中学生标准学术能力诊断性测试2020年1月试题 数学(文) 含答案
中学生标准学术能力诊断性测试THUSSAT2024年1月数学试卷及答案
一、单项选择题:本题共8符合题目要求的.1. 已知R ∈m ,集合=A ,若C AB =则=mA .−32. 已知数列a n }{满足a 1A .+−n 21213. 复数z 满足+=z 2i )(A .−34. 在直三棱柱−ABC A 1A .7 5. 设x a a x +=+n1201)(A .66. 若不等式A .5 7. 已知==a b 2e ,ln e23A .>>a b c8. 已知>+−x y x y ,0,33A .15.若,αγβγ,则αβ.若,,mn m n αβ,则αβγ⊥,则⊥⊥αγβγ,,则αβx 2E F ,,5.12PE PF ⋅=−25258=12)分成长度相等的四段D .3 则+++ααβtan 2tan )(D .8当∈x 2,4][时,=f x )(C 上一点,线段PF 2的中垂的离心率为 . 动直线=≠x a a 0)(与函数l 1与函数g x )(的图象+x 817)恒成立,则实数m四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)数列a n }{的前n 项和为=S a n ,11,当≥n 2时,⎝⎭ ⎪=−⎛⎫S a S nn n 212.(1)求证:数列⎩⎭⎨⎬⎧⎫S n 1是等差数列,并求S n 的表达式;(2)设+=n b n S n n212,数列b n }{的前n 项和为T n ,不等式≤−+T m m n n 32对所有的N *∈n 恒成立,求正整数m 的最小值.18.(12分)如图所示,在∆ABC 中,=AB D 1,是BC 上的点,∠=∠BAD DAC 21. (1)若∠=πBAC 2,求证:−=AD AC 21; (2)若1BD DC =4,求∆ABC 面积的最大值.19.(12分)如图所示,一只蚂蚁从正方体−ABCD A BC D 1111的顶点A 1出发沿棱爬行,记蚂蚁从一个顶点到另一个顶点为一次爬行,每次爬行的方向是随机的,蚂蚁沿正方体上、下底面上的棱爬行的概率为61,沿正方体的侧棱爬行的概率为32.(1)若蚂蚁爬行n 次,求蚂蚁在下底面顶点的概率;(2)若蚂蚁爬行5次,记它在顶点C 出现的次数为X ,求X 的分布列与数学期望.(第19题图)(第18题图)20.(12分)如图所示,已知∆ABC 是以BC 为斜边的等腰直角三角形,点M 是边AB 的中点,点N 在边BC 上,且=BNNC 3.以MN 为折痕将∆BMN 折起,使点B 到达点D 的位置,且平面⊥DMC 平面ABC ,连接DA DC ,.(1)若E 是线段DM 的中点,求证:NE 平面DAC ;(2)求二面角−−D AC B 的余弦值.21.(12分)如图所示,已知抛物线=−y x M 1,0,12)(,A ,B 是抛物线与x 轴的交点,过点M 作斜率不为零的直线l 与抛物线交于C ,D 两点,与x 轴交于点Q ,直线AC 与直线BD 交于点P .(1)求⋅CDCM DM 的取值范围;(2)问在平面内是否存在一定点T ,使得TP TQ ⋅为定值?若存在,求出点T 的坐标;若不存在,请说明理由.22.(12分)已知函数=+−−xf x x a x1ln 2)(有两个零点<x x x x ,1212)(. (1)求实数a 的取值范围; (2)求证:<x x 112; (3)求证:−<<−x x x x 212122.(第20题图)(第21题图)中学生标准学术能力诊断性测试2024年1月测试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对但不全的得2分,有错选的得0分.三、填空题:本题共4小题,每小题5分,共20分.13.4 14.135 15.216.,⎝⎦⎥ −∞⎛⎤21 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(1)当≥n 2时,数列a n }{的前n 项和为S n ,满足⎝⎭⎪=−⎛⎫S a S n n n 212, 即⎝⎭ ⎪=−−=−−+⎛⎫−−−S S S S S S S S S n n n n n n n n n 22211111122)(, 整理可得=−−−S S S S n n n n 211 ········································································ 1分 11S =,则=−S S S S 22112,即=−S S 2122,可得=S 312 ······························· 2分由=−S S S S 22323,即=−S S 332133,可得,,=S 513以此类推可知,对任意的N *∈>n S n ,0,在等式=−−−S S S S n n n n 211两边同时除以−S S n n 1可得−=−S S n n 2111······················· 4分所以数列⎩⎭⎨⎬⎧⎫S n 1为等差数列,且其首项为=S 111,公差为2 ································· 5分 ∴=+−=−S n n n 121211)(,因此, −=n S n 211 ············································ 6分 (2)解:()()⎝⎭⎝⎭+−+−+ ⎪ ⎪ ⎪==+=+−⎛⎫⎛⎫n n n n n b n S n n 214212148212111111112 , ⎝⎭+ ⎪∴=+−⎛⎫n T n n 4821111 ············································································ 8分 不等式≤−+T m m n n 32对所有的N *∈n 恒成立,则−+≥m m 33022,即≥+m 69或≤m 69····································································· 9分 因此,满足条件的正整数m 的最小值为3 ······················································ 10分 18.(12分)(1)证明:由∠=∠=∠πBAC BAD DAC 22,1,知∠=∠=ππBAD DAC 63,,=+⋅⋅+⋅⋅=⋅ππ∆∆S S S AB AD AD AC AB AC ABC ABD ACD 26232,sin sin 111,即+⋅=AD AC AC 2,两边同除以⋅AD AC,得−=AD AC21······················································ 5分 (2)设∠=αBAD ,则∠=αDAC 2,∆ABD 中,由正弦定理,得∠=αBDA AB BDsin sin ①,∆ACD 中,由正弦定理,得∠=αCDA AC DCsin sin 2 ②,②÷①,结合∠=∠=BDA CDA DC BD sin sin ,4,得=αAC cos 2···················· 7分 =⋅⋅===−⋅−∆αααααααS AB AC ABCsin 33tan 4tan sin 1sin 33sin 4sin 23++=−⋅=−ααααααα1tan 1tan 3tan 4tan tan 3tan tan 2223 ···································· 9分设=∈αt tan (,即求函数+=∈−ty t t t 1,323(的最大值, ()()++'==−+−−−−++t t y t t t t t t t 113313233222222322)()()()()(,∈−t 32)(时,'>y 0,函数单调递增;∈t 3,32)(时,'<y 0,函数单调递减,当=−t 32时,函数有最大值,=y max∴∆ABC··························································· 12分 19.(12分)(1)记蚂蚁爬行n 次在底面ABCD 的概率为P n ,由题意可得,==+−+P P P P n n n 333,121211)(···················································· 3分 ⎝⎭⎩⎭ ⎪⎨⎬−=−−−⎛⎫⎧⎫+P P P n n n 2322,11111是等比数列,首项为61,公比为−31, ⎝⎭⎝⎭⎪⎪−=−=+−⎛⎫⎛⎫−−P P n n n n 263263,11111111························································ 5分(2)X =0,1,2,X =2时,蚂蚁第3次、第5次都在C 处,⎝⎭⎝⎭ ⎪ ⎪==⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯+⨯+⨯=⎛⎫⎛⎫P X 6636366363366661822221121211212211111)( ·············································································································· 7分X =1时,蚂蚁第3次在C 处或第5次在C 处, 设蚂蚁第3次在C 处的概率为P 1,⎝⎭⎝⎭ ⎪ ⎪=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯+⨯+⨯=⎛⎫⎛⎫P 6636366366666331822211212112115152111·············································································································· 8分 设蚂蚁第5次在C 处的概率为P 2,设蚂蚁不过点C 且第3次在D 1的概率为P 3,设蚂蚁不过点C 且第3次在B 1的概率为P 4,设蚂蚁不过点C 且第3次在A 的概率为P 5,由对称性知,=P P 34,=⨯⨯⨯+⨯⨯⨯=P 6663635443111212133,=⨯⨯⨯+⨯⨯=P 636333276121222115,得=⨯⨯⨯+⨯⨯⨯=P P P 63665422212117235 ··················································· 11分 ∴==+=P X P P 271512)(, ==−=−==P X P X P X 54011241)()()(, XX 的数学期望=⨯=+⨯=+⨯==E X P X P X P X 270011228)()()()( ············ 12分20.(12分)(1)过点E 作AM 的平行线交AD 于点F ,过点N 作AB 的平行线交AC 于点G ,连接FG .因为点E 是线段DM 的中点,=BN NC 3,∴==EF NG AM 21,且EFNG ,四边形EFGN 是平行四边形.由,NEFG NE ⊄平面DAC ,⊂FG 平面DAC ,∴NE 平面DAC ······················································································ 5分(2)解法1:以点A 为原点,AB ,AC 所在的直线为x 轴、y 轴,过点A 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系····································································· 6分 设==AB AC 2,则⎝⎭⎪⎛⎫A M N 220,0,0,,1,0,0,,,013)()(,设D x y z ,,,)(,因为平面⊥DMC 平面ABC ,所以点D 在平面ABC 上的射影落在直线CM 上,∴+=x y21 ①,由题意可知,==∴−++=DM DN x y z 1,11222)( ②, ⎝⎭⎝⎭ ⎪ ⎪−+−+=⎛⎫⎛⎫x y z 222139222③,由①②③解得,⎝⎭ ⎪ ⎪==−=∴−⎛⎫x y z D 777777,,,,,8282 ·························· 8分 82211816211,,,,,AD CD ⎛⎫⎛⎫=−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭777777,设平面ACD 的法向量为(,,n x y z =),00AD n CD n ⋅=⋅=⎩⎪⎨⎪⎧,即⎩⎪−+=⎨⎪−+=⎧x y x y 48040,取===−x y z 0,4 ······················ 11分 取平面ABC 的法向量(0,0,1m =).设二面角−−D AC B 的平面角为θ, 则43cos cos ,9m n m nm n⋅===θ, 所以,二面角−−D AC B 的余弦值为9··················································· 12分 解法2:如图,过点B 作直线 MN 的垂线交于点I ,交直线CM 于点H .由题意知,点D 在底面ABC 上的射影在直线BI 上且在直线MC 上,所以点H 即点D 在底面上的射影,即⊥DH 平面ABC ····················································································· 6分设=AB 2,则==∠=πBM BN MBN 41,,由余弦定理,得=MN 2,∠=∠−∠=⋅+⋅=IMH IMB HMB 10510510cos cos )(,∠==IMH MH MI cos 7.过点H 作AC 的垂线交于点O ,连接DO ,由三垂线定理知,⊥DO AC ,∴∠DOH 是二面角−−D AC B 的平面角 ········································································ 9分 由=HO CH AM CM,解得===HO DH 77,8,∠==HO DOH DH 4tan,得∠=DOH 9cos ,所以,二面角−−D AC B的余弦值为9·················································· 12分 21.(12分)(1)设点C x y D x y ,,,1122)()(,设直线l 的方程为=+≠y kx k 10)(,代入抛物线=−y x 12,得−−=x kx 202(*),⎝⎭⎪ ⎪===⎛⎫CD CM DM 2,2 ·········· 4分(2)⎝⎭⎪−−−⎛⎫k C x x D x x Q ,1,,1,,01112222)()(,设T m n ,)(, 由(*)式,知+==−x x k x x ,21212 ······························································ 5分 直线AC 的方程为=−+y x x 111)()(,直线BD 的方程为=+−y x x 112)()(,解得−+−+−+===++−−−−x x x x x x x y x x x x x x x x 222,212321212112121212)()(,所以点P 的坐标为⎝⎭−+−+ ⎪+⎛⎫−−x x x x x x x x 22,2321211212)( ··············································· 7分 ()1212231,,,x x x x TP m n TQ m n −−⎛⎫+⎛⎫=−−=−−− ⎪ ⎪⎝⎭⎝⎭−+−+x x x x k 222121,TP TQ m m n n ⎛⎫⋅=−−−+−− ⎪ ⎪ ⎪⎛⎫+⎛⎫−−x x x x 1231212)()(()⎝⎭−+−+−+ ⎪=−−−+−++⎛⎫−−x x k k x x x x m m n n x x x x x x 22212321212112122212)( ⎝⎭−+−+ ⎪=−−+++−⎛⎫x x k x x m m n n k n 222121212122 21x x k −=±+82,22TP TQ m n n ∴⋅=++++±++−+−k k km n m 822212 ··············································· 10分 当m n TP TQ ==⋅20,,1为定值45, 所以存在定点T 的坐标为⎝⎭⎪⎛⎫20,1 ·································································· 12分 22.(12分)(1)()f x x '=+=−+−+x x x x x 22ln 21ln 223)( ···················································· 1分又因为函数=−+g x x x 21ln 3)()(递增,且=g 10)(,'>⇔>f x x 01)(, ∴f x )(在0,1)(递减,在+∞1,)[递增 ···························································· 2分 当=−<f a 120)(,即>a 2时,⎝⎭⎝⎭ ⎪ ⎪=+−−=+>⎛⎫⎛⎫a a a a f a a a a 1ln ln 0111122, =+−>−+>−−=>−−−−−+a a a a f a a a a a a a a a a a a 01ln 111112222)()()()(, ∴f x )(在⎝⎭⎪⎛⎫a a ,1,1,1)(上各有一个零点 ························································· 3分 当≤a 2时,f x )(的最小值为f 1)(,且=−≥f a 120)(,∴f x )(在+∞0,)(内至多只有一个零点,综上,实数a 的取值范围是>a 2 ·································································· 4分 (2)设 ⎪=−>⎛⎫F x f x f x ,11)()(,则 ⎝⎭⎪'='+'=−−+⎛⎫−−x x x x F x f x f x x x x 21ln 111212322)()()()( ⎣⎦⎢⎥⎣⎦=−−−=−−+⎡⎤⎡⎤+−x x x x x x x x x x x 12ln 221ln 2113233)()( 当>x 1时,<−x x ln 1,−−+−=+−=−++>x x x x x x x x x 22112120332)()()()(, ∴−>+−>+x x x x x x x 22111ln 3)()()(,∴F x )(在+∞1,)(上递增,当>x 1时,>=F x F 10)()(,即当>x 1时,⎝⎭⎪>⎛⎫x f x f 1)( ······································································ 6分 又因为函数f x )(有两个零点<x x x x ,1212)(,由(1)知,<<<<<x x x 01,011212, ⎝⎭⎪∴=>⎛⎫x f x f x f 1212)()(, 又()f x 在0,1)(递减,∴<x x 121, 即<x x 112 ································································································ 8分 (3)设⎝⎭⎪=−+−=−−⎛⎫x x G x f x x a x x x 1ln 12)()(, =−−==−−−+−+++'x x x G x x x x x x x x x x 211ln 21ln 121ln 2221322)()()(, ='G 101)(,当≠x 1时,⎣⎦−⎢⎥=+++⎡⎤−'x x G x x x x x 121ln 1212)()()(, 显然−+++>x x x x 1210ln 2)(∴G x 1)(在0,1)(递减,+∞1,)(递增,∴≥=G x G 1011)()(, 即>+−=xf x x a h x 11)()(,设h x 1)(的零点为<−=x x x x x x ,,343443)(, 由图象可知<<<x x x x 3124,∴−<x x 21 ·················································································· 10分 设⎝⎭⎝⎭ ⎪ ⎪−+−=−=−−⎛⎫⎛⎫−x x x x x f x x a x x 1ln 11ln 111222)(, 设=−−xG x x 1ln 12)(, 易得≤G x 02)(恒成立,即<+−=xf x x a h x 1222)()(,设h x 2)(的零点为<−=x x x x x x ,,56566522)(,由图象可知,<<<x x x x 1562,∴<<<x x x x 15622222,∴−>x x 2122∴−<<−x x x x 212122 ····································································· 12分。
中学生标准学术能力诊断性测试2020年1月数学(文)试题答案(一卷)(扫描版)
中学生标准学术能力测试诊断性测试2020年1月测试文科数学(一卷)答案一. 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只二. 填空题:本大题共4小题,每小题5分,共20分. 13. [)(]1,00,1−14. (]}{0,2415. ()1,00,2⎛⎫−∞ ⎪⎝⎭16.14三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分.17. 解:记A 表示事件:考生选择生物学科B 表示事件:考生选择物理但不选择生物学科;C 表示事件:考生至少选择生物、物理两门学科中的1门学科;D 表示事件:选择生物但不选择物理E 表示事件:同时选择生物、物理两门学科 (1)()()0502P A .P B .C AB ===,,,AB =∅ ………………………………2分()()()()0.7P C P AB P A P B ==+= ………………………………5分(2)由某校高二段400名学生中,选择生物但不选择物理的人数为140,可知()350.D P = ………………………………7分 因为DE A = ………………………………9分()()()15.035.05.0=−=−=D P A P E P ………………………………12分18.解:(1)设数列{}n a 的公差为d (0d ≠),由题意得⎩⎨⎧==512211a a a a ,解得⎩⎨⎧==211d a ………………………………3分所以2,12n S n a n n =−= ………………………………6分 (2)因为()()⎪⎭⎫ ⎝⎛+−=+=−+=1114114111212n n n n n b n ………………………………9分 所以()41n nT n =+ ………………………………12分19.解(1)由已知AP ⊥面PCD ,可得AP ⊥PC ,AP ⊥ C D ,由题意得,ABCD 为直角梯形,如图所示,易得// BE CD ,所以, AP BE ⊥ .又因为BE ⊥AC ,所以BE ⊥⊥面APC ,故BE ⊥ PO . ………………………………3分 在直角梯形ABCD中?AC AB AP PC ==⊥,, ,所以PAC ∆为等腰直角三角形,O 为斜边AC 上的中点,所以PO AC ⊥.ABCD ,面⊂=BE O AC BE ,所以PO ⊥平面ABCD …………………………6分(2)法一:以O 为原点,分别以OB OC OP ,, 为x 轴,y 轴,z 轴的建立直角坐标系. 不妨设1BO =A(0,-1,0) , B(1,0,0), P (0,0,1), D(-2,1,0), 设(,,)n x y z =是平面PBD 的法向量.满足00n PB n BD ⎧⋅=⎪⎨⋅=⎪⎩ ,所以030x z x y −+=⎧⎨−+=⎩ ,则令1x = ,解得(1,3,1)n =…………9分 222sin cos ,11AB n AB n AB nθ⋅===⋅ ……………………………12分 法二:(等体积法求A 到平面PBD 的距离)设AB=1,点A 到平面PBD 的距离为h ,计算可得,411=ΔPBD S A PBD P ABD V V −−= …………………………9分PO S h S ΔABD ΔPBD ⋅⋅=⋅⋅3131,1,ABD S ∆=2PO =解得h =…………………………11分sin h AB θ== …………………………12分20.解(1)x xax ≥+ln 在(]1,0恒成立,得x x x a ln −≥在(]1,0恒成立。
四川省绵阳市2020届高三上学期第一次诊断性考试数学(文)试题 含解析答案
注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。
2.回答第I 卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知}3|{≤∈=*x N x A ,0}4x -x |{x 2≤=B ,则=⋂B A ( )}3,2,1.{A }2,1.{B (]3,0.C (]4,3.D【答案】A【解析】由题意得:{1,2,3}}3|{=≤∈=*x N x A ,[]4,10}4x -x |{x 2=≤=B ,所以=⋂B A }3,2,1{.【方法总结】集合是数学中比较基础的题目,但是仍然有许多同学出现考试失分。
特此总结下与集合中的元素有关问题的求解策略。
(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性. 2.若0<<a b ,则下列结论不正确的是( ) A.ba 11< B.2a ab > C.||||||b a b a +>+ D.33b a < 【答案】C【解析】由题意得:此题可以用特殊值加排除法,设1,2-=-=b a 时,||||||b a b a +=+与C 矛盾.【方法总结】此题考查不等式的性质,基础题。
||||||||||b a b a b a -≥+≥+ 3.下列函数中的定义域为R ,且在R 上单调递增的是( )绵阳市高中2020届第一次诊断性考试文科数学A.2)(x x f = B.x x f =)( C.||ln )(x x f = D.x e x f 2)(=【答案】D【解析】B.的定义域为[)∞+,0,C 的定义域0≠x ,排除。
2020年1月THUSSAT中学生标准学术能力诊断性数学测试卷
(t为参数)
,曲线
C
:
x
y
= =
2 cos a sin
( 为参数),
其中 a 0 .若曲线 C 上所有点均在直线 l 的右上方,求 a 的取值范围.
23.[选修 4—5:不等式选讲](10 分)
已知正数 x, y, z 满足 x + y + z = 1.
(1)求证: x2 + y2 + z2 1 ; (2)求16x +16y +16z2 的最小值. 2y + 3z 2z + 3x 2x + 3y 5
B. E E, D D
C. E E, D = D
D. E = E, D = D
AB
9.在△ABC 中,若 AB BC = BC CA = 2CA AB ,则 =
BC
A.1
B. 2 2
C. 3 2
D. 6 2
10.在矩形 ABCD 中,已知 AB = 3, AD = 4 , E 是边 BC 上的点,
ex
A. − e
B. − e 2
C. −e
D. −2e
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
第1页 共4页
第2页 共4页
13.如图所示的程序框图的输出值 y (0,1 ,则输入值 x
.
14.在△ABC 中, 2b sin A = a cos(B − ) , b = 2 ,若满足条件的 6
EC =1, EF / /CD ,将平面 EFDC 绕 EF 旋转 90 后记为平面
,直线 AB 绕 AE 旋转一周,则旋转过程中直线 AB 与平面 相
交形成的点的轨迹是
2019-2020年高三第一次诊断考试数学(文)试题含答案
2019-2020年高三第一次诊断考试数学(文)试题含答案本试卷满分150分,考试时间120分钟.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第II 卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效。
第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1. 已知集合}0)3(|{<-=x x x P ,}2|||{<=x x Q ,则=Q P ( ) A .)0,2(-B .)2,0(C .)3,2(D .)3,2(-2. i 是虚数单位,复数31ii--= ( ) A . 2i +B .12i -C .i 21+D .2i -3.已知等差数列{}n a 中,37101140,4a a a a a +-=-=,记12n n S a a a =+++,S 13=( ) A .78B .68C .56D .524.如图为一个几何体的三视图,尺寸如图所示,则该几何体的体积为 ( )A .63π+B .π343+C .π3433+D .633π+5.设3212a=log 2b=log 3c=log 5,,,则( )A .c ﹤b ﹤aB .a ﹤c ﹤b C. c ﹤a ﹤b . D .b ﹤c ﹤a6. 已知βα,是两个不同的平面,m ,n 是两条不同的直线,给出下列命题: ①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂; ③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是 ( ) A .①②B .②③C .③④D .①④7. 对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i=1,2,…,8),其回归直线方程是a x y +=31:,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a 的值是( ) A. 161B. 81C. 41D. 218.已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .221169x y -=B .22134x y -=C .221916x y -=D .22143x y -=9. 执行如图所示的程序框图,那么输出的S 为( )(A)3 (B)43(C)12 (D)-2(第10题图)A .1B .2C .3D .411.如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外 两个顶点n n D C ,在函数())0(1>+=x xx x f 的图象上.若点n B 的坐标()),2(0,+∈≥N n n n ,记矩形n n n n D C B A 的周长为n a ,则=+++1032a a a ( )A .208 B.216 C.212 D.220 (第11题图)12. 设()f x 的定义域为D ,若()f x 满足下面两个条件则称()f x 为闭函数:①()f x是D 上单调函数;②存在[,]a b D ⊆,使()f x 在[,]a b 上值域为[,]a b .现已知()f x k =+为闭函数,则k 的取值范围是( )A B C .1k >- D .1k <分)二、 填空题: 本大题共4小题,每小题5分,共20分. 13.若等比数列{}n a 的首项是1a ,公比为q ,n S是其前n 项和,则nS =_____________.14.如果实数x ,y 满足条件10010x y x y ⎧⎪⎨⎪⎩-+≥y +1≥++≤,那么目标函数z =2x -y 的最小值为____________.15.如图,过抛物线22(0)y px p =>的焦点F 的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC|=2|BF|,且|AF|=3,则抛物线的方程是 。
2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题(解析版)
2020届北京市清华大学中学生标准学术能力诊断性测试测试数学(文)(一卷)试题一、单选题1.已知全集U =R ,集合10x A x x ⎧⎫-=≥⎨⎬⎩⎭,(){}lg 31B x y x ==-,则()UA B =ð( ) A .(]0,1 B .10,3⎛⎤ ⎥⎝⎦C .1,13⎛⎤ ⎥⎝⎦D .1,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】求出集合A 、B ,利用补集的定义求出集合U B ð,然后利用交集的定义可求出集合()U A B ∩ð. 【详解】(]11000,1x x A x x x x ⎧⎫⎧⎫--=≥=≤=⎨⎬⎨⎬⎩⎭⎩⎭,(){}{}1lg 31310,3B x y x x x ⎛⎫==-=->=+∞ ⎪⎝⎭,则1,3U B ⎛⎤=-∞ ⎥⎝⎦ð,因此,()10,3U A B ⎛⎤= ⎥⎝⎦ð.故选:B. 【点睛】本题考查交集和补集的计算,同时也考查分式不等式与对数函数定义域的计算,考查运算求解能力,属于基础题. 2.已知a R ∈,复数23a iz i -=+(i 为虚数单位),若z 为纯虚数,则a =( ) A .23B .23- C .6 D .6-【答案】A【解析】利用复数的除法法则将复数z 表示为一般形式,由题意得出该复数的实部为零,虚部不为零,可求出实数a 的值. 【详解】()()()()()()233262326333101010a i i a a i a i a a z i i i i ----+--+====-++-, 由于复数z 为纯虚数,则320106010a a -⎧=⎪⎪⎨+⎪≠⎪⎩,解得23a =.故选:A. 【点睛】本题考查复数的除法运算,同时考查了复数相关的概念,解题的关键就是利用复数的四则运算法则将复数表示为一般形式,考查运算求解能力,属于基础题.3.某单位200名职工的年龄分布情况如图所示,现要从中抽取25名职工进行问卷调查,若采用分层抽样方法,则40~50岁年龄段应抽取的人数是( )A .7B .8C .9D .10【答案】C【解析】先计算出饼图中40~50岁的职工所占的比例,再乘以25即可得出结果. 【详解】由题中饼图可知,40~50岁年龄段的职工所占的比例为10.440.20.36--=, 因此,40~50岁年龄段应抽取的人数是250.369⨯=. 故选:C. 【点睛】本题考查利用分层抽样计算所抽取的人数,根据分层抽样的特点列方程是解题的关键,考查运算求解能力,属于基础题.4.下列函数中,在区间()0,∞+上单调递增的是( ) A .3x y -= B .0.5log y x =C .21y x=D .12x y x +=+ 【答案】D【解析】分析各选项中函数在区间()0,∞+上的单调性,可得出合乎题意的选项.【详解】对于A 选项,函数133xx y -⎛⎫== ⎪⎝⎭在区间()0,∞+上为减函数; 对于B 选项,函数0.5log y x =在区间()0,∞+上为减函数; 对于C 选项,函数21y x =在区间()0,∞+上是减函数; 对于D 选项,函数()21111222x x y x x x +-+===-+++在区间()0,∞+上是增函数. 故选:D. 【点睛】本题考查基本初等函数单调性的判断,熟悉一些基本初等函数的单调性是判断的关键,考查推理能力,属于基础题.5.已知抛物线24y x =的焦点为F ,直线l 过点F 与抛物线交于A 、B 两点,若3AF BF =,则AB =( )A .4B .92C .132D .163【答案】D【解析】设直线l 的方程为1x my =+,由3AF BF =,得出3AF FB =uu u r uu r,可得出123y y =-,并将直线l 的方程与抛物线的方程联立,列出韦达定理,结合关系式123y y =-求得213m =,再利用抛物线的定义可求出AB . 【详解】 如下图所示:抛物线24y x =的焦点为()1,0F ,设直线l 的方程为1x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立241y xx my ⎧=⎨=+⎩,得2440y my --=.由韦达定理得124y y m +=,124y y =-,3AF BF =,3AF FB ∴=,即()()11221,31,x y x y --=-,123y y ∴-=,即123y y =-.则12224y y y m +=-=,得22y m =-,由221224312y y y m -==-=-,所以,213m =. 由抛物线的定义得()()()21212124162112444433AB x x my my m y y m =++=++++=++=+=+=. 故选:D. 【点睛】本题考查抛物线焦点弦的性质,将直线方程与抛物线联立,利用韦达定理法结合抛物线的定义求解是解题的关键,考查运算求解能力,属于中等题. 6.已知1tan 43πα⎛⎫-=- ⎪⎝⎭,则()()sin 22sin cos 2παπαπα⎛⎫+--+= ⎪⎝⎭( )A .75B .15C .15-D .3125【答案】A【解析】利用两角差的正切公式求出tan α的值,然后利用诱导公式、二倍角公式结合弦化切的思想可求出所求代数式的值. 【详解】tan tantan 114tan 41tan 31tan tan 4παπααπαα--⎛⎫-===- ⎪+⎝⎭+,解得1tan 2α=. 因此,()()sin 22sin cos cos 22sin cos 2παπαπαααα⎛⎫+--+=+ ⎪⎝⎭222222cos sin 2sin cos cos sin 2sin cos cos sin αααααααααα-+=-+=+222222222222211cos sin 2sin cos 121tan 2tan 722cos cos cos cos sin 1tan 511cos cos 2αααααααααααααα⎛⎫-+⨯-+ ⎪-+⎝⎭====+⎛⎫++ ⎪⎝⎭. 故选:A. 【点睛】本题考查两角差的正切公式、诱导公式、二倍角公式求值,解题的关键就是利用弦化切思想进行化简,同时也要注意弦化切所适用的基本类型,考查运算求解能力,属于中等题.7.设变量x 、y 满足约束条件20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,且z kx y =+的最大值为12,则实数k 的值为( ) A .2- B .3-C .2D .3【答案】C【解析】作出不等式组所表示的可行域,可知当直线z kx y =+经过可行域的顶点()4,4和点()0,12时,直线z kx y =+在y 轴上的截距最大,且为12,再将点()4,4代入直线z kx y =+的方程可求出实数k 的值. 【详解】作出不等式组20240240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩所表示的可行域如下图所示:联立240240x y x y -+=⎧⎨--=⎩,得44x y =⎧⎨=⎩,得点()4,4A .作直线z kx y =+,由图形可知,当直线z kx y =+过点()0,12P 和点()4,4A 时,直线z kx y =+在y 轴上的截距最大,此时z 取到最大值,即max 4412z k =+=,解得2k =.故选:C. 【点睛】本题考查含参的线性规划问题,解题的关键就是利用数形结合法找出线性目标函数取得最值时的位置,考查数形结合思想的应用,属于中等题.8.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )AB.7C.12D【答案】B【解析】利用两角差的正弦公式和边角互化思想可求得tan B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】1sin sin cos sin 322b A a B a B a B π⎛⎫=-=- ⎪⎝⎭,即1sin sin cos sin sin 22A B A B A B =-,即3sin sin cos A B A A =, sin 0A >,3sin B B ∴=,得tan 3B =,0B π<<,6B π∴=.由余弦定理得b === 由正弦定理sin sin c bC B=,因此,1sin sin c B C b ===. 故选:B. 【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.9.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π【答案】C【解析】作出三棱锥的实物图P ACD -,然后补成直四棱锥P ABCD -,且底面为矩形,可得知三棱锥P ACD -的外接球和直四棱锥P ABCD -的外接球为同一个球,然后计算出矩形ABCD 的外接圆直径AC ,利用公式2R =球的直径2R ,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积. 【详解】三棱锥P ACD -的实物图如下图所示:将其补成直四棱锥P ABCD -,PB ⊥底面ABCD , 可知四边形ABCD 为矩形,且3AB =,4BC =.矩形ABCD 的外接圆直径5AC ,且2PB =.所以,三棱锥P ACD -外接球的直径为2R ==因此,该三棱锥的外接球的表面积为()224229R R πππ=⨯=. 故选:C. 【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.10.函数||13cos 6x y x e =-的大致图象是( ) A . B . C . D .【答案】A【解析】设()13cos 6xf x x e =-,利用定义分析函数()y f x =的奇偶性,然后利用导数判断出函数()y f x =在区间()0,∞+上的单调性,即可得出函数()y f x =的图象. 【详解】设()13cos 6xf x x e =-,该函数的定义域为R , ()()()113cos 3cos 66x xf x x e x e f x --=--=-=,则函数()y f x =为偶函数.当0x >时,()13cos 6xf x x e =-,当0πx <<时,()13sin 06xf x x e '=--<;当x π>时,()113sin 3066x f x x e e π'=--<-<.所以,函数()y f x =在区间()0,∞+上为减函数. 因此,选项A 中的图象为函数13cos 6xy x e =-的图象. 故选:A. 【点睛】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点与函数值符号来进行判断,考查推理能力,属于中等题.11.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,直线:l y =与C 交于A 、B 两点,AF 、BF 的中点分别为M 、N ,若以线段MN 为直径的圆经过原点,则双曲线的离心率为( )A .3B .1C 2D 1【答案】D【解析】作出图形,由题意得出2MON π∠=,再由中位线的性质可得出2AFB π∠=,设双曲线C 的左焦点为F ',可得出2F AF π'∠=,6AF F π'∠=,可得出AF '=,AF c =,再利用双曲线的定义即可求出其离心率.【详解】如下图所示,设双曲线C 的焦距为()20c c >,由于以线段MN 为直径的圆经过原点,则2MON π∠=,AF 、BF 的中点分别为M 、N ,且O 为AB 的中点,//OM BF ∴,//ON AF ,2AFB π∴∠=,O 为FF '的中点,所以,四边形AFBF '为矩形,2F AF π'∴∠=,由于直线l 3AOF π∠=,所以,6AF F π'∠=,2cos6AF c π'∴==,2sin6AF c c π==,由双曲线的定义得2AF AF a '-=2c a -=,因此,双曲线C 的离心率为1c e a ===. 故选:D. 【点睛】本题考查双曲线离心率的计算,考查了双曲线的定义,在涉及焦点三角形问题时,应充分分析三角形的形状,结合正弦、余弦定理以及锐角三角函数来计算,考查分析问题和解决问题的能力,属于中等题.12.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .83【答案】C【解析】作出图形,先推导出212AM AB AB ⋅=,同理得出212AM AC AC ⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值. 【详解】如下图所示,取线段AB 的中点E ,连接ME ,则AM AE EM =+且EM AB ⊥,()212AM AB AE EM AB AE AB EM AB AB ∴⋅=+⋅=⋅+⋅=, 同理可得212AM AC AC ⋅=,86cos6024AB AC ⋅=⨯⨯=,由221212AM AB AB AM AC AC ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC AB AB AC AC λμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29m =,因此,52743431293λμ+=⨯+⨯=. 故选:C. 【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题.二、填空题13.已知{}n a 为等比数列,若33a =,512a =,则7a =__________. 【答案】48【解析】利用等比中项的性质得出2537a a a =,由此可得出7a 的值.【详解】由等比中项的性质可得2537a a a =,2257312483a a a ∴===. 故答案为:48. 【点睛】本题考查等比数列中项的计算,利用等比中项的性质进行计算是解题的关键,考查运算求解能力,属于基础题.14.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【答案】33,2⎡⎤-⎢⎥⎣⎦ 【解析】将点()0,1的坐标代入函数()y f x =的解析式,求出4πθ=,利用诱导公式和二倍角余弦公式得出()22sin 2sin 1f x x x =--+,换元[]sin 1,1t x =∈-,于是可将函数()y f x =的值域转化为二次函数213222y t ⎛⎫=-++ ⎪⎝⎭在[]1,1t ∈-上的值域,利用二次函数的基本性质即可求解. 【详解】由题意可得()02cos2cos02cos211f θθ=+=+=,得cos20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.【点睛】本题考查正弦型二次函数值域的求解,利用诱导公式、二倍角余弦公式化为有关正弦的二次函数的值域是解题的关键,考查化归与转化思想的应用,属于中等题.15.黎曼函数是一个特殊的函数,由德国著名的数学家波恩哈德·黎曼发现提出,在高等数学中有着广泛的应用,其定义为:()[]1,,,0,0,10,1q qx p q p p p R x x ⎧⎛⎫=⎪ ⎪=⎨⎝⎭⎪=⎩当都是正整数是既约真分数当或上的无理数,若函数()f x 是定义在R 上的奇函数,且对任意x 都有()()20f x f x -+=,当[]0,1x ∈时,()()f x R x =,则()18lg 305f f ⎛⎫+= ⎪⎝⎭_________. 【答案】15-【解析】先利用题中条件推导出函数()y f x =是以2为周期的周期函数,然后利用题中定义结合周期性和奇偶性可分别求出185f ⎛⎫⎪⎝⎭和()lg30f 的值,相加即可. 【详解】由于函数()y f x =是定义在R 上的奇函数,且()()20f x f x +-=,()()()22f x f x f x ∴=--=-,所以,函数()y f x =是以2为周期的周期函数,则181822214=555555f f f f R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=--⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()()()()()()lg30lg3lg10lg31lg311lg31lg30f f f f f R =+=+=-=--=--=, 因此,()181lg 3055f f ⎛⎫+=-⎪⎝⎭. 故答案为:15-. 【点睛】本题考查新定义函数值的计算,推导出函数的周期是解题的关键,考查推理能力与计算能力,属于中等题.16.如图,正方体1111ABCD A B C D -的棱长为a ,E 、F 分别是AB 、BC 的中点,过点1D 、E 、F 的截面将正方体分割成两部分,则较小部分几何体的体积为__________.【答案】32572a 【解析】先将截面1D EF 在正方体各个面上的交线画出来,并将位于截面下方的几何体的体积计算出来,即可得出答案. 【详解】 如下图所示,延长EF 分别交DA 、DC 的延长线于M 、N ,连接DM 交1AA 于点G ,连接1D N 交1CC 于点H ,再连接GE 、HF ,则该截面截正方形的截面为五边形1D GEFH .//BC AD Q ,则//AM BF ,则EMA EFB ∠=∠,EAM EBF ∠=∠,E 为AB 的中点,则AE BE =,EAM EBF ∴∆≅∆,2aAM BF ∴==,同理2a CN =, 11//AM A D ,11GAMGA D ∴∆∆,11112AG AM A G A D ∴==,1133a AG AA ∴==, 在Rt MDN ∆中,32DM DN a ==,则21928DMN S DM DN a ∆=⋅=, 123111933388D DMNDMN V S DD a a a -∆=⋅=⨯⨯=,2211112228AMNS AM AE a a ∆⎛⎫=⋅=⨯= ⎪⎝⎭,2311111338372G AME AME V S AG a a a -∆=⋅=⨯⨯=,所以,正方体位于截面1D GEFH 下方的几何体体积为133333125122872722D DMN G AME V V a a a a ---=-⨯=<.因此,较小部分几何体的体积为32572a . 故答案为:32572a . 【点睛】本题考查截面截几何体所得体积的计算,作出截面图形是解题的关键,考查推理能力与计算能力,属于中等题.三、解答题17.某学校为了解学生假期参与志愿服务活动的情况,随机调查了30名男生,30名女生,得到他们一周参与志愿服务活动时间的统计数据如右表(单位:人):(1)能否有95%的把握认为该校学生一周参与志愿服务活动时间是否超过1小时与性别有关?(2)以这60名学生参与志愿服务活动时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机抽查10名学生,试估计这10名学生中一周参与志愿服务活动时间超过1小时的人数. 附:()()()()()22n ad bc K a b c d a c b d -=++++【答案】(1)有,理由见解析;(2)6.【解析】(1)列出22⨯列联表,根据表格中的数据计算出2K 的观测值,并将2K 的值与3.841作大小比较,即可判断出题中结论的正误;(2)根据表格中的数据得出参与志愿服务活动时间超过1小时的频率,然后乘以10即可得出结果. 【详解】(1)22⨯列联表如下表所示:()222602216814403.8413624309K ⨯⨯-⨯==>⨯⨯, 因此,有95%的把握认为该校学生一周参与志愿服务活动时间是否超过1小时与性别有关;(2)由表格中的数据可知,该校参与志愿服务活动时间超过1小时的学生频率为360.660=, 因此,抽取的10名学生中一周参与志愿服务活动时间超过1小时的人数为100.66⨯=. 【点睛】本题考查独立性检验思想的应用,同时也考查了分层抽样中频数的计算,考查运算求解能力,属于基础题.18.已知数列{}n a 是等差数列,其前n 项和为n S ,且35a =,4237S a -=,数列{}n b 为等比数列,且12b a =,49b S =. (1)求数列{}n a 和{}n b 的通项公式; (2)若n n n a c b =,设数列{}n c 的前n 项和为n T ,求证:113n T ≤<. 【答案】(1)21n a n =-,3nn b =;(2)证明见解析.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,列出关于1a 和d 的方程组,求出这两个量,利用等差数列的通项公式求出n a ,根据题意求出1b 和q ,利用等比数列的通项公式可求出n b ;(2)求出n c ,然后利用错位相减法求出n T ,再利用数列{}n T 的单调性即可证明出113n T ≤<. 【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由题意可得()()3142112534637a a d S a a d a d =+=⎧⎨-=+-+=⎩,即112537a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩,()()1112121n a a n d n n ∴=+-=+-=-.123b a ==,34918998132b S a d q ⨯==+==,解得3q =, 因此,111333n n nn b b q --==⨯=.综上所述,21n a n =-,3nn b =;(2)213n n n n a n c b -==,23135213333n nn T -∴=++++,① 231113232133333n nn n n T +--=++++,② ①-②得,21231121121222211213313333333313n n n n n n n T -++⎛⎫- ⎪--⎝⎭=++++-=+--111111212221333333n n n n n -++-+⎛⎫=+--=- ⎪⎝⎭,1113n n n T +∴=-<, 又110n n n T T c ++-=>,则数列{}n T 是单调递增数列,则113n T T ≥=. 因此,113n T ≤<. 【点睛】本题考查等差数列和等比数列通项公式的计算,同时也考查了错位相减法求和,考查运算求解能力,属于中等题.19.如图,已知四边形ABCD 为梯形,//AB CD ,90CBA ∠=,四边形ACFE 为矩形,且平面ACFE ⊥平面ABCD ,又AB BC CF a ===,2CD a =.(1)求证:DE BF ⊥; (2)求点E 到平面BDF 的距离. 【答案】(1)证明见解析;(2)a .【解析】(1)取BF 的中点M ,连接DM 、EM ,利用三线合一得出BF DM ⊥,BF EM ⊥,利用直线与平面垂直的判定定理可证明出BF ⊥平面DEM ,即可得出DE BF ⊥;(2)过点E 在平面DEM 内作EN DM ⊥,垂足为点N ,证明出EN ⊥平面BDF ,并计算出DEM ∆三边边长,然后利用等面积法求出EN ,即为点E 到平面BDF 的距离. 【详解】(1)如下图所示,取BF 的中点M ,连接DM 、EM ,四边形ACFE 为矩形,AC CF ∴⊥,平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,CF ⊂平面ACFE ,CF ∴⊥平面ABCD ,CD ⊂平面ABCD ,CF CD ∴⊥,DF ∴==,四边形ABCD 为梯形,//AB CD ,90CBA ∠=,90BCD ∴∠=,BD ∴==,M 为BF 的中点,DM BF ∴⊥,同理可得BE BF ==,EM BF ∴⊥,又DMEM M =,BF ∴⊥平面DEM .DE ⊂平面DEM ,DE BF ∴⊥;(2)如下图所示,过点E 在平面DEM 内作EN DM ⊥,垂足为点N ,由(1)知,BF ⊥平面DEM ,EN ⊂平面DEM ,EN BF ∴⊥.EN DM ⊥,DM BF M =,EN ∴⊥平面BDF .由(1)知,CF ⊥平面ABCD ,BC ⊂平面ABCD ,CF BC ∴⊥,BF ∴=,DM a ==,EM ==, CF ⊥平面ABCD ,//AE CF ,AE ∴⊥平面ABCD ,AD ⊂Q 平面ABCD ,AE AD ∴⊥,由于四边形ABCD 为直角梯形,且90ABC ∠=,AD ∴==,DE ∴=,222DE EM DM ∴+=,则90DEM ∠=.由等面积法可得2DE EMEN a DM⋅===. 因此,点E 到平面BDF 的距离为a . 【点睛】本题考查异面直线垂直的证明,同时也考查了点到平面距离的计算,一般作出垂线或者利用等体积法进行计算,考查推理能力与计算能力,属于中等题.20.已知点52,3M ⎛⎫ ⎪⎝⎭在椭圆()2222:10x y E a b a b+=>>上,1A 、2A 分别为E 的左、右顶点,直线1A M 与2A M 的斜率之积为59-,F 为椭圆的右焦点,直线9:2l x =.(1)求椭圆E 的方程;(2)直线m 过点F 且与椭圆E 交于B 、C 两点,直线2BA 、2CA 分别与直线l 交于P 、Q 两点.试问:以PQ 为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.【答案】(1)22195x y +=;(2)过定点()2,0和()7,0,理由见解析. 【解析】(1)利用直线1A M 与2A M 的斜率之积为59-,得出3a =,再由点M 在椭圆上,可求出b 的值,即可得出椭圆E 的标准方程;(2)由对称性知,以PQ 为直径的圆过x 轴上的定点(),0K k ,设直线BC 的方程为2x ty =+,点()11,B x y 、()22,C x y ,设点9,2P p ⎛⎫ ⎪⎝⎭、9,2Q q ⎛⎫⎪⎝⎭,求出p 、q ,将直线BC 的方程与椭圆E 的方程联立,列出韦达定理,求出pq 的值,由0PK QK ⋅=,结合韦达定理求出k 的值,即可得出定点K 的坐标.【详解】(1)点M 在椭圆E 上,则2225431a b⎛⎫⎪⎝⎭+=,①, 易知点()1,0A a -、()2,0A a ,直线1A M 的斜率为1532k a =+,直线2A M 的斜率为1532k a =-,由题意可得122255949k k a ==--,解得3a =,代入①式得b = 因此,椭圆E 的方程为22195x y +=;(2)易知,直线m 不能与x 轴重合.由对称性知,以PQ 为直径的圆过x 轴上的定点(),0K k ,设直线BC 的方程为2x ty =+,点()11,B x y 、()22,C x y ,设点9,2P p ⎛⎫ ⎪⎝⎭、9,2Q q ⎛⎫ ⎪⎝⎭, 如下图所示:易知点()23,0A ,22//A B A P ,即()1131,//,2ty y p ⎛⎫-⎪⎝⎭,()11312y p ty ∴=-, 得()11321y p ty =-,同理可得()22321y q ty =-. 将直线m 的方程与椭圆E 的方程联立222195x ty x y =+⎧⎪⎨+=⎪⎩,消去x 得,()225920250t y ty ++-=,()()2224001005990010t t t ∆=++=+>. 由韦达定理得1222059t y y t +=-+,1222559y y t =-+, ()()()21212222121212222599925594114412520415959y y y y t pq ty ty t y y t y y t t t t ⎛⎫⨯- ⎪+⎝⎭∴====---⎡⎤⎛⎫-++⎣⎦⨯-++ ⎪++⎝⎭,9,2PK k p ⎛⎫=-- ⎪⎝⎭,9,2QK k q ⎛⎫=-- ⎪⎝⎭,2299250224PK QK k pq k ⎛⎫⎛⎫∴⋅=-+=--= ⎪ ⎪⎝⎭⎝⎭,解得2k =或7.因此,以PQ 为直径的圆过定点()2,0和()7,0.【点睛】本题考查椭圆方程的求解,同时也考查了圆过定点的问题,一般将直线方程与椭圆方程联立,利用韦达定理设而不求法求解,考查计算能力,属于中等题. 21..已知函数()ln f x x ax =-,a R ∈.(1)当1a =-时,求曲线()y f x =在点()()1,1M f 处的切线方程; (2)当1a >时,求证:函数()()g x f x a =+恰有两个零点. 【答案】(1)210x y --=;(2)证明见解析.【解析】(1)将1a =-代入函数()y f x =的解析式得()ln f x x x =+,求出()1f 和()1f '的值,然后利用点斜式可得出所求切线的方程;(2)可得出()10g =,利用导数分析函数()y g x =在区间()0,∞+上的单调性,利用零点存在定理证明出函数()y g x =在区间10,a ⎛⎫⎪⎝⎭上有且只有一个零点,从而可证明出结论成立. 【详解】(1)当1a =-时,()ln f x x x =+,则()11f =,()11f x x'=+,()12f '∴=. 因此,曲线()y f x =在点()()1,1M f 处的切线方程为()121y x -=-,即210x y --=;(2)()()ln g x f x a x ax a =+=-+Q ,则()10g =.1a >Q ,则()11ax g x a -'=-=,令()0g x '=,得()10,1x =∈,列表如下:所以,函数()y g x =在1x a=处取得极大值,亦即最大值,即()max 11ln g x g a a a ⎛⎫==-- ⎪⎝⎭.令()1ln h a a a =--,1a >,则()1110a h a a a-'=-=>, 所以,函数()y h a =在()1,a ∈+∞上单调递增,则()()10h a h >=,()ln 0a a a a g e e ae a ae ----=-+=-<,且11a a e e a-=<, 所以,函数()y g x =在区间1,ae a -⎛⎫⎪⎝⎭上有一个零点, ()11,,a ⎛⎫+∞⊆+∞⎪⎝⎭,所以,函数()y g x =在区间()1,+∞上单调递减, 当1x >时,则()()10g x g <=,所以,函数()y g x =在区间()1,+∞上没有零点. 综上所述,函数()()g x f x a =+恰有两个零点. 【点睛】本题考查利用导数求函数的切线方程,同时也考查了利用导数研究函数的零点个数问题,一般结合导数研究函数的单调性,结合极值与最值的符号来进行分析,考查化归与转化思想的应用,属于中等题.22.以平面直角坐标系中的坐标原点为极点,x 轴的正半抽为极轴,建立极坐标系,曲线C 的极坐标方程是6sin 4cos ρθθ=+,直线l 的参数方程是4cos 3sin x t y t αα=+⎧⎨=+⎩(t 为参数).(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于M 、N两点,且MN =l 的倾斜角α. 【答案】(1)()()222313x y -+-=;(2)6π或56π. 【解析】(1)在曲线C 的极坐标的两边同时乘以ρ,再由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩,可将曲线C的极坐标方程化为直角坐标方程;(2)将直线l 的参数方程代入曲线C 的直角坐标方程,得到关于t 的一元二次方程,并列出韦达定理,借助弦长公式即可计算出α的值. 【详解】(1)在曲线C 的极坐标的两边同时乘以ρ,得26sin 4cos ρρθρθ=+,所以,曲线C 的直角坐标方程为2246x y x y +=+,即()()222313x y -+-=; (2)设点M 、N 在直线l 上对应的参数分别为1t 、2t ,将直线l 的参数方程代入曲线C 的直角坐标方程,得()2222cos sin 13t t αα++=, 即24cos 90t t α+-=,216cos 360α∆=+>, 由韦达定理得124cos t t α+=-,129t t =-,12MN t t ∴=-===cos 2α=±, 0απ<<,因此,6πα=或56π. 【点睛】本题考查极坐标方程与普通方程之间的转化,同时也考查了利用直线与圆所得弦长求直线的倾斜角,考查了韦达定理的应用,考查运算求解能力,属于中等题.23.己知函数()3132f x x x =+-+的最大值为m ,a 、b 、c 均为正实数,且a b c m ++=.(1)求证:1119a b c++≥;(2+≤.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)利用绝对值三角不等式可求出函数()y f x =的最大值为1,可得出1a b c ++=,然后将代数式a b c ++与111a b c++相乘,利用柯西不等式可证明出1119a b c++≥;(2)利用柯西不等式得()()2111a b c ++++≥,化简后可证明出≤【详解】(1)由绝对值三角不等式得()()32311m x x =+-+=,1a b c ∴++=, 由柯西不等式得()21111119a b ca b c a b c ⎛⎫++=++++≥= ⎪⎝⎭,当且仅当13a b c ===时,等号成立,因此,1119a b c++≥;(2)由柯西不等式得()()2111a b c ++++≥,即23≤,13a b c ===时,等号成立.≤. 【点睛】本题考查利用柯西不等式证明不等式,同时也考查了利用绝对值三角不等式求绝对值函数的最值,在利用柯西不等式证明不等式时,需要对代数式进行合理配凑,考查计算能力,属于中等题.。
2020年1月中学生标准学术能力诊断性测试诊断性测试理科数学试卷
2020年1月中学生标准学术能力诊断性测试诊断性测试理科数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.若集合{|12}A x x =-<<,{}2,0,1,2B =-,则AB =( ) A .∅ B .{0,1}C .{0,1,2}D .{2,0,1,2}- 2.若()25i z +=,则z 的虚部为( )A .-1B .1C .i -D .i3.已知双曲线2221(0)2x y b b-=>的两条渐近线互相垂直,则e =( )A .1B C D .2 4.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π5.函数f (x )=(x 2﹣2x )e x 的图象可能是( )A .B .C .D .6.已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A .,3⎛-∞ ⎝⎭B .4,7⎛⎫-∞ ⎪⎝⎭C .⎫∞⎪⎪⎝⎭D .4,7⎛⎫+∞ ⎪⎝⎭7.已知a ,b 为实数,则01b a <<<,是log log a b b a >的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知随机变量ξ,η的分布列如下表所示,则( )A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη= D .E E ξη=,D D ξη=9.在ABC 中,若2AB BC BC CA CA AB ⋅=⋅=⋅,则AB BC =( )A .1B .2CD .210.在矩形ABCD 中,已知3AB =,4=AD ,E 是边BC 上的点,1EC =,EF CD ∥,将平面EFDC 绕EF 旋转90︒后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( )A .圆B .双曲线C .椭圆D .抛物线 11.已知函数()()()()ln 1212i f x x x m i =---=,,e 是自然对数的底数,存在m R ∈()A .当1i =时,()f x 零点个数可能有3个B .当1i =时,()f x 零点个数可能有4个C .当2i =时,()f x 零点个数可能有3个D .当2i =时,()f x 零点个数可能有4个12.已知数列{}n a 的前n 项和为n S ,且满足()21n n n a S a -=,则下列结论中( )①数列{}2n S 是等差数列;②n a <;③11n n a a +< A .仅有①②正确B .仅有①③正确C .仅有②③正确D .①②③均正确第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.1742年6月7日,哥德巴赫在给大数学家欧拉的信中提出:任一大于2的偶数都可写成两个质数的和.这就是著名的“哥德巴赫猜想”,可简记为“1+1”.1966年,我国数学家陈景润证明了“1+2”,获得了该研究的世界最优成果.若在不超过30的所有质数中,随机选取两个不同的数,则两数之和不超过30的概率是________.14.已知△ABC 的面积等于1,若BC =1,则当这个三角形的三条高的乘积取最大值时,sinA =______15.已知F 是椭圆2222:1(0)x y C a b a b+=>>的一个焦点,P 是C 上的任意一点,则FP 称为椭圆C 的焦半径.设C 的左顶点与上顶点分别为A ,B ,若存在以A 为圆心,FP 为半径长的圆经过点B ,则椭圆C 的离心率的最小值为________.16.设函数()326f x x x ax b =-++,若对任意的实数a 和b ,总存在[]00,3x ∈,使得()0f x m ≥,则实数m 的最大值为__________.三、解答题17.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点(P -.(Ⅰ)求cos 2πα⎛⎫+ ⎪⎝⎭的值; (Ⅱ)求函数22()sin ()cos ()f x x x αα=+--()x ∈R 的最小正周期与单调递增区间.18.如图,ABCDFE 是由两个全等的菱形ABEF 和CDFE 组成的空间图形,2AB =,∠BAF =∠ECD =60°.(1)求证:BD DC ⊥;(2)如果二面角B -EF -D 的平面角为60°,求直线BD 与平面BCE 所成角的正弦值. 19.已知等比数列{}n a 的公比1q >,且13542a aa ++=,39a +是1a ,5a 的等差中项.数列{}n b 的通项公式nn b =,*n N ∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)证明:12n b b b ++⋅⋅⋅+<*n N ∈. 20.已知抛物线C :()220x py p =>,焦点为F ,准线与y 轴交于点E .若点P 在C上,横坐标为2,且满足:PE =.(1)求抛物线C 的方程;(2)若直线PE 交x 轴于点Q ,过点Q 做直线l ,与抛物线C 有两个交点M ,N (其中,点M 在第一象限).若QM MN λ=,当()1,2λ∈时,求OMP ONP S S ∆∆的取值范围. 21.已知函数()()()11x f x x e =+-. (1)求()f x 在点()()1,1f --处的切线方程;(2)若方程()f x b =有两个实数根1x ,2x ,且12x x <,证明2111311b e eb x x e e ++-≤++--. 22.(1)以极坐标系Ox 的极点O 为原点,极轴x 为x 轴的正半轴建立平面直角坐标系xOy ,并在两种坐标系中取相同的长度单位,把极坐标方程2sin cos 2θρθ+=化成直角坐标方程.(2)在直角坐标系xOy 中,直线l :32cos 431sin 4x t y t ππ⎧=-+⋅⎪⎪⎨⎪=-+⋅⎪⎩(t 为参数),曲线C :2cos sin x y a θθ=⎧⎨=⎩(θ为参数),其中0a >.若曲线C 上所有点均在直线l 的右上方,求a 的取值范围.23.已知正数x ,y ,z 满足1x y z ++=.(1)求证:22212323235x y z y z z x x y ++≥+++; (2)求2161616x y z ++的最小值.参考答案1.B【解析】【分析】根据题意,利用交集定义直接求解。
全国卷新课标2020年1月诊断性测试理科数学试卷
递增区间.
18.(12 分)如图,多面体 ABCDFE 中,四边形 ABEF 和四边形 CDFE 是
两个全等的菱形, AB = 2 , BAF = ECD = 60 .
(1)求证: BD ⊥ DC ;
(2)如果二面角 B − EF − D 的平面角为 60 ,求直线 BD 与平面 BCE 所
B.双曲线
C.椭圆
D.抛物线
(第 10 题图)
11.已知函数 f (x) = (ln x −1)(x − 2)i − m(i = 1, 2) , e 是自然对数的底数,存在 m R
A.当 i = 1时, f (x) 零点个数可能有 3 个
B.当 i = 1时, f (x) 零点个数可能有 4 个
C.当 i = 2 时, f (x) 零点个数可能有 3 个
( ) 1,2 时,求 S△OMP 的取值范围. S△ONP
(第 20 题图)
21.(12 分)已知函数 f (x) = (x +1)(ex −1) .
(1)求 f (x) 在点(-1, f (−1)) 处的切线方程;
(2)若方程
f
(x)
=
b
有两个实数根
x1,
x2
,且
x1
x2
,证明:
x2
−
(第 18 题图)
成角的正弦值.
19.(12 分)已知等比数列{an}的公比 q 1,且 a1 + a3 + a5 = 42, a3 + 9 是 a1 , a5 的等差中项.数列
{bn} 的通项公式 bn =
2n
,nN*.
an −1 + an+1 −1
(1)求数列{an}的通项公式;
高三中学生标准学术能力诊断性测试 2020 年 1 月测试题及答案解析
中学生标准学术能力诊断性测试 2020 年 1 月测试
文科数学试卷(一卷)
本试卷共 150 分,考试时间 120 分钟。
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是 符合题目要求的.
1.已知集合U = N, A = x x = 2n,n N,B = x 1 x 6,n N ,则 ( A) B = U
在直角梯形 ABCD 中,AC = 2,AB = 2AP,AP ⊥?PC , 所以 PAC 为等腰直角三角形,O 为斜边 AC 上的中点,所以 PO ⊥ AC . BE AC = O, BE 面ABCD ,所以 PO ⊥ 平面 ABCD …………………………6 分
(2)法一:以 O 为原点,分别以 OB,OC,OP 为 x 轴, y 轴,z 轴的建立直角坐标系. 不妨设 BO =1
6.点 P, Q 在圆 x2 + y2 + kx − 4y + 3 = 0 上 ( k R) ,且点 P, Q 关于直线 2x + y = 0 对称,则该圆
的半径为
A. 3
B. 2
C.1
D. 2 2
7.已知函数 f ( x) = x3 − x 和点 P (1,−1) ,则过点 P 与该函数图像相切的直线条数为
文科数学(一卷)答案
中学生标准学术能力诊断性测试2024年1月测试语文试题及答案解析
中学生标准学术能力诊断性测试2024年1月测试语文试题一、现代文阅读(35分)(一)论述类文本阅读(本题共5小题,17分)阅读下面的文字,完成1-5题。
材料一:所谓“搭子社交”,就是指通过社交平台或应用程序,以寻找共同兴趣、目标或者活动为前提的社交方式。
“搭子”社交覆盖了诸多领域,例如“饭搭子”“旅游搭子”“羽毛球搭子”等。
年轻人通过不同类型的“搭子”探索并创造属于自己的社交网络,满足了个人在不同生活方面的社交需求。
搭子社交的目标是通过提供精准的陪伴,满足用户在特定领域中的社交需求。
一方面,通过搭子社交,人们可以参与到各种有趣的活动中,拓宽自己的社交圈子,结交更多志同道合的朋友。
另一方面,在这里,人们可以找到更多同样喜欢某一活动或话题的人,相互交流经验、分享资源,进一步提升各自的技能和知识水平。
在过度社交化的时代,人们正在经历“熟人社交倦怠”。
人们常常采取各种“断连”的方式来逃避过度连接的社会环境。
“反连接”并不是指无条件断绝一切关系,而是断绝特定情境下可能给个体带来过大压力和负担的关系,使个体重新获得必要的私人空间、时间和自由。
年轻人在建立搭子关系时,通常会选择避开当前的圈子,与陌生人建立联系。
因此,他们更加注重搭子关系的实用性,保持一定的社交距离,通过默契的距离感的维持,双方可以轻松地待在自己的舒适区,无需假装熟悉或频繁互动。
对于在大城市奋斗的年轻人来说,父母的关怀往往受到地理距离的限制,朋友之间需要“跨越半个城市或者多个时区”才能见面,而爱情也并不容易获得。
因此,年轻人常常会面临孤独的时刻,需要独自进行一些活动来填补这种空虚感。
年轻人倾向与陌生人进行社交,可能是因为他们更有动力去寻找新的人际关系,以满足他们的社交需求、开拓个人发展的机会,并获得新的信息和资源。
可以说,搭子社交之所以流行,是因为它成为了传统固定关系的补充。
(摘编自腾讯媒体研究院2023-09-08《“搭子”社交:一种特定情境下的精准陪伴关系》)材料二:中国传统社会具有安土重迁、世代稳定的特点,在日常的生产劳作中,形成了以差序格局为基础的熟人社会。
新疆乌鲁木齐市2020届高三第一次诊断性测试数学文试题 (含答案)
新疆乌鲁木齐市2020届高三年级第一次诊断性测试文科数学(卷面分值:150分 考试时间:120分钟)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的第Ⅰ卷(选择题 共60分)1. 设集合}03|{2<-=x x x A ,}41|{<<=x x B ,则=B A.A )4,0( .B ),(41 .C ),(43 .D )3,1( 2. 若复数z 满足i i z 2)1(=+(其中i 为虚数单位),则=z.A i -1 .B i +1 .C i +-1 .D i --13. 已知n m ,是两条不同的直线,γβα,,是三个不同的平面,则下列命题正确的是 .A 若αα//,//n m ,则n m // .B 若γβγα⊥⊥,,则βα// .C 若αα//,//n m ,且ββ⊂⊂n m ,,则βα//.D 若βα⊥⊥n m ,,且βα⊥,则n m ⊥4. 设6.02=a ,6.0log 3.0=b ,6.0log 3=c ,则有.A a b c << .B c b a << .C a c b << .D b a c <<5. 已知向量)1,(),2,1(-==m b a ,且)(b a a +⊥,则=m.A 1- .B 2- .C 3- .D 4- 6. 已知双曲线12222=-by a x (0,0>>b a )的左、右焦点分别为21,F F ,B 为虚轴的一个端点,且︒=∠12021BF F ,则双曲线的离心率为.A 2 .B 3 .C 23 .D 26 7. 执行如右图所示的程序框图,则输出的=n.A 3 .B 4 .C 5 .D 68. 从1,2,3,4,5这五个数字中随机选择两个不同的数字,则它们之和为偶数的概率为 .A 51 .B 52 .C 53 .D 54 9. 等比数列}{n a 的前n 项和为n S ,且321,2,4a a a 成等差数列,若11=a ,则=5S .A 15 .B 16 .C 31 .D 3210. 将函数x x f 2sin )(=的图象向左平移4π个单位长度后得到函数)(x g y =的图象,则下列关于)(x g 说法正确的是 .A 最大值为1,图象关于直线2π=x 对称 .B 在⎪⎭⎫ ⎝⎛4,0π上单调递减,为奇函数 .C 在⎪⎭⎫ ⎝⎛-8,83ππ上单调递增,为偶函数 .D 周期是π,图象关于点⎪⎭⎫ ⎝⎛0,83π对称 11. 已知抛物线C :)0(22>=p px y 的焦点F 到准线的距离为2,点P 在抛物线上,且23||=PF ,延长PF 交C 于点Q ,则△OPQ 的面积为 .A 223 .B 423 .C 823 .D 1623 12. 已知函数⎪⎩⎪⎨⎧--=x x x f )(00<≥x x ,,,若对任意]2,[+∈m m x ,都有)(2)(x f m x f ≥-,则实数m 的取值范围是.A ]22,(--∞ .B ]1,(--∞ .C ]2,(--∞ .D ]2,(--∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分13. 若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+-≤--001022y y x y x ,则y x z 23+=的最大值为_______14. 已知543cos -=⎪⎭⎫ ⎝⎛+πα,α为锐角,则=αsin _______ 15. 已知数列}{n a 满足:⎩⎨⎧+=+221n n n a a a 11a a a a n n <≥,,(*N n ∈),若33=a ,则=1a ____ 16. 如图,已知正方体1111D C B A ABCD -的棱长为2,E 、F 、G 分别为AB 、AD 、11C B 的中点,给出下列命题:①异面直线EF 与AG 所成的角的余弦值为62; ②过点E 、F 、G 作正方体的截面,所得的截面的面积是34;③⊥C A 1平面EFG④三棱锥EFG C -的体积为1其中正确的命题是_____________(填写所有正确的序号)三、解答题:第17~21题每题12分,解答应写出文字说明、证明过计算步骤17. △ABC 的内角C B A ,,的对边分别是c b a ,,,且b a A b C c B A ++=+sin 3sin sin sin (Ⅰ)求∠C 的值 (Ⅱ)若2=c ,求△ABC 面积的最大值;18. 如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AD//BC ,∠BAD=90°,AD=2BC ,M 为PD 的中点(Ⅰ)证明:CM//平面PAB(Ⅱ)若△PBD 是边长为2的等边三角形,求点C 到平面PBD 的距离19. “团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x 亿件:精确到0.1)及其增长速度(y %)的数据(Ⅰ)试计算2012年的快递业务量;(Ⅱ)分别将2013年,2014年,…,2017年记成年的序号t :1,2,3,4,5;现已知y与t 具有线性相关关系,试建立y 关于t 的回归直线方程a x b yˆˆˆ+=; (Ⅲ)根据(Ⅱ)问中所建立的回归直线方程,估算2019年的快递业务量附:回归直线的斜率和截距地最小二乘法估计公式分别为:∑∑==--=n i in i i i x n xyx n y x b 1221ˆ,x b y a ˆˆ-=20. 已知椭圆C :)0(12222>>=+b a b y a x 过点⎪⎭⎫ ⎝⎛231,,左焦点F )0,1(- (Ⅰ)求椭圆C 的标准方程;(Ⅱ)21,A A 分别为椭圆C 的左、右顶点,过点F 作直线l 与椭圆C 交于PQ 两点(P 点在x 轴上方),若△F PA 1的面积与△F QA 2的面积之比为2:3,求直线l 的方程21. 已知函数)(ln 12)(2R a x a xx x f ∈--=(Ⅰ)若0>a 时,讨论)(x f 的单调性;(Ⅱ)设x x f x g 2)()(-=,若)(x g 有两个零点,求a 的取值范围选考题:共10分,二选一22. 在平面直角坐标系xOy 中,曲线C :0422=-+x y x ,直线l 的参数方程为⎩⎨⎧==ααsin cos t y t x (t 为参数),其中⎪⎭⎫ ⎝⎛∈6,0πα,以坐标原点O 为极点,x 轴非负半轴为极轴,建立极坐标系。
2020年THUSSAT中学生标准学术能力诊断性测试1月诊断 理科数学答案
b1 + b2 + 那么,当 n = k +1时,
+ bk 2k+1 −1 .
b1 + b2 +
+ bk + bk+1
2k+1 −1 +
2k +1 2k+1 −1 + 2k+2 −1
= 2k+1 −1 +
2k+1( 2k+1 −1 − 2k+2 −1)
( 2k+1 −1 + 2k+2 −1)( 2k+1 −1 − 2k+2 −1)
又 G'
( −3)
=
−
1 e3
− 3e<0
, lim G' x→−
(x)
=
−3e ,G'
(1)
=
0 ,所以 G ( x) 在 (−,1) 上单调递
减,在 (1, +) 上单调递增. 所以 G ( x) G (1) = 0 f ( x) t ( x) = (3e −1) x − e −1 ,
当且仅当 x = −1 时取“=”
由题意得,直线 l 的斜率存在且不为 0, 可设直线 l 的方程为 x = my +1,
……………………4 分 ……………………5 分
x = my +1
联立方程组
x
2
=
4y
整理得 m2 y2 + (2m − 4) y +1 = 0, =16-16m 0, m 1.
设点 M ( x1, y1 ) , N ( x2 , y2 ) ,
(x
+1) =b
中学生标准学术能力诊断性测试2020年1月数学(理)试题(一卷)答案(扫描版)
…………………………7 分
+1)
=b
的根
x1
=
eb 1− e
−1.又 b
=
s
x1
= f ( x1 ) s ( x1 ) ,由 s ( x) 在 R 上
单调递减,所以 x1 x1.
…………………………7 分
另一方面, f ( x) 在点 (1, 2e − 2) 处的切线方程为 y = (3e −1) x − e −1.
设 t(x) = (3e −1)x − e −1
( ) 构造G( x) = f ( x) − t ( x) = ( x +1) ex −1 − (3e −1) x + e +1=(x +1)ex − 3ex + e .
G( x) = ( x + 2) ex − 3e , G( x) = ( x + 3) ex . 所以 G( x) 在在 (−, −3) 上单调递减,在 (−3, +) 上单调递增. ……………………9 分
在直角坐标系下, x = cos , y = sin , = x2 + y2 .
( ) 故化成直角坐标系方程 y + x x2 + y2 = 2 x2 + y2 ,不包括点 (0, 0) ………………3 分
当 =0时 , (0, 0) 满足原极坐标方程,
( ) 综上,所求的直角坐标方程为 y + x x2 + y2 = 2 x2 + y2
20.解:(1)由已知可得
F
0,
p 2
,
E
0,−
p 2
浙江省2020年1月普通高中学业水平考试数学试题及答案(C)
数学试题C选择题部分一、选择题(本大题共18小题,每小题3分,共54分,每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.已知全集{1,2,3,4,5,6}U =,集合{1,2,4,6}A =,{4,5}B =,则()U A B =A .{4}B .{5}C .{3,5}D .{3,4,5}1.答案:D 2.函数ln(1)()x f x x+=的定义域为 A .(–1,+∞) B .(–1,0)C .(0,+∞)D .(–1,0)∪(0,+∞) 2.答案:D3.已知向量(1,2),(,1)m =-=-a b ,若λ=a b (λ∈R ),则m = A .−2 B .12-C .12D .23.答案:C4.在等比数列{}n a 中,1352,12a a a =+=,则7a = A .8 B .10C .14D .164.答案:D 5.函数22()1xf x x =-的图象大致是 A . B .C .D .5.答案:A6.已知两条平行直线3460x y +-=和340x y a ++=之间的距离等于2,则实数a 的值为 A .1- B .4C .4或16-D .16-6.答案:C7.若实数,x y 满足约束条件220,10,0.x y x y +-≤⎧⎪-≥⎨⎪≥⎩则2z x y =-的最小值为A .0B .2C .4D .67.答案:A 8.若7sin cos 5θθ+=,则sin cos θθ= A .2425 B .1225 C .2425±D .2425-8.答案:B9.已知椭圆22221x y a b+=(0)a b >>分别过点(2,0)A 和(0,1)B -,则该椭圆的焦距为AB.CD.9.答案:B10.已知两条不同的直线a ,b 和一个平面α,则使得“a b ∥”成立的一个必要条件是A .a α∥且b α∥B .a α∥且b α⊂C .a α⊥且b α⊥D .a ,b 与α所成角相同10.答案:D11.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c .若π4A =,a =b =则ABC △的面积等于 A .12或32B .12C.2D .3211.答案:D12.在正三棱锥P ABC -中,4,PA AB ==PA 与底面ABC 所成角的正弦值为 A .14B .154C .18D .63812.答案:B13.过双曲线22221(0,0)x y a b a b-=>>的左焦点作倾斜角为30︒的直线l ,若l 与y 轴的交点坐标为(0,)b ,则该双曲线的离心率为A .62B .52C .2D .313.答案:A14.设函数21()lg ||1f x x x=-+,则使得5(log )0f m ≥成立的m 的取值范围是 A .1[,5]5 B .1(0,][5,)5+∞C .1(,][5,)5-∞+∞D .1(,0][,5)5-∞14.答案:B15.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为a 的正方形及正方形内一段圆弧组成,则这个几何体的表面积是A .2π(3)4a -B .2π(6)2a -C .2π(6)4a -D .23π(6)4a -15.答案:C16.等差数列{}n a 中,公差0d ≠,当1()n n *>∈N 时,下列关系式正确的是A .112n n a a a a +>B .112n n a a a a +<C .112n n a a a a +=D .112n n a a a a +≥16.答案:B17.若函数()|2||21|f x x x ax =-+--没有零点,则实数a 的取值范围是A .332a -≤< B .31a -≤< C .332a a ≥<-或 D .13a a ≥<-或 17.答案:A18.若正方体1111ABCD A BC D -的棱长为a ,点M ,N 在AC 上运动,MN a =,四面体11M B C N -的体积为V ,则 A.36V = B.36V > C.312V a =D.312V <18.答案:C非选择题部分二、填空题(本大题共4小题,每空3分,共15分)19.已知||2=a ,||4=b ,a 与b 的夹角为120︒,则⋅=a b _________,||+=a b ________. 19.答案:4-;20.若22log log 1m n +=,那么m n +的最小值是________. 20.答案:21.已知0a >且1a ≠,设函数2,3()2log ,3a x x f x x x -≤⎧=⎨+>⎩的最大值为1,则实数a 的取值范围是________. 21.答案:1[,1)322.在数列{}n a 中,已知11a =,2211n n n n n a S n a S ---=-*(2,)n n ≥∈N ,记2nn a b n =,n T 为数列{}n b 的前n 项和,则2021T =________.22.答案:20211011三、解答题(本大题共3小题,共31分) 23.(本小题满分10分)已知函数2()22cos 1f x x x =+-.(Ⅰ)求5π()12f 的值; (Ⅱ)求()f x 的最小正周期及单调增区间. 23.(本小题满分10分)【解析】(Ⅰ)因为2()22cos 1f x x x =+-,所以25π5π5π())2cos ()1121212f =⨯+- 5π5π)cos(2)1212=⨯+⨯(3分)5π5πcos 66=+0=.(5分)(Ⅱ)2()22cos 12cos π2sin 62(2)f x x x x x x =+++=-=,(7分)所以()f x 的最小正周期2ππ2T ==.(8分) 令πππ2π22π+()262k x k k -≤+≤∈Z ,解得ππππ+()36k x k k -≤≤∈Z ,所以()f x 的单调增区间为ππ[π,π+]()36k k k -∈Z .(10分)24.(本小题满分10分)已知抛物线C :22(0)x py p =>的焦点为F ,抛物线C 上存在一点(,2)E t 到焦点F 的距离等于3.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点F 的直线l 交抛物线C 于A ,B 两点,以线段AB 为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q ,求sin QMN ∠的最小值.24.(本小题满分10分)【解析】(Ⅰ)由题意得抛物线的准线方程为2py =-, 点(,2)E t 到焦点F 的距离等于3,232p∴+=,解得2p =, ∴抛物线C 的方程为24x y =.(3分)(Ⅱ)由题知直线l 的斜率存在,设()11,A x y ,()22,B x y ,直线l 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩,消去y 得2440x ky --=,(5分) 所以124x x k +=,124x x ⋅=-, 所以()21212242y y k x x k +=++=+,所以AB 的中点Q 的坐标为()22,21k k +,(7分)因为21244AB y y p k =++=+, 所以圆Q 的半径为222r k =+.(8分)在等腰QMN △中,22221111sin 11222222Qy k QMN r k k +∠===-≥-=++,当且仅当0k =时取等号.所以sin QMN ∠的最小值为12.(10分) 25.(本小题满分11分)已知关于x 的函数2()2f x x kx =--,x ∈R . (Ⅰ)若函数()f x 是R 上的偶函数,求实数k 的值;(Ⅱ)若函数()(21)x g x f =-,当2(]0,x ∈时,()0g x ≤恒成立,求实数k 的取值范围;(Ⅲ)若函数2()()|1|2h x f x x =+-+,且函数()h x 在(0,2)上有两个不同的零点1x ,2x ,求证:12114x x +<.25.(本小题满分11分)【解析】(Ⅰ)()f x 是R 上的偶函数,()()f x f x ∴-=,即2222x kx x kx +-=--对x ∈R 都成立,0k ∴=.(2分)(Ⅱ)当2(]0,x ∈时,()0g x ≤恒成立,即()()2212120x x k ----≤恒成立. 令21x u =-,则(]0,3u ∈,()()2212120x x k ∴----≤在2(]0,x ∈时恒成立等价于2k u u≥-在(]0,3u ∈时恒成立,(4分) 又227333u u -≤-=,73k ∴≥, k ∴的取值范围是7[,)3+∞.(6分)(Ⅲ)不妨设1202x x <<<, 因为()21,01,21,12,kx x h x x kx x -+<<⎧=⎨--≤<⎩所以()f x 在()0,1上至多有一个零点, 若1212x x ≤<<,则120x x ⋅>,而12102x x ⋅=-<,矛盾. 因此12012x x <<≤<;(8分) 由()10h x =,得11k x =,由()20h x =,得222210x kx --=, 22211210x x x ∴-⋅-=,即212122x x x x +=⋅, 2121124x x x ∴+=<.(11分)。
2021年1月中学生标准学术能力诊断性测试诊断性测试文科数学试卷
8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()
A. B. C. D.
9.已知数列 是等比数列,前 项和为 ,则“ ”是“ ”的()
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件
10.在 中,已知 , , ,点 满足 ,其中 , 满足 ,则 的最小值为()
3.D
【分析】
根据双曲线的标准方程,可求得其顶点坐标,结合离心率即可求得 ,由椭圆中 的关系求得 ,即可得椭圆的标准方程.
【详解】
双曲线的标准方程为
则顶点坐标为 ,以顶点为椭圆的焦点
则椭圆的
又椭圆的离心率为
可得
所以
焦点在 轴上的椭圆方程为
故选:D
【点睛】
本题考查了双曲线与椭圆的标准方程及其简单的几何性质,椭圆离心率的简单应用,属于基础题.
19.如图,四棱锥 中, 平面 , , , , 为 的中点, 与 相交于点 .
(Ⅰ)求证: 平面 ;
(Ⅱ)求直线 与平面 所成角的正弦值.
20.已知 , .
(1)若 在 恒成立,求实数a的取值范围;
(2)若 , ,求证: .
21.如图,已知圆 : ,抛物线 : 的焦点为 ,过 的直线 与抛物线 交于 , 两点,过 且与 垂直的直线 与圆 有交点.
【详解】
因为
由余弦二倍角公式可得
而
所以
由同角三角函数关系式可得
因为
则 ,而
所以
则
所以
,即
又因为 ,所以
故
所以
故选:B
【点睛】
本题考查了同角三角函数关系式及诱导公式的化简应用,三角函数恒等变形及角的范围确定,综合性较强,属于中档题.
2020届北京是中学生标准学术能力诊断性测试诊断性测试(1月)数学(理)试题(解析版)
北京是中学生标准学术能力诊断性测试诊断性测试(1月)数学试题一、单选题1.若集合{|12}A x x =-<<,{}2,0,1,2B =-,则A B =I ( ) A .∅ B .{0,1}C .{0,1,2}D .{2,0,1,2}-【答案】B【解析】根据题意,利用交集定义直接求解。
【详解】集合{|12}A x x =-<<,{}2,0,1,2B =-,所以集合{}0,1A B =I 。
【点睛】本题主要考查集合交集的运算。
2.若()25i z +=,则z 的虚部为( ) A .-1 B .1C .i -D .i【答案】A【解析】利用复数除法运算化简z ,则虚部可求 【详解】()()()5252222i z i i i i -===-++-,故虚部为-1 故选:A 【点睛】本题考查复数的运算,意在考查计算能力,是基础题3.已知双曲线2221(0)2x y b b-=>的两条渐近线互相垂直,则e =( )A .1BCD .2【答案】B【解析】根据题意,利用双曲线的两条渐近线垂直推出-1b b a a=-g ,可得a b =,再通过离心率的计算公式即可得出。
【详解】由题意得,-1b b a a =-g ,可得a b =,则2222222,2c a b e e a a+====。
【点睛】本题主要考查双曲线的性质中离心率的求解。
4.由两个14圆柱组合而成的几何体的三视图如图所示,则该几何体的体积为( )A .π3B .π2C .πD .2π【答案】C【解析】根据题意可知,圆柱的底面半径为1,高为2,利用圆柱的体积公式即可求出结果。
【详解】由三视图可知圆柱的底面半径为1,高为2, 则21122V ππ=⋅⨯=, 故答案选C 。
【点睛】本题主要考查根据几何体的三视图求体积问题,考查学生的空间想象能力。
5.函数()()22xf x x x e =-的图像大致是( )A .B .C .D .【答案】B【解析】求导,求出函数()y f x =的单调性,利用单调性来辨别函数()y f x =的图象,以及函数值符号来辨别函数()y f x =的图象. 【详解】()()22x f x x x e =-Q ,()()()()222222x x x f x x e x x e x e '∴=-+-=-.解不等式()0f x '<,即220x -<,得22x -<<;解不等式()0f x '>,即220x ->,得x <x >所以,函数()y f x =的单调递增区间为(,-∞和)+∞,单调递减区间为(.令()0f x >,即220x x ->,得0x <或2x >; 令()0f x <,即220x x -<,得02x <<.所以,符合条件的函数()y f x =为B 选项中的图象,故选B. 【点睛】本题考查利用函数解析式辨别函数的图象,一般从以下几个要素来进行分析:①定义域;②奇偶性;③单调性;④零点;⑤函数值符号.在考查函数的单调性时,可充分利用导数来处理,考查分析问题的能力,属于中等题.6.已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A .⎛-∞ ⎝⎭B .4,7⎛⎫-∞ ⎪⎝⎭C .⎫∞⎪⎪⎝⎭D .4,7⎛⎫+∞⎪⎝⎭【答案】A【解析】将不等式化为32aax x+<,讨论0a =、0a >和0a <时,分别求出不等式成立时a 的取值范围即可 【详解】(]0,2x ∈时,不等式可化为32aax x+<; 当0a =时,不等式为02<,满足题意;当0a >时,不等式化为32x x a +<,则2a >=x =所以a ,即0a <<;当0a <时,32x x a+>恒成立;综上所述,实数a 的取值范围是(,3-∞ 答案选A 【点睛】本题考查不等式与对应的函数的关系问题,含参不等式分类讨论是求解时常用方法7.已知a ,b 为实数,则01b a <<<,是log log a b b a >的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】通过正向与反向推导来验证充分与必要条件是否成立即可 【详解】若01b a <<<,则lg lg b a <,lg lg 1,1lg lg b a a b >> ,lg lg log log lg lg a b b ab a a b>⇔>, 显然o 0l g lo 1g a b b a b a <><<⇒,充分条件成立但log log a b b a >时,比如说2,3a b ==时,却推不出01b a <<<,必要条件不成立 所以01b a <<<是log log a b b a >的充分不必要条件 【点睛】本题考查充分与必要条件的判断,推理能力与计算能力,由于参数的不确定性,故需要对参数进行讨论8.已知随机变量ξ,η的分布列如下表所示,则( )A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη= D .E E ξη=,D D ξη=【答案】C【解析】由题意分别求出E ξ,D ξ,E η,D η,由此能得到E ξ<E η,D ξ>D η. 【详解】 由题意得:E ξ111123326=⨯+⨯+⨯=116 , D ξ22211111111151(1)(2)(3)636108266=-⨯+-⨯+-⨯=.E η111131236236=⨯+⨯+⨯=,D η=(1316-)216⨯+(2136-)212⨯+(3136-)21513108⨯=, ∴E ξ<E η,D ξ=D η. 故选:C . 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.9.在ABC △中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v,则AB BC=u u u vu u u v ( ) A .1 BC.2D【答案】C【解析】根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v可以推得AB AC =,再利用向量运算的加法法则,即可求得结果。
四川省成都市2020届高中毕业班第一诊断性检测文科数学答案
四川省成都市2020届高中毕业班第一诊断性检测文科数学试题参考答案1.B 【分析】由题意得复数z 1与23z i =--的实部相等,虚部互为相反数,则z 1可求. 【解析】∵复数z 1与23z i =--(i 为虚数单位)在复平面内对应的点关于实轴对称,∴复数z 1与23z i =--(i 为虚数单位)的实部相等,虚部互为相反数,则z 1=3i -+.故选:B .2.D 【分析】因为{1,0,1,2}AB =-,A ,B 本身含有元素1-,0,1,2,根据元素的互异性1m ≠-,0,求出m 即可.【解析】解:集合{1A =-,0,}m ,{1B =,2},{1,0,1,2}AB =-,因为A ,B 本身含有元素1-,0,1,2,所以根据元素的互异性,1m ≠-,0即可, 故1m =或2,故选:D .3.C 【分析】根据sin θθ=得到tan θ=.【解析】sin tan θθθ=∴=22tan tan 21tan 42θθθ===---故选:C 4.D 【分析】直接利用全称命题的否定定义得到答案.【解析】命题p :x R ∀∈,221x x -≥,则p ⌝为: 0x R ∃∈,02021x x -<故选:D5.A 【分析】根据频率分布直方图求得中位数即可.【解析】在频率分步直方图中,小正方形的面积表示这组数据的频率,∴中位数为:0.50.01100.0310701072.50.0410-⨯-⨯+⨯=⨯.故选:A6.D 【分析】将S 9,S 5转化为用a 5,a 3表达的算式即可得到结论.【解析】解:依题意,19951553992552a a S a a a S a +⨯==+⨯,又533a a =,∴95927355S S =⨯=,故选:D .7.C 【分析】由空间中直线与直线、直线与平面及平面与平面位置关系逐一核对四个选项得答案.【解析】由m ∥α,n ∥β,且α∥β,得m ∥n 或m 与n 异面,故A 错误;由m ∥α,n ∥β,且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故B 错误; 由m ⊥α,α∥β,得m ⊥β,又n ∥β,则m ⊥n ,故C 正确;由m ⊥α,n ∥β且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故D 错误.故选:C . 8.A 【分析】利用函数的图象平移变换和伸缩变换的应用求出结果即可. 【解析】函数sin(4)6y x π=-图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到sin(2)6y x π=-的图象,再把所得图象向左平移6π个单位长度,得到函数f (x )=sin 2()sin(2)666y x x πππ⎡⎤=+-=+⎢⎥⎣⎦的图象.故选:A .9.B 【分析】抛物线到焦点的距离转化为到准线的距离,可求出横坐标之和,进而求出中点的横坐标,求出结果即可.【解析】由抛物线方程24y x =,得其准线方程为:1x =-,设11(,)M x y ,22(,)N x y ,由抛物线的性质得,1211=5MF NF x x +=+++,MN ∴中点的横坐标为32, 线段MN 的中点到y 轴的距离为:32.故选:B . 10.C 【分析】利用根式的运算性质、幂函数的单调性可得a ,b 的大小关系,利用对数函数的单调性即可得出c <1.【解析】∵122a ==,且133b =∴1a b <<,3lnln 12e <=.∴b a c >>.故选:C . 11.B 【分析】设F '是右焦点,利用对称性,得3AF AF '=,由双曲线定义得,|3AF a AF a '==,然后利用AOF AOF π'∠+∠=可得出关于,,a b c 的关系式,从而求得离心率e .【解析】设F '是右焦点,则BF AF '=,3AF BF =,即3AF AF '=,又22AF AF AF a ''-==,∴AF a '=,3AF a =,而,OA b OF c '==,∴OA AF '⊥,由AOF AOF π'∠+∠=得cos cos 0AOF AOF '∠+∠=,∴222902b c a bbc c+-+=,整理得3==c e a .故选:B .12.A 【分析】根据函数的单调性和对称性画出函数图像,()22y k x =-+过定点()2,2,计算直线和曲线相切的情况计算斜率得到答案. 【解析】当2x ≤时,()()()'1xxf x xe f x x e =∴=+函数在(),1-∞-上单调递减,在()1,2-上单调递增,且()11f e-=-()()22f x f x -=+,函数关于2x =对称,()22y k x =-+过定点()2,2如图所示,画出函数图像:当()22y k x =-+与()xf x xe =相切时,设切点为()00,x y则()000000022122x x y x e x e k x x --+===-- 根据对称性考虑2x =左边图像,根据图像验证知00x =是方程唯一解,此时1k = 故答案为()()1,00,1k ∈-⋃故选:A13.6【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解析】作出实数x ,y 满足约束条件402200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩对应的平面区域如图:(阴影部分)由2z x y =+得y =﹣12x +12z ,平移直线y =﹣12x +12z , 由图象可知当直线y =﹣12x +12z 经过点A 时,直线y =﹣12x +12z 的截距最大,此时z最大.由40220x y x y +-=⎧⎨-+=⎩,解得A (2,2),代入目标函数z =x +2y 得z =2×2+2=6. 故答案为:6.14.3n 【分析】将已知条件转化为基本量a 1,q 的方程组,解方程组得到a 1,q ,进而可以得到a n .【解析】在正项等比数列{}n a 中,481a =,2336a a +=,得312118136a q a q a q ⎧=⎨+=⎩,解得133a q =⎧⎨=⎩,∴a n =11n a q -⋅=3•3n ﹣1=3n . 故答案为:3n15.6π【分析】由题意利用两个向量垂直的性质,两个向量的数量积的定义,求出向量a 与b 的夹角的大小.【解析】解:平面向量a ,b 满足||2a =,||3b =,且()b a b ⊥-,∴2()0b a b b a b -=-=,∴2a b b =.设向量a 与b 的夹角的大小为θ,则23cos 3θ=, 求得[]cos 0,π2θθ=∈,故6πθ=,故答案为:6π. 16【分析】根据,,PAPB PC 两两垂直得到2R =得到答案.【解析】易知,,PA PB PC 两两垂直,2,1PA PB PC ===将三棱锥P ABC -放入对应的长方体内得到2R R ==343V R π==17.【分析】(1)由已知条件结合余弦定理可求cos A 的值,进而根据同角三角函数基本关系式可求sin A 的值.(2)利用三角形的面积公式可求bc 的值,b =3c ,解得b ,c 的值,根据余弦定理可求a 的值,即可求解三角形的周长. 【解析】(1)∵2223b c a +-=,∴由余弦定理可得2bc cosA bc ,∴cosA =,∴在△ABC 中,sin A =13.(2)∵△ABC ,即12bc sin A =16bc ,∴bc =,又sin B =3sin C ,b =3c ,∴b =,c =2,则a 2=b 2+c 2﹣2bc cos A =6,a ∴=2abc ++=+18.【分析】(Ⅰ)完善列联表,计算2 2.778 3.841K ≈<得到结论.(Ⅱ)设人事部的这6名中的3名“追光族”分别为“a ,b ,c ”,3名“观望者”分别为“A ,B ,C ,列出所有情况计算得到答案.【解析】(Ⅰ)由题,22⨯列联表如下:∵()221002020204025 2.778 3.841406040609K ⨯-⨯==≈<⨯⨯⨯,∴没有95%的把握认为该公司员工属于“追光族”与“性別”有关.(Ⅱ)设人事部的这6名中的3名“追光族”分别为“a ,b ,c ”,3名“观望者”分别为“A ,B ,C ”.则从人事部的这6名中随机抽取3名的所有可能情况有“,,a b c ;,,a b A ;,,a b B ;,,a b C ;,,a c A ;,,a c B ;,,a c C ;,,b c A ;,,b c B ;,,b c C ;,,a A B ;,,a A C ;,,a B C ;,,b A B ;,,b A C ;,,b B C ;,,c A B ;,,c A C ;,,c B C ;,,A B C ”共20种.其中,抽取到的3名中恰有1名属于“追光族”的所有可能情况有“,,a A B ;,,a A C ;,,a B C ;,,b A B ;,,b A C ;,,b B C ;,,c A B ;,,c A C ;,,c B C ”共9种.∴抽取到的3名中恰有1名属于“追光族”的概率920P =.19.【分析】(Ⅰ)证明BC AE ⊥和BC AP ⊥得到BC ⊥平面PAE . (Ⅱ)根据相似得到PDQM 证明PD 平面QAF .【解析】(Ⅰ)如图,连接AC .∵底面ABCD 为菱形,且60ABC ∠=︒, ∴三角形ABC 为正三角形.∵E 为BC 的中点,∴BC AE ⊥.又∵AP ⊥平面PBC ,BC ⊂平面PBC , ∴BC AP ⊥. ∵APAE A =,,AP AE ⊂平面PAE ,∴BC ⊥平面PAE .(Ⅱ)连接BD 交AF 于点M ,连接QM . ∵F 为CD 的中点,∴在底面ABCD 中,12DM DF MB AB ==,∴13DM DB =. ∴13PQ DM PB DB ==,∴在三角形BPD 中,//PD QM . 又∵QM ⊂平面QAF ,PD ⊄平面QAF , ∴//PD 平面QAF .20.【分析】(1)求出2(1)()()x x a f x x -+'=,然后分0a ≥、10a -<<、1a =-、1a <-四种情况讨论即可;(2)当2a =时,令212()1h x lnx x x=-+-,利用导数求出()0max h x =即可证明. 【解析】(1)22221(1)(1)()()1a a x a x a x x a f x x x x x-+---+'=+-==, 因为0x >,a R ∈,所以当0a ≥时,0x a +>,函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增; 当10a -<<时,01a <-<,函数()f x 在(0,)a -上单调递增,在(,1)a -上单调递减,在(1,)+∞上单调递增;当1a =-时,22(1)()0x f x x-'=≥,函数()f x 在(0,)+∞上单调递增; 当1a <-时,1a ->,函数()f x 在(0,1)上单调递增,在(1,)a -上单调递减,在(,)a -+∞上单调递增.(2)当2a =时,2()f x lnx x x =++,则212()1f x x x'=+-,[]1,2x ∈, 所以2212()()1f x f x x lnx x x x-'--=-+-, 令212()1h x lnx x x =-+-,则22331144()x x h x x x x x +-'=+-=,令2()4u x x x =+-,因为函数()u x 在[1,2]上单调递增,u (1)0<,u (2)0>, 所以存在唯一的0(1,2)x ∈,使得0()0h x '=,因为当0(1,)x x ∈时,0()0h x '<,当0(x x ∈,2)时,00()h x '>, 所以函数()h x 在0(1,)x 上单调递减,在0(x ,2)上单调递增, 又因为h (1)0=,h (2)210ln =-<,所以()0max h x =, 即2()()f x f x x x-'≤+对任意的[1x ∈,2]都成立. 21.【分析】(Ⅰ)令直线AB :()1x my m R =+∈,联立方程利用韦达定理得到12222m y y m +=-+,12212y y m =-+,22S m =+t =带入化简得到答案.(Ⅱ)直线BE 的方程为223322y y x x ⎛⎫=- ⎪⎝⎭-,令2x =得,221212D y y my =-.代入(Ⅰ)中式子化简得到答案.【解析】(Ⅰ)由题,()1,0F ,令直线AB :()1x my m R =+∈,()11,A x y ,()22,B x y .联立22112x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()222210m y my ++-=. ∵()224420m m ∆=++>,12222m y y m +=-+,12212y y m =-+,∴12y y -===∴四边形OAHB 的面积211212S OH y y y y =⋅-=-=t =,∴1t ≥,∴S t t==+∵12t t+≥(当且仅当1t =即0m =时取等号),∴0S <≤.∴四边形OAHB 面积的取值范围为(.(Ⅱ)∵()2,0H ,()1,0F ,∴3,02E ⎛⎫⎪⎝⎭. ∴直线BE 的斜率2232y k x =-,直线BE 的方程为223322y y x x ⎛⎫=- ⎪⎝⎭-. 令2x =得,221212D y y my =-.……①由(Ⅰ),12222m y y m +=-+,12212y y m =-+. ∴12122y y my y +=,1222111222y y y my y y +==+. 化简①,得22122111221112222D y y y y y my y ===-+-. ∴直线AD 与x 轴平行.22.【分析】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,写出其普通方程,再结合ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,可得曲线C 1,C 2的极坐标方程; (2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,求得|AB |=|ρ1﹣ρ2|,再求出M (3,2π)到射线()06πθρ=≥的距离h=3sin 3π=,即可求得△MAB 的面积.【解析】(1)由题意,点Q 的轨迹是以(2,0)为圆心,以2为半径的圆,则曲线C 2:22(2)4x y -+=,∵ρ2=x 2+y 2,x =ρcosθ,y =ρsinθ,∴曲线C 1的极坐标方程为ρ=4sinθ,曲线C 2的极坐标方程为ρ=4cosθ;(2)在极坐标系中,设A ,B 的极径分别为ρ1,ρ2,124sincos1).66AB ππρρ∴=-=-=又点(3,)2M π到射线(0)6πθρ=≥的距离为3sin32h π==MAB ∴∆的面积12S AB h =⋅= 23.【分析】(1)原不等式可化为:|x ﹣3|≥4﹣|2x +1|,即|2x +1|+|x ﹣3|≥4,分段讨论求出即可;(2)由基本不等式得m n +的最小值92,转化为|x +32|﹣f (x )≤92恒成立即可.【解析】(1)原不等式化为3421x x -≥-+,即213 4.x x ++-≥ ①12x ≤-时,不等式化为2134x x ---+≥,解得23x ≤-;②132x -<<时,不等式化为2134x x +-+≥,解得0x ≥,03x ∴≤<; ③3x ≥时,不等式化为2134x x ++-≥,解得2x ≥,3x ∴≥. 综上可得:原不等式解集为2(,][0,)3-∞-⋃+∞.(2)() 3.f x x =-3339()3(3)2222x f x x x x x ∴+-=+--≤+--=, 当且仅当3()(3)02x x +-≥且332x x +≥-时取等号.又142(0,0)m n m n+=>>,1141419()()(5)(52222n m m n m n m n m n ∴+=++=++≥+=, 当且仅当4n mm n=时取等号.∴3().2m n x f x +≥+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学生标准学术能力诊断性测试2020年1月测试
文科数学试卷
本试卷共150分,考试时间120分钟。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合U =N ,A ={x|x =2n ,n ∈N},B ={x|1<x ≤6,n ∈N},则()U A B =I ð A. {2,3,4,5,6} B. {2,4,6} C. {1,3,5} D. {3,5}
2.复数z =(1-mi)2(i 为虚数单位)为纯虚数,则实数m = A.±1 B.-1 C.1 D.0
3.以双曲线2213y x -=的顶点为焦点,离心率为3
3的椭圆的标准方程为
A.22143x y +=
B.22134x y +=
C.22196x y +=
D.22
169
x y += 4.函数f(x)=
3ln x
x
的部分图像是
5.已知α∈(0,π),3sin 35πα⎛⎫
+= ⎪⎝
⎭,则cos 26πα⎛⎫+= ⎪⎝
⎭ A.
2425 B.-2425 C.725 D.-7
25
6.点P ,Q 在圆x 2+y 2+kx -4y +3=0上(k ∈R),且点P ,Q 关于直线2x +y =0对称,则该圆的半径为
3 2 C.1 2
7.已知函数f(x)=x 3-x 和点P(1,-1),则过点P 与该函数图像相切的直线条数为 A.1 B.2 C.3 D.4
8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是 A.
372cm B.373cm C.37
6
cm D.37cm 9.已知数列{a n }是等比数列,前n 项和为S n ,则“2a 3>a 1+a 5”是“S 2n -1<0”的
A.必要不充分条件
B.充分不必要条件
C.充要条件
D.既不充分也不必要条件
10.在△PAB 中,已知2,1OB BA ==u u u r u u u r ,∠AOB =45°,点P 满足OP OA OB λμ=+u u u r u u u r u u u r (λ,µ∈
R),其中2λ+µ=3满足,则|OP uuu r
|的最小值为
A.
355 B.255 C.63 D.6
2
11.边长为2的等边△ABC 和有一内角为30°的直角△ABC 1所在半平面构成60°的二面角,则下列不可能是线段CC 1的取值的是 A.
30 B.10 C.10 D.10 12.已知不等式x +alnx +1
x e
≥x a 对x ∈(1,+∞)恒成立,则实数a 的最小值为 A.-e B.-
2
e
C.-e
D.-2e 二、填空题:本大题共4小题,每小题5分,共20分。
13.如图所示的程序框图的输出值y ∈(0,1],则输入值x ∈ 。
14.在△ABC 中,2sin cos()6
b A B π
α=-
,b =2,若满足条
件的△ABC 有且仅有一个,则实数a 的取值范围是 。
15.过点P(1,1)作直线l 与双曲线2
2
2
y x λ-=交于A ,B 两点,若点P 恰为线段AB 的中点,则实数λ的取值范围是 。
16.如图,正三角形ABC 边长为2,D 是线段BC 上一点,过C 点作直线AD 的垂线,交线段AD 的延长线于点E ,则|AD|·|DE|的最大值为 。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每道试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)根据某省的高考改革方案,考生应在3门理科学科(物理、化学、生物)和3门文科学科(历史、政治、地理)的6门学科中选择3门学科参加考试。
根据以往统计资料,1位同学选择生物的概率为0.5,选择物理但不选择生物的概率为0.2,考生选择各门学科是相互独立的。
(1)求1位考生至少选择生物、物理两门学科中的1门的概率;
(2)某校高二段400名学生中,选择生物但不选择物理的人数为140,求1位考生同时选择生物、物理两门学科的概率。
18.(12分)设数列{a n }是公差不为零的等差数列,其前n 项和为S n ,a 1=1。
若a 1,a 2,a 5成等比数列。
(1)求a n 及S n ;
(2)设21
11
n n b a
+=-(n ∈N *),求数列{b n }前n 项和T n 。
19.(12分)如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD//BC ,∠DAB =2
π
,AP =AB =BC =
1
2
AD ,E 为AD 的中点,AC 与BE 相交于点O 。
(1)求证:PO ⊥平面ABCD ;
(2)求AB 与平面PBD 所成角θ的正弦值。
20.(12分)已知f(x)=lnx ,g(x)=x 。
(1)若()()()
a
f x
g x g x +
≥在(0,1]恒成立,求实数a 的取值范围; (2)若m ,n>0,m +n =1,求证221()()[()][()]4
f m f n
g m g n -<。
21.(12分)如图,已知圆Q :(x +2)2+(y -2)2=1,抛物线C :y 2=4x 的焦点为F ,过F 的直线l 与抛物线C 交于A ,B 两点,过F 且与l 垂直的直线l '与圆Q 有交点。
(1)求直线l '的斜率的取值范围; (2)求△ABC 面积的取值范围。
(第21题图)
(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分。
作答时请写清题号。
22.[选修4-4:坐标系与参数方程](10分)
在平面直角坐标系xOy 中,曲线C 1的参数方程为12cos 32sin x y α
α
=+⎧⎪⎨
=-+⎪⎩(其中α为参数,α∈R)。
在极坐标系(以坐标原点O 为极点,以x 轴非负半轴为极轴)中,曲线C 2的极坐标方程为
sin 6a πρθ⎛
⎫
-
= ⎪⎝
⎭。
(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;
(2)若曲线C 1上恰有一个点到曲线C 2的距离为1,求曲线C 2的直角坐标方程。
23.[选修4-5:不等式选讲](10分)
(1)解不等式|x +1|-|2x -5|+322->0; (2)求函数32423y x x =-+-的最大值。