第6章 回归分析1、2

合集下载

(整理)第6章回归分析

(整理)第6章回归分析

第6章回归分析变量之间的联系可以分为两类,一类是确定性的,另一类是非确定性的。

确定型的关系是指某一个或某几个现象的变动必然会引起另一个现象确定的变动,他们之间的关系可以使用数学函数式确切地表达出来,即y=f(x)。

当知道x的数值时,就可以计算出确切的y值来。

如圆的周长与半径的关系:周长=2πr。

非确定关系则不然,例如,在发育阶段,随年龄的增长,人的身高会增加。

但不能根据年龄找到确定的身高,即不能得出11岁儿童身高一定就是1米40公分。

年龄与身高的关系不能用一般的函数关系来表达。

研究变量之间既存在又不确定的相互关系及其密切程度的分析称为相关分析。

如果把其中的一些因素作为自变量,而另一些随自变量的变化而变化的变量作为因变量,研究他们之间的非确定因果关系,这种分析就称为回归分析。

在本章,我们将讲解回归分析有关的内容,而在下一章,我们将讲解相关分析的具体操作方法。

在SppS 10.0 For windows中回归分析分为以下几种:(主要讲前三种)●Linear:线性回归分析(data09-03)●Curve Estimation:曲线回归分析(data13-01)●Binary Logistic:二维 Logistic回归分析(data13-02)●Multinomial Logistic:多维Logistic回归分析●Ordinal:Ordinal回归分析●Proibit:概率单位回归分析●Nonlinear:非线性回归分析●Weight Estimation: 加权估测分析●2-Stage Least Squares: 两阶最小二乘分析8.1线性回归(data09-03)一元线性回归方程(卫生统计114~121页)直线回归分析的任务就是根据若干个观测(Xi,yi)i=1~n找出描述两个变量X、y之间关系的直线回归方程y^=a+bx。

y^是变量y的估计值。

求直线回归方程y^=a+bx,实际上是用回归直线拟合散点图中的各观测点。

应用回归分析课后习题

应用回归分析课后习题
2.16* 表 2.8 是 1985 年美国 50 个州和哥伦比亚特区公立学校中教师的人均年工资 y(美元) 和对学生的人均经费收入 x(美元)。 (1)绘制 y 对 x 的散点图,可以用直线回归描述两者之间的关系吗? (2)建立 y 对 x 的线性回归。 (3)用线性回归的 Plots 功能绘制标准残差的直方图和正态概率图,检验误差项的正态性假 设。
使用其中的一个。
2.12* 如果把自变量观测值都乘以 2,回归参数的最小二乘估计 ˆ0 和 ˆ1 会发生什么变化?
#;
.
如果把自变量观测值都加上 2,回归参数的最小二乘估计 ˆ0 和 ˆ1 会发生什么变化?
2.13 如果回归方程 yˆ ˆ0 ˆ1x 相应的相关系数 r 很大,则用它预测时,预测误差一定较小。
#;
.
第三章 习题
3.1 写出多元线性回归模型的矩阵表示形式,并给出多元线性回归模型的基本假设。 3.2 讨论样本量 n 与自变量个数 p 的关系,它们对模型的参数估计有何影响?
3.3 证明ˆ 2 1 SSE 是误差项方差 2 的无偏估计。 n p 1
3.4 一个回归方程的复相关系数 R=0.99,样本决定系数 R2 0.9801 ,我们能判断这个回归
2.15 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经过 10
周时间,收集了每周加班工作时间的数据和签发的新保单数目,x 为每周签发的新保单数目,
y 为每周加班工作时间(小时)。见表
周序 1
2
3
4
5
6
7
8
9
10

X
825 215 1070 550 480 920 1350 325 670 1215

回归分析方法

回归分析方法

回归分析方法
回归分析是统计学中一种重要的数据分析方法,它用于研究自
变量和因变量之间的关系。

回归分析方法可以帮助我们预测和解释
变量之间的关系,从而更好地理解数据的特征和趋势。

在本文中,
我们将介绍回归分析的基本概念、常见的回归模型以及如何进行回
归分析。

首先,回归分析的基本概念包括自变量和因变量。

自变量是研
究者可以控制或观察到的变量,而因变量是研究者希望预测或解释
的变量。

回归分析旨在通过自变量的变化来预测或解释因变量的变化,从而揭示它们之间的关系。

常见的回归模型包括线性回归、多元线性回归、逻辑回归等。

线性回归是最简单的回归模型之一,它假设自变量和因变量之间的
关系是线性的。

多元线性回归则允许多个自变量对因变量产生影响,逻辑回归则用于因变量是二元变量的情况,例如成功与失败、生存
与死亡等。

进行回归分析时,我们需要收集数据、建立模型、进行拟合和
检验模型的拟合优度。

在收集数据时,我们需要确保数据的质量和
完整性,避免因为数据缺失或异常值而影响分析结果。

建立模型时,我们需要选择合适的自变量和因变量,并根据实际情况选择合适的
回归模型。

进行拟合和检验模型的拟合优度时,我们需要根据实际
情况选择合适的统计指标和方法,例如残差分析、R方值等。

总之,回归分析方法是一种重要的数据分析方法,它可以帮助
我们预测和解释变量之间的关系。

通过本文的介绍,相信读者对回
归分析有了更深入的了解,希望能够在实际工作中灵活运用回归分
析方法,为决策提供更可靠的依据。

第六章相关及回归分析方式

第六章相关及回归分析方式

第六章 相关与回归分析方式第一部份 习题一、单项选择题1.单位产品本钱与其产量的相关;单位产品本钱与单位产品原材料消耗量的相关 ( )。

A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关2.样本相关系数r 的取值范围( )。

∞<r <+∞≤r ≤1 C. -l <r <1 D. 0≤r ≤101y x ββ=+上,那么x 与y 之间的相关系数( )。

A.r =0B.r =1C.r =-1D.|r|=14.相关分析与回归分析,在是不是需要确信自变量和因变量的问题上( )。

A.前者无需确信,后者需要确信 B.前者需要确信,后者无需确信5.直线相关系数的绝对值接近1时,说明两变量相关关系的紧密程度是( )。

6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。

7.下面的几个式子中,错误的选项是( )。

8.以下关系中,属于正相关关系的有( )。

9.直线相关分析与直线回归分析的联系表现为( )。

10.进行相关分析,要求相关的两个变量( )。

A.都是随机的B.都不是随机的11.相关关系的要紧特点是( )。

B.某一现象的标志与另外的标志之间存在着必然的关系,但它们不是确信的关系12.相关分析是研究( )。

13.现象之间彼此依存关系的程度越低,那么相关系数( )。

01y x ββ=+中,假设10β<,那么x 与y 之间的相关系数( )。

A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,说明( )。

A.现象之间完全无关B.相关程度较小16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,那么x 与y 之间存在着( )。

17.计算估量标准误差的依据是( )。

A.因变量的数列B.因变量的总变差18.两个变量间的相关关系称为( )。

伍德里奇计量经济学第6章计算机习题详解STATA

伍德里奇计量经济学第6章计算机习题详解STATA

伍德里奇计量经济学第6章计算机习题详解 STATA引言本文档旨在对伍德里奇计量经济学第6章的计算机习题进行详解和解答,使用计量经济学软件STATA进行操作和分析。

本文档将逐步解答各个习题,并给出相应的STATA代码和结果展示。

习题1假设我们有一个数据集data.dta,其中包含了变量y和x。

现在我们想要估计下列回归模型的系数:$$y = \\beta_0 + \\beta_1 x + \\beta_2 x^2 + u$$使用STATA进行分析,首先加载数据集:use data.dta然后我们可以采用如下代码进行回归分析:reg y x c.x#c.x这里的c.x#c.x表示将变量x进行平方。

执行上述代码后,STATA将输出回归结果。

习题2在第6章的习题2中,我们需要进行假设检验。

假设我们想要检验系数$\\beta_1=0$和$\\beta_2=0$的原假设。

我们可以使用STATA进行对应的假设检验。

首先,我们需要执行回归分析,并保存回归结果:reg y x c.x#c.xestimates store reg1然后,我们可以使用如下代码进行假设检验:test x#c.x=0执行上述代码后,STATA将输出相应的假设检验结果。

习题3在第6章的习题3中,我们需要计算残差的平方和(Sum of Squared Residuals)。

我们可以使用STATA来计算残差的平方和。

首先,我们需要执行回归分析,并保存回归结果:reg y x c.x#c.xestimates store reg1然后,我们可以使用以下代码计算残差的平方和:predict u, residegen ssr = sum(u^2)scalar ssr_sum = r(ssr)执行上述代码后,STATA将输出残差的平方和。

习题4在第6章的习题4中,我们需要计算拟合度(Goodness of Fit)度量指标,如R2,调整后R2等。

我们可以使用STATA计算拟合度指标。

《应用回归分析》课后题答案解析

《应用回归分析》课后题答案解析
.
.
《应用回归分析》部分课后习题答案
第一章 回归分析概述
1.1 变量间统计关系和函数关系的区别是什么? 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量 唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另 外一个变量的确定关系。
1.2 回归分析与相关分析的联系与区别是什么? 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有 a. 在回归分析中,变量 y 称为因变量,处在被解释的特殊地位。在相关分析中,变 量 x 和变量 y 处于平等的地位,即研究变量 y 与变量 x 的密切程度与研究变量 x 与变量 y 的密切程度是一回事。b.相关分析中所涉及的变量 y 与变量 x 全是随机 变量。而在回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量也可以 是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的 密切程度。而回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归 方程进行预测和控制。
1 3
即为:(2.49,11.5)
33,7+2.353 1 3
33)
0
N
(0
,
(
1 n
(x)2 Lxx
)
2
)
t
0 0
0 0
(
1
(
x)2
)
2
1 (x)2
n Lxx
n Lxx
服从自由度为 n-2 的 t 分布。因而
P |
0 0
1 (x)2
| t /2 (n 2) 1
n Lxx页脚源自 ..1330 6.1
3
(5)由于 1
N
(1,

第6章 相关与回归分析习题解答

第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。

答:错。

应是相关关系。

单位成本与产量间不存在确定的数值对应关系。

2.相关系数为0表明两个变量之间不存在任何关系。

答:.错。

相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。

3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。

答:对,因果关系的判断还有赖于实质性科学的理论分析。

4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。

答:错。

两者是精确的函数关系。

5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。

答:对。

6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。

答:对。

因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。

二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。

答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。

然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。

统计学06第六章相关与回归分析

统计学06第六章相关与回归分析

-5.3339 -21.2729 -20.0669
0.02111209 -58.5559
0.0675121 -201.421
2019/11/7
第六章 相关与回归分析
20
2.2 相关系数的特征及判别标准
解法 1
n x y
Lxx
L yy
Lxy

2
xx

2
y y
xx
3559.59
22
2.2 相关系数的特征及判别标准
解法 2
n x y x2 y2 x y
10 6470 5.813 4814300 3.446609 3559.59
r
10 3559.59 6471 5.813
10 4814300 64702 10 3.446609 5.8132
第六章 相关与回归分析
第二节 简单线性相关分析
2.1 相关系数的计算公式 2.2 相关系数的特征及判别标准 2.3 相关系数的检验
2.1 相关系数的计算公式
相关系r数与计ρ算公式: X 、Y 的协方差
相总关样 系体数本:相关 系V数Caor是 vXX一,Va个 YrY统
计量。可以证明,样本相
y y
10 6470 5.813 628210 0.0675121 -201.421
r
201 .421
628210 0 .0675121
0 .978051034 0.9781
2019/11/7
第六章 相关与回归分析
21
2.2 相关系数的特征及判别标准
x
280 320 390 530 650 670 790 880 910 1050

现代统计方法--回归分析1

现代统计方法--回归分析1

现代统计方法的种类
三、相关分析方法 1、定性资料分析 2、回归分析 3、典型相关分析 4、主成分分析 5、因子分析 6、对应分析
现代统计方法的种类
四、预测决策方法: 1、回归分析 2、判别分析 3、定性资料分析 4、聚类分析
统计分析方法应用流程
现实经济问题
提炼具体问题 确定欲达目标
分类研究
结构简化 研究
ˆ 1 、 1
1回归分析2判别分析3定性资料分析4聚类分析统计分析方法应用流程现实经济问题提炼具体问题确定欲达目标根据定性理论设计指标变量搜集整理统计数据选择统计方法构造理论模型进行统计计算估计模型参数修改yes应用分类研究结构简化研究相关分析研究预测决策研究教材统计软件简介eview关于spssspssstatisticalpackagesocialscience即社会科学统计软件包是世界著名的统计分析软件
一元线性回归分析
1、一元线性回归模型 2、回归模型的参数估计 3、OLSE估计的性质 4、回归方程的显著性检验 5、回归方程的拟合优度 6、残差分析 7、回归系数的区间估计
一元线性回归分析模型
1、回归模型建模的实践背景 2、一元线性回归模型的数学形式: 1)、理论模型: y 0 1 x
ξ♐♣☯♧
现代统计方法
前言
统计学的几个问题
1、自1969年设立诺贝尔经济学奖以来,已有 42名学者获奖,而其中有2/3的人是统计学家、 计量经济学家、数学家。 2、目前的研究趋势是:从一般的逻辑推理发展 到重视实证研究;从理论论述发展到数量研 究。 3、硕士和博士的学位论文,如果没有数量模型 和分析,其文章的水平会有问题。
关于S-PLUS

另外Auckland大学的Robert Gentleman 和 Ross Ihaka 及其他志愿人员开发了一个R系 统,其语法形式与S语言基本相同,但实现 不同,两种语言的程序有一定的兼容性。R 是一个GPL自由软件,现在的版本是1.00版, 它比S-PLUS 还少许多功能,但已经具有了 很强的实用性

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

第六章相关与回归分析习题一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。

2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。

3.相关系数的取值范围是。

4.完全相关即是关系,其相关系数为。

5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

8.回归方程y=a+bx中的参数a是,b是。

在统计中估计待定参数的常用方法是。

9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。

10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

11.用来说明回归方程代表性大小的统计分析指标是。

二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系B圆周的长度决定于它的半径C家庭的收入和消费的关系D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元B减少70元C增加80元D减少80元4.假设要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程y =a+b x。

研一spss复习资料 06_回归分析

研一spss复习资料 06_回归分析
回归方程的拟合优度检验一般用判定系数 R2实现。该指标是建立在对总离差平方和 进行分解的基础之上。
2021/8/17
17
(2)回归方程的显著性检验(F检验)
回归方程的显著性检验是对因变量与所有 自变量之间的线性关系是否显著的一种假 设检验。
回归方程的显著性检验一般采用F检验,利 用方差分析的方法进行。
条件指标: 0<k<10 无多重共线性; 10<=k<=100 较强; k>=100 严重
2021/8/17
37
回归分析中的自变量筛选
多元回归分析引入多个自变量. 如果引入自变 量个数较少,则不能较好说明因变量的变化;
并非自变量引入越多越好.原因:
有些自变量可能对因变量的解释没有贡献 自变量间可能存在较强的线性关系,即:多重共线性.
绘制指定序列的散点图,检测残差的随机性、 异方差性
ZPRED:标准化预测值 ZRESID:标准化残差 SRESID:学生化残差
2021/8/17
32
线性回归方程的残差分析
残差序列的正态性检验
绘制标准化残差的直方图或累计概率图
残差序列的随机性检验
绘制残差和预测值的散点图,应随机分布在经 过零的一条直线上下
因而不能全部引入回归方程.
2021/8/17
38
自变量向前筛选法(forward)
即自变量不断进入回归方程的过程. 首先,选择与因变量具有最高相关系数的自变量进入方
程,并进行各种检验; 其次,在剩余的自变量中寻找偏相关系数最高的变量进
入回归方程,并进行检验; 默认:回归系数检验的概率值小于(0.05)才可以进入方
SSE
A dj.R 2 1 n p1 SST n 1

《回归分析》课件 刘超——回归分析教学大纲-hep

《回归分析》课件 刘超——回归分析教学大纲-hep

回归分析教学大纲概述本书主要内容、特点及全书章节主要标题并附教学大纲本书基于归纳演绎的认知规律,把握统计理论的掌握能力和统计理论的应用能力的平衡,依据认知规律安排教材各章节内容。

教材不仅阐述了回归分析的基本理论和具体的应用技术,还按照认知规律适当拓宽学生思维,介绍了伴前沿回归方法。

教材采用了引例、解题思路、解题模型、概念、案例、习题、统计软件七要素合一的教材内容安排模式,有助于培养学生的统计思维与统计能力。

全书共分14章,包括绪论、一元线性回归、多元线性回归、模型诊断、自变量的问题、误差的问题、模型选择、收缩方法、非线性回归、广义线性模型、非参数回归、机器学习的回归模型、人工神经网络以及缺失数据等内容。

第1章对回归分析的研究内容和建模过程给出综述性介绍;第2章和第3章详细介绍了一元和多元线性回归的参数估计、显著性检验及其应用;第4章介绍了回归模型的诊断,对违背回归模型基本假设的误差和观测的各种问题给出了处理方法;第5章介绍了回归建模中自变量可能存在的问题及处理方法,包括自变量的误差、尺度变化以及共线性问题;第6章介绍了回归建模中误差可能存在的问题及处理方法,包括广义最小二乘估计、加权最小二乘估计;第7章介绍了模型选择方法,包括基于检验的方法、基于标准的方法;第8章介绍了模型估计的收缩方法,包括岭回归、lasso、自适应lasso、主成分法、偏最小二乘法;第9章介绍了非线性回归,包括因变量、自变量的变换以及多项式回归、分段回归、内在的非线性回归等方法;第10章介绍了广义线性模型,包括logistic回归、Softmax回归、泊松回归等;第11章介绍了非参数回归的方法,包括核估计、局部回归、样条、小波、非参数多元回归、加法模型等方法;第12章介绍了机器学习中可用于回归问题的方法,包括决策树、随机森林、AdaBoost模型等;第13章介绍了人工神经网络在回归分析中的应用;第14章介绍了常见的数据缺失问题及处理方法,包括删除、单一插补、多重插补等。

最新应用回归分析-第6章课后习题参考答案

最新应用回归分析-第6章课后习题参考答案

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。

如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。

经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。

统计学实验—SPSS与R软件应用与实例-第6章回归分析-SPSS

统计学实验—SPSS与R软件应用与实例-第6章回归分析-SPSS
(2)计算简单相关系数,分析身高x、体 重z和肺活量y的之间是否存在直线相关关 系;
(3)计算偏相关系数,分析身高x、体重z 和肺活量y的之间的偏相关关系。
2019/8/8
《统计学实验》第6章回归分析
【统计理论】
给定容量为n的一个样本 ,样本简单相关 系数(correlation coefficient)r的计算公 式如下
(6.9)
2019/8/8
yˆ0t2(n2)ˆ 11 nn(x(0x i xx )2)2 i1 《统计学实验》第6章回归分析
(6.10)
(1) 绘制变量散点图计算相关系数和一元 线性回归
2019/8/8
《统计学实验》第6章回归分析
【菜单方式】
打开数据文件li6.2.sav 选择Graphs→Legacy Diaglogs→ Scatter/Dot →Simple Scatterplot 将y选入Y Axis,将x选入X Axis→点击OK,即
( 6 . 6 )
对于一元线性回归来说,有两种等价的方法,即 F检验和t检验。F检验的统计量为:
F SSR SSE/(n2)
(6.7)
t检验的统计量如下:
t
ˆ
ˆ 1
n
(xi x)2
i1
(6.8)
2019/8/8
《统计学实验》第6章回归分析
【统计理论】

yˆ0t2(n2)ˆ 1 nn(x(0x ixx)2)2 i1
2019/8/8
《统计学实验》第6章回归分析
【软件操作】
选择Analyze→Correlate→Partial 将身高x和肺活量y两个变量同时选入
Variables 再将控制变量体重z选入Controlling for中,

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第6章 多元回归分析:深入专题【圣才出品】

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第6章 多元回归分析:深入专题【圣才出品】

第6章多元回归分析:深入专题6.1复习笔记一、数据的测度单位对OLS 统计量的影响1.数据的测度单位对OLS 统计量无实质性影响当对变量重新测度时,系数、标准误、置信区间、t 统计量和F 统计量改变的方式,都不影响所有被测度的影响和检验结果。

怎样度量数据通常只起到非实质性的作用,如减少所估计系数中小数点后零的个数等。

通过对度量单位明智的选择,可以在不做任何本质改变的情况下,改进所估计方程的形象。

对任何一个x i ,当它在回归中以log(x i )出现时,改变其度量单位也只能影响到截距。

这与对百分比变化和(特别是)弹性的了解相对应:它们不会随着y 或x i 度量单位的变化而变化。

2.β系数原始方程:0112233ˆˆˆˆˆˆi i i i k iki y x x x x u βββββ=++++⋅⋅⋅++减去平均方程,就可以得到:111222333ˆˆˆˆˆ(((()i i i i k ik ki y y x x x x x x x x u ββββ-=-+-+-+⋅⋅⋅+-+令ˆy σ为因变量的样本标准差,1ˆσ为x 1的样本标准差,2ˆσ为x 2的样本标准差,等等。

然后经过简单的运算就可以得到方程:11111ˆˆˆˆˆˆˆˆˆˆˆ()/(/)[(/](/)[()/](/)i y y i k y k ik kk i y y y x x x x u σσσβσσσβσσ-=-+⋅⋅⋅+-+将每个变量都用其z 得分标准化,就得到一些新的斜率参数。

截距项则完全消失。

省略下标i 改写标准化的方程为:11ˆˆy k kz b z b z =+⋅⋅⋅++误差其中:ˆˆˆˆ(/)1,2,,j j y jb j k σσβ=∀=⋅⋅⋅,传统上称这些ˆjb 为标准化系数或β系数。

β系数的含义为:如果x j 提高一倍的标准差,那么ˆy 就变化ˆjb 倍的标准差。

β以标准差为单位,使得回归元的度量单位无关紧要,因此这个方程把所有解释变量都放到相同的地位上。

第六章相关分析与回归分析

第六章相关分析与回归分析

+
-
x+x0
+yy0
+


0
x
x
第六章 相关分析与回归分析
STAT
coxv,y()0则r>0,说明x和y之间为正线性
相关;
coxv,y()0则r<0,说明x和y之间为负线性
相关;
coxv,y()0则r=0,说明x和y之间不存在线
性相关。
第六章 相关分析与回归分析
2、标准差 x 和 y 的作用
第六章 相关分222470, 64098 y26383 .48 , 7 5x7y1114.448633 STAT
r
nxyxy
nx2(x)2 ny2(y)2

1011144.486133371.785276.127
三、相关表和相关图
STAT
相关表
将某一变量x按其数值大小顺序排 列,然后再将与其相关的另一个变量y 对应值平行排列,观察x由小到大变化 时,y的变化情况。
第六章 相关分析与回归分析
八个同类工业企业的月产量与生产费用
企业编号
1 2 3 4 5 6 7 8
月产量(千吨)X
1.2 2.0 3.1 3.8 5.0 6.1 7.2 8.0
联系
STAT
(1)有函数关系的变量间,由于有测 量误差及各种随机因素的干扰,可表 现为相关关系;
(2)对具有相关关系的变量有深刻了 解之后,相关关系有可能转化为或借 助函数关系来描述。
第六章 相关分析与回归分析
• 例:判断下列关系是什么关系? • 1)物体体积随温度升高而膨胀,随压力加大而STAT
第六章 相关分析与回归分析
正相关

多元回归分析:其他问题

多元回归分析:其他问题

第6章 多元回归分析:其他问题习题6.1 利用CEOSAL1.RA W 中的数据估计了如下方程200008.00215.0)l o g (276.0322.4)ˆlog(roe roe sales ary l sa -++=(0.324) (0.033) (0.0129) (0.00026) n =209, R 2=0.282,这个方程使得roe 对log(salary )具有边际递减的影响。

这样概括“边际递减”是必然的吗?解释为什么是或为什么不是。

6.2 令k βββˆ,,ˆ,ˆ10 为y i 对iki x x ,,1 回归(i =1,2,⋯,n )的OLS 估计值。

对于非零常数k c c ,,1 ,证明c 0y i 对ik k i x c x c ,,11 回归(i =1,2,⋯,n )的OLS 截距和斜率由k k k c c c c c ββββββˆ)/(~,,ˆ)/(~,ˆ~01101000=== 给出。

[提示:由于jβˆ是(3.13)中一阶条件的解,从而j β~也必将是因变量和自变量重新测度后的一阶条件的解。

]6.3使用RDCHEM.RA W 中的数据,通过OLS 得到如下方程 20000000070.000030.0613.2t n ˆi s a l e ss a l e s ens rd -+= (0.429) (0.00014) (0.0000000037)n =32, R 2=0.1484,(i) sales 对rdintens 的边际影响在什么时候开始变成负的?(ii)你会在模型中保留二次项吗?请解释。

(iii) 定义sales 为以十亿美元计的销售额:salesbil= sales/1000。

用salesbil 和salesbil 2作为自变量重写估计方程。

务必报告标准误和R 平方。

[提示:注意salesbil 2= sales 2/(1000) 2。

](iv) 为了报告结果,你喜欢哪个方程?6.4 如下模型使得受教育的回报还取决于父母双方受教育程度的总和pareduc : .e x p )l o g (43210u t e n u r e er pareduc educ educ wage+++⋅++=βββββ (i) (以小数形式)证明此模型中多受一年教育的回报为./)l o g (21p a r e d uc ed u c w a ge ββ+=∆∆ 你预期2β的符号是什么?为什么?(ii) 利用W AGE2.RA W 中的数据,所估计的方程是p a r e d uc ed u ce d u c a g e w ⋅++=00078.0047.065.5)ˆlog( (0.13) (0.010) (0.00021)t e n u r eer 010.0exp 019.0++(0.004) (0.003)n =722, R 2=0.169.(只有722个观测包含了父母受教育的全部信息。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章回归分析16.1 回归分析的意义回归分析是处理变量之间相关关系的数学工具,是数理统计的方法之一。

它可以帮助人们从一组实验数据出发,分析变量间存在什么样的关系,建立这些变量间的回归方程;并且可以根据建立的经验公式,去预测实验结果,估计预测的精度;还可以进行因素分析,确定因素对实验结果是有显著影响还是无显著影响,从而建立更适用的回归方程。

在回归分析中,一元线性回归是最简单的,为了便于读者理解回归分析解决问题的思想和方法,在这一章里将对一元线性回归作较为详细的叙述,同时还介绍一元非线性回归、二元线性回归、逐步回归等问题。

6.2 一元线性回归及其Excel程序6.2.1 问题的提出现举一个实例来说明一元线性回归的问题。

)的溶解度试验中,测得不同温度x(℃)下硝酸钠溶解例6-1 在硝酸钠(NaNO3度y的值如下:x0 4 10 15 21 29 36 51 68iy66.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125.1i试求它们之间的经验公式(回归方程)。

类似这样的问题,即当两个变量x与y之间存在着一定的关系,根据实验数据找出两者之间的关系式,这就是一元回归所要处理的问题。

对于例6-1的实验数据,可将数据点(x i,y i)标在直角坐标系中,称为散点图,得图6-1。

从散点图可直观地看出,各点分布情况接近一条直线。

如果两个变量间的关系大致是一条直线,这类的一元回归就是一元线性回归。

6.2.2 一元线性回归方程的求法设自变量x 与变量y 对应的测量值为x x 1 x 2 … x i … x n yy 1y 2… y i…y n如果变量间存在着线性关系,则可选用一条直线来表达二者的关系:bx a y+=ˆ (6.1) 其中yˆ表示y 的估计值,这是因为用x 的值按回归方程(6.1)来计算y ,只能得到y 的估计值yˆ,点)ˆ,(i i y x 一定在直线上,而点),(i i y x 则不一定,那么怎样取(6.1)中的未知参数a 与b ,才能使得这个估计更理想呢?我们自然会想到,若测定值y i 与估计值i yˆ之差(残差)的绝对值都很小,我们认为是最理想的。

当 ∑=-=ni i ia yyQ 1|ˆ| (6.2) 最小时,则可满足这种情况。

但这个公式中有绝对值记号,不便于进一步分析讨论,由于任何实数的平方也是正数或零,因此我们可以考虑如何使 ∑=-=ni i iL yyQ 12)ˆ( (6.3)达到最小。

由式(6.1)知与y i 对应的估计值(计算值)是:bx a yi +=ˆ (6.4) 代入式(6.3)得 ∑=+-=ni i iL bx a yQ 12)]([ (6.5)现在的问题是怎样求未知数a 和b 来保证Q L 最小。

根据数学分析中的极值原理,要使Q L 达到极小值,只需对式(6.5)中的a 、b 分别求偏导数,并令它们都为零,即∑∑===+--=∂∂=+--=∂∂ni i i i L ni i i Lx bx a y bQ bx a y aQ 110)]([20)]([2 (6.6)整理方程组(6.6)得∑∑∑∑∑======+=+ni ii ni i ni i ni ini i y x x b x a y x b na 112111(6.7)由于x i 不全相同,方程组(6.7)的系数行列式∑∑∑∑∑∑======-=-==∆ni i ni i ni ini ini ni i x x n x nx n x xxn 1221121211(])(1[不等于零,故方程组(6.7)有唯一的一组解,解得)8.6(])(1[))(())((211211112∑∑∑∑∑∑======--=ni i ni i ni i i n i i n i i ni ix nx n y x x y x a)9.6()(1))((12112111∑∑∑∑∑=====--=ni i ni i ni i n i i ni i i x nx y x ny x b式(6.9)可等价地写成∑∑==---=ni ini i ix xy y x xb 121)())(( (6.10)其中(6.12)1(6.11)111∑∑====ni i ni i y ny x n x(6.14))(((6.13))(112∑∑==--=-=ni i i xy n i i xx y y x x l x x l于是式(6.10)可写成 xxxy l l b =(6.15)由方程组(6.7)的第一个方程或式(6.8)可以导出x b y a -= (6.16)至此,我们可根据已知试验数据,按式(6.11)~(6.16)求出未知参数a 和b ,最后得回归方程(6.1)式。

上述求回归方程的方法通常称为最小二乘法,参数a 称为常数项,b 称为回归系数。

对回归方程检验时,还要计算 ∑=-=ni iyy y yl 12)( (6.17)6.2.3 回归方程的检验由一组实验数据,根据上一小节讲述的最小二乘法,可求出回归直线方程。

但人们要提出这样的问题,这个回归方程是否有意义呢?换句话说,用yˆ作为y 的估计值,近似程度又如何呢?事实上,即使对于平面上一些杂乱无章的散点,也可用最小二乘法给它们配一条直线来表示变量x 与y 之间的关系。

显然,在这种情况下所配的直线是毫无实际意义的。

于是我们提出了对回归方程的检验问题。

将获得的a 和b 的值式(6.15)、(6.16)代入式(6.5)得:∑=+--=ni i xxxy xxxy iL x l l x l l y y Q 12)]([推导可得(6.19))1(2yyxx xy yy L l l l l Q -= 定义相关系数 yyxx xy xy l l l r =(6.20)于是,式(6.19)可改写成 )1(2xyyy L r l Q -= (6.21) 称Q L 为剩余平方和,它愈小表明用yˆ近似y 的精确度愈高,亦即x 与y 的线性关系愈密切。

由式(6.21)可知,│r xy │愈接近1,即愈大,剩余平方和Q L 就愈小,线性关系愈密切。

当│r xy │=1时,所有的点都在回归直线上,x 与y 完全线性相关,即x 与y之间存在着确定的线性函数关系。

当r xy =0时,由(6.20)式知,l xy =0,故有b =0,这时回归直线为y y =,平行于x 轴,表明y 与x 无线性关系(但不表明x 与y 不构成其他关系)。

这时在平面直角坐标上的点(x i ,y i )是完全不规则的。

注意,因Q L 不能是负值,所以0 ≤│r xy │≤l (6.22)那么,究竟│r xy │与1接近到什么程度才说明x 与y 存在着线性关系呢?这就要对相关系数进行显著性检验。

由概率论与统计基础知道,由于实验误差的影响,一般地说,使相关系数达到显著的值与子样容量n 有关。

表6-1给出了不同n 时,在显著性水平α下相关系数达到显著的临界值,当相关系数的绝对值│r xy │大于表中对应的值时,所配的直线才有意义。

相关系数显著性检验的具体步骤如下:(1)按式(6.20)计算r xy ,从而得│r xy │;(2)给定显著性水平α,按自由度f =n -2,由相关系数临界值r α,f 数据表(表6-l)查出r α,f 的值;(3)比较│r xy │与r α,f 的大小,若│r xy │≥r α,f ,则可认为在显著性水平α下,x 与y 之间存在着线性关系,作出这种判断的臵信度大于(1-α)100 % ;反之,则认为在显著性水平α下,x 与y 之间不存在线性关系。

6.2.4 预测及其精度分析如果变量x 与y 之间存在着线性关系,那么我们就认为所建立的回归方程是有意义的。

在实际问题中,往往需要对给定的x = x 0的值,预测对应的y 的取值范围,换句话说,用0ˆy(x 0代入式(6.1)而得到的值)去估计y 0 (实际值),要找出这个估计的误差。

实际上是求y 0的臵信区间,又称为y 0的预测区间。

可以证明y 0的(1-α)100 % 的臵信区间为:xxE f l x x n S t y20,)(11ˆ-++⋅±α (6.23)其中,S E 为剩余标准差,等于剩余平方和除以它的自由度f=n-2所得商的平方根,即 L E Q n S 21-=(6.24)将式(6.21)代入上式,得)1(22xy yy E r n l S --=(6.25)考虑计算r xy 的舍入误差,通常计算S E 用公式为 )(212xxxy yy E l l l n S --=(6.26)式(6.23)中的t α,f 是对于给定的臵信概率(1-α)100 % ,和自由度f=n -2的t 分布临界值,可以从附录B-2查得。

要提高回归分析的精度,需要注意以下几个问题:第一,努力提高观测数据本身的精度; 第二,尽可能增大子样容量n ;第三,尽可能地扩大自变量x 的取值范围。

6.2.5 一元线性回归的一般算法这一部分内容同学们自己看一下教材。

6.3 一元非线性回归及其Excel 程序在实际问题中,有时两个变量y 与x 之间不一定是线性关系,而是某种曲线关系。

例如,从专业知识知道某两个变量呈某种曲线关系,或者从观测数据的散点图中看到,两变量明显地偏离直线,若用某种曲线来拟合这个变量间的关系则更切合实际。

对于这些问题做曲线回归是很重要的。

运用曲线回归的方法解决生产或科研问题,往往是很多的,因而熟练掌握它是很有用的。

那么如何进行曲线回归呢?事实上,在许多情况下,曲线回归可以通过某些简单的变量变换,化为线性回归问题来解。

即以适当的变量替换,使新变量呈线性,这种方法通常称做“线性化”,然后对新变量做线性回归,最后还原到原来的变量,这就是曲线回归的基本方法,通常称为非线性回归。

本节主要通过实例介绍一元非线性回归方法。

6.3.1 已知变量x 与y 间的数学模型当变量间的数学模型为已知,只有其中的参数待定,则可直接用线性化作线性回归。

看下面的例子。

例6-5 已知某实验得如表6-5所示的试验数据,根据经验知道该实验的数学模型为x B Ae y /-= (B > 0) (6.37)试用回归分析方法求未知参数A 和B 。

表6-5 例6-5的试验数据序号x iy i 序号 x iy i1 2 6.429 10 10.49 2 3 8.2 10 11 10.59 3 4 9.58 11 12 10.6 4 5 9.5 12 13 10.8 5 6 9.7 13 14 10.6 6 7 10 14 15 10.9 7 8 9.93 15 16 10.76 899.99解:对式(6.37)两边取对数得 xB A y -=ln ln令Bb Aa xx y y -==='=',ln ,1,ln则x b a y '+='于是将式(6.37)化为线性模型。

相关文档
最新文档