Decays of $D_{sj}^(2317)$ and $D_{sj}(2460)$ Mesons in the Quark Model

合集下载

在CQM模型下研究D_(S1)(2536)→D(SJ)(2317,2460)+γ的衰变过程

在CQM模型下研究D_(S1)(2536)→D(SJ)(2317,2460)+γ的衰变过程

第 42 卷 第 2 期 Vol.42 No.2河北工业大学学报2013 年 4 月 April 2013JOURNAL OF HEBEI UNIVERSITY OF TECHNOLOGY文章编号:1007-2373 ( 2013) 02-0067-04在 CQM 模型下研究 DS王→DSJ的衰变过程芳 1,赵树民 2,张建军 2( 1. 河北大学 电子信息工程学院,河北 保定 071002;2. 河北大学 物理科学与技术学院,河北 保定 071002 )摘要认为 DS 1 (2536 ) 和 D S J (2317,2460) 由构成,并且分别属于 T (1+ , 2 +) 双重态和 S (0 +, 1+ ) 双重态,在CQM 模型下计算了 D S1 (2536) →DS J (2317,2460) + 辐射衰变过程.通过计算得到了比较大的分支比,这表明在 将来的实验中会探测到这个过程,有助于进一步加深对介子结构的理解 . 关 键 词 辐射衰变;CQM 模型;双重态 O572.33 文献标志码 A 中图分类号On the decay progresses of DS1 ( 2536) →DSJ (2317,2460) + in CQM modelWANG Fang1,ZHAO Shu-min2,ZHANG Jian-jun2( 1. C ollege of Electronic and In format ional En gi neeri ng, Hebei University, Hebei Baodi ng 0710 02, C hina; 2. C ollege of Physi cs Science and Technol og y, Hebei Universit y, Hebei Baodai ng 0 710 02, C hina )Assuming D S1 (2536) and DS J (2317,2460 ) constituted by to be T (1+ , 2 +) doublet and S (0+ , 1 +) doublet respectively, we calculate the radiative decays DS1 (2536 ) →D SJ (2317,2460) + in the CQM model. After calculation Abstract the large branching r atios are obtained, which indicates that the radiative decay should be seen in future e xperiments. It can help us to understand further about the meson structure. Key words radiative deca y; CQM model; doublet随着实验物理的发展,物理学家开始对奇 - 粲(charm-strange) 夸克组成的介子感兴趣.他们认为 *0 ( 2317)、 ( 2460) 属于 S (0 +, 1+) 类型的双重态,其自旋 -宇称(spin-parity)分别为 0+和 1 + [1-2], Beveren and 构成.但也有作者认为它们是一个四夸克态 4-5 . 近年来人们也对 D S1 (2536) 给予了极大关注,认为 D S1 (2536) 是由 和 组成的激发态( = 1+ , = 3 )[6 ] , 2 属于 T ( 1+, 2+) [7 ] 类型的双重态.在理论上势模型 [8 ] 对其质量进行了预言,PDG 给出该粒子的平均质量: Rupp 通过分析质量谱 认为1 * [3 ] * 0( 2317 ) 和(2460) 由[]= 2 535.85 ± 0.34 ±0.40 MeV[9].在实验上,已经观察到12536+++++和12536++ 0 这 2 个过程 [9] .作者 [10] 结合重夸克有效理论(HQET) ,指出 1 2536 是由一个单纯 D 波构成的. [ 11 ] + * 0 但是,也有作者 指出: 1 2536 + 是由 S 波和 D 波共同参与反应的一个衰变,推出 1 2536 是 1 3 + + =1 , = 和 =1 , = 的混合态,且 S 波比例大,D 波比例小.原因是 夸克质量不是无限大,该问 2 2 题有待进一步研究.本文认为 * 0 2317 、 2460 和 1 2536 是由 和 组成的激发态;在 CQM 模型 下研究了 数值结果.12536 的辐射衰变,而且是一个 P 波[12]参与反应的过程;通过理论计算,获得了比较合理的1CQM 模型在 Eberes[ 13 ]等人的基础上,Polosa[14]进一步丰富和发展了 CQM 模型.CQM 模型以有效拉氏量为基础,收稿日期:2012-07-05 基金项目:国家自然科学基金 (11047002) ;河北省自然科学基金(A201120 1118) 作者简介:王芳(1980-) ,女(汉族) ,讲师.68河北工业大学学报第 42 卷[15]描述了夸克和介子之间的相互作用.该模型结合了 HQET 和轻夸克的手征对称性,其拉氏量表示2 CQ M:=+ + ++ +5+ ++这里的、 和表示双重态 0 , 151 1 + 2 3 2 4 、 0+ , 1+ 和 1+ , 2+ ,它们的表达式为:* 28+ ( 1)1+ / * = 2 此处的 、*、01+ / 1+ / * , = 2 1 5 0 , = 2 、 1* 等分别是这些介子的消失算符.3 2* 151 3. (2)2理论推导12536 、*02317 和 3 212460 与轻夸克和重夸克的耦合可以分别表示为1 5 1[ 15]1+ / 23/,1+ / 2325,1+ / 213/25 *( 3)0其中: 1 、 2 表示 1 2536 和 2460 的质量.重整化常数1,2460 的极化矢量, 1 、 2 和 已经给出 [14 ],具体表达式为3分别表示2536 、2317 和=2 3+ +3( 4)11 =3 2 + +2+331+2+0+0+1( 5)图1125362317 , 2460 +图 1 给出了 1 2536 2317 , 2460 + 衰变过程的夸克图, 根据费曼规则可以分别写出辐射衰变 1 2536 2317 , 2460 + 的振幅:1衰变的夸克图 Fig. 11The di agram of the decay 2317 , 2460 +25362 5 36*02317 + /+ Tr4=1i 1+ / 223 25 2 121i63d4 24Tr × 2 + 31/ / + /+2 2/1 3 +1/ / , i6 / / , d4 2d4 2/++ 1+ / / 1+ / 2 22 25+ i /2 1 22/1 3 +3 1( 6)25 3 6 Tr × + 2 32460 + /+ Tr4= /21/+ /+23 2 / / 2 +341/1 3 +1d4 2/+/221+ 222//1/1 3 +( 7)经过计算得到212536 2 +2 1 2 2 4 2 2 22317 ,2460 + 辐射衰变的费曼振幅平方分别为:2 2 2 21 =272 1 2 2222 2 2122+2 1 2 2 1 11214 +2 2 2 4 2 212+22+21 22228+ +1 12+2522 2+2 2 +22 2 3 2 22 531 2 2 2 2 2 2 2 2 2+12 +162 42 02 252 222+63342 2 2 2+3 2 2 ,2+4242 1+222 2 2+141+2+718+9( 8)第2期王 芳, 等: 在 CQM模型下研究 D S1(2536)→D SJ(2317,2460 )+ 的衰变过程692=1 216 +32 6 4222121 2 2222+1 52 2 2 2 222222+1 5 152 22+2 422+ 10 +1 5 +1 12+2 12 1+322+4 113 51 222+2 + 32 22+5 +11 +22 2+2 8 +2+22 2+ 2222 822 +5 2 2 2 2 11 + + 9 2 51 2 23231+1 1222 2 2+1 5 92272+2 2+ 10 ++7 ++2 112 2 1 24162+ 22152 22+2+ 2 1 3 +1 2 2+155 2 22+2+ +2 2 2 2+5 + 1 1 82 24 8 +6 +22 2610 13 +5 + +2 2 2 2+1 2 +1 2 112+ 7142 3 2 415 + 1123 2221 +4 3 221182+2+213 2 12 2 2+25 +244 42+22 22 155 2 22 + 22 222++152 2 2 2+ 152+1 5 4 3 42 2861 +1 2 4565 2 292 227 1+4 2 + 2 + 10 +12 2 21 2 +726 2 22 + +22 2 1162 21+1 6 6 2 92 4 21 2+ 102 215 42 224 + + + + 式 ( 9) 中的2+3 2 8+4 138 8 2 +23+31512 +5 2 +1 1 21 222 22 2++3 8+2 2 1121 +2 42 212562 2+11 +21+511+2+ 5 +1 1124( 9)5、2、3、2 2、0 2、 *6详细表达如下: ,31= 1 33, + 1 3== ,4=1 62 3 ,0+1 3 ,31 4 362+2, *50+,5=5=3,,, ( 10)其中:3=5i 16 , , dd44 2 2+2 2+=i 1624=1 01 +22 21+ 21211 , + ++ = i 164 23 8 22= i 3 16 2 d4 + + 1 3 3 1 d 8 22 212d3 222121+,(11)+2 2+1 21+ ( 12)12d d421+2= i 161123 2d21 0123 2d d21+2, ( 13) ( 14),0,1=01d,=20. :本文通过下面的公式可以计算出这 2 个过程的衰变宽度,进而得到其分支比 = 1 81 , 2 2 11, 2.( 15)3数值计算参数的具体取值为: =2 1 2 2, 3 1 1 [ 10 ]= 2.536 GeV ,2= 2.317 GeV ,3= 2.460 GeV,= 0.5 GeV , = 0.593 GeV ,2,,的参数取值和数值结果如表 1 所示.70河北工 表1业大学学报第 42 卷数值结果Tab. 1/ GeV 0.5 0.6 0.7 / GeV 0.86 0.91 0.97 / ( GeV ) 2.95 2.28 1.66The nume rical results1/ ( GeV ) 2. 23 1. 29 0. 681分支比( 0.31% 0.12% 0.28%1)分支比( 0.006 8% 0.001 7% 0.002%2)表格中的1和2分别表示12536 衰变到* 02317 和2460 的分支比.随着模型中参数的调整,得到了相应的数值结果.从定性分析来看,参数在一定范围内变化,得到结果的数量级没有发生改变.4结论本文利用 CQM 模型,结合重夸克有效理论和轻夸克的手征对称性,并认为 1 2536 是由 和 构成的 介子(1+) ,属于 T 类型的双重态,研究了 1 2536 2317 , 2460 + 的辐射衰变.参考文献 [16] 给 出了12536 衰变的总宽度.通过计算得到了112536 辐射衰变过程的宽度,表 1 里面的* 0表示这一过程占整个衰变宽度的分支比. 从表 1 中数值结果可看出 比2高 2 个数量级,原因有 2 个: 1)* 0 12317 比2460 轻 143 MeV ,末态相空间大; 2) 2460 相对于 个结果符合物理的定性分析.分之比2317 来说是更高的激发态,更不容易产生,所以 1 比 2 大.这 * 约为 0.2%,是很大的.因此, 1 2536 是一个具 0 2317 +1有很强的观测效应的过程,期待这个过程能被实验组发现. 较小,不容易被观测到.希望本工作可以加深对 理解,同时进一步检验 CQM 模型的合理性.* 02536 到 2460 和12460 的辐射衰变过程的结果 2536 这些粒子性质的进一步2317 、参考文献:[ 1] Aubert B,Barate R ,B outigny D,et al.Observation of a narrow meson st ate decaying to (90) :242001. [ 2] Datta A ,Odon nell P J.Unders tanding the natu re of [3] Bevenren E V ,Pupp G .C ont inuum bound states 2004(32) :493-499. [ 4] Swanson E S.The new h eavy m esons: A status report [J ].Phys R ep,2006(429) :243-305. [ 5] Teras aki K .BABAR resonance as a new wi ndow of hadron physics [J] .Phys Rev D ,2003 (68) :011501. [ 6] Jol anta B.New Resonances at Belle [J] .Acta Phys Pol B,2004(35) :2963-3981. [ 7] Luo Z G ,Chen X L,Li u X,et al .Sem ilept oni c decays of1 + 0 2 at a mass of 2.32 GeV/ c [ J].Phys Rev Lett,20032317 and ,1:164-170. 2460 through nonleptonic B decays [ J] .Phys Lett B,2003(572)12460 ,2536 and their partners,12400 ,*2463[J] .Eur Phys J C,,* 2,0and1[ J].Eur Phys J C,2009(60) :403-411.0[ 8] Gofrey S,Isgur N .Mes ons in a rel ativi zed quark m odel with chrom odynamics [J] .Phys R ev D ,19 85, (32) :189-228. [ 9] Abazov V M,Bloom K A ,Now C.Measurem ent of the semil eptoni c ranching ratio of [ J] .Phys Rev Lett,2009,102:0 51801. [ 11] Balagura V,Adachi I ,Aih ara H ,et al.Observat ion of D ,2008(77) :032001. [ 12] Argus Collaboration.Observat ion of a new charm -st range meson [ J] .Phys Let t B,1989,230(1) :163-167. [ 13] Polosa A D .The CQM model [J ].Ri v Nuovo Cim ,2000,23(11) :1-75. [ 14] Luo Z G ,Chen X L,Liu X ,et al .Semi lept on ic decays of 1 , *2 , 0 and [ 15] Zhao S M,Zhang Y J,Yan Y L,et al.Study of semi lept on ic decays C,2008(32) :603-607. [ 16] Amsl er C,Doser M,Ant onelli M ,et al.Revi ew of particl e physics [J ].Phys Lett B,2008(667) :830.2t o an orbitally ecited**state:0 12 536+[ 10] Isgur N,Wi se M.Sp ectroscopy tith heavy quark symmetry [J] .Phys Rev Lett ,1 991 (66) :1130 -1133.12536+*+and angular decom position of12536+*+0[J] .Phys Rev1[ J] .Eur Phys J C,2009,60:403-411. and225362573in the C QM model [ J].C hi n Phys[ 责任编辑杨屹]。

Hadronic B Decays

Hadronic B Decays

a r X i v :h ep-ph/982217v12Fe b1998Hadronic B DecayT.E.Browder Physics Department,University of Hawaii at Manoa,Honolulu,HI,96822,USA We review recent experimental results from CLEO and LEP experiments on hadronic decays of hadrons containing b quarks 1.We discuss charm counting and the semileptonic branching fraction in B decays and the color suppressed amplitude in B decay.1Charm counting and the semileptonic branching fraction A complete picture of inclusive B decay is beginning to emerge from recent measurements by CLEO II and the LEP experiments.1These measurements can be used to address the question of whether the hadronic decay of the B meson is compatible with its semileptonic branching fraction.Three facts emerge from the experimental examination of inclusive B decay at the Υ(4S ):n c =1.10±0.05(1)where n c is the number of charm quarks produced per B decay from recent CLEO II results 3and using B (D 0→K −π+)=(3.91±0.08±0.17%).4B (B →Xℓν)=10.23±0.39%.(2)This value is the average of the CLEO and ARGUS model independent mea-surements using dileptons.2We note that the value used by the LEP Elec-troweak Working Group for B (b →Xℓν)=11.16±0.20%is only marginally consistent with the Υ(4S )results.The third quantity,B (b →c ¯c s ),is calculated from the inclusive B →D s ,B →(c ¯c )X ,and B →Ξc branching fractions,and isB (b →c ¯c s )=14.0±2.8%.(3)The above value is determined assuming no contribution from B →D decays,an assumption which can be checked using data and is discussed in further detail below.In the parton model,it is difficult to accomodate a low semileptonic branching fraction unless the hadronic width of the B meson is increased.5The explanations for the semileptonic branching fraction which have been pro-posed can be distinguished by expressing the hadronic width of the B meson1Figure1:The value of n c versus the semileptonic B branching fraction using experimental values fromΥ(4S)data.The measurements from LEP experiments are discussed in the text. in terms of three components:Γhadronic(b)=Γ(b→c¯c s)+Γ(b→c¯u d)+Γ(b→s g).If the semileptonic branching fraction is to be reduced to the observed level, then one of the components must be enhanced.A large number of explanations for the low semileptonic branching fraction and charm yield have been proposed in the last few years.These explanations can be logically classified as follows:1.An enhancement of b→c¯c s due to large QCD corrections or the break-down of local duality.A variety of possible experimental signatures have been suggested.6,7,8,9,10,112.An enhancement of b→c¯u d due to non-perturbative effects.12,13,14,153.An enhancement of b→s g or b→d g from New Physics.16,17,184.The cocktail solution:For example,if both the b→c¯c s and the b→c¯u d mechanisms are increased,this could suffice to explain the inclusive observations.25.There might also be a systematic experimental problem in the determi-nation of either n c,B(b→c¯c s),or B(B→Xℓν).19Inclusive charm particle-lepton correlations can be used to probe the B decay mechanism and give further insight into this problem.The correlation of the lepton charge and the charm particleflavor distinguishes between different production mechanisms.High momentum leptons,pℓ>1.4GeV,are used to tag theflavor of the B.The angular correlation between the meson and the lepton is then employed to select events in which the tagging lepton and meson are from different B s.When the lepton and meson originate from the same B meson they tend to be back to back,whereas when the meson and leptons come from different B mesons they are uncorrelated.After this separation is performed,wrong sign charge correlations from B−¯B mixing must be subtracted.Since the mixing rate is well measured,this correction is straightforward and has little uncertainty.This technique has been applied previously to several types of correlations of charmed hadrons and leptons.For example,the sign ofΛc-lepton correla-tions distinguishes between the b→c¯u d and the b→c¯c s mechanisms.It was found that the b→c¯c s mechanism comprises19±13±4%of B→Λc decays20.This observation effectively ruled out one proposed source of addi-tional b→c¯c s decays.6Similiarly,examination of the sign of D s-lepton corre-lations shows that most D s mesons originate from b→c¯c s rather than from b→c¯u d with s¯s quark popping at the lower vertex.In this case,it was found that17.2±7.9±2.6%of D s mesons originate from the latter mechanism21.The same experimental technique has now been applied to D-lepton correlations.The conventional b→c¯u d mechanism which was previously assumed to be responsible for all D production in B decay will give Dℓ−correlations.If a significant fraction of D mesons arise from b→c¯c s with light quark popping at the upper vertex as proposed by Buchalla,Dunietz,and Yamamoto significant wrong sign Dℓ+correlations will be observed.7Final results of this study have been presented by CLEO II whichfinds,Γ(B→D X)/Γ(B→¯DX)=0.100±0.026±0.016.22This implies a new contribution to the b→c¯c s widthB(B→DX)=7.9±2.2%ALEPHfinds evidence for semi-inclusive B→D0¯D0X+D0D∓X decays with a somewhat larger branching fraction of12.8±2.7±2.6%.23DELPHI reports the observation of B→D∗+D∗−X decays with a branching fraction of1.0±0.2±0.3%.29Additional and quite compelling evidence that these signals are due to B→D(∗)¯D(∗)K(∗)decays has been presented by CLEO24,which has3observed fully reconstructed signals in exclusive modes:B(¯B0→D∗+¯D0K−)=0.45+0.25±0.08%−0.19±0.12%B(B−→D∗0¯D0K−)=0.54+0.33−0.24B(¯B0→D∗+¯D∗0K−)=1.30+0.61±0.27%−0.47±0.36%B(B−→D∗0¯D∗0K−)=1.45+0.78−0.58The rates observed by ALEPH and DELPHI are consistent with the rate of wrong sign D-lepton correlation reported by CLEO.22It is possible that these channels are actually resonant modes of the form B→DD∗∗s decays, where the p-wave D∗∗s or radially excited D′s state decays to¯D(∗)¯K.30A directX decay: search by CLEO has ruled out the possibility of narrow B→D s1B(B→D+s1X)<0.95%at the90%confidence level.31There are other implications of these observations.A B decay mechanism with a O(10%)branching fraction has been found which was not previously included in the CLEO or LEP Monte Carlo simulations of B decay.This may have consequences for other analyses of particle-lepton correlations.For exam-ple,CLEO has re-examined the model independent dilepton measurement of B(B→Xℓν).Due to the lepton threshold of0.6GeV and the soft spectrum of leptons,the CLEO measurement is fortuitously unchanged.It is also impor-tant to check the size of this effect in LEP measurements of the B semileptonic branching fraction using dileptons.We can now recalculate22B(b→c¯c s)=21.9±3.7%which would suggest a somewhat larger charm yield(n c∼1.22).This supports hypothesis(1),large QCD corrections in b→c¯c s BUT the charm yield n c as computed in the usual way is unchanged.Moreover,the contribution of B→D¯DKX decays was properly accounted for in the computation of n c. This suggests that the experimental situation is still problematic.One possibility that must be addressed is whether there could be an error in the normalization B(D0→K−π+).19This branching fraction calibrates the inclusive measurements of B→D0,B→D+,and B→D s rates as well as n c.Historically,aflaw in B(D0→K−π+)has been the culprit in other consistency problems with charm counting.The most precise measurements of B(D0→K−π+)are obtained byfitting the p T spectrum of soft pions in charm jets.An examination of Table1shows that these measurements are statistically precise but systematics dominated.The Particle Data Group4Table1:Recent Measurements of B(D0→K−π+)Experiment Measurement(%)B(B→D∗ℓν)fullwhere the decay in the numerator is observed without reconstructing the D decay gives a measurement of the calibration branching fraction with very dif-ferent systematic effects.In CLEO data,this method gives B(D0→K−π+)= 3.81±0.15±0.16%.26Another quantity which can be examined isB(B→DXℓν)=4.0±0.4B(b→cℓν)The value of B(b→c¯u d)can be checked using measurements of inclusive B decay from theΥ(4S)experiments:B(b→c¯u d)exp=B(B→DX)+B(B→Λc X)−B(B→DD s X)−2B(B→D¯DKX)−2.25B(b→cℓν)=(0.871±0.035)+(0.036±0.020)5−(0.10±0.027)−2×(0.079±0.022)−(0.236±0.010)B(b→c¯u d)exp=0.41±0.07In the above calculation,a small correction(0.004)has been applied to the B→Λc X branching fraction to account for b→c¯c s production in baryonic B decay.The factor of2.25accounts for phase space suppression in b→cτνdecay.The experimental result is consistent with the theoretical expectation,B(b→c¯u d)theory=0.42±0.04However,the present experimental accuracy is not quite sufficient to completely rule out b→c¯u d as the cause of the discrepancy.We note that ALEPH and OPAL have recently reported a value for n c in Z→b¯b decay.27,28ALEPHfinds n Z c=1.230±0.036±0.038±0.053.The rate of D s andΛc production is significantly higher than what is observed at theΥ(4S).It is not clear whether the quantity being measured is the same as n c at theΥ(4S),which would be the case if the spectator model holds and if the contribution from the other b-hadrons,B s andΛb,could be neglected. OPAL reports a somewhat lower value of n c=1.10±0.045±0.060±0.037 after correcting for unseen charmonium states.OPAL assumes no contribution fromΞc production while ALEPH includes a very large contribution from this source.The contribution of B→baryon decays to charm counting as well as theΛc,Ξc branching fraction scales are still poorly measured and definitely merit further investigation.2Exclusive Hadronic DecaysRecent progress has been made on partial reconstruction of hadronic B decays.32 For example,the decay chainB→D∗πf,D∗→(D)πscan be measured without reconstructing the D meson.In this reaction,there arefive particles(B,D∗,D,πs,πf)withfive4-momenta give20unknowns. The4-momenta of theπs,πf are measured which gives8constraints.The B,D,D∗masses and beam energy are known and gives4constraints.Then energy-momentum conservation in the B→D∗πf and D∗→Dπs decay chains gives8additional constraints.Thus,one can perform a20−8−8−4=0C fit.Two variables are used to extract the signal:cosΘ∗D,the angle between the pπs and p B in the D∗rest frame,and cosθ∗B,the angle between the pπF and P B in the B rest frame.6This method gives the most precise measurements of two exclusive branch-ing fractions:B(¯B0→D∗+π−)=(2.81±0.11±0.21±0.05)×10−3B(B−→D∗0π−)=(4.81±0.42±0.40±0.21)×10−3.The second systematic error is from the D∗branching fractions.A similiar partial reconstruction analysis has been applied to the B−→D∗∗(2420)0π−and B−→D∗∗(2460)0π−decay modes.33The event yields fromfitting these distributions are substantial:281±56D∗∗(2420),165±61D∗∗(2460),although there are also large background subtractions.These correspond to branching fractions,B(B−→D1(2420)π−)=(1.17±0.24±0.16±0.03)×10−3B(B−→D∗2(2460)π−)=(2.1±0.8±0.3±0.05)×10−3The former mode was previously observed using a similiar technique by AR-GUS.The latter mode is observed for thefirst time by CLEO.As noted by J.Gronberg and H.Nelson,the partial reconstruction technique may also be useful for observing a time dependent CP asymmetry in¯B0→D∗+π−.2.1The sign of the color suppressed amplitude and lifetimesThe sign and magnitude of the color suppressed amplitude can be determined using several classes of decay modes in charm and bottom mesons.The nu-merical determination assumes factorization and uses form factors from various phenemonological models.For D decay one uses exclusive modes such as D→Kπ,D→Kρetc., and obtainsa1=1.10±0.03,a2=−0.50±0.03The destructive interference observed in two body D+decays leads to the D+-D0lifetime difference.1For B decay,one canfind the magnitude of|a1|from the branching frac-tions for the decay modes¯B0→D(∗)+π−,¯B0→D+(∗)ρ−.This gives|a1|= 1.06±0.03±0.06.One can also extract|a1|from measurements of branching34.The magnitude|a2|can be determined from the fractions B→D+,(0)D(∗)−sbranching fractions for B→ψK(∗).This yields|a2|=0.23±0.01±0.01.The value of a2/a1can be found by comparing B−decays where both the external and spectator diagrams contribute to¯B0decays where only the7external spectator decays contribute.For example,the model of Neubert et al.predicts the following ratios:B(B−→D0π−)R1==(1+0.66a2/a1)2(5)B(¯B0→D+ρ−)B(B−→D∗0π−)R3=≈(1+0.75a2/a1)2(7)B(¯B0→D∗+ρ−)Improved measurements of these exclusive branching fractions with better background subtraction and additional data have recently been presented by CLEO(see Fig.2).34Using the latest branching fractions,,a2/a1=0.21±0.03±0.03+0.13−0.12where the third error is a conservative estimte of the uncertainty(∼20%) in the relative production of B+and B0mesons at theΥ(4S).There are a number of additional theoretical uncertainties which could significantly modify the magnitude of a2/a1but not its sign.For example,the ratios of some heavy-to-heavy to heavy-to-light form factors is needed(e.g.B→π/B→D). Comparing the value of a2/a1determined using form factors from the model of Neubert et al.with the value obtained using form factors from the model of Deandrea et al.shows that this uncertainty is small.The effect of including the B→V V mode for which the form factors have somewhat larger theoretical uncertainties is also small.It is important to remember that the determination of a2/a1also assumes the factorization hypothesis.The large error on the relative production of B+and B0mesons is the most significant experimental uncertainty in the determination of a2/a1.The value of a2/a1determined above is consistent with the ratio|a2|/|a1| where|a2|is computed from B→ψmodes and|a1|is computed from¯B0→D(∗)π,D(∗)ρmodes.Although the result is surprisingly different from what is observed in hadronic charm decay(where the interference is destructive)and from what is expected in the1/N c expansion,Buras claims that the result can be accomodated in NLO QCD calculations.35If the constructive interference which is observed in these B+decays is present in all B+decays,then we expect a significant B+-B0lifetime differ-ence(τ+B<τB0),of order15−20%,in a direction opposite to the D+−D08Figure2:The beam constrained mass distributions of exclusive hadronic decay modes used in the determination of a2/a1.The mass plots have been continuum subtracted.The shaded histogram is a high statistics simulation of B¯B backgrounds.lifetime difference.This scenario is only marginally consistent with experimen-tal measurements of lifetimes;the world average computed by the LEP lifetime working group in August1997isτB+/τB0=1.07±0.04It is possible that the hadronic B+decays that have been observed to date are atypical.The remaining higher multiplicity B+decays could have destructive interference or no interference.37Or perhaps there is a mechanism which also enhances the¯B0width to compensate for the increase in the B+ width and which maintains the B+/B0lifetime ratio near unity.Such a mech-anism would be relevant to the charm counting and semileptonic branching fraction problem.In either case,there will be experimental consequences in9the pattern of hadronic B branching fractions.38Experimentally one can com-pare other B−and B0decays including D∗∗π−and D∗∗ρ−as well decays to D(∗)a−1,a−1→ρ0π−and D(∗)b−1,b−1→ωπ−to check thefirst possibility.3ConclusionThe charm counting and semileptonic B branching fraction problem persists. Three possible solutions are still experimentially viable.These are(1)a sys-tematic problem in the D branching fraction,(2)an enhancement of b→c¯u d or(3)an enhancement of b→sg.Any proposed solution must also satisfy the experimental constraints on B(b→c¯c s)and B(b→c¯u d).The sign of a2/a1is found to be positive in the low multiplicity hadronic B decays that have been observed so far.This indicates constructive interference in hadronic B+decay.It will be interesting to see whether this pattern persists as higher multiplicity B decay modes are measured.References1.T.E.Browder,K.Honscheid,and D.Pedrini,UH-515-848-96,OHSTPY-HEP-E-96-006,1996edition of Annual Reviews of Nuclear and Particle Science.2.T.E.Browder and K.Honscheid,Progress in Nuclear and ParticlePhysics,Vol.35,ed.K.Faessler,p.81-220(1995).3.L.Gibbons et al.(CLEO Collaboration),Phys.Rev.D56,3783(1997).4.D.Akerib et al.(CLEO Collaboration),Phys.Rev.Lett.71,3070(1993).5.I.I.Bigi,B.Blok,M.Shifman,A.Vainshtein,Phys.Lett.B323,408(1994).6.A.Falk,M.Wise,I.Dunietz,Phys.Rev.D51,1183(1995);Phys.Lett.B73,1075(1995).7.M.Buchalla,I.Dunietz,H.Yamamoto,Phys.Lett.B364,188(1995).8.E.Bagan,P.Ball,V.Braun,P.Gosdzinsky,Nucl.Phys.B432,3(1994);Phys.Lett.B342,362(1995)and Erratum;Phys.Lett.B374, 363(1996).9.W.F.Palmer and B.Stech,Phys.Rev.D48,4174(1993).10.I.Dunietz,J.Incandela,F.D.Snider,and H.Yamamoto,hep-ph/9612421Eur.Phys.J.C1,211(1998).11.A.Lenz,U.Nierste,and G.Ostermaier,hep-ph/9706501,Phys.Rev.D56,7228(1997).12.K.Honscheid,K.R.Schubert,and R.Waldi,Z.Phys.C63,117(1994).1013.M.Neubert and C.T.Sachrajda,Nucl.Phys.B483,339(1997).Alsosee the recent review,M.Neubert,hep-ph/9801269to appear in the Proceedings of the1997Jerusalem Europhysics Conference.14.G.Altarelli,G.Martinelli,S.Petrarca,and F.Rapuano,Phys.Lett.B382,409(1996).15.I.L.Grach,I.M.Narodetskii,G.Simula,and K.A.Ter-Martirosyan,hep-ph/9603239.16.A.L.Kagan,Phys.Rev.D51,6196(1995);A.L.Kagan and J.Raths-man,hep-ph/9701300.17.L.Roszkowski,M.Shifman,Phys.Rev.D53,404(1996).18.B.Grzadowski and W.S.Hou,Phys.Lett.B272,383(1992).19.I.Dunietz,FERMILAB-PUB-96/104-T,hep-ph/9606247.20.R.Ammar et al.(CLEO Collaboration),Phys.Rev.D55,13(1997);R.Barish et al.(CLEO Collaboration),Phys.Rev.Lett.79,3599(1997).21.X.Fu et al.(CLEO Collaboration),CLEO-CONF95-11.22.T.E.Coan et al.(CLEO Collaboration),CLNS-97-1516,to appear inPhys.Rev.Lett.23.ALEPH Collaboration,ICHEP96PA05-06024.CLEO Collaboration,CLEO CONF97-26.25.R.Barate et al.(ALEPH Collaboration),Phys.Lett.B405,191(1997).26.M.Artuso et al.(CLEO Collaboration),CLNS97/1517,submitted toPhys.Rev.Lett.27.D.Buskulic et al.(ALEPH Collaboration),Phys.Lett.B388,648(1996).28.G.Alexander et al.(OPAL Collaboration),Z.Phys.C72,1(1996).29.DELPHI Collaboration,ICHEP96PA01-108,DELPHI96-97CONF26.DELPHI has also given a preliminary result on the rate of double charm production using inclusive vertexing,r2C=16.6±6%,with D s present in84±16%of the events.See EPS448,contributed paper for the1997 Jerusalem EPS conference.30.B.Blok,M.Shifman,and N.Uraltsev,Nucl.Phys.B494,237(1997).31.M.Bishai et al.(CLEO Collaboration),Cornell preprint CLNS97/1513.32.G.Brandenburg et al.(CLEO Collaboration),CLNS97/1485,to appearin Phys.Rev.Lett.33.J.Gronberg et al.(CLEO Collaboration),CLEO CONF96-25.34.J.Rodriguez,hep-ex/9801028,contribution to the Proceedings IInd In-ternational Conference on B Physics and CP Violation,Honolulu,HI 1997(World Scientific).35.A.J.Buras,Nucl.Phys.B434,606(1995).36.B.Stech,contribution to the Proceedings IInd International Conference11on B Physics and CP Violation,Honolulu,HI1997(World Scientific).37.M.Neubert,hep-ph/9707368to appear in the Proceedings of the Mont-pellier QCD97Conference.38.F.E.Close and H.J.Lipkin,Phys.Lett.B372,306(1996).12。

decoy effect 英语解释

decoy effect 英语解释

decoy effect 英语解释全文共10篇示例,供读者参考篇1Hey guys, do you know what the "decoy effect" is? It's like when you go to the movie theater with your friends and there's a really cool action movie and a romantic comedy playing at the same time. You can't decide which one to watch, right? But then, the theater offers a combo deal where you can get a large popcorn and drink if you choose the action movie. Suddenly, the action movie seems like a better deal because of the extra stuff you get with it. That's the decoy effect in action!Basically, the decoy effect is when a third option is introduced to make one of the original options look more attractive. It's like someone trying to trick you into choosing a certain option by making it seem like the best choice. It happens a lot in marketing and advertising, where companies use this sneaky tactic to get you to buy their product.For example, imagine you're at a store looking at two jackets. One is really nice but expensive, and the other is okay but cheaper. Then, the salesperson shows you a third jacket that'snot as nice as the first one but costs the same. Suddenly, the first jacket seems like a better deal because you get more for your money. That's the decoy effect at work!So, next time you're making a decision and you see a third option that seems too good to be true, watch out for the decoy effect. Don't let anyone trick you into making a choice that's not really the best for you. Stay smart and make decisions based on what you really want, not what someone else wants you to choose!篇2Hey guys, have you ever heard of something called the decoy effect? It's like a sneaky little trick that companies use to make you choose what they want you to choose. Let me explain it to you in a simple way.So, imagine you are at the store and you see two options for a toy you want to buy. One is cheaper but smaller, and the other is more expensive but bigger. You're not sure which one to pick, right? But then the store adds a third option, which is even more expensive than the second one and about the same size.Now, because you see this third option, your brain starts comparing all three options. The cheaper, smaller one suddenlydoesn't seem like such a good deal anymore compared to the bigger one. And the more expensive, same size one doesn't seem worth it because there's an even bigger one for just a little bit more money.So, in the end, you end up choosing the second, more expensive option, even though if the third option wasn't there, you might have chosen the cheaper one. That's the decoy effect! It tricks you into thinking you're making a smart choice, but really, the company is just making you spend more money.So next time you're at the store and see a bunch of options, remember to think carefully and not let the decoy effect fool you!篇3Decoy effect is a funny word, right? But do you know what it means? Let me explain it to you in a simple way.Imagine you are in a store trying to decide between two toys. One toy is cheaper and smaller, while the other one is more expensive but bigger. It's a tough decision, right? But then, suddenly, the store manager introduces a third toy that is similar to the expensive one but slightly cheaper. This is the decoy toy.What happens now? Most likely, you will choose the expensive toy because it seems like a better deal compared to the decoy. That's the decoy effect in action! The decoy toy is there to make the expensive toy look like a better option, even though it might not be the best choice for you.This marketing trick is used to influence yourdecision-making process without you even realizing it. It can be found in advertisements, sales promotions, and even in everyday situations.So next time you are faced with a difficult decision, make sure to watch out for the decoy effect. Don't let it trick you into making a choice that might not be the best for you. Stay smart and think carefully before making a decision!篇4Decoy effect is a tricky little thing that can make you change your mind without even realizing it! Let me explain it in a super fun and easy way.So, imagine you're at the store trying to decide between two products. One product is super expensive but really good quality, while the other product is cheaper but not as good. You're having a tough time deciding which one to buy.But then, the sneaky decoy effect comes into play! The store puts a third product right next to the expensive one that is slightly better than the cheap one, but not as good as the expensive one. This third product is called the decoy.Now, because of the decoy effect, you start thinking that the expensive product is actually a better deal compared to the decoy. Even though the expensive product is still pricey, it seems like a way better option than the decoy. And just like that, you end up buying the expensive product without even realizing how the decoy tricked you!Pretty cool, right? Decoy effect is all about making choices seem easier by throwing in a little decoy to confuse you. So next time you're at the store, watch out for those sneaky decoys trying to trick you into buying something you didn't plan on getting. Stay smart and don't let the decoy effect fool you!篇5Hey guys, have you ever heard of something called the decoy effect? It's a pretty cool concept that can help us make better choices when we're deciding on things like what to buy or where to go.So, what exactly is the decoy effect? Well, it's all about how our brains can be tricked into thinking something is a better deal just because there's another option that's not as good. Let me give you an example to explain.Let's say you're trying to decide between two burgers at a fast food restaurant. One burger is a regular size for $5, and the other burger is a jumbo size for $10. You're not sure which one to get because the jumbo size is more expensive, but it's also bigger.Then, the cashier tells you about a special deal where you can get a super jumbo size burger for $15. Now, the jumbo size burger doesn't seem as expensive compared to the super jumbo size, so you might end up choosing the jumbo size instead of the regular size.That's the decoy effect in action! The super jumbo size burger was the decoy that made the jumbo size burger seem like a better deal. Pretty cool, right?So next time you're trying to make a decision, keep the decoy effect in mind. It might just help you make a smarter choice!篇6Decoy effect is a very funny and interesting thing, I think you will like it too! Let me explain to you what it is in a simple way.Decoy effect happens when a person changes their preference between two options when a third, less attractive option is added. For example, imagine you are trying to decide between two ice cream flavors, chocolate and vanilla. You can't decide which one you want, so the ice cream shop owner adds a third option, a not-so-great flavor like spinach. Suddenly, you start to think that chocolate is the best choice, even though you were originally torn between chocolate and vanilla.The reason why this happens is because the decoy option (spinach ice cream) makes the other options (chocolate and vanilla) look better in comparison. It tricks your brain into thinking that one of the original choices is the best option, even though you may not have thought so before.Decoy effect is often used in marketing to influence consumer choices. Companies will sometimes add a decoy product to make their other products seem more appealing. It's like a sneaky trick to make you buy something you might not have chosen otherwise.So next time you're trying to make a decision, watch out for the decoy effect! It might just be playing tricks on your mind.篇7The decoy effect is when you make a choice based on how it compares to another option, instead of just picking what you really want. It's like when you see two toys at the store, and you can't decide which one to buy. But then you see a third toy that's not as good as the other two, and suddenly the first toy looks much better in comparison.This trick can be used by sneaky marketers to make us buy things we might not actually want. For example, let's say you're trying to pick between a small and a medium popcorn at the movies. The small popcorn costs $5 and the medium popcorn costs $7. You're about to go with the small one, but then you see a large popcorn for $8. Suddenly, the medium popcorn seems like the best deal, even though you didn't really want it in the first place.So, next time you're making a decision, make sure to think carefully about what you really want, and don't let the decoy effect steer you in the wrong direction!篇8Decoy effect is a fancy term that means when we have too many choices, we might end up picking something that we didn't really want just because it looks better compared to the other options. It's like when you have to choose between a cookie and a carrot for a snack, but then someone throws in a chocolate bar as a decoy. Suddenly, the carrot doesn't seem so bad anymore and you might end up picking it over the cookie because the chocolate bar made it look less appealing.This decoy effect happens because our brains can get confused when there are too many options to choose from. We start comparing everything to each other instead of just focusing on what we really want. This is why companies use decoys in their marketing strategies to make us more likely to pick the option that they want us to choose.For example, let's say you're at a store trying to decide between two pairs of shoes. One pair is plain and boring, but the other pair is flashy and expensive. You can't decide which one to buy until the salesperson shows you a third pair that is way more expensive than the flashy pair. Suddenly, the flashy pair doesn't seem so expensive anymore and you end up buying it, even though you originally didn't want it.So next time you're faced with too many choices, remember to take a step back and think about what you really want. Don't let the decoy effect trick you into picking something you don't truly love!篇9Hey guys, do you know what the decoy effect is? Let me explain it to you in a simple way!The decoy effect is when someone adds a third option to make the other two options look more appealing. It's like when you're choosing between two snacks, let's say chips and cookies. You can't decide which one to pick, but then someone offers you a third option like ice cream. Suddenly, chips or cookies seem like a better choice compared to the ice cream.This happens because the third option, or decoy, makes the original choices seem more attractive. It's like a trick to influence your decision-making without you even realizing it.For example, let's say you're choosing between a small pack of chips for $1 and a large pack for $2. You're having a hard time deciding which one to get. But then, someone introduces a medium pack for $1.50 as a decoy. Now, the large pack seems like a better deal because it's only 50 cents more than themedium pack, even though it's actually double the size of the small pack.So next time you're facing a tough decision, watch out for the decoy effect! It's a sneaky tactic that can make you choose something you didn't originally intend to. Stay sharp and make sure to think carefully before making your choice!篇10Hey guys! Today I'm going to explain to you a cool trick called the decoy effect. It's a super sneaky way that companies use to make you choose what they want you to choose. Let me break it down for you in simple terms.Imagine you're at the store trying to decide between two options: a small popcorn for $3 or a large popcorn for $7. You might think the small popcorn is a better deal, right? But then the store adds a third option: a medium popcorn for $6. Now, the large popcorn seems like a way better deal compared to the medium one, even though it's more expensive.That's the decoy effect in action! By adding a third option that makes one of the other options look better, companies can control your decision-making without you even realizing it. Sneaky, right?So next time you're making a choice, remember to watch out for the decoy effect. Don't let companies trick you into picking what they want you to pick. Stay smart and make the best decision for yourself. See you next time!。

The Delta(1232) at RHIC

The Delta(1232) at RHIC

a r X i v :n u c l -t h /0409026v 3 26 J a n 2005The ∆(1232)at RHICHendrik van Hees †and Ralf RappCyclotron Institute and Physics Department,Texas A&M University,CollegeStation,Texas 77843-3366E-mail:hees@,rapp@Abstract.We investigate properties of the ∆(1232)and nucleon spectral functions at finite temperature and baryon density within a hadronic model.The medium modifications of the ∆consist of a renormalization of its pion-nucleon cloud and resonant π∆scattering.Underlying coupling constants and form factors are determined by the elastic πN scattering phase shift in the isobar channel,as well as empirical partial decay widths of excited baryon resonances.For cold nuclear matter the model provides reasonable agreement with photoabsorption data on nuclei in the ∆-resonance region.In hot hadronic matter typical for late stages of central Au -Au collisions at RHIC we find the ∆-spectral function to be broadened by ∼65MeV together with a slight upward mass shift of 5-10MeV,in qualitative agreement with preliminary data from the STAR collaboration.PACS numbers:25.75.-q,21.65.+f,12.40.-y 1.Introduction At low energies,the main features of Quantum Chromodynamics (QCD)are confinement and the spontaneous breaking of chiral symmetry.The former implies that we onlyobserve hadrons (rather than quarks and gluons),while the latter is believed to govern the (low-lying)hadron-mass ttice-QCD calculations predict a phase transition from nuclear/hadronic matter to a deconfined,chirally symmetric state [1]at temperatures T ≃150-200MeV,dictating a major reshaping of the hadronic spectrum in terms of degenerate chiral partners.The observation of such medium modifications is therefore an important objective in relativistic heavy-ion collision rge theoretical efforts have been devoted to evaluate in-medium properties of vector mesons which are accessible experimentally through dilepton invariant-mass spectra [2].In most of these studies,baryon-driven effects are essential to account for the dilepton enhancement observed in P b -Au collisions at the SPS below the free ρmass [3,4].Thus,changes in the baryon properties themselves deserve further investigation.In addition,recent measurements of πN invariant-mass spectra in nuclear collisions [5,6,7]may open a more direct window on modifications of the ∆(1232).†presenting authorTo date,in-medium properties of the∆have mostly been assessed in cold nuclear matter[8,9,10,11,12,13],with few exceptions[14,15].In this article we will discuss properties of the nucleon and the∆(1232)in a hot and dense medium[16],employing a finite-temperaturefield theory framework based on hadronic interactions.Both direct interactions of the∆with thermal pions as well as modifications of its freeπN self-energy(incuding vertex corrections)will be accounted for.The article is organised as follows.In Sec.2we introduce the hadronic Lagrangian and outline how its parameters are determined using scattering and decay data in vacuum.In Sec.3we compute in-medium self-energies for nucleon and∆.In Sec.4we first check our model against photoabsorption cross sections on the nucleon and nuclei, followed by a discussion of the spectral functions under conditions expected to occur in high-energy heavy-ion collisions.We close with a summary and outlook.2.Hadronic Interaction Lagrangians in VacuumThe basic element of our analysis are3-point interaction vertices involving a pion and two baryons,πB1B2.Baryonfields are treated using relativistic kinematics, E2B(p)=m2B+p2,but neglecting anti-particle contributions and restricting Rarita-Schwinger spinors to their non-relativistic spin-3/2components.Pions are treated fully relativisticly(ω2π(k)=m2π+k2).The resulting interaction Lagrangians are thus of the usual nonrelativistic form involving(iso-)spin-1/2Pauli matrices,1/2to3/2transition operators,as well as spin-3/2matrices[9,17,18,19,20],see Ref.[16]for explicit expressions.To simulatefinite-size effects we employed hadronic form factors with auniform cutoffparameterΛπB1B2=500MeV(except forπNN andπN∆vertices).The imaginary part of the vacuum self-energy for the∆→Nπdecay takes the formImΣ(Nπ)∆(M)=−f2πN∆MF2(k cm)Θ(M−m N−mπ)(1)with k cm the center-of-mass decay momentum(an extra factor m N/E N(k cm)has been introduced in Eq.(1)to restore Lorentz-invariance),and the real part is determined via a dispersion relation.With a bare mass of m(0)∆=1302MeV,a form-factor cutoffΛπN∆=290MeV and a coupling constant fπN∆=3.2we obtain a satisfactoryfit to the experimentalδ33-phase shift[21,15,22].To account for resonant interactions of the∆with pions we identified the relevant excited baryons via their decay branchings B→π∆.The pertinent coupling constants have been determined assuming the lowest partial wave to be dominant(unless otherwise specified)[23],using pole masses and(total)widths of the resonances.The same procedure has been adopted for resonantπN interactions(which are used to evaluate finite-temperature effects on the nucleon).The resonances included are N(1440), N(1520),N(1535),∆(1600),∆(1620)and∆(1700).The total widthsfiguring into the resonance propagators have been obtained by scaling up the partialπN andπ∆channels,and vacuum renormalizations of the masses have been neglected.Figure 1.Diagrammatic representation ofπN∆vertex corrections(dashed lines:pion,solid lines:nucleon,double solid lines:∆(1232));a bubble with labelαcorresponds to a Lindhard functionΠα(α∈{1,2})attached to baryon lines withpertinent Migdal parameters,i.e.,g′12forα=1and g′22forα=2.Finally,the evaluation of the photoabsorption cross section requires aγN∆vertex for which we employ the magnetic coupling[10]LγN∆=−fγN∆3m2π d4lE N(l)k2F2π(|k|)(3)×{[Θ(k0)+σ(k0)fπ(|k0|)]Aπ(k)G N(l)−f N(l0)A N(l)Gπ(k)}, where k=p−l is the pion4-momentum.The thermal distributions are defined by f N(l0)=f fermi(l0−µN,T)and fπ(|k0|)=f bose(|k0|,T)exp(µπ/T),with f fermi and f bose the Fermi and Bose functions,respectively.For simplicity,finite pion-chemical potentials,µπ>0,are treated in the Boltzmann limit to avoid Bose singularities in the presence of broad pion spectral functions(a more detailed discussion of this point will be given elsewhere).In Eq.(3)positive energies k0>0correspond to outgoing pions,i.e.,∆→πN decays,while k0<0accounts for scattering with(incoming)pions from the heat bath.The key quantities in Eq.(3)are the in-medium pion and nucleon propagators, Gπand G N,and pertinent spectral functions A N=−2Im G N and Aπ=−2Im Gπ.The modifications of the pion propagator are implemetend via a self-energy,arising from two parts:(i)interactions with thermal pions modeled by a four-point interaction in second order(“sunset diagram”)[24],with a coupling constant adjusted to qualitatively reproduce the results of more elaborateππinteractions in s,p,and d-wave[25]; (ii)interactions with baryons via p-wave nucleon-and∆-hole excitations atfinite temperature,described by standard Lindhard functions,supplemented by short-range correlations encoded in Migdal parameters[26](our default values are g′NN=0.8, g′N∆=g′∆∆=0.33).These excitations induce a softening of the pion-dispersion relation which can even lead to a(near)vanishing of the pion group velocity atfinite momentum, inducing an artificial threshold enhancement in the∆self-energy[14].This feature isk γ[GeV]σγ/Ak γ[GeV]σγ/A [µb ]Figure 2.Photoabsorption cross sections on nucleons (left panel,data from [29])andnuclei (right panel;data from [30,31,32,33,34,35]).remedied by accounting for appropriate vertex corrections,which in the case of ρ→ππdecays are required to maintain a conserved vector current in the medium [27,28].Here we apply the same technique to the πN ∆vertex,cf.Fig.1.The nucleon self-energy is calculated in terms of resonant interactions with thermal pions,at the same level of approximation as the pion Lindhard functions (i.e.,neglecting offenergy-shell dependencies in the spectral functions of the excited baryons).The second contribution to the in-medium ∆self-energy consists of resonant π∆→B interactions,corresponding to the finite-temperature part of πB loops.The resulting self-energy expressions are similar to Eq.(3)but with only the scattering part (k 0<0)retained (note that this is consistent with our description of the ∆(1232)in vacuum where πB loops are not included).4.In-medium Spectral Properties of the ∆4.1.Photoabsorption on Nucleons and NucleiValuable constraints on the ∆spectral function in cold nuclear matter can be obtained from photoabsorption cross sections on nuclei.To leading order in αem ,the latter can be related to the photon self-energy (electromagnetic current correlator),Πγ,by [18]σabs γA k 12ImΠγ(k 0=k ),Πγ=1M N [GeV]-I m G N [G e V -1]k 0 [GeV]-I m G π [G e V -2]Figure 3.Left panel:nucleon spectral function at RHIC (solid line T =180MeV,̺N =0.68̺0;dashed line:T =100MeV,̺N =0.12̺0).Right panel:pion spectralfunction for cold nuclear matter (dashed line:T =0,̺N =0.68̺0)and at RHIC (solidline:T =180MeV,̺N =0.68̺0);the dash-dotted line corresponds to switching offbaryonic effects leaving only the 4-point interactions with thermal pions.Migdal parameters or the nuclear density is very moderate.Given our rather simple approach for the cross section,the agreement with data is fair.The discrepancies at low energy (which seem to be present already for the nucleon)could be due to interference with the background,collective effects involving direct NN −1-excitations,or transverse contributions with in-medium ρmesons in the vertex corrections of the ∆decay.At higher energies,further resonances in the photon self-energy need to be included.4.2.Hot Hadronic MatterLet us finally turn to the results for hot hadronic matter.In heavy-ion collisions one expects a hierarchy of chemical freeze-out (determining the ratios of stable hadrons)and thermal freeze-out (where elastic rescattering ceases).The former is characterized by a temperature T chem and a common baryon chemical potential µB .Thermal freezeout occurs at lower T fo ≃100MeV,which requires the build-up of additional chemical potentials for pions,kaons,etc.[36],to conserve the observed hadron ratios,including relative chemical equilibrium for elastic processes,e.g.πN ↔∆implying µ∆=µN +µπ.Under RHIC conditions the nucleon spectral function exhibits an appreciable broadening and a moderate downward mass shift (left panel of Fig.3)due to resonant scattering offthermal pions.The pion spectral function (right panel of Fig.3)is strongly broadened mostly due to scattering offbaryons,with little mass shift.Thermal motion completely washes out the multi-level structure visible at zero temperature (dashed line).Also for the ∆spectral function (left panel in Fig.4)the main effect is a broadening with a slight repulsive mass shift.Half of the increase of the in-medium width is due to baryon-resonance excitations (slightly enhanced due to in-medium pion propagators),adding to the contribution of the πN loop.In the real part,however,the predominantly repulsive contributions from baryon resonances are counterbalanced by net attraction in the πN loop (mostly due to the pion-Bose factor).At thermal freeze-out we find1 1.1 1.2 1.3 1.4 1.5 1.6M ∆ [GeV]0510152025-I m G ∆ [G e V -1]vacuum T=100 MeV T=180 MeV 1 1.1 1.2 1.3 1.4 1.5 1.6M ∆ [GeV]0510152025-I m G ∆ [G e V -1]vacuum T=70 MeV T=160 MeV Figure 4.In-medium ∆(1232)spectral functions in heavy-ion collisions compared tofree space (dash-dotted lines);left panel:RHIC;dashed line:T =100MeV,̺N =0.12̺0(µN =531MeV),µπ=96MeV;solid line:T =180MeV,̺N =0.68̺0(µN =333MeV),µπ=0.Right:future GSI facility;dashed line:T =70MeV,̺N =0.19̺0(µN =727MeV),µπ=105MeV;solid line:T =160MeV,̺N =1.80̺0(µN =593MeV),µπ=0.a peak position at about M ≃1.226GeV and a width Γ≃177MeV,to be compared to the corresponding vacuum values of M ≃1.219GeV and Γ≃110MeV,in qualitative agreement with preliminary data from STAR [7].For more conclusive comparison a detailed treatment of the freeze-out dynamics is mandatory.In the vicinity of T c ,the ∆width increases substantially.We expect this trend to be further magnified when including transverse parts in the vertex corrections,especially in combination with in-medium ρ-mesons [2].In the right panel of Fig.4we show the ∆-spectral function in a net-baryon rich medium,representative for the future GSI facility.Whereas in dilute matter the line shape is only little affected,the resonance structure has essentially melted close to T c ,mostly due to a strong renormalization of the pion propagator at high density.5.Conclusions and outlookBased on hadronic interaction Lagrangians employed within a finite-temperature many-body approach we have evaluated medium effects on pions,nucleons and deltas.The resulting ∆-spectral functions in cold nuclear matter provide fair agreement with photoabsorption data on nuclei.In hot hadronic matter,we found a significant broadening and a slight upward peak shift of the ∆resonance,qualitatively in line with preliminary measurements of πN invariant-mass spectra at RHIC.Future improvements of the πN ∆system in vacuum include u -channel exchange diagrams as well as spin-3/2-∆∗excitations which we expect to increase the rather low form-factor cut-offused so far.We further plan to implement in-medium baryon propagators into the description of axial-/vector mesons within a chiral framework to arrive at a more consistent picture of the equation of state of hadronic matter under extreme conditions [37]and the chiralphase transition.Another interesting ramification[38]concerns the role of the medium-modified∆spectral functions in the soft photon enhancement as recently observed at the SPS[39].AcknowledgmentsOne of us(HvH)acknowledges support from the Alexander-von-Humboldt Foundation as a Feodor-Lynen Fellow.References[1]Karsch F2002Lect.Notes Phys.583209[2]Rapp R and Wambach J2000Adv.Nucl.Phys.251[3]Agakishiev G et al.(CERES/NA45)1998Phys.Lett.B422405[4]Adamova D et al.(CERES/NA45)2003Phys.Rev.Lett.91042301[5]Hjort E L et al.1997Phys.Rev.Lett.794345[6]Pelte D et al.(FOPI)1997Z.Phys.A35955[7]Fachini P2004J.Phys.G30S735[8]Horikawa Y,Thies M and Lenz F1980Nucl.Phys.A345386[9]Oset E and Salcedo L L1987Nucl.Phys.A468631[10]Ericson T and Weise W1988Pions and Nuclei(Clarendon Press,Oxford)[11]Migdal A B,Saperstein E E,Troitsky M A et al.1990Phys.Rept.192179[12]Xia L H,Siemens P J and Soyeur M1994Nucl.Phys.A578493[13]Korpa C L and Lutz M F M2004Nucl.Phys.A742305[14]Ko C M,Xia L H and Siemens P J1989Phys.Lett.B23116[15]Korpa C L and Malfliet R1995Phys.Rev.C522756[16]van Hees H and Rapp R2004Preprint nucl-th/0407050[17]Cubero M1990Ph.D.thesis TH Darmstadt[18]Rapp R,Urban M,Buballa M et al.1998Phys.Lett.B4171[19]Urban M,Buballa M,Rapp R et al.2000Nucl.Phys.A673357[20]Nacher J C,Oset E,Vicente M J et al.2001Nucl.Phys.A695295[21]Moniz E J1981Nucl.Phys.A354535c[22]Weinhold W,Friman B and N¨o renberg W1998Phys.Lett.B433236[23]Hagiwara K et al.2002Phys.Rev.D6601001[24]van Hees H and Knoll J2002Phys.Rev.D6*******[25]Rapp R and Wambach J1995Phys.Lett.B35150[26]Migdal A B1978Rev.Mod.Phys.50107[27]Chanfray G and Schuck P1993Nucl.Phys.A555329[28]Herrmann M,Friman B L and N¨o renberg W1993Nucl.Phys.A560411[29]Lepretre A et al.1978Phys.Lett.B7943[30]Ahrens J et al.1984Phys.Lett.B146303[31]Ahrens J1985Nucl.Phys.A446229c[32]Frommhold T et al.1992Phys.Lett.B29528[33]Frommhold T et al.1994Z.Phys.A350249[34]Bianchi N et al.1993Phys.Lett.B299219[35]Bianchi N et al.1996Phys.Rev.C541688[36]Rapp R2002Phys.Rev.C66017901[37]Voskresensky D N2004Preprint hep-ph/0402020[38]Rapp R2004Mod.Phys.Lett.A191717[39]Aggarwal M M et al.(WA98)2004Phys.Rev.Lett.93022301。

python decimal 运算

python decimal 运算

python decimal 运算Python是一种功能强大的编程语言,在数据科学和数学计算中都有着广泛的应用。

在Python中,我们可以使用decimal模块来进行高精度的十进制运算。

本文将介绍decimal模块的使用方法以及它在解决实际问题中的应用。

我们需要导入decimal模块。

在Python中,可以使用以下代码进行导入:```pythonfrom decimal import Decimal```导入后,我们可以使用Decimal类来创建十进制对象。

Decimal类的构造函数接受一个字符串或整数作为参数,用于初始化十进制对象。

例如,我们可以使用以下代码创建一个十进制对象:```pythona = Decimal('0.1')b = Decimal(0.1)```需要注意的是,使用字符串作为参数可以确保精度不受浮点数表示误差的影响。

而使用浮点数作为参数则可能会导致精度丢失。

因此,在进行高精度运算时,建议始终使用字符串作为参数。

decimal模块提供了丰富的数学运算函数,可以对十进制对象进行加减乘除等运算。

以下是一些常用的运算函数:- 加法:使用加法运算符(+)或add()函数- 减法:使用减法运算符(-)或subtract()函数- 乘法:使用乘法运算符(*)或multiply()函数- 除法:使用除法运算符(/)或divide()函数例如,我们可以使用以下代码进行加法运算:```pythonresult = a + b```在进行运算时,decimal模块会自动进行精确的计算,避免了浮点数运算可能出现的精度丢失问题。

这对于一些对精度要求较高的计算任务非常重要。

decimal模块还提供了一些其他的功能。

例如,我们可以使用Decimal类的to_eng_string()方法将十进制对象转换为工程计数法表示的字符串,以便更直观地显示大数值。

我们还可以使用getcontext()函数来获取当前的上下文环境,并通过设置上下文环境的属性来调整运算的精度和舍入方式。

decimal 减法

decimal 减法

decimal 减法在数学中,减法是两个数学量之间的运算,用于计算它们之间的差。

在十进制系统中,我们使用数字0到9来表示数值,因此减法的计算方法也非常简单。

在小学的数学课程中,学生学习到了整数的加、减、乘、除四则运算的知识。

接下来,我们就来详细介绍十进制减法的计算方法。

1. 减法的定义减法是指在两个数之间求差的一种运算。

减法中,一个数减去另一个数,得到的结果就是这两个数的差。

例如,6 - 3 = 3,这意味着用3减去6,结果是3。

在数学中,减法的符号为“-”,可以表示减去的数,也可以表示负数。

2. 十进制减法的基本概念十进制减法是指在十进制数系中,用“-”表示减法的运算。

在十进制减法中,我们使用数字0到9来表示数值,从而实现了两个数字之间的减法运算。

例如,在十进制减法中,有10个数字:0、1、2、3、4、5、6、7、8、和9。

因此,在十进制减法中,如果一个数减去另一个数后,得到的结果是负数,那么我们就需要借位。

在十进制减法中,每一位的计算方法都是一样的。

十进制减法的计算方法可以分为以下几个步骤:3.1. 对齐被减数和减数:将被减数和减数的各位数字对齐,按位进行减法运算。

3.2. 逐位相减:从低位到高位,对相同位的数字进行减法运算,并将所得的差写在相应位上。

3.3. 借位:若减数的某一位比被减数的对应位大,无法进行减法运算,则需要向高位借位,以确保数位比较大小的正确性。

3.4. 完成运算:当所有位上的差都计算出来后,就完成了十进制减法运算。

下面我们来看一个实例:例1:452 - 236 = ?解:对齐被减数和减数,得到如下数列:4 5 2逐位相减:4 - 6 = -2,需要向高位借位;借位:在百位上向千位借1,变成了14;完成运算:得到的结果是216。

9 6 3在十进制减法中,进位是十分重要的。

进位是指在减法运算过程中,某一位数字减去另一位数字时,如果被减数比减数小,就需要向高位借位,使得减法运算得以进行。

php json_decode失败的几种处理方式

php json_decode失败的几种处理方式

PHP中使用json_decode函数解析JSON字符串时,有时会遇到解析失败的情况。

这可能是由于多种原因造成的,包括JSON字符串格式不正确、编码问题、内存限制等。

对于这些解析失败的情况,我们需要采取相应的处理方式来解决问题,确保程序的正常运行。

本文将针对json_decode失败的情况,介绍几种处理方式,帮助读者更好地应对这一问题。

一、检查JSON字符串格式当使用json_decode解析JSON字符串失败时,我们需要检查JSON 字符串的格式是否符合标准的JSON格式。

JSON字符串应该使用双引号包围字符串值,而不是单引号。

另外,JSON字符串的键名也必须使用双引号包围。

如果JSON字符串格式不正确,就会导致json_decode解析失败。

我们需要通过工具或手动检查JSON字符串的格式,确保其符合标准的JSON格式。

二、处理编码问题另一个常见的导致json_decode解析失败的原因是编码问题。

如果JSON字符串包含了非标准的字符编码,就可能导致解析失败。

为了解决这一问题,我们可以尝试使用iconv或mb_convert_encoding等函数对JSON字符串进行编码转换,将其转换为UTF-8编码,然后再进行解析。

这样可以避免编码问题导致的解析失败。

三、调整内存限制在PHP中,解析大型JSON字符串时,有时会因为内存限制导致json_decode失败。

为了解决这一问题,我们可以通过ini_set函数或php.ini配置文件来调整PHP的内存限制。

将memory_limit设置为较大的值,可以帮助解析大型JSON字符串,降低解析失败的可能性。

但需要注意的是,过大的内存限制可能会影响服务器的性能,因此需要根据实际情况进行调整。

四、使用第三方库除了使用PHP内置的json_decode函数,我们还可以考虑使用第三方的JSON解析库来解析JSON字符串。

可以使用JSON模块、YAJL 等库来代替PHP的json_decode函数。

decay的用法总结大全

decay的用法总结大全

decay的用法总结大全(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!decay的用法总结大全decay的意思vt.& vi. (使)腐烂,腐朽;vi. 衰败,衰退,衰落;n. 腐败、衰退的状态;decay的用法用作名词(n.)The decay of the meat could have been prevented by proper refrigeration.如果经过适当的冷藏,这些肉本来不至于腐烂掉。

javascript reduce中用decimal计算

javascript reduce中用decimal计算

javascript reduce中用decimal计算在JavaScript中,reduce是一个数组方法,用于通过函数对数组的每个元素进行累积或者合并,最后返回一个单一的值。

当我们需要在reduce中使用十进制(decimal)计算时,我们可能需要特别注意浮点数的精度问题,因为JavaScript在处理浮点数时可能会遇到精度损失的问题。

例如,假设我们有一个包含货币值的数组,并且我们需要计算这些值的总和。

我们可以使用reduce方法来完成这个任务,但是我们必须小心处理浮点数的精度问题。

下面是一个例子,展示如何在reduce中使用十进制计算:javascriptconst moneyArray = [1.23, 4.56, 7.89];// 使用reduce来计算总和const total = moneyArray.reduce((accumulator, currentValue) => {// 为了避免浮点数的精度问题,我们可以使用toFixed方法来将结果舍入到指定的小数位数// 注意,toFixed方法返回的是一个字符串,所以我们需要使用parseFloat来将其转换回数字return parseFloat(accumulator.toFixed(2)) + parseFloat(currentValue.toFixed(2));}, 0);console.log(total); // 输出:13.68在这个例子中,我们使用toFixed(2)来将每个累加的值和当前值舍入到小数点后两位。

这样做可以确保我们的计算结果具有适当的精度。

然后,我们使用parseFloat来将舍入后的字符串转换回数字,以便进行进一步的计算。

需要注意的是,toFixed方法返回的是一个字符串,而不是一个数字。

因此,如果你在使用reduce方法的结果进行进一步的数学运算,你可能需要再次使用parseFloat来将其转换回数字。

unexpected end of exprssion -回复

unexpected end of exprssion -回复

unexpected end of exprssion -回复一个看似简单的问题,为什么会出现“unexpected end of expression”(意外的表达式结束)错误。

对于有经验的程序员来说,这个错误应该很容易找到和解决,但对于初学者而言,这可能是一个令人困惑和头疼的问题。

首先,让我们明确这个错误的含义。

当我们在编写代码时,编译器会对我们的代码进行语法分析和语义分析。

当编译器遇到语法错误时,它将无法理解我们所编写的代码,因此会报告错误。

而“unexpected end of expression”错误则意味着编译器在代码的某个位置没有找到预期的表达式的结束标志。

在大多数编程语言中,一个表达式通常由一对完整的结束标志(如括号、引号或分号)包围。

如果我们在代码的某个位置缺失了这些结束标志,编译器就会报告“unexpected end of expression”错误。

让我们来看一些常见的例子,以更好地理解这个问题。

假设我们正在编写一段使用if语句的代码。

正确的语法要求我们在if语句的条件后面加上一对括号,并在条件表达式的结尾处添加一个结束标志(通常是一个分号)。

通过这样做,编译器可以正确地理解我们的代码,并根据条件的结果执行相应的代码块。

然而,如果我们忘记添加这些结束标志,就会出现“unexpected end of expression”错误。

让我们看一个示例:if (x > 10code codes codes...在这个例子中,我们忘记了在条件表达式的结尾处添加括号和分号。

编译器会读取到if语句的条件部分,但它在找到预期的结束标志之前就到达了文件的末尾,因此会报告这个错误。

为了解决这个问题,我们只需简单地在代码中添加缺失的结束标志:if (x > 10){code codes codes...}让我们再看一个例子,这次是使用引号的错误。

在大多数编程语言中,字符串字面量需要用一对引号括起来。

js decimal 除法

js decimal 除法

js decimal 除法关于JavaScript中的decimal除法在JavaScript中,我们经常需要对数字进行各种运算,包括加法、减法、乘法和除法。

然而,在进行除法运算时,我们可能会遇到一些小数精度错误的问题。

本文将详细介绍在JavaScript中如何进行decimal除法运算,并避免精度问题的方法。

1. JavaScript中基本的除法运算首先,我们来看一下JavaScript中基本的除法运算。

在JavaScript中,我们可以使用除法运算符(/)来实现两个数字的除法运算。

例如,想要计算10除以3的结果,我们可以使用如下代码:let result = 10 / 3;console.log(result); 输出结果为3.3333333333333335然而,这里的结果却有一个小数精度错误,结果为3.3333333333333335,而不是我们期望的3.3333333333333333。

这是因为JavaScript中的数字默认采用双精度浮点数表示,而双精度浮点数的精度有限,无法精确表示所有的小数。

2. 使用Decimal.js库进行decimal除法运算为了解决JavaScript中小数精度问题,我们可以使用第三方库,例如Decimal.js来进行decimal除法运算。

Decimal.js是一个用于十进制计算的JavaScript库,可以更精确地进行十进制运算。

我们可以使用npm 包管理工具将其安装到我们的项目中,在项目中引入Decimal.js库,并使用其提供的函数进行decimal除法运算。

以下是一个示例:const Decimal = require('decimal.js');let result = new Decimal(10).div(3);console.log(result.toString()); 输出结果为3.33333333333333333333333333333333333333333333333333333 3333333在上面的代码中,我们引入了Decimal.js库,并使用其`div()`方法实现了10除以3的decimal除法运算。

decleard to take const reference -回复

decleard to take const reference -回复

decleard to take const reference -回复为什么在函数中使用常量引用。

在编程中,函数是一种将输入转换为输出的重要工具。

在函数中,我们经常需要处理传入的参数,并根据需要对其进行操作和修改。

然而,在某些情况下,我们并不希望对传入的参数进行修改,而仅仅是读取其值或对其进行一些计算。

为了实现这种只读访问的需要,我们可以使用常量引用。

常量引用是指在函数参数中声明的引用类型,并且被声明为常量(const)。

和普通引用不同的是,常量引用不能被修改,只能读取其所引用的内容。

使用常量引用的几个优点如下:1. 避免拷贝:使用常量引用可以避免将参数的副本传递给函数,减少了内存的使用和拷贝的开销。

特别是当参数类型为大型对象(如数组或结构体)时,这种优化尤为明显。

2. 提高安全性:常量引用的使用可以避免在函数内部对传入的参数进行修改,从而提高了代码的安全性。

这样,在调用函数时,我们可以对参数的值保持不变,防止误操作导致的错误。

3. 可以接受更多类型的参数:常量引用不仅可以接受常规的变量参数,还可以接受常量参数、表达式或字面值等。

这使得函数的灵活性更高,可以适应更多不同类型的输入。

为了更深入地理解常量引用的使用,让我们来看一个具体的例子。

假设我们需要在一个函数中计算一个数组的平均值,并返回结果。

我们可以定义一个函数,其参数为一个常量引用类型的整型数组:c++double computeAverage(const int& numbers){int sum = 0;for (int i = 0; i < numbers.size(); i++) {sum += numbers[i];}return static_cast<double>(sum) / numbers.size();}在这个例子中,我们将参数声明为常量引用类型,这样可以避免函数对数组进行修改。

函数内部使用一个循环来计算数组元素的总和,然后再将总和除以数组的大小得到平均值。

unexpected error decoding stored license for -回复

unexpected error decoding stored license for -回复

unexpected error decoding stored license for-回复在数字化时代,软件许可证的使用变得非常广泛和重要。

许多企业依赖于软件许可证来保护他们的知识产权,并确保他们的产品和服务合法和安全。

然而,有时候出现了“意外的错误解码存储许可证”的问题,这引发了许多用户的困惑和不满。

本文将详细讨论这个问题,并提供一步一步的解决方案。

第一部分:错误的原因1.1 错误的许可证文件出现这个错误的原因可能是许可证文件本身存在问题。

许可证文件可能已经损坏,格式错误或包含无效的数据。

这意味着软件无法正确读取和解码许可证文件,从而导致错误的出现。

1.2 许可证文件丢失或过期另一个常见的原因是许可证文件丢失或过期。

许可证通常有一个有效期限,并且必须定期更新。

如果许可证文件不存在或已过期,软件将无法访问有效的许可证信息,从而导致错误的发生。

1.3 硬件或操作系统变化当硬件或操作系统发生变化时,许可证文件也可能出现错误。

例如,如果用户更换了计算机或搬迁到另一个操作系统,旧的许可证文件可能无法被新的系统识别和解码,从而导致错误的发生。

第二部分:解决方案2.1 检查许可证文件首先,用户应该检查许可证文件本身是否存在问题。

可以尝试打开文件,并确保它没有损坏或损坏。

如果许可证文件格式不正确,用户可以联系软件提供商获取正确的许可证文件。

2.2 检查许可证状态如果许可证文件过期或丢失,用户应该与软件提供商联系获取新的许可证文件或更新许可证。

在一些情况下,许可证可以在线更新,或者用户可以提供必要的信息来获取新的许可证。

2.3 审查硬件和操作系统变化对于用户更换了硬件或操作系统的情况,他们应该查看软件许可证的规定。

有些许可证可能与特定的硬件或操作系统绑定。

在这种情况下,用户需要联系软件提供商,提供新的硬件或操作系统的信息,以获取相应的许可证。

2.4 重新安装软件和许可证如果以上步骤都没有解决问题,用户可以尝试重新安装软件和许可证。

decay参数

decay参数

decay参数Decay参数是深度学习中常用的一种正则化方法,它可以有效地防止模型过拟合。

在训练神经网络时,我们通常会使用梯度下降或其变种算法来优化模型的参数。

然而,如果我们只使用梯度下降算法,很容易出现过拟合问题。

为了解决这个问题,我们可以在损失函数中添加正则项来约束模型的复杂度。

而decay参数就是控制正则项的强度的一个超参数。

本文将详细介绍decay参数在深度学习中的作用、原理以及调参技巧。

一、decay参数的作用1. 防止过拟合当模型过于复杂时,容易出现过拟合现象。

过拟合指的是模型在训练集上表现很好,但在测试集上表现很差的情况。

这是因为模型对训练数据进行了“死记硬背”,而没有学到数据背后的规律。

decay参数通过对权重进行惩罚,使得模型更加倾向于选择较小的权重值。

这样可以有效地减少模型复杂度,从而避免过拟合问题。

2. 提高泛化能力泛化能力指的是模型对未见过数据的适应能力。

当模型具有良好的泛化能力时,它可以在新数据上表现出色。

而decay参数可以提高模型的泛化能力,因为它强制模型选择较小的权重值,从而减少了对训练数据的依赖。

二、decay参数的原理1. 正则化在深度学习中,正则化是一种常用的技术,它通过在损失函数中添加一个正则项来约束模型复杂度。

正则项通常由权重值平方和或绝对值和构成。

这样可以使得模型更加倾向于选择较小的权重值,从而减少过拟合问题。

2. L2正则化L2正则化是一种常用的正则化方法,它通过对权重平方和进行惩罚来约束模型复杂度。

具体来说,L2正则化将损失函数定义为:loss = cross_entropy_loss + λ * ||W||^2其中cross_entropy_loss是交叉熵损失函数,W是权重矩阵,λ是超参数。

λ越大,则惩罚项越大,模型选择较小的权重值的概率也就越大。

3. decay参数在Keras中,decay参数控制了学习率下降的速度,并且影响了L2正则化中的λ值。

sql中dec的用法_示例及概述说明

sql中dec的用法_示例及概述说明

sql中dec的用法示例及概述说明1. 引言1.1 概述:在SQL中,DEC是一种用于存储精确数值的数据类型。

它提供了对小数位数和精度的控制,可以用于处理需要高精度计算的场景,如财务数据、科学计算等。

本文将对DEC类型进行全面介绍,并提供相关示例和功能说明。

1.2 文章结构:本文分为五个部分:引言、DEC的用法示例、DEC的功能说明、DEC常见问题及解决方案、结论。

在引言部分,我们将为读者提供对整篇文章的背景和概述。

接下来的章节将更加详细地介绍DEC类型的定义、语法和应用场景,并阐述其在计算规则、数据转换等方面的功能特点。

同时,我们还会探讨一些常见问题,并给出解决方案。

最后,在结论部分,我们将总结本文提到的重点要点并展望过往未来发展趋势。

1.3 目的:本文旨在帮助读者深入了解SQL中DEC类型以及其使用方法。

通过提供实际示例和详细说明,读者可以更好地理解DEC类型在各种应用场景中的作用与优势。

此外,通过掌握DEC类型操作符和函数的使用,读者能够解决与DEC 字段相关的问题,并掌握一些查询优化技巧。

最终,读者将对DEC类型有一个清晰全面的认识,并能够在实际工作中灵活运用。

2. DEC的用法示例:2.1 DEC类型介绍:DEC (Decimal) 是一种数字数据类型,用于存储精确的十进制数值。

它在SQL 中被广泛应用于需要保持精确度和小数位数控制的场景,例如金融领域的货币计算、商品价格等。

2.2 DEC定义和语法:在SQL中,可以使用DEC来声明一个DEC类型的变量或列。

其语法如下:```DEC(p,s)```其中,p表示整个数值(包括整数部分和小数部分)的最大总位数,s表示小数部分的位数(即小数点后面的位数)。

根据这两个参数的不同组合,DEC可以具有不同范围和精度。

例如:- DEC(5,2) 表示总共五位数字,其中两位是小数部分。

- DEC(8,4) 表示总共八位数字,其中四位是小数部分。

2.3 DEC在SQL中的应用场景:DEC可以在各种情况下使用,在以下几个方面特别常见:- 货币计算:在金融领域中,需要对金额进行精确计算,并保留正确的小数位数。

decode语法

decode语法

decode语法
"decode"是一种在Python中用于解码字符串的函数,其语法如下:
```python
str.decode(encoding='UTF-8',errors='strict')
```
其中,str表示要被解码的字符串,"encoding"是一个可选的参数,它指定了解码时要使用的编码格式,默认值是"UTF-8"。

"errors"也是另一个可选参数,用于指定错误处理方式,默认值是"strict",表示如果出现错误,将引发UnicodeDecodeError异常。

例如,如果我们有一个名为"encoded_str"的字符串对象,编码格式为"UTF-8",我们可以使用以下语法进行解码操作:
```python
decoded_str = encoded_str.decode(encoding='UTF-8', errors='strict')
```
执行以上代码后,Python将会将"encoded_str"解码为"decoded_str"字符串,编码格式为"UTF-8"。

注意,decoded_str将是一个Unicode字符串,而不是以字节形式表示的二进制字符串。

decode函数实例

decode函数实例

decode函数实例摘要:1.什么是decode 函数2.decode 函数的常见用法3.decode 函数的参数及含义4.decode 函数的返回值及注意事项5.decode 函数在实际编程中的应用正文:decode 函数是Python 中一个非常有用的函数,它的主要作用是将字符串解码为Unicode 字符。

在Python 3 中,所有的字符串默认都是Unicode 字符串,但在Python 2 中,存在字节字符串和Unicode 字符串的区别。

decode 函数可以帮助我们在Python 2 中,将字节字符串转换为Unicode 字符串。

在Python 中,decode 函数的使用非常简单。

通常,我们只需要在函数名后加上需要解码的字符串,然后用括号括起来即可。

例如:```pythondecoded_str = "你好,世界!".decode("utf-8")```在这个例子中,我们将字符串"你好,世界!"解码为Unicode 字符串,编码方式为UTF-8。

decode 函数的参数主要是编码方式。

编码方式是指字符串在计算机中的存储方式,不同的编码方式可能导致相同的字符串在计算机中存储的方式不同。

Python 中的编码方式通常以字符串的形式表示,例如"utf-8"、"gbk"等。

decode 函数的返回值是一个Unicode 字符串。

如果在解码过程中出现错误,decode 函数会抛出一个异常。

因此,在使用decode 函数时,我们需要注意处理可能出现的异常。

在实际编程中,decode 函数的应用非常广泛。

例如,当我们从网络上下载文件时,文件的内容可能以某种编码方式存储,这时我们可以使用decode 函数将文件内容解码为Unicode 字符串,以便进行进一步的处理。

虚假商品英文作文

虚假商品英文作文

虚假商品英文作文英文:Fake goods have become a serious problem in today's society. With the rise of online shopping and globalization, it has become easier for counterfeiters to produce and distribute fake products. As a consumer, it is important to be aware of the risks and consequences of purchasing fake goods.Firstly, fake goods are often of lower quality and may not function properly. For example, if you purchase a fake phone charger, it may not charge your phone or even cause damage to your device. This can be dangerous and costly in the long run.Secondly, fake goods can also be harmful to your health. For instance, fake cosmetics may contain harmful chemicals that can cause skin irritation or even lead to serioushealth issues. Similarly, fake medication can beineffective or even dangerous, putting your health at risk.Lastly, buying fake goods supports illegal activities and harms legitimate businesses. Counterfeiters profit from selling fake goods, which can lead to loss of revenue for legitimate businesses and even job loss for workers.To avoid purchasing fake goods, it is important to do your research and buy from reputable sellers. Look for authentic labels and packaging, and be wary of deals that seem too good to be true. Remember, if the price seems too low, it probably is.中文:虚假商品已经成为当今社会的严重问题。

js decimal 减法

js decimal 减法

js decimal 减法JS Decimal 减法JS Decimal 是一种用于处理精确数值计算的库。

在进行数值计算时,往往会遇到浮点数精度丢失的问题,这会导致计算结果不准确。

而使用 JS Decimal 库可以避免这个问题,确保计算结果的精确性。

在JS Decimal 中,减法是一种常见的数值计算操作。

通过减法,我们可以将两个数值相减,得到它们的差值。

JS Decimal 提供了减法函数,可以轻松地进行减法计算。

下面我们来看一些关于 JS Decimal 减法的使用示例。

1. 创建 Decimal 对象在进行减法计算之前,首先需要创建 Decimal 对象。

可以通过传入一个数值或字符串来创建 Decimal 对象,如下所示:```javascriptlet num1 = new Decimal(10);let num2 = new Decimal("5.5");```上述代码中,我们分别创建了两个Decimal 对象num1 和num2,分别赋值为 10 和 5.5。

2. 执行减法计算创建了Decimal 对象之后,我们就可以执行减法计算了。

JS Decimal 提供了减法函数minus,可以对两个Decimal 对象进行减法操作,如下所示:```javascriptlet result = num1.minus(num2);console.log(result.toString());```上述代码中,我们使用 minus 函数对 num1 和 num2 进行减法计算,并将结果保存到 result 变量中。

通过调用 toString 函数,我们可以将结果转换为字符串并输出。

3. 处理较大数值JS Decimal 除了可以处理常规的数值计算,还可以处理较大的数值。

对于较大的数值计算,我们可以使用科学计数法表示,通过调用Decimal 的 set 方法来设置数值,如下所示:```javascriptlet num1 = new Decimal();let num2 = new Decimal();num1.set("1.234e+10");num2.set("5e+9");let result = num1.minus(num2);console.log(result.toString());```上述代码中,我们将较大的数值分别使用科学计数法表示,并通过set 方法设置给Decimal 对象。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :h e p -p h /0604090v 2 20 J u l 2006Decays of D ∗sj (2317)and D sj (2460)Mesons in the Quark ModelFeng-Lin Wang,Xiao-Lin Chen,Da-Hai Lu,Shi-Lin Zhu,and Wei-Zhen Deng ∗Department of Physics,Peking University,Beijing 100871,ChinaAbstractWe study the decay widths of the narrow resonances D ∗sj (2317)and D sj (2460)in the chiral quark model,together with the well-known D ∗and D ∗smesons.All the parameters in our calculation are taken from Godfrey and Isgur’s quark model except the π0−ηmixing angle which is fixed by theD ∗sdecay widths.The calculated electromagnetic decay widths agree with those from other groups and the experimental data available quite well.However,the pionic decay widths of D sj (2317)and D sj (2460)are too small to fit the experimental data.We suspect that the simple chiral quark pion axial-vector interaction Hamiltonian is not suitable for hadron strong decays of D sj (2317)and D sj (2460).PACS numbers:12.39.Pn,13.25.Ft,13.40.HqI.INTRODUCTIONThe discovery of narrow resonances D∗sj(2317)[1]and D sj(2460)[2]raises challenges to the quark model.Masses of these two states are about100MeV lower than the predictions of the potential quark model[3].Furthermore,the isospin conserving decay channels D(∗)sj→D(∗)Kare forbidden by kinematics.The observed pionic decays into D(∗)sπ0break the isospin symmetry.Several non-conventional schemes,such as molecules[4],tetraquark states[5,6,7,8], or the chiral partners of D s and D∗s[9,10]etc.,have been proposed(for a review,see Refs.11,12).But the conventional c¯s interpretation is still attractive if the experimental masses of D(∗)sj can be accommodated in the quark model[13,14,15].In the heavy quark limit,D sj(2317)and D sj(2460)naturally form a P-wave doublet J P=(0+,1+)with j l=1II.DECAYS OF D(∗)sj IN THE QUARK MODELThe electromagnetic interaction is standardLγ=e¯ΨγµΨAµ.(1) In the chiral quark model,the pions interact with the light up and down quarks throughthe axial-vector couplingLπq=g qA3m s−m d+m u2fη¯Ψγµλ8Ψ·∂µφη.(4)Thus,we have[34]Lπs=−g qA3fηθm¯sγµγ5s∂µπ0.(5)In our calculation,we do not make the non-relativistic reductions of the transition oper-ators.The quarkfields are kept in the form with Dirac spinorsΨ(x)= s d3p2p0 d†(p,s)v(p,s)e ip·x+b(p,s)u(p,s)e−ip·x ,(6) where the anti-commutation relation of quarks reads{d(p,s),d†(p′,s′)}={b(p,s),b†(p′,s′)}=(2π)3(2p0)δss′δ(p−p′).(7) Accordingly,the meson wave functions are expressed with the quark operators|M,P =1Nc d 3k 2TABLE I:The inner tensor structure matrix of D (∗)smesons.MesonJ PT M √√√√√2Here we treat the quark operators in a matrix formb †Q =b †Q,↑b †Q,↓T,d †¯q =b †¯q ,↑b †¯q ,↓.(9)The inner Q ¯q structure matrix T M of D s ,D ∗s ,D ∗sj (2317)and D sj (2460)mesons are takenfrom the quark model [3,23].They are listed in Table I.The spatial wave functions φ(k ,P )are normalized as2E =d 3k2.They form the (0+,1+)doublet of the P -wave orbital excitation.D sj (2460)is an ideal mixture of the 1P 1and 3P 1states in this limit|D sj (2460),P =3|D sj (1P 1),P +3|D sj (3P 1),P .(11)The spatial wave functions are related to the simple harmonic oscillator (SHO)wavefunctions in Ref.312Eφ(k ,P )=φ(k 2).(12)For the ground states,φ(k 2)= 2√β 3/2e −k 2/2β2.(13)For the P -wave states,φ(k 2)=√β 2√β3/2e −k 2/2β2.(14)In the rest frame of A,the decay width of a process A→B+C isΓ(A→B+C)=|p C|2M A.(17) The wave function in Eq.(12)is calculated in the rest frame,which is an approximation valid only for small|P|for mesons in motion.The calculation of the Lorentz invariant M matrix element should be done in a suitable frame in which the relativistic effect due to |P|is small.In our calculation,the C particle isπorγ,which is treated as an elementary particle.We calculate the invariant matrix element M in the frame P A+P B=0very like the Breit frame.If the heavy quark is the spectator,the relevant kinematics areP A=12p′C(19)p¯q,A=k+12p′C(21)p Q,A=−k(22) p Q,B=−k(23)k A=m Q p¯q,A−m q p Q,A2ηQ p′C(24)k B=m Q p¯q,B−m q p Q,B2ηQ p′C(25)whereηQ=m Q2M2A +2M2B−M2C.(28)The matrix elements are listed below.Following Ref.24,the formulae are all written in the way similar to the non-relativistic formulae except the overlapping integrals which approach unity in the non-relativistic limit m→∞and deviate from unity significantly for the light quarks.For the pionic decay of the D∗meson,we havePπ| L(0)|V4E V E P =ig qA√2fπ→−θm g qA3fη.(31)D∗sj(2317)can decay into D s through the emission of oneπ.The decay matrix element contains two termsPπ| L(0)|S4E S E P=−i 2g A m q F2(p2π,m q,ηQ)+iηQ 6g AβF1(p2π,m q,ηQ).(32) Its radiative decay matrix elements also contain two piecesVγ| Lγ(0)|S = Vγ| Lγ(0)|S E+ Vγ| Lγ(0)|S M,(33) Vγ| Lγ(0)|S E4E V E S= 3βǫ∗V·ǫγ µ¯q F4(p2γ,m q,ηQ)−µQ F4(p2γ,m Q,ηq) ,(34) Vγ| Lγ(0)|S M4E V E S= 6p2γ√32fπEπβ12fπp2π•A →P +γP γ| L γ(0)|A = P γ| L γ(0)|A E + P γ| L γ(0)|A M ,(37) P γ| L γ(0)|A E 4E P E A=3βǫA ·ǫγ µ¯q F 4(p 2γ,m q ,ηQ )−µQ F 4(p 2γ,m Q ,ηq ) (38)P γ| L γ(0)|A M4E P E A=6p 2γ√2√1βµ¯q ǫ∗V ×ǫA ·ǫγF 3(p 2γ,m q ,ηQ )−iηq3µQ 2p 2γ11·ǫA ×ǫγ.(42)•A →S +γSγ| L γ(0)|A = Sγ| L γ(0)|A E + Sγ| L γ(0)|A M ,(43)Sγ| L γ(0)|A E 4E A E S=i23ηq µQ F 4(p 2γ,m Q ,ηq )−µQ F 5(p 2γ,m Q ,ηq )p γ×ǫγ·ǫA(44)Sγ| L γ(0)|A M 4E A E S=ip 2γTABLE II:Decay widths of D∗→D+πin unit of MeV and the relevant F1values.V→P+πpπExp.[25]F1Present work Ref.24 D∗s→D s+π0490.807.4×10−3D∗sj(2317)→D s+π02980.700.521.9D sj(2460)→D∗s+π02970.700.521.9radiative decay widths are listed in Table IV together with some results from other groups. The relevant overlapping integrals are collected in Table V,where=F i(p2γ,m q,ηQ)(47)F qiF Q=F i(p2γ,m Q,ηq)(48)iFrom the table,we see clearly that the overlapping integrals,which are related to the relativistic effects,are very important for the light quarks.For the heavy quarks,the overlapping integrals always approach unity.TABLE IV:Radiative decay widths in unit of keV.Present work QM[26]QM[27]QM[28]QSR[29]LCSR[30]VMD[11]TABLE V:Overlapping integrals related to radiative decays.F q3F Q3F q4F Q4F q5F Q5D∗0→D0π0and D∗s→D sπ0D∗±→D±π0is nearly six times smaller than the experimental data. This may be partly attributed to the uncertainty of our naive SHO wave functions.In the V→P+γformula Eq.(30),there exists a strong cancellation between the light and heavy quark contributions.We haveµ¯d2m d≈−1600F Q3≈0.4,(50) i.e.,µ¯d F q3≈−µc F Q3which leads to the strong cancellation.The sensitivity of the overlapping integrals to the uncertainty of the wave function is amplified in this case.For example,if we change theβparameter toβ=300MeV,we have F q3≈0.48.Then the resulting ratioTABLE VI:Branching ratios between radiative and pionic decays.Exp.Present workD∗0→D0π00.620.35 D∗s→D sπ0D∗±→D±π00.0520.009 D∗sj(2317)→D∗sγD sj(2460)→D∗sπ00.313.3D sj(2460)→D∗sγD sj(2460)→D∗sπ0<0.220.094will increase to∼0.02.As can be seen in Table IV,the radiative decay widths of different channels in this work are comparable with those from other groups(see also ref.31).However,the pionic decay widths of D sj(2317)and D sj(2460)from the simple chiral quark model in Table III are ten times smaller than those from light-cone QCD sum rules approach[14]and the3P0decay model[20].Hence our calculated ratios between EM and pionic decay widths of D sj(2317) and D sj(2460)mesons are systematically larger than the experimental data by a factor of 10.Such a large systematic discrepancy cannot easily be ascribed to either the uncertainty of the meson wave function or the uncertainty of the value of theη−π0mixing amplitude [21,32].We tend to conclude that the simple strong decay mechanism based on the pion and chiral quark axial vector coupling is not realistic if D sj(2317)and D sj(2460)mesons are conventional c¯s states.In summary,we perform a systematic calculation of the decay widths of D∗s,D∗sj(2317), and D sj(2460).The EM radiative decay widths agree with the available experimental data and other model results reasonably well.But the isospin violating pionic decay widths ofD∗sj(2317)and D sj(2460)are too small tofit the experimental data.This disagreement cannot easily be resolved by changing the wave functions or theη−π0mixing amplitude in the chiral quark model.One may wonder whether other possible theoretical schemes such as the coupled-channel effects,hybrid meson,molecule state or tetraquark interpretations ofthese two resonances may resolve the above discrepancy.However,there is no clear evidence in favor of these exotic schemes from BABAR’s most recent extensive measurement[33]. Therefore we strongly suspect the chiral quark pion interaction Hamiltonian may be too simple to describe strong decays reliably.AcknowledgmentsThis project was supported by the National Natural Science Foundation of China under Grants10375003and10421503,Ministry of Education of China,FANEDD,Key Grant Project of Chinese Ministry of Education(NO305001)and SRF for ROCS,SEM.APPENDIX A:THE OVERLAPPING INTEGRALSAll F i(p2,m,η)can be expressed asF i(p2,m,η)=e−1π(2π)3e−k2/β2 2q0 2q′0G i(A1)whereG1=1+2(k·ˆp)2−(k2+1(q0+m)(q′0+m)(A2)G2=2k2(q0+m)(q′0+m)−m(ˆk·p)2(q0+m)(q′0+m)−4m(ˆp·k)2(q0+m)(q′0+m)k2−(k·ˆp)23β2 m(q0+q′0+2m)(q0+m)(q′0+m)(q0+q′0)(A6)and q and q′are quark’s momentaq=k+12p(A8) [1] B.Aubert,et al.(BABAR),Phys.Rev.Lett.,2003,90:242001,hep-ex/0304021[2] D.Besson,et al.(CLEO),Phys.Rev.,2003,D68:032002,hep-ex/0305100[3]S.Godfrey,N.Isgur,Phys.Rev.,1985,D32:189–231[4]T.Barnes,F.E.Close,H.J.Lipkin,Phys.Rev.,2003,D68:054006,hep-ph/0305025[5]K.Terasaki,Phys.Rev.,2003,D68:011501,hep-ph/0305213[6]H.-Y.Cheng,W.-S.Hou,Phys.Lett.,2003,B566:193–200,hep-ph/0305038[7]Y.-Q.Chen,X.-Q.Li,Phys.Rev.Lett.,2004,93:232001,hep-ph/0407062[8]U.Dmitrasinovic,Phys.Rev.Lett.,2005,94:162002[9]W.A.Bardeen,E.J.Eichten,C.T.Hill,Phys.Rev.,2003,D68:054024,hep-ph/0305049[10]X.Liu,Y.-M.Yu,S.-M.Zhao,X.-Q.Li,2006,hep-ph/0601017[11]P.Colangelo,F.De Fazio,R.Ferrandes,Mod.Phys.Lett.,2004,A19:2083–2102,hep-ph/0407137[12] E.S.Swanson,2006,hep-ph/0601110[13]Y.-B.Dai,C.-S.Huang,C.Liu,S.-L.Zhu,Phys.Rev.,2003,D68:114011,hep-ph/0306274[14]W.Wei,P.-Z.Huang,S.-L.Zhu,Phys.Rev.,2006,D73:034004,hep-ph/0510039[15] F.-K.Guo,P.-N.Shen,H.-C.Chiang,R.-G.Ping,2006,hep-ph/0603072[16] E.van Beveren,G.Rupp,Phys.Rev.Lett.,2003,91:012003,hep-ph/0305035[17]Y.A.Simonov,J.A.Tjon,Phys.Rev.,2004,D70:114013,hep-ph/0409361[18]P.L.Cho,M.B.Wise,Phys.Rev.,1994,D49:6228–6231,hep-ph/9401301[19]J.Gasser,H.Leutwyler,Nucl.Phys.,1985,B250:465[20]J.Lu,X.-L.Chen,W.-Z.Deng,S.-L.Zhu,Phys.Rev.,2006,D73:054012,hep-ph/0602167[21]hde,D.O.Riska,Nucl.Phys.,2002,A710:99–116,hep-ph/0204230[22]S.Weinberg,Phys.Rev.Lett.,1991,67:3473–3474[23]S.Godfrey,Phys.Rev.,2005,D72:054029,hep-ph/0508078[24]K.O.E.Henriksson,hde,C.J.Nyfalt,D.O.Riska,Nucl.Phys.,2001,A686:355–378,hep-ph/0009095[25]S.Eidelman,et al.(Particle Data Group),Phys.Lett.,2004,B592:1[26]M.A.Ivanov,Y.M.Valit,Z.Phys.,1995,C67:633–640[27]J.L.Goity,W.Roberts,Phys.Rev.,2001,D64:094007,hep-ph/0012314[28]S.Godfrey,Phys.Lett.,2003,B568:254–260,hep-ph/0305122[29]S.-L.Zhu,W.-Y.P.Hwang,Z.-S.Yang,Mod.Phys.Lett.,1997,A12:3027–3036,hep-ph/9610412[30]P.Colangelo,F.De Fazio,A.Ozpineci,Phys.Rev.,2005,D72:074004,hep-ph/0505195[31] D.Ebert,R.N.Faustov,V.O.Galkin,Phys.Lett.,2002,B537:241–248,hep-ph/0204089[32]S.A.Coon,M.D.Scadron,Phys.Rev.,1982,C26:562[33] B.Aubert(BABAR),2006,hep-ex/0604030[34]Here the mixing angle betweenλ8andλ0can be neglected since it is too small in our discussionof isospin violating decays.。

相关文档
最新文档