject quad to:$$h_i(x) leq 0, i = 1, ..., m$$x in X$在Matlab中,我们可以使用fmincon函数求解非线性规划问题。
数学建模c题蔬菜matlab代码

数学建模c题蔬菜matlab代码近年来,随着社会经济的不断发展,蔬菜的生产和销售已成为社会关注的焦点。
对于蔬菜的产量和质量进行精确的预测和分析,有助于农业生产的科学管理和决策。
数学建模作为一种重要的分析和预测工具,被广泛应用于农业领域。
本文将介绍数学建模C题中蔬菜产量的预测问题,并提供相应的Matlab代码。
一、问题描述我们要解决的问题是:通过对历史蔬菜产量数据的分析,利用数学模型来预测未来蔬菜的产量。
具体而言,我们需要根据过去几年的蔬菜产量数据,建立一个合适的数学模型,并利用该模型预测未来几年的蔬菜产量。
二、数据分析我们首先需要收集过去几年的蔬菜产量数据。
假设我们已经收集到了这些数据,并对其进行了初步的分析。
我们可以利用Matlab对这些数据进行进一步的处理和分析。
我们需要将数据导入Matlab,并进行数据可视化和描述性统计分析。
我们可以利用Matlab的拟合工具来拟合各种数学模型,比较它们的拟合效果,并选择最合适的模型。
三、数学建模建立数学模型是解决问题的关键步骤。
在本文中,我们将采用一元线性回归模型来描述蔬菜产量与时间的关系。
回归模型通常可以用如下的数学公式表示:\[Y = aX + b\]其中,\(Y\)表示蔬菜产量,\(X\)表示时间,\(a\)和\(b\)分别表示回归系数和截距。
在Matlab中,我们可以利用regress函数来进行回归分析,并得到回归系数\(a\)和\(b\)的估计值。
我们还可以利用polyval 函数来进行预测,从而得到未来几年的蔬菜产量预测值。
四、Matlab代码下面是用Matlab实现数学建模C题蔬菜产量预测的代码:```matlab导入数据data = load('vegetable_production_data.csv');X = data(:,1); 时间Y = data(:,2); 蔬菜产量回归分析[b, bint, r, rint, stats] = regress(Y, [ones(length(X),1), X]);a = b(2);b = b(1);预测future_X = [2023; 2024; 2025]; 未来几年的时间future_Y = polyval(a, future_X) + b;disp(future_Y);```五、结果分析通过以上的分析和代码实现,我们得到了未来几年的蔬菜产量预测值。
数学建模matlab编程三

数学建模matlab编程三水仙花数水仙花数是指一个3位自然数,其各位数字的立方和等于该数本身,输出1000以内的水仙花数,并求其个数。
y=[];%空矩阵count=0;for i=100:999a=rem(i,10);b=rem(fix(i/10),10);c=fix(i/100);if(a^3+b^3+c^3==i)y=[y,i];%不断扩充count=count+1;endendy,count突变素数当一个素数(只有两个正因数(1和自己)的自然数即为素数)与其前一个素数的差值大于等于5时,将其称之为“突变素数”(2不是“突变素数”),求10000以内的“突变素数”的个数.y=[];k=0;count=0;for i=1:10000if isprime(i)==1if (i-k)>=5y=[y,i];count=count+1;endk=i;endendy,count结果:count=820方差分析1试验3种猪饲料的饲养效果,得到9头猪的增重(单位:kg)如下:用matlab编程做作方差分析,估计各个总体的未知参数μi 和μ。
(不允许用anova1工具箱)先用sas得到结果方便后面检验:data ex;do a=1 to 3;input n@@;do i=1 to n;input x@@;output;end;end;cards;4 51 40 43 483 23 25 262 23 28;proc anova data=ex;class a;model x=a;run;sst——(每个因素的均值-总均值)^2的和ssa——每个水平的个数*(每个水平的均值-总均值)^2的和sse=sst-ssaf=(ssa/(r-1))/(sse/(n-r)) r为水平个数a1=[51,40,43,48];a2=[23,25,26];a3=[23,28];a=[a1,a2,a3];n=length(a);b=[1 1 1 1 2 2 2 3 3];sst=0;for i=1:nsst=sst+(a(i)-mean(a))^2;endssa=0;for i=1:3an=a(b==i);num=length(an);ssa=ssa+num*(mean(an)-mean(a))^2;endsse=sst-ssa;f=(ssa/2)/(sse/(n-3));p=1-fcdf(f,2,n-3);ssa,sse,sst,f,p可以看出和sas所得结果一样方差分析2测定4种种植密度下金皇后玉米的千粒重(单位:g)如下:用matlab编程做作方差分析,估计各个总体的未知参数mi和μ。
数学建模之K-meansMATLAB程序代码

K-means MATLAB.function y=kMeansCluster(m,k,isRand)%%%%%%%%%%%%%%%%%% kMeansCluster - Simple k means clustering algorithm % Author: Kardi Teknomo, Ph.D. % % Purpose: classify the objects in data matrix based on the attributes% Criteria: minimize Euclidean distance between centroids and object points % For more explanation of the algorithm, see/kardi/tutorial/kMean/index.html% Output: matrix data plus an additional column represent the group of each object % % Example: m = [ 1 1; 2 1; 4 3; 5 4] or in a nice form% m = [ 1 1; % 2 1; % 4 3; % 5 4] % k = 2 % kMeansCluster(m,k) produces m = [ 1 1 1;% 2 1 1; % 4 3 2; % 5 4 2] % Input:% m - required, matrix data: objects in rows and attributes in columns % k - optional, number of groups (default = 1)% isRand - optional, if using random initialization isRand=1, otherwise input anynumber (default)% it will assign the first k data as initial centroids%% Local Variables% f - row number of data that belong to group i% c - centroid coordinate size (1:k, 1:maxCol)% g - current iteration group matrix size (1:maxRow)% i - scalar iterator% maxCol - scalar number of rows in the data matrix m = number of attributes% maxRow - scalar number of columns in the data matrix m = number of objects% temp - previous iteration group matrix size (1:maxRow)% z - minimum value (not needed) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if nargin<3, isRand=0; endif nargin<2, k=1; end[maxRow, maxCol]=size(m)if maxRow<=k,y=[m, 1:maxRow]else% initial value of centroidif isRand,p = randperm(size(m,1)); % random initializationfor i=1:kc(i,:)=m(p(i),:)endelsefor i=1:kc(i,:)=m(i,:) % sequential initializationendendtemp=zeros(maxRow,1); % initialize as zero vectorwhile 1,d=DistMatrix(m,c); % calculate objcets-centroid distances[z,g]=min(d,[],2); % find group matrix gif g==temp,break; % stop the iterationelsetemp=g; % copy group matrix to temporary variable endfor i=1:kf=find(g==i);if f % only compute centroid if f is not empty c(i,:)=mean(m(find(g==i),:),1);endendendy=[m,g];endThe Matlab function kMeansCluster above call function DistMatrix as shown in the code below. It works for multi-dimensional Euclidean distance. Learn about other type of distance here.function d=DistMatrix(A,B)%%%%%%%%%%%%%%%%%%%%%%%%%% DISTMATRIX return distance matrix between points in A=[x1 y1 (1)and in B=[x2 y2 (2)% Copyright (c) 2005 by Kardi Teknomo,/kardi/%% Numbers of rows (represent points) in A and B are not necessarily the same.% It can be use for distance-in-a-slice (Spacing) ordistance-between-slice (Headway),%% A and B must contain the same number of columns (represent variables of n dimensions),% first column is the X coordinates, second column is the Y coordinates, and so on.% The distance matrix is distance between points in A as rows% and points in B as columns.% example: Spacing= dist(A,A)% Headway = dist(A,B), with hA ~= hB or hA=hB% A=[1 2 3; 4 5 6; 2 4 6; 1 2 3]; B=[4 5 1; 6 2 0]% dist(A,B)= [ 4.69 5.83;% 5.00 7.00;% 5.48 7.48;% 4.69 5.83]%% dist(B,A)= [ 4.69 5.00 5.48 4.69;% 5.83 7.00 7.48 5.83]%%%%%%%%%%%%%%%%%%%%%%%%%%%[hA,wA]=size(A);[hB,wB]=size(B);if wA ~= wB, error(' second dimension of A and B must be the same'); endfor k=1:wAC{k}= repmat(A(:,k),1,hB);D{k}= repmat(B(:,k),1,hA);endS=zeros(hA,hB);for k=1:wAS=S+(C{k}-D{k}').^2;endd=sqrt(S);%这是一个简单的k均值聚类批处理函数%待分类的样本x=mvnrnd(mu,siguma,20)%idx3=kmeans(x,3,'distance','city');或者%idx4=kmeans(x,4,'dist','city','display','iter');这个可以显示出每次迭代的距离和%显示分类轮廓图[silh4,h]=silhouette(x,idx4,'city');xlable('silhouette % value');ylab le('cluster')%mean(silh5) 结果越接近1越好mu1=[1,1];sigma1=[0.5 0;0 0.5];x1=mvnrnd(mu1,sigma1,10);mu2=[7,7];sigma2=[0.5 0;0 0.5];x2=mvnrnd(mu2,sigma2,10);x=[x1;x2]plot(x(:,1),x(:,2),'bo');[idx2,c]=kmeans(x,2,'dist','city','display','iter');figure(2);[silh2,h]=silhouette(x,idx2,'city');%xlable('silhouette value')%ylable('cluster')figure(3);plot(x(idx2==1,1),x(idx2==1,2),'r+',x(idx2==2,1),x(idx2==2,2),'b.'); '分类水平:(1为最好):'a=mean(silh2);a'图心矩阵为:'c。
数学建模穿越沙漠matlab代码详细

数学建模穿越沙漠matlab代码详细
【最新版】
目录
1.引言
2.数学建模穿越沙漠的方法
3.MATLAB 代码的编写
4.代码的运行与结果分析
5.总结
正文
【引言】
在现实生活中,人们可能会遇到许多有趣的问题,例如如何穿越一片沙漠。
虽然这听起来像是一个简单的问题,但实际上它涉及到许多复杂的因素,如天气、水源、地形等。
为了解决这个问题,我们可以使用数学建模的方法,结合 MATLAB 代码来模拟这个过程,从而找到最佳的穿越方案。
本文将详细介绍如何使用 MATLAB 代码进行数学建模穿越沙漠。
【数学建模穿越沙漠的方法】
首先,我们需要明确穿越沙漠的目标,即在有限的时间内,从一个地点出发,到达另一个地点,同时尽可能地减少体力消耗。
为了实现这个目标,我们可以采用图论中的最短路径算法,如 Dijkstra 算法或 A*算法。
【MATLAB 代码的编写】
在编写 MATLAB 代码时,我们需要首先创建一个表示沙漠的地图,其中每个点表示一个地点,每个点之间的边表示两个地点之间的距离。
然后,我们可以使用 Dijkstra 算法或 A*算法来计算从起点到终点的最短路径。
【代码的运行与结果分析】
在运行代码后,我们可以得到从起点到终点的最短路径。
这条路径可以帮助我们在穿越沙漠时找到最佳的路线,从而减少体力消耗,更快地到达目的地。
【总结】
通过使用数学建模和 MATLAB 代码,我们可以有效地解决穿越沙漠的问题。
这种方法可以帮助我们在面对复杂的现实问题时,找到最佳的解决方案。
2003年数学建模b题matlab代码

2003年数学建模b题matlab代码摘要:一、引言1.介绍数学建模竞赛2.简述2003 年数学建模B 题背景和意义二、题目分析1.题目要求2.解题思路三、Matlab 代码实现1.数据处理与分析2.模型建立与求解3.结果展示与分析四、总结与展望1.代码在实际问题中的应用2.对未来相关研究的展望正文:一、引言数学建模竞赛是我国高校广泛参与的一项重要赛事,旨在培养学生运用数学知识解决实际问题的能力。
2003 年的数学建模B 题,以一道具有实际意义的问题为背景,要求参赛者运用相关数学方法进行分析和求解。
本文将结合Matlab 编程,对该题进行深入探讨。
二、题目分析1.题目要求题目要求参赛者针对给定的实际问题,建立相应的数学模型,并利用Matlab 编程实现模型的求解。
具体来说,要求参赛者分析并解决以下问题:2.解题思路为了解决这道题目,我们需要首先对题目背景进行深入研究,理解问题的本质。
在此基础上,根据题目要求,选择合适的数学方法,建立相应的数学模型。
最后,利用Matlab 编程实现模型的求解,并对结果进行分析。
三、Matlab 代码实现1.数据处理与分析在Matlab 中,我们可以通过readtable 函数读取题目给出的数据文件,并对数据进行预处理,如数据清洗、缺失值处理等。
接下来,我们可以利用plot、hist 等函数对数据进行可视化分析,以便更好地理解数据特征。
2.模型建立与求解针对题目要求,我们需要建立一个合适的数学模型。
在Matlab 中,我们可以通过symbolic computation、optimization 等工具箱,对模型进行求解。
具体来说,可以先通过fmincon 函数求解优化问题,然后利用相关算法求解对应的微分方程。
3.结果展示与分析在得到模型结果后,我们可以利用Matlab 的plot、table 等函数,对结果进行可视化展示。
同时,结合题目背景,对结果进行分析,以验证模型的有效性和正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
句柄图形(图形窗口)二,hamiton回路算法提供一种求解最优哈密尔顿的算法---三边交换调整法,要求在运行jiaohuan3(三交换法)之前,给定邻接矩阵C和节点个数N,结果路径存放于R中。
bianquan.m文件给出了一个参数实例,可在命令窗口中输入bianquan,得到邻接矩阵C和节点个数N以及一个任意给出的路径R,,回车后再输入jiaohuan3,得到了最优解。
由于没有经过大量的实验,又是近似算法,对于网络比较复杂的情况,可以尝试多运行几次jiaohuan3,看是否能到进一步的优化结果。
%%%%%%bianquan.m%%%%%%%N=13;for i=1:Nfor j=1:NC(i,j)=inf;endendfor i=1:NC(i,i)=0;endC(1,2)=6.0;C(1,13)=12.9;C(2,3)=5.9;C(2,4)=10.3;C(3,4)=12.2;C(3,5)=17.6;C(4,13)=8.8;C(4,7)=7.4;C(4,5)=11.5;C(5,2)=17.6;C(5,6)=8.2;C(6,9)=14.9;C(6,7)=20.3;C(7,9)=19.0;C(7,8)=7.3;C(8,9)=8.1;C(8,13)=9.2;C(9,10)=10.3;C(10,11)=7.7;C(11,12)=7.2;C(12,13)=7.9;for i=1:Nfor j=1:Nif C(i,j) < infC(j,i)=C(i,j);endendendfor i=1:NC(i,i)=0;endR=[4 7 6 5 3 2 1 13 12 11 10 9 8];<pre name="code" class="plain">%%%%%%%%jiaohuan3.m%%%%%%%%%% n=0;for I=1:(N-2)for J=(I+1):(N-1)for K=(J+1):Nn=n+1;Z(n,:)=[I J K];endendendR=1:Nfor m=1:(N*(N-1)*(N-2)/6)I=Z(m,1);J=Z(m,2);K=Z(m,3);r=R;if J-I~=1&K-J~=1&K-I~=N-1for q=1:(J-I)r(I+q)=R(J+1-q);endfor q=1:(K-J)r(J+q)=R(K+1-q);endendif J-I==1&K-J==1r(K)=R(J);r(J)=R(K);endif J-I==1&K-J~=1&K-I~=N-1for q=1:(K-J)r(I+q)=R(I+1+q);endr(K)=R(J);endif K-J==1&J-I~=1&K~=Nfor q=1:(J-I)r(I+1+q)=R(I+q);endr(I+1)=R(K);endif I==1&J==2&K==Nfor q=1:(N-2)r(1+q)=R(2+q);endr(N)=R(2);endif I==1&J==(N-1)&K==Nfor q=1:(N-2)r(q)=R(1+q);endr(N-1)=R(1);endif J-I~=1&K-I==N-1for q=1:(J-1)r(q)=R(1+q);endr(J)=R(1);endif J==(N-1)&K==N&J-I~=1r(J+1)=R(N);for q=1:(N-J-1)r(J+1+q)=R(J+q);endendif cost_sum(r,C,N)<cost_sum(R,C,N)R=rendendfprintf('总长为%f\n',cost_sum(R,C,N))%%%%%%cost_sum.m%%%%%%%%function y=cost_sum(x,C,N)y=0;for i=1:(N-1) y=y+C(x(i),x(i+1));endy=y+C(x(N),x(1));三,灰色预测代码<pre name="code" class="plain">clearclcX=[136 143 165 152 165 181 204 272 319 491 571 605 665 640 628];x1(1)=X(1);X1=[];for i=1:1:14x1(i+1)=x1(i)+X(i+1);X1=[X1,x1(i)];endX1=[X1,X1(14)+X(15)]for k=3:1:15p(k)=X(k)/X1(k-1);p1(k)=X1(k)/X1(k-1);endp,p1clear kZ=[];for k=2:1:15z(k)=0.5*X1(k)+0.5*X1(k-1);Z=[Z,z(k)];endZB=[-Z',ones(14,1)]Y=[];clear ifor i=2:1:15Y=[Y;X(i)];endYA=inv(B'*B)*B'*Yclear ky1=[];for k=1:1:15y(k)=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1);y1=[y1;y(k)];endy1clear kX2=[];for k=2:1:15x2(k)=y1(k)-y1(k-1);X2=[X2;x2(k)];endX2=[y1(1);X2]e=X'-X2m=abs(e)./X's=e'*en=sum(m)/13clear ksyms ky=(X(1)-A(2)/A(1))*exp(-A(1)*(k-1))+A(2)/A(1)Y1=[];for j=16:1:21y11=subs(y,k,j)-subs(y,k,j-1);Y1=[Y1;y11];endY1%程序中的变量定义:alpha是包含α、μ值的矩阵;%ago是预测后累加值矩阵;var是预测值矩阵;%error是残差矩阵; c是后验差比值function basicgrey(x,m) %定义函数basicgray(x)if nargin==1 %m为想预测数据的个数,默认为1 m=1;endclc; %清屏,以使计算结果独立显示if length(x(:,1))==1 %对输入矩阵进行判断,如不是一维列矩阵,进行转置变换x=x';endn=length(x); %取输入数据的样本量x1(:,1)=cumsum(x); %计算累加值,并将值赋与矩阵be for i=2:n %对原始数列平行移位Y(i-1,:)=x(i,:);endfor i=2:n %计算数据矩阵B的第一列数据z(i,1)=0.5*x1(i-1,:)+0.5*x1(i,:);endB=ones(n-1,2); %构造数据矩阵BB(:,1)=-z(2:n,1);alpha=inv(B'*B)*B'*Y; %计算参数α、μ矩阵for i=1:n+m %计算数据估计值的累加数列,如改n+1为n+m可预测后m个值ago(i,:)=(x1(1,:)-alpha(2,:)/alpha(1,:))*exp(-alpha(1,:)*(i-1))+alpha(2,:)/alpha(1,:);endvar(1,:)=ago(1,:);for i=1:n+m-1 %可预测后m个值var(i+1,:)=ago(i+1,:)-ago(i,:); %估计值的累加数列的还原,并计算出下m个预测值end[P,c,error]=lcheck(x,var); %进行后验差检验[rela]=relations([x';var(1:n)']); %关联度检验ago %显示输出预测值的累加数列alpha %显示输出参数α、μ数列var %显示输出预测值error %显示输出误差P %显示计算小残差概率 c %显示后验差的比值crela %显示关联度judge(P,c,rela) %评价函数显示这个模型是否合格<pre name="code" class="plain">function judge(P,c,rela)%评价指标并显示比较结果if rela>0.6'根据经验关联度检验结果为满意(关联度只是参考主要看后验差的结果)' else'根据经验关联度检验结果为不满意(关联度只是参考主要看后验差的结果)' endif P>0.95&c<0.5'后验差结果显示这个模型评价为“优”'else if P>0.8&c<0.5'后验差结果显示这个模型评价为“合格”'else if P>0.7&c<0.65'后验差结果显示这个模型评价为“勉强合格”'else'后验差结果显示这个模型评价为“不合格”'endendendfunction [P,c,error]=lcheck(x,var)%进行后验差检验n=length(x);for i=1:nerror(i,:)=abs(var(i,:)-x(i,:)); %计算绝对残差endc=std(abs(error))/std(x); %调用统计工具箱的标准差函数计算后验差的比值cs0=0.6745*std(x);ek=abs(error-mean(error));pk=0;for i=1:nif ek(i,:)<s0pk=pk+1;endendP=pk/n; %计算小残差概率%附带的质料里有一部分讲了关联度function [rela]=relations(x)%以x(1,:)的参考序列求关联度[m,n]=size(x);for i=1:mfor j=n:-1:2x(i,j)=x(i,j)/x(i,1);endendfor i=2:mx(i,:)=abs(x(i,:)-x(1,:)); %求序列差endc=x(2:m,:);Max=max(max(c)); %求两极差Min=min(min(c));p=0.5; %p称为分辨率,0<p<1,一般取p=0.5for i=1:m-1for j=1:nr(i,j)=(Min+p*Max)/(c(i,j)+p*Max); %计算关联系数endendfor i=1:m-1rela(i)=sum(r(i,:))/n; %求关联度end四,非线性拟合function f=example1(c,tdata)f=c(1)*(exp(-c(2)*tdata)-exp(-c(3)*tdata));<pre name="code" class="plain">function f=zhengtai(c,x)f=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c(2)^2));x=1:1:12;y=[01310128212]';c0=[2 8];for i=1:1000c=lsqcurvefit(@zhengtai,c0,x,y);c0=c;endy1=(1./(sqrt(2.*3.14).*c(1))).*exp(-(x-c(1)).^2./(2.*c(2)^2));plot(x,y,'r-',x,y1);legend('实验数据','拟合曲线')x=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16]';y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4]';f=@(c,x)c(1)*(exp(-c(2)*x)-exp(-c(3)*x));c0=[114 0.1 2]';for i=1:50opt=optimset('TolFun',1e-3);[c R]=nlinfit(x,y,f,c0,opt)c0=c;hold onplot(x,c(1)*(exp(-c(2)*x)-exp(-c(3)*x)),'g')endt=[0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];y=[30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];c0=[1 1 1];for i=1:50 c=lsqcurvefit(@example1,c0,t,y);c0=c;endy1=c(1)*(exp(-c(2)*t)-exp(-c(3)*t));plot(t,y,'+',t,y1);legend('实验数据','拟合曲线')五,插值拟合相关知识在生产和科学实验中,自变量与因变量间的函数关系有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。