哈工大_基于matlab的直流电机双闭环调速系统的设计与仿真设计
基于MATLAB的直流电机双闭环调速系统的设计与仿真资料
MATLAB课程设计基于MATLAB的直流电机双闭环调速系统的设计与仿真班级:自动化12-2姓名:学号:目录一、目录-----------------------------------------------------------1二、前言-----------------------------------------------------------2三、设计目的及要求--------------------------------------------3四、设计题目及参数--------------------------------------------3五、设计内容过程-----------------------------------------------31.计算电流和转速反馈系数-----------------------------------------32.电流环的动态校正过程--------------------------------------------33.转速环的动态校正过程--------------------------------------------94.建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真-------------------------------------14六、设计总结---------------------------------------------------18七、参考文献---------------------------------------------------19二、前言:控制系统理论与技术是现代科学技术的主要内容,以经广泛应用于航空与航天工业、电力工业、核能工业、石油工业、化学工业及冶金工业等众多学科和工程技术领域,并且具有经济、安全、快捷、优化设计和预测的特殊功能等优点,在非工程系统(如社会、管理、经济等系统)中,由于其规模及复杂程度巨大,直接实验几乎不可能,这是通过仿真技术的应用可以获得对系统的某种超前认识,因此仿真技术已经成为对控制系统进行分析、设计和综合研究中很有效的手段。
基于matlab的直流双闭环调速系统设计与仿真
1.2.2 确定将电流环设计成何种典型系统
根据设计要求:σi ≤5%,而且 Tl / T∑i = 0.03/ 0.003 7 = 8.11<10,因此设计成典型 I 型系统。
1.2.3 电流调节器的结构选择
作者简介:姬宣德,男,1 9 8 0 年生,河南洛阳人,毕业于河南科技 大学控制工程理论与控制方向专业,硕士。研究方向:变频调速与变频 器;运动控制方向。
1 直流调速系统的理论设计
1.1 系统组成及要求
本文研究的对象为直流双闭环调速系统,其系统
动态结构框图如图 1 所示。
(1)系统参数 电动机:UN = 200 V,IN = 136 A, nN = 1 460 r/ min;Ce = 0.132 V·r/ min;允许过载倍 数 λ = 1.5;三相桥式整流装置放大倍数 Ks = 40;电 枢回路总电阻 R∑ = 0.5 Ω;时间常数 Tl = 0.03 s;Tm = 0.18 s,电流反馈系数 β = 0.05 V/ A; 转速反馈系数
2.2 仿真调试分析
通过以上仿真分析,与理想的电动机启动特性相
比,仿真结果与系统
要求具有差距。出现
上述情况的原因可以
从工程设计过程中不
难看出,在“典型系统
的最佳设计法”中,非
线性环节线性化处
理、近似处理、降阶
处理、调节器的饱和
非线性等因素导致了
图 2 直流双闭环调速系统的仿真模型
工程设计与性能要求
Mining & Processing Equipment
图 4 程序流程图
( 修改稿日期:2 0 0 5 - 0 5 - 1 9 )
基于MATLAB的直流电机双闭环调速系统设计
摘要直流电机双闭环调速系统是一个复杂的自动控制系统,是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。
由于直流电机双闭环调速是各种电机调速系统的基础,本文从直流电机的基本特性进行双闭环直流电机设计,最后用实际系统进行工程设计,并采用MATLAB/SIMULINK进行仿真。
对于直流电机双闭环调速系统,在设计和调试过程中有大量的参数需要计算和调整,运用传统的设计方法工作量大,系统调试困难。
本文对直流电机双闭环调速系统进行辅助设计,选择调节器结构,进行参数计算和近似校验,根据给出和计算出的相应参数,建立起制动、抗电网电压扰动和抗负载扰动的MATLAB/SIMULINK仿真模型,分析转速和电流的仿真波形,并进行调试,使直流电机双闭环调速系统趋于完善、合理。
仿真结果证明了该方法的可行性和合理性。
关键词:直流调速,双闭环系统,电流调节器,转速调节器,计算机仿真AbstractThe double closed loop direct current velocity modulation system is a complex automatic control system, is in the present direct current velocity modulation system mainstream equipment, has the velocity modulation scope width, the stability is good, the steady fast precision higher merit, in the theory and the practice aspect all is the quite mature system, in drives in the domain to play the extremely vital role.Because the direct current machine double closed loop velocity modulation is each kind of electrical machinery velocity modulation system foundation, from the direct current machine basic characteristic conducts the double closed loop direct current machine design method research, finally uses the actual system to carry on the engineering design, and uses MATLAB/Simulink to carry on the simulation.Regarding the double closed loop direct current velocity modulation system, has the massive parameters in the design and the debugging process to need to calculate and to adjust, the utilization tradition design method work load is big, system debugging difficulty.This article carries on the assistance design to the double closed loop direct current velocity modulation system, chooses the regulator structure, carries on the parameter computation and the approximate verification, according to produces the corresponding parameter which and calculates, establishes applies the brake, the anti- electrical network voltage perturbation and the anti-load perturbation MATLAB/Simulink simulation model, the analysis rotational speed and the electric current simulation profile, and carries on the debugging, enable the double closed loop direct current velocity modulation system to tend to the consummation, is reasonable. The simulation result has proven this method feasibility and the rationality.Keywords:Speed control of DC-drivers,Double-closed-loop,Current regulator,Speed regulator,Computer simulation目录摘要 (I)Abstract........................................................... I I 目录........................................................... I II 1.绪论. (1)1.1 课题背景 (1)1.2 课题研究的目的和意义 (1)1.3 论文的主要内容 (2)2.直流电动机调速系统 (4)2.1 直流电动机简介 (4)2.1.1 直流电动机的工作原理 (4)2.1.2 直流电动机的运行特性 (5)2.1.3 直流电动机的起动与调速 (6)2.2 转速控制的要求和调速指标 (7)3.方案选择及系统工作原理 (9)3.1 电动机参数及设计要求 (9)3.2 方案选择及系统框图 (9)3.2.1 方案一:直流电机单闭环调速系统 (9)3.2.2 方案二:直流电机双闭环调速系统 (10)3.2.3 方案三:双闭环脉宽调速系统 (11)3.3 系统工作原理简介 (11)3.3.1 双闭环调速系统静态特性 (11)3.3.2 双闭环系统启动过程分析 (14)3.3.3 双闭环调速系统的动态抗扰动性能 (17)3.3.4 双闭环调速系统中两个调节器的作用 (18)4.双闭环调速系统的设计 (19)4.1 双闭环直流调速系统总体设计方案 (19)4.2 主电路设计与参数计算 (20)4.2.1 主电路原理图 (20)4.2.2 整流变压器的设计 (21)4.2.3 晶闸管元件选择 (23)4.2.4 电抗器参数的计算 (24)4.2.5 励磁电路 (26)4.2.6 三相桥式全控整流电路 (26)4.2.7 晶闸管触发电路 (28)4.3 直流调速系统的保护 (30)4.3.1 过电压保护 (30)4.3.2 电流保护 (33)4.4 控制电路设计 (34)4.4.1 电流调节器的设计 (35)4.4.2 转速调节器的设计 (37)5.调速系统的仿真 (40)5.1.1 MATLAB简介 (40)5.1.2 MATLAB的安装 (41)5.1.3 MATLAB的启动运行 (41)5.1.4 MATLAB的帮助文件 (41)5.1.5 MATLAB所定义的特殊变量及其意义 (41)5.1.6 MATLAB工具箱及SIMULINK简介 (42)5.2 调速系统仿真模型的建立 (43)5.3 仿真结果 (43)5.4 仿真结果分析 (46)结论 (47)参考文献 (48)致谢 (49)附录 A (50)1.绪论1.1 课题背景直流调速是现代电力拖动自动控制系统中发展较早的技术。
基于MATLAB的直流电机双闭环调速系统的设计与仿真
基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。
本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。
文章将以1200字以上的篇幅进行详细阐述。
一、系统设计直流电机双闭环调速系统由速度环和电流环构成。
速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。
通过控制电机的期望电压和实际电压,达到对电机速度的调控。
二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。
包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。
这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。
三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。
在直流电机双闭环调速系统中,可以选择PID控制策略。
PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。
四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。
根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。
通过仿真可以得到系统的动态响应曲线,评估系统的性能。
五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。
通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。
总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。
通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。
基于MATLAB的直流电机双闭环调速系统的设计与仿真
基于MATLAB的直流电机双闭环调速系统的设计与仿真《机电控制系统分析与设计》课程大作业之一基于MATLAB 的直流电机双闭环调速系统的设计与仿真1 计算电流和转速反馈系数β=U im∗dm=10V=1.25Ωα=U nm∗=10=0.02V∙min/r2 按工程设计法,详细写出电流环的动态校正过程和设计结果根据设计的一般原则“先内环后外环”,从内环开始,逐步向外扩展。
在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。
电流调节器设计分为以下几个步骤:a 电流环结构图的简化1)忽略反电动势的动态影响在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即∆E ≈0。
这时,电流环如下图所示。
2) 等效成单位负反馈系统如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成U *i (s ) /β ,则电流环便等效成单位负反馈系统。
3) 小惯性环节近似处理由于T s 和 T 0i 一般都比T l 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为T ∑i = T s + T oi 简化的近似条件为ois ci 131T T ≤ω电流环结构图最终简化成图。
b 电流调节器结构的选择 1) 典型系统的选择:从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。
从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I 型系统 2) 电流调节器选择电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI型的电流调节器,其传递函数可以写成ss K s W i i i ACR )1()(ττ+=K i — 电流调节器的比例系数;τi — 电流调节器的超前时间常数3) 校正后电流环的结构和特性为了让调节器零点与控制对象的大时间常数极点对消,选择则电流环的动态结构图便成为图a 所示的典型形式,其中a) 动态结构图:b) 开环对数幅频特性c. 电流调节器的参数计算电流调节器的参数有:K i 和 τi ,其msT l8i==τRK K K i siI τβ=中 τi 已选定,剩下的只有比例系数 K i , 可根据所需要的动态性能指标选取。
MATLAB双闭环直流调速系统的工程设计与仿真
MATLAB双闭环直流调速系统的工程设计与仿真双闭环直流调速系统是一种常见的控制系统,在工业中被广泛应用于电机的调速。
本文将针对MATLAB中的双闭环直流调速系统进行工程设计与仿真。
1.系统架构设计双闭环直流调速系统主要由速度环和电流环组成。
速度环主要负责控制电机的速度,通过比较给定速度和实际速度,产生速度偏差。
电流环主要控制电机的电流,通过比较给定电流和实际电流,产生电流偏差。
速度环和电流环形成了一个闭环控制系统,可以使得电机在速度和电流方面达到我们所要求的目标。
2.系统建模在MATLAB中,可以使用Simulink进行系统建模。
首先,需要建立电机的数学模型,包括机械模型、电磁模型和电气模型。
电机的机械模型可以使用转矩方程来描述,电磁模型可以使用电压方程来描述,电气模型可以使用网路方程来描述。
然后,将这些模型通过各个子系统进行连接,并进行参数设置。
最后,通过连接速度环和电流环的闭环控制系统,完成整个系统的建模。
3.控制器设计在MATLAB中,可以使用PID控制器进行控制器的设计。
首先,通过调节PID控制器的参数,使得系统的过渡过程满足我们对速度和电流的要求。
然后,使用增量PID算法对控制器进行改进,减小控制误差。
最后,通过将速度控制器与电流控制器进行串联,完成双闭环控制系统的设计。
4.系统仿真在MATLAB中,可以使用Simulink进行系统的仿真。
首先,设置仿真时间和步长,并进行仿真参数设置。
然后,通过给定输入信号,例如阶跃信号,观察系统的输出响应。
通过调整控制器的参数,观察系统的响应特性,包括超调量、稳定时间和稳态误差等。
最后,通过对仿真数据的分析,检验系统是否满足我们的设计要求。
总结:MATLAB提供了丰富的工具和函数,可以帮助我们进行双闭环直流调速系统的工程设计与仿真。
通过建立系统模型、设计控制器并进行仿真分析,可以快速有效地完成系统设计。
同时,可以通过调整参数和算法对系统进行优化,使得系统的性能更加稳定和可靠。
(整理)基于matlab双闭环调速系统设计
H a r b i n I n s t i t u t e o f T e c h n o l o g y制造系统自动化技术大作业——基于MATALAB的直流电机双闭环调速系统的设计与仿真院系:机电工程学院班级:学号:姓名:日期:2013.07.02©哈尔滨工业大学第一部分 设计任务书设计参数:设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为:额定功率200W ; 额定转速48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5;电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ;要求转速调节器和电流调节器的最大输入电压==**im nmU U 10V ; 两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。
试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%;空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。
第二部分 设计说明书一、稳态参数计算电流反馈系数:)/(25.14210A V I U nom im =⨯==*λβ转速反馈系数:)min/(02.050010r V n U nom nm ===*α二、电流环设计1、确定时间常数已知PWM 功率变换器的开关频率kHz f 10=,则s T s 0001.0=。
取电流滤波时间常数0.0002oi s τ=,按电流环小时间常数环节的近似处理方法,取s T T T oi s i 0003.00002.00001.0=+=+=∑2、选择电流调节器结构电流环可按典型I 型系统进行设计。
双闭环直流电动机调速系统设计及MATLAB仿真基于直流电动机调速系统的研究
双闭环直流电动机调速系统设计及MATLAB仿真基于直流电动机调速系统的研究摘要:本文研究了双闭环直流电动机调速系统的设计及MATLAB仿真。
首先介绍了直流电动机调速系统的基本原理,然后通过建立数学模型,设计了双闭环调速系统的控制器,并利用MATLAB进行了系统的仿真实验。
仿真结果表明,双闭环调速系统能够有效地提高电动机的调速性能,使其在不同负载条件下保持稳定的转速。
关键词:双闭环调速系统、直流电动机、MATLAB仿真1.引言直流电动机调速系统是工业自动化控制中的常用控制系统之一、它广泛应用于机械设备、工业生产线以及交通运输等领域。
传统的直流电动机调速系统采用单闭环控制,其调速性能较差,对负载扰动不敏感。
因此,研究双闭环直流电动机调速系统,对于提高电动机的调速性能具有重要意义。
2.直流电动机调速系统设计原理直流电动机调速系统是通过调节电源电压或者改变电动机绕组的接线方式来实现。
系统主要由电动机、控制器以及反馈元件组成。
在传统的单闭环调速系统中,控制器根据电机的转速反馈信号与给定的转速信号之差,产生输出信号控制电机的转速。
然而,单闭环调速系统对负载扰动不敏感,容易出现转速不稳定等问题。
双闭环调速系统是在传统的单闭环调速系统的基础上增加了一个速度环,用于对电机的速度进行闭环控制。
速度环通过调节电机的输出力矩,实现对电机转速的调节。
双闭环调速系统可以及时调整电机输出力矩,使电机在负载扰动下保持稳定的转速。
3.双闭环直流电动机调速系统的控制器设计双闭环直流电动机调速系统的控制器主要由速度环控制器和电流环控制器组成。
速度环控制器根据速度反馈信号与给定的速度信号之差,产生电压控制信号,用于控制电机的输出力矩。
电流环控制器根据电流反馈信号与给定的电流信号之差,产生电压控制信号,用于控制电机的转矩。
具体的控制器设计需要根据电机的数学模型和系统性能要求进行。
4.MATLAB仿真实验本文利用MATLAB软件对双闭环直流电动机调速系统进行了仿真实验。
基于MATLAB的直流电机双闭环调速系统的设计与仿真95824
《机电控制系统分析与设计》课程大作业一基于MATLAB的直流电机双闭环调速系统的设计与仿真:班级:学号:年月一. 设计要求与设计参数:设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为:额定功率200W ; 额定转速48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5;电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ;要求转速调节器和电流调节器的最大输入电压==**im nm U U 10V ;两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。
试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%;空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。
二. 设计过程1. 计算电流和转速反馈系数电流反馈系数:A A VI U im /V 25.14210nom *=⨯==λβ;转速反馈系数:rV r Vn U nm min/02.0min /50010max *⋅===α2. 电流环的动态校正过程和设计结果(1) 确定时间常数由已知条件知滤波时间常数=oi T 0.2ms=0.0002s ,按电流环小时间常数环节的近似处理方法,取(2) 选择电流调节器结构电流环可按典型I 型系统进行设计。
电流调节器选用PI 调节器,其传递函数为(3) 选择调节器参数超前时间常数==0.008s 。
电流环超调量≤i σ5%考虑,电流环开环增益:取,因此于是,电流调节器的比例系数为(4) 检验近似条件电流环的截止频率 1) 近似条件一:现在,,满足近似条件。
基于MATLAB的直流电机双闭环调速系统仿真
基于MATLAB的直流电机双闭环调速系统仿真基于MATLAB的直流电机双闭环调速系统仿真姓名:张xx学号:*********x华北电力大学2014年4月基于MATLAB的直流电机双闭环调速系统摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。
该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
关键词:直流电机,双闭环,PWM,转速调节器,电流调节器,SimulinkStudy of the Speed-adjusting Technology for DC Motor based onMatlabAbstractThe design uses thyristors, diodes and other devices designs a speed, current double-loop SCR DC converter system. The system sets up the current detecting aspect, the currentregulator ACR and the speed detecting link, speed regulator ASR, composes the current central and the speed central, the former through the feedback of the current components to level off the current, the latter through the feedback of speed detecting device to maintain the speed stably and finally eliminates the deviation of speed bias.,thus allowing the system to the purpose of regulating the current and speed. when the system starts, the speed outer ring saturats non-functional, the current inner ring plays a major role to regulate the starting current to maintain the maximum so that the speed linear change, to reach a given value; when it operates steadily, the speed negative feedback from the outer ring plays a major role ,to let the speed changes with the given speed voltage , at the same time the current inner ring regulates the armature current of motor adjustment to balance the load current.Simulink for system through mathematical modeling and system simulation. Finally display control system model and the results of anti-truth.Keywords: DC motor, Double-loop, PWM, the speed regulator, the current regulator,Simulink目录前言 (5)第一章绪论 (7)1.1直流调速系统的概述 (7)1.1.1直流电动机的调速方法 (7)1.2 PWM的相关介绍 (8)第二章总体方案设计 (9)2.1 方案比较 (9)2.2 方案论证 (10)2.3 方案选择 (10)2.4设计参数 (11)第三章单元模块的仿真电路设计 (11)3.1转速给定电路设计 (11)3.2转速检测电路设计 (11)3.3电流检测电路设计 (12)3.4 整流及晶闸管保护电路设计 (13)第四章双闭环直流调速系统的仿真设计 (13)4.1转速、电流双闭环直流调速系统的组成及其静特性 (14)4.1.1双闭环调速系统的组成 (14)4.1.2稳态结构框图和静特性 (16)4.1.3 稳态参数计算 (18)4.2转速、电流双闭环直流调速系统的动态模型184.2.1 动态抗扰性能分析 (20)4.3 调节器的设计 (21)4.3.1 电流调节器的设计 (22)4.3.2 转速调节器的设计 (24)4.3.3调速系统的开环传递函数 (26)第五章系统调试 (27)5.1系统MATLAB仿真 (27)5.2 系统的建模与参数设置 (27)5.3 系统仿真结果的输出及结果分析 (28)前言自70年代以来,国外在电气传动领域内,大量地采用了“晶闸管直流电动机调速”技术(简称KZ—D调速系统),尽管当今功率半导体变流技术已有了突飞猛进的发展,但在工业生产中KZ—D系统的应用还是占有相当的比重。
基于Matlab的双闭环直流调速系统设计及仿真1
基于Matlab的双闭环直流调速系统设计及仿真课程名称:《运动控制系统》院(部):电子信息与电气工程学院学生姓名:张光普学号:201002040026专业班级:电气工程及其自动化2010级基于Matlab的双闭环直流调速系统设计及仿真摘要:本文介绍了基于工程设计方法对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理,详细分析了系统的起动过程及参数设计,运用Simulink 进行直流电动机双闭环调速系统的数学建模和系统仿真。
最后显示控制系统模型以及仿真结果并加以分析。
关键词:转速环;电流环;调节器;Simulink一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。
这种理想的起动过程如图1所示。
图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数oi T 按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
根据MATLAB的直流电机双闭环调速系统的设计与仿真
《机电控制系统分析与设计》课程大作业之一 基于MATLAB 的直流电机双闭环调速系统的设计与仿真1 计算电流和转速反馈系数β=U im ∗I dm =10V 4A =1.25Ωα=U nm ∗n =10500=0.02V ∙min/r2 按工程设计法,详细写出电流环的动态校正过程和设计结果根据设计的一般原则“先内环后外环”,从内环开始,逐步向外扩展。
在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。
电流调节器设计分为以下几个步骤:a 电流环结构图的简化 1) 忽略反电动势的动态影响在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即 E ≈0。
这时,电流环如下图所示。
2) 等效成单位负反馈系统如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成U *i (s ) /β ,则电流环便等效成单位负反馈系统。
3) 小惯性环节近似处理由于T s 和 T 0i 一般都比T l 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为T ∑i = T s + T oi 简化的近似条件为电流环结构图最终简化成图。
ois ci 131T T ≤ωb 电流调节器结构的选择 1) 典型系统的选择:从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。
从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I 型系统 2) 电流调节器选择电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI型的电流调节器,其传递函数可以写成K i — 电流调节器的比例系数; τi — 电流调节器的超前时间常数3) 校正后电流环的结构和特性为了让调节器零点与控制对象的大时间常数极点对消,选择则电流环的动态结构图便成为图a 所示的典型形式,其中ss K s W i i i ACR )1()(ττ+=msT l 8i ==τRK K K i s i I τβ=a) 动态结构图:b) 开环对数幅频特性c. 电流调节器的参数计算电流调节器的参数有:K i 和 τi , 其中 τi 已选定,剩下的只有比例系数 K i , 可根据所需要的动态性能指标选取。
基于MATLAB的直流电机双闭环调速系统的设计与仿真
. . . . . MATLAB课程设计基于MATLAB的直流电机双闭环调速系统的设计与仿真班级:自动化12-2:学号:目录一、目录-----------------------------------------------------------1二、前言-----------------------------------------------------------2三、设计目的及要求--------------------------------------------3四、设计题目及参数--------------------------------------------3五、设计容过程-----------------------------------------------31.计算电流和转速反馈系数-----------------------------------------32.电流环的动态校正过程--------------------------------------------33.转速环的动态校正过程--------------------------------------------94.建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真-------------------------------------14六、设计总结---------------------------------------------------18七、参考文献---------------------------------------------------19二、前言:控制系统理论与技术是现代科学技术的主要容,以经广泛应用于航空与航天工业、电力工业、核能工业、石油工业、化学工业及冶金工业等众多学科和工程技术领域,并且具有经济、安全、快捷、优化设计和预测的特殊功能等优点,在非工程系统(如社会、管理、经济等系统)中,由于其规模及复杂程度巨大,直接实验几乎不可能,这是通过仿真技术的应用可以获得对系统的某种超前认识,因此仿真技术已经成为对控制系统进行分析、设计和综合研究中很有效的手段。
基于matlab的直流电机双闭环调速系统仿真
基于Matlab的直流电机双闭环调速系统仿真本文将介绍使用Matlab软件进行直流电机双闭环调速系统的仿真。
直流电机调速系统是工业控制领域中常见的一种控制系统,通过控制电机的输入电压,调节电机的转速。
双闭环调速系统在传统的单闭环调速系统的基础上增加了速度环和电流环,提高了系统的稳定性和响应速度。
1. 直流电机调速系统介绍直流电机调速系统主要包括电机、电机功率器件、传感器和控制器等组成部分。
其中,电机是被控对象,通过控制电机功率器件的输入电压,可以调节电机的转速。
传感器用于实时测量电机的转速和转矩,将测量值反馈给控制器。
控制器根据测量值和设定值的差异,生成控制信号,控制输入电压,使得电机的转速达到设定值,并保持在设定值附近。
2. 双闭环调速系统结构双闭环调速系统在传统的单闭环调速系统的基础上增加了速度环和电流环,使得系统的控制更加精确。
速度环对电机的速度进行控制,根据速度误差生成调节电压;电流环则对电机的电流进行控制,根据电流误差生成最终的控制信号。
双闭环调速系统的结构如下所示:_______ _______| | e1 | |r +--+ | |---+-->| C |---+--> u| | | | |_____| |+--->| P1 | | | +-------+| | | _______ | | |y <---+ |_____| _|_ | | | | |_______ | | C1 | | | P2 || | | |_____| | | |--| P0 |--+ +--> | |t |_____| | +-------+y其中,r为输入信号(设定值),y为输出信号(测量值),e1为速度误差,e2为电流误差,P1为速度环比例控制器,P2为电流环比例控制器,C1为电流环输入限幅器,C为速度环输入限幅器,u为控制信号(调节电压)。
3. 双闭环调速系统仿真实现步骤步骤一:建立模型在Matlab软件中,建立直流电机的数学模型。
基于MATLAB的双闭环直流调速系统仿真研究
基于MATLAB的双闭环直流调速系统仿真研究双闭环直流调速系统是一种常见的电机控制系统,通过使用两个闭环来控制电机转速和电流,能够使电机稳定运行并满足特定的转速和负载要求。
MATLAB作为一种功能强大的计算软件,可以提供一系列的工具和函数,用于建模、仿真和分析各种控制系统。
双闭环直流调速系统一般由速度环和电流环组成。
速度环用于控制电机的速度,通过测量电机的转速与设定值之间的误差,并将误差信号馈入控制器进行比例、积分、微分运算,最后将输出信号作为电机的控制电压。
电流环则用于控制电机的电流,通过将输出信号与电机的电流进行比较,并通过控制电机的电流调节器来控制电机的电流。
在MATLAB中进行双闭环直流调速系统的仿真研究,主要包括以下步骤:1.建立系统模型:根据实际的电机参数以及控制器的特性,建立电机系统的数学模型。
一般可以使用传递函数来描述电机的动态特性。
2.设计控制器:根据系统的性能要求,设计速度环和电流环的控制器。
可以使用PID控制器或者其他控制算法来实现控制器的设计。
3. 进行仿真实验:根据所设计的控制器和系统模型,进行仿真实验。
在MATLAB中,可以使用Simulink工具箱来搭建系统模型,并通过逐步调整控制器参数,在不同的工况下进行仿真实验,并观察系统的响应。
4.分析结果:根据仿真实验的结果,通过分析系统的响应曲线,评估系统的性能。
可以观察系统的稳态误差、超调量、调节时间等指标,以及系统的抗干扰性能和稳定性。
5.优化控制器参数:根据仿真实验的结果,对控制器参数进行优化调整,以获得更好的系统性能。
可以使用MATLAB提供的优化算法来自动求解最优参数。
总结,基于MATLAB的双闭环直流调速系统仿真研究可以通过建立系统模型、设计控制器、进行仿真实验、分析结果和优化控制器参数等步骤来完成。
通过这些步骤,可以评估控制系统的性能,并对系统进行改进和优化,以满足实际的控制需求。
基于Matlab双闭环直流调速系统设计与仿真
τn=hT∑n=5×0.0174=0.087s
KN=
h+1
22
2×h ×T∑n
=
5+1 2×25×0.01742
=396.4
于是,ASR 的比例系数 Kn 计算:
Kn=
(h+1)βCeTm 2hαRT∑n
=11.7
(3)计算转速调节器的电路参数,按所运算放大器,取 R0=40KΩ,各
电阻和电容值计算如下:
出电压 UC 作为触发电路的控制电压(其输出的限幅值 UCM 决定了晶闸
管整流输出电压的最大值)。改变控制电压 UC,就能改变触发器控制角
α 及整流输出电压 Ud0,相应地也就改变了电动机的转速, 达到调速的目
的。
通过原理图我们很容易画出其稳态结构框图,如图 2 所示。
图 2 双闭环直流调速系统的稳态结构图 α- 转速反馈系数; β- 电流反馈系数
*
β= Un = 10 =0.05 λIN 1.5×136
*
α=
Un n*
=
10 1800
=0.006
Kp=
KCe αKs
= 29.85×0.103 0.006×45
图
过仿真模型的输出我们可以看到,本设计的过程及计算数值均达 到了设计要求,结果很理想,但我们不得不说明一点是,上述结果是在 没有考虑扰动、参数随时间的变化等因素而得到的,如果再进一步考虑 其 他 因 素 ,则 系 统 设 计 必 将 会 得 到 更 加 真 是 真 实 、理 想 的 结 果 ,见 图 4。
科技信息
高校理科研究
基于 Matlab 双闭环直流调速系统设计与仿真
大连海洋大学信息工程学院 马占军
[摘 要]V- M 双闭环直流调速系统是目前应用比较成熟的一种调速系统,通过本次设计,给出一种具体的设计步骤和方法,使之能 够通过本方法对其他的调速系统的设计和计算起到指导性的作用;同时,通过本次设计和仿真方法,达到举一反三的效果。 [关键词]V- M 系统 调速 仿真
基于matlab的双闭环直流调速系统仿真及参数进化设计
基于matlab的双闭环直流调速系统仿真及参数进化设计本文基于matlab平台,设计了一个双闭环直流调速系统,并通过参数进化算法对其进行优化设计,以提高系统的性能和稳定性。
一、双闭环直流调速系统的基本结构和参数双闭环直流调速系统包括基本结构和控制回路两个部分。
其基本结构如下图所示:![img](其中,U_i为直流电源输入电压;R_a为电机电阻;L_a为电机电感;J为机械惯量;T_0为负载转矩;\omega_{m}为电机输出转速;K_e为电机电动势系数;K_t为电机转矩系数。
控制回路如下图所示:![img](其中,U_{ref}为期望输出电压;U_i为实际输出电压;I_{ref}为期望输出电流;I_i为实际输出电流;E_i为电机输出电动势;x_1为速度环调节器的输出;x_2为电流环调节器的输出。
系统的基本参数如下:U_i=220V;R_a=0.5Ω;L_a=0.01H;J=0.05kg·m2;T_0=0.05N·m;K_e=0.05V/rad;K_t=0.05N·m/A。
二、双闭环直流调速系统的仿真建模双闭环直流调速系统的仿真建模可以分为以下几个步骤:1.建立直流调速系统的基本模型。
根据系统的基本结构和参数,可以建立如下的直流调速系统的基本模型:![img](其中,U_i为直流电源输入电压;R_a为电机电阻;L_a为电机电感;J为机械惯量;T_0为负载转矩;\omega_m为电机输出转速;K_e为电机电动势系数;K_t为电机转矩系数;U_i和T_0都是外界输入量,其余的量都是内部变量。
2.建立速度环调节器和电流环调节器的模型。
速度环调节器和电流环调节器的模型可以分别表示为:![img](其中,K_{p1}、K_{i1}、K_{p2}和K_{i2}分别为速度环调节器和电流环调节器的比例增益和积分增益;x_1和x_2分别为速度环调节器和电流环调节器的输出;\omega_{ref}和I_{ref}分别为期望转速和期望电流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、设计参数
设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为:
额定功率200W ; 额定转速48V ; 额定电流4A ;
额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2;
电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5;
电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ;
要求转速调节器和电流调节器的最大输入电压==*
*im nm
U U 10V ; 两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。
试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%;
空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。
二、设计过程
1、稳态参数计算
根据两调节器都选用PI 调节器的结构,稳态时电流和转速偏差均应为零;两调节器的输出限
幅值均选择为10V
电流反馈系数;*nom 10 1.25/24im U V
V A I A
βλ===⨯
转速反馈系数:*100.02min/500/min nm nom U V
n V r
n r ===⋅
2、电流环设计
1) 确定时间常数
电流滤波时间常数0.2oi T ms =,按电流环小时间常数环节的近似处理方法,则
s T T T oi s i 0003.00002.00001.0=+=+=∑
2)选择电流调节器结构
电流环可按典型Ⅰ型系统进行设计。
电流调节器选用PI 调节器,其传递函数为
1
()i ACR i
i s G s K s
ττ+= 3)选择调节器参数
超前时间常数:i τ=T L =0.008s
电流环超调量为5%i σ≤,电流环开环增益:取0.5i i K T ∑=,则
0.50.5
1666.670.0003
I i K T ∑=
== 于是,电流调节器比例系数为
0.0088
1666.6717.7781.25 4.8
i i I s R K K K τβ⨯=⋅
=⨯=⨯ 4)检验近似条件
电流环截止频率1666. 67 1/ci I K s ω== (1)近似条件1:13ci s
T ω≤
现在
113333.3330.0003
ci s T ω==>,满足近似条件。
(2)近似条件2:≥ci ωL
m T T 1
3
现在L m T T 13
==47.43 <ci ω,满足近似条件。
(3)近似条件3:oi
s ci T T 1
31≤
ω
现在
oi s T T 131=0002
.00001.01
31⨯=2357.02>ci ω,满足近似条件。
5)MATLAB 仿真
(1) 电流环给定阶跃响应的MATLAB仿真
经过小参数环节合并的电流环动态结构图如下:
输入[a1,b1,c1,d1]=linmod('001');step(a1,b1,c1,d1);grid on 后
经过小参数环节合并的电流环单位阶跃响应曲线
输入[a1,b1,c1,d1]=linmod('lu002');margin(a1,b1,c1,d1);grid on 后
经过小参数环节合并的电流环开环频率特性曲线
未经过小参数环节合并的电流环动态结构图如下:
未经过小参数环节合并的电流环单位阶跃响应曲线
未经过小参数环节合并的电流环开环频率特性曲线
3、转速环设计
1)确定时间常数
电流环的等效时间常数:2i T =0.0006s
转速滤波时间常数:T on =1ms=0.001,
转速环小时间常数近似处理:n T ∑=2i T ∑+ T on =0.0006+0.001=0.0016s
2)选择转速调节器结构
由转速稳态无静差要求,转速调节器中必须包含积分环节;又根据动态要求,应该按典
型Ⅱ型系统校正转速环,因此转速调节器应该选择PI 调节器,其传递函数为
s
s K s W n n n
ASR ττ1
)(+= 3)选择调节器参数
要求空载起动到额定转速时的转速超调量σ ≤ 25%,取h=10,则转速调节器的超前时间常数为
n τ=h ·T n ∑=10⨯0.0016=0.016s
转速环开环增益
2
221n N T h h K ∑+=
=22
1012100.0016+⨯⨯=21484.4 1/2
s 于是,转速调节器比例系数为
n m e n RT h T C h K ∑+=
αβ2)1(=(101) 1.250.040.5
2100.0280.0016
+⨯⨯⨯⨯⨯⨯⨯=53.71
4)校验近似条件
转速环的开环截止频率为
cn ω=
1
ωN
K =N K ·n τ=21484.4⨯0.016=343.75 1/s
(1) 近似条件1:cn ω ≤
i
T ∑51 现在
i T ∑51=0003
.051⨯=666. 67>cn ω,满足近似条件。
(2) 近似条件2:on
i cn T T ∑≤2131
ω
现在,
on i T T ∑21
31=001
.00006.0131⨯=430.33 >cn ω,满足近似条件。
(5)MATLAB 仿真
1) 经过小参数环节合并的转速环动态结构图如下:
经过小参数环节合并的转速环单位阶跃响应
经过小参数环节合并的转速环开环频率特性曲线2)经过小参数环节合并的转速环动态结构图如下:
未经过小参数环节合并的转速环单位阶跃响应曲线
未经过小参数环节合并的转速环开环频率特性曲线
3)转速电流双闭环直流调速系统Simulink仿真
动态结构图如下:
转速电流双闭环直流调速系统开环频率特性曲线
阶跃信号输入转速输出过度过程曲线
由上述曲线可知,转速和电流超调量都满足指标要求。
阶跃信号输入电流输出过渡过程曲线
阶跃信号输入转速调节器输出过渡过程曲线
阶跃信号输入电流调节器输出过渡过程曲线
仿真结果分析:
根据设计结果的模拟仿真,可以得到设计的调节系统稳态时转速无误差。
可以看出:作为环的调节器,在外环转速的调节过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。
双闭环系统中,由于增设了电流环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗扰性能大有改善。
在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。
在实际系统中,电网电压的波动和外负载的波动会对系统的超调与稳定有一定的影响,在仿真的时候可以加以考虑,最终可以看出系统对于外界干扰的协调能力很强。