Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering R

合集下载

植物DNA甲基化研究进展

植物DNA甲基化研究进展

植物DNA甲基化研究进展作者:陈子涵任建国王俊丽来源:《农学学报》2021年第11期摘要:DNA甲基化是一種重要的表观遗传修饰,能够有效调控基因组稳定性。

为了了解DNA甲基化对植物生长发育的影响,本文归纳了近年来植物DNA甲基化的模式,总结了植物DNA甲基化的生物学功能,概括了DNA甲基化的研究方法,最后总结了植物DNA甲基化研究中存在的问题,并指明了研究方向,为后续植物基因组研究提供理论依据。

关键词:植物;DNA甲基化;表观遗传;修饰;生长发育;逆境胁迫;基因组;稳定性中图分类号:S184文献标志码:A论文编号:cjas2020-0152Research Advances on Plant DNA MethylationChen Zihan, Ren Jianguo, Wang Junli(School of Public Health, the key Laboratory of Enviromental Pollution Monitoring and Disease Control,Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, China)Abstract: DNA methylation is an important epigenetic modification that can effectively regulate genome stability. In order to understand the impact of DNA methylation on plant growth and development, this article summarizes plant DNA methylation patterns, concludes the physiological functions of plant DNA methylation, and reviews the research methods of DNA methylation. At last, this article sums up the problems in the study of plant DNA methylation and points out the research directions in the future, providing a theoretical basis for subsequent plant genome research.Keywords: Plants; DNA methylation; Epigenetic; Modification; Growth and Development; Adversity Stress; genome; stability0引言DNA甲基化(DNA methylation)是目前表观遗传学研究较为清晰的机制之一,广泛存在于生物界中,是真核细胞中最为常见的一种基因组修饰方式,它在调节基因组功能的同时不改变DNA的碱基序列。

RNA中6_甲基腺嘌呤的研究进展

RNA中6_甲基腺嘌呤的研究进展

关键词:
RNA 修饰 ; 6- 甲基腺嘌呤 ; IP-seq
Recent progresses in RNA N6-methyladenosine research
LI Yu-Li1,3, YU Jun1, SONG Shu-Hui2
1. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; 2. Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
生物 mRNA 内部序列中最常见的一种转录后修饰形式, 由包含 3 个独立组分的复合物 mRNA: m6A 甲基转移酶 催化生成。最新研究发现肥胖相关蛋白 FTO 可以脱掉 m6A 上的甲基 , 表明该甲基化过程是可逆的。抑制或敲 除 m6A 甲基转移酶会引起重要的表型变化, 但是由于过去的检测方法受限 , m6A 确切的作用机制目前为止还不 甚清楚。二代测序技术结合免疫沉淀方法为大规模检测 m6A 修饰并研究其作用机制提供了可能。文章主要综 述了 m6A 的发现史、生成机制、组织和基因组分布、检测方法、生物学功能等及其最新研究进展, 并通过比较 3 种 IP-seq 技术和数据分析的异同及优缺点, 对 m6A 这种 RNA 表观修饰研究中尚未解决的问题进行了讨论。

生物英文文献阅读1

生物英文文献阅读1

RDR PROTEINS IN ARABIDOPSIS DEVELOPMENT
RDR6 function in Arabidopsis vegetative(营养)phase change
The function of RDR6 in leaf adaxial-abaxial polarity(极性) The function of RDR6 in lateral root(侧根)production RDR6 and anthocyanin(花青素) production RDRs and plant reproduction Conservation of RDR developmental modules in plants
(A) rdr6-11 mutant leaves are more down wardly curled. (B) rdr6-11 leavesare more elongated, and the first leaf with abaxial trichomes appears earlier. The first three leaves of representative plants are shown. (C)rdr6-11 flowers display stigma exsertion, which reduces selffertility. Scalebar = 1 mm.
The Functions of RNA-Dependent RNA Polymerases in Arabidopsis
The Arabidopsis Book July 31, 2011 -2011 American Society of Plant Biologists

Arabidopsis Interdigitating Cell Growth

Arabidopsis Interdigitating Cell Growth

Cell,Vol.120,687–700,March11,2005,Copyright©2005by Elsevier Inc.DOI10.1016/j.cell.2004.12.026Arabidopsis Interdigitating Cell GrowthRequires Two Antagonistic Pathways withOpposing Action on Cell MorphogenesisYing Fu,1,3Ying Gu,1,3Zhiliang Zheng,1,4the leaf epidermis serve as an exciting model to investi-Geoffrey Wasteneys,2and Zhenbiao Yang1,*gate the mechanisms for cell shape formation in a 1Center for Plant Cell Biology multicellular system(Qiu et al.,2002;Deeks and Hus-Institute for Integrative Genome Biology andsey,2003;Smith,2003;Wasteneys and Galway,2003). Department of Botany and Plant Sciences The development of Arabidopsis leaf pavement cells is University of California,Riversideseparated into three stages(Figure1A)(Fu et al.,2002). Riverside,California92521Small and pentagonal or hexagonal initial cells expand 2Department of Botanypreferentially along the leaf long axis to form slightly University of British Columbia elongated polygons(stage I).The stage I cells initiate Vancouvermultiple outgrowths or localized lateral expansion from Canada their anticlinal walls into adjacent cells,producingstage II cells with multiple shallow lobes alternatingwith indentations or necks.As early lobes expand,reit-erative lobe and neck formation continues,resulting inhighly lobed interlocking cells(stage III).This growth is Summarypresumably regulated by cell-to-cell signaling,allowingthe spatiotemporal coordination of lobe outgrowth with Coordinating growth and communication between ad-inhibition of outgrowth and compensatory deformation jacent cells is a critical yet poorly understood aspectin the corresponding indented region of the adjacent of tissue development and organ morphogenesis.Wecell(s).report a Rho GTPase signaling network underlyingThe cytoskeleton is implicated in the control of pave-the jigsaw puzzle appearance of Arabidopsis leafment cell development(Smith,2003)(Figure1A).Well-pavement cells,in which localized outgrowth in oneordered cortical microtubule(MT)bundles arranged cell is coordinated with localized inhibition of out-transversely in the neck regions are believed to restrict growth of the adjacent cell to form interdigitatingexpansion in the direction of their predominant orienta-lobes and indentations.Locally activated ROP2,ation(Wasteneys and Galway,2003).In contrast,lobe Rho-related GTPase from plants,activates RIC4toinitiation and outgrowth appear to require cortical fine promote the assembly of cortical actin microfilamentsactin microfilaments(MFs)localized to sites lacking required for localized outgrowth.Meanwhile,ROP2well-ordered cortical MTs(Frank and Smith,2002;Fu et inactivates another target RIC1,whose activity pro-al.,2002).motes well-ordered cortical microtubules.RIC1-depen-Organization of both cortical MFs and MTs is con-dent microtubule organization not only locally inhib-trolled by ROP GTPases,plant-specific members of the its outgrowth but in turn suppresses ROP2activationRho GTPase family(Fu et al.,2002;Yang,2002).Ex-in the indentation zones.Thus,outgrowth-promotingpression of a constitutively active ROP2mutant(CA-ROP2and outgrowth-inhibiting RIC1pathways antag-rop2)in Arabidopsis generates even distribution of the onize each other.We propose that the counteractivityfine MFs throughout the cell cortex,delays formation of these two pathways demarcates outgrowing andof well-ordered cortical MTs associated with neck for-indenting cortical domains,coordinating a processmation of stage II cells,and eliminates interdigitation that gives rise to interdigitations between adjacentby increasing expansion in the neck regions(Fu et al., pavement cells.2002).A dominant-negative ROP2mutant(DN-rop2)in-hibits lobe development by preventing fine MF forma-Introductiontion.Rho family GTPases also play a pivotal role in mor-phogenesis in animal cells(Etienne-Manneville and Cell shape formation is important for the differentiation,Hall,2002).Investigating the as yet unknown mecha-behavior,and function of specific cells as well as fornisms of Rho GTPase signaling in leaf pavement cells organ and tissue development and morphogenesis inmay therefore provide a unifying mechanism for cell multicellular organisms.Mechanisms underlying mor-morphogenesis across plant and animal kingdoms. phogenesis have been studied extensively in the uni-In this report,we present evidence that pavement cell cellular yeast systems(Lew,2003).Unlike unicellularmorphogenesis is controlled by the countersignaling of systems,growth and morphogenesis within a devel-two ROP-mediated pathways with opposing effects on oping organ require coordination between adjacentcell expansion.Locally activated ROPs promote lobe cells and are regulated by developmental and intercel-growth by activating RIC4-mediated assembly of fine lular signals.cortical MFs as well as by inactivating RIC1-organized Interlocking jigsaw puzzle-shaped pavement cells incortical MTs.The RIC1-MT pathway promotes neck for-mation and antagonizes the RIC4-actin pathway by re-*Correspondence:zhenbiao.yang@ pressing ROP activation.The countersignaling of these 3These authors contributed equally to this work.two pathways can explain the interdigitating separation 4Present address:Department of Biological Sciences,Lehman Col-of lobing and indenting domains of the cell cortex dur-lege,City University of New York,250Bedford Park BoulevardWest,Bronx,New York10468.ing the formation of interlocking pavement cells.Cell688Figure1.ROP GTPases Are Required for Localized Lateral Cell Expansion to Form Lobes and Modulate Cytoskeletal Organization(A)A schematic illustration of Arabidopsis leaf pavement cell development and associated fine actin MTs(red patches)and MTs(green lines) in the cortex based on a previous description(Fu et al.,2002).ROP-independent actin bundles are not shown.Arrows indicate directions of expansion.(B)Pavement cell shapes in the rop4-1,R2i-34line.The line was generated by transforming a ROP2RNAi construct into the rop4-1knockout mutant(Figure S1).(C)Quantitative analysis of rop4-1,R2i-34pavement cell shape changes.The carton on the left illustrates how the neck width and the lobe length were measured.The average neck widths and lobe lengths were significantly different(p<0.05)between wt and the rop4-1,R2i-34 line.All data are represented as mean±standard deviation.(D)Comparison of fine cortical MFs in stage I(top)and stage II(bottom)cells between wt and the rop4-1,R2i-34line.MFs were visualized using transiently expressed GFP-mTalin(Fu et al.,2002).Strong signals from fine cortical MFs were detected in97%of stage I wt cells(n= 23)but only in52%(n=29)of rop4-1,R2i-34cells.In stage II,88%of wt cells(n=28)but only31%(n=26)of rop4-1,R2i-34cells contained detectable fine cortical MFs.(E)Cortical MTs in late stage II cells from cauline leaves in wt and in the rop4-1,R2i-34line.MTs were visualized using stably expressed GTP-tubulin as previously described(Fu et al.,2002).Control of Interdigitating Cell Growth689Results resembling MTs(Figure2A;Figure S2).By contrast,inolder cells,GFP-RIC1almost exclusively exhibited cor-ROP2and ROP4Control Pavementtical MT-like localization,with strong GFP-RIC1dots Cell Morphogenesis found along the filaments.This is reminiscent of the We first determined that ROP2and ROP4,which sharelocalization of some MT-associated proteins(MAPs) 97%amino acid identity and are both expressed in(Lloyd and Hussey,2001).We confirmed RIC1’s MT as-sociation in pavement cells using both live probes and leaves(Li et al.,1998),are functionally redundant incontrolling pavement cell shape.A rop4knockout mu-immunolabeling strategies.Transiently expressed YFP-tant(rop4-1)had only a weak cell shape phenotype,RIC1colocalized with stably expressed GFP-tubulin, and a ROP2RNAi(R2i)line generated a slightly and MT depolymerization by oryzalin treatments abol-stronger but still moderate defect(see Figure S1in theished the filamentous pattern of YFP-RIC1(Figure2B). Supplemental Data available with this article online).Double labeling cells with an anti-RIC1antibody and Expressing ROP2RNAi(R2i-34)in the rop4-1mutantanti-tubulin confirmed that native RIC1is colocalized dramatically reduced neck expansion and lobe out-with cortical MTs in wt cells and is absent from ric1-1 growth(Figures1B and1C).knockout cells(Figure2C).Cosedimentation experi-In the rop4-1,R2i-34line,the formation of fine corti-ments demonstrated that RIC1partially associates with cal MFs,as visualized by transient expression of GFP-MT polymers in vitro(Figure S2).Taken together,our mTalin(Fu et al.,2002),was impaired.Fine cortical MFs results demonstrate that RIC1is a novel MAP with a were patchily localized to likely outgrowing regions ofdevelopmentally dependent distribution to both the PM the cell cortex in wild-type(wt)pavement cells(Figure and cortical MTs.1D)but were barely detectable in most rop4-1,R2i-34pavement cells,as seen in DN-rop2cells(Fu et al.,RIC1Promotes MT Organization and Inhibits Lateral 2002).Cytoplasmic MF bundles in the rop4-1,R2i-34Expansion in the Neck Regionscells were similar in appearance or more extensive and To investigate whether RIC1regulates cortical MT or-thicker than those in control cells,indicating that the ganization,we transiently coexpressed RIC1and GFP-elimination of fine cortical MFs in the mutant was not tubulin in tobacco BY-2cells.These experiments sug-caused by lower GFP-mTalin expression levels.We gested that RIC1promoted GFP-tubulin incorporation conclude that ROP2and ROP4(ROP2/4)activities into well-ordered cortical MTs(Figure S3).To see if RIC1 specifically promote the formation of fine cortical MFs.promoted MT organization in Arabidopsis pavement To analyze the effect of ROP2/4on cortical MTs,we cells,we generated RIC1-overexpressing lines(Figure crossed the rop4-1,R2i-34line to a GFP-tubulin line(Fu2D)and first tested how changing RIC1’s expression et al.,2002;Ueda et al.,1999).We compared cortical affected cell morphology.Low-level RIC1overexpres-MTs between a control line(homozygous for GFP-sion(RIC1OX-11)had no obvious effect on pavement tubulin)and a line homozygous for GFP-tubulin,rop4-1,cell shape(Figures2E and2G).As with the combined and R2i-34.In stage I cells,the rop4-1,R2i-34line had loss of ROP2and ROP4function(Figure1E),moderate more and thicker MT bundles than controls(data not RIC1overexpression(RIC1OX-5)inhibited lobe forma-shown).In stage II control cells,transversely ordered tion and reduced the width of the neck regions(Figures cortical MTs are only associated with the neck regions2E and2G).Higher levels of RIC1overexpression(RIC1 (Fu et al.,2002).In contrast,abundant and thick OX-3)completely suppressed lobe formation and gen-transverse cortical MTs were found throughout the erated elongated narrow cells with straight outlines whole length of stage II rop4-1,R2i-34cells(Figure1E).(Figure2G).These effects are distinct from those Thus,ROP2/4proteins suppress the formation of well-caused by CA-rop2mutants(Fu et al.,2002),which im-ordered cortical MT arrays in the early stages of pave-pair the formation of well-ordered MTs and generate ment cell morphogenesis.wider than normal pavement cells with straight cell out-lines(Figures2F and2G).Thus,RIC1and ROP2/4have RIC1Is Colocalized with Cortical MTsan opposite effect on the spatial control of cell expan-Two possible mechanisms can explain the effects of sion,even though both affect the interdigitation process. loss of ROP2/4function on both cortical MFs and MTsRIC1overexpression also dramatically altered MT or-described above:(1)ROPs coordinately control two ganization in pavement cells(Figure2H).As early as pathways respectively regulating MFs and MTs;and(2)stage I,cortical MTs in the RIC1OX-3cells were more a ROP pathway directly regulates one of the two cy-consistently transverse compared to those in wt cells toskeletal systems,which subsequently affects theand also appeared brighter,suggesting that RIC1pro-other.To distinguish these possibilities,we sought to motes MT bundling.In stage II RIC1OX-3cells,the cell identify ROP2/4target proteins.We previously iden-cortex was densely packed with parallel cortical MTs tified a class of novel proteins as putative ROP targets aligned perpendicular to the elongation axis.In con-from Arabidopsis,known as RICs(R OP-i nteractivetrast,such highly organized MTs were mainly present C RIB motif-containing proteins(Wu et al.,2001).We in the forming neck regions in wt stage II cells(Fu etal.,2002).Cortical MTs remained transverse and ap-transiently expressed GFP-RICs to survey the subcellu-lar localization of those RICs expressed in leaves and peared to become more thickly bundled in stage III found that GFP-RIC1displayed cortical MT-like local-RIC1OX-3cells,whereas stage III wt cells contain ran-ization.domly oriented cortical MTs(Figure2H).Transient RIC1 In young pavement cells,GFP-RIC1was found at theoverexpression in pavement cells rapidly induced ap-plasma membrane(PM)as well as cortical structures parent MT bundling and formation of well-ordered MTsCell690Figure2.RIC1Associates with and Promotes the Organization of Cortical MTs and Inhibits Lateral Cell ExpansionImages in(A),(B),(C),and(H)were projections from10–20␮m serial confocal sections(0.8–1␮m per section).(A)Transiently expressed GFP-RIC1showed filamentous structures.Arrowhead indicates the RIC1PM localization in a younger pavement cell.(B)Colocalization of YFP-RIC1(pseudocolor red)with cortical MTs(green).A YFP-RIC1construct was bombarded into pavement cells of the GFP-tubulin line.Merged image(lower left)shows an overlapping pattern(yellow)of YFP-RIC1and GFP-tubulin.Treatment with2␮M oryzalin (lower right)disrupted both MTs and YFP-RIC1structures.(C)Immunolocalization of native RIC1in wt and ric1-1knockout mutant.Double staining of RIC1and tubulin is described in text.(D)RT-PCR analysis of RIC1mRNA levels for RIC1-overexpressing lines(RIC1OX-11,RIC1OX-5,and RIC1OX-3)and wt(Col-0).(E)Quantitative analysis of neck widths shows that RIC1OX-5had significantly narrower necks than wt and RIC1OX-11(p<0.05).All data are represented as mean±standard deviation.(F)Quantitative comparison of the average widths of pavement cells between the RIC1OX-3line,a CA-rop2line,and a RIC1OX-3,CA-rop2 double homozygous line.The differences in cell widths among the three lines are significant(p<0.05).All data are represented as mean±standard deviation.(G)Comparison of pavement cell shapes between the RIC1-overexpressing lines,the CA-rop2line,and the RIC1OX-3,CA-rop2line.(H)Increased organization of cortical MTs in RIC1OX-3pavement cells.MTs were visualized with GFP-tubulin as described in(B).Arrows in the lower left panel indicate the well-ordered MTs in RIC1OX-3stage I cells,which were present in wt stage II cells.Control of Interdigitating Cell Growth691before any detectable changes in cell shape(Figure I(Figure4C),and all GFP-RIC1was distributed to MTsby stage II(Figure4E).Furthermore,GFP-RIC1-decor-S3).Thus,through its association with MTs and abilityated MTs were more numerous in the rop4-1,R2i-34line to induce changes in MT organization independent ofthan in wt.GFP-RIC1distribution in DN-rop2cells was cell shape change,RIC1promotes the establishment ofsimilar to that in rop4-1,R2i-34cells(data not shown). well-ordered cortical MTs.Thus,loss of ROP2/4activity increased RIC1’s associa-We further explored RIC1function by examining celltion with MTs.morphology and MT organization in ric1-1and ric1-2In contrast,in stage I–II pavement cells,in which knockout mutants.Neither mutant had detectable RIC1ROP2activity was maintained at a constant level in CA-mRNA due to single T-DNA insertions in the third(ric1-1)rop2transgenic plants(Fu et al.,2002),GFP-RIC1’s and fourth(ric1-2)exons(Figure3E).The two mutantsassociation with MTs varied according to the level of had the same phenotype,and the ric1-1phenotype istransiently expressed GFP-RIC1(Figures4F–4H).When described here.The wt phenotype was restored inexpression levels increased,as indicated by GFP fluo-ric1-1by expressing RIC1cDNA(Figure S4),demon-rescence intensity,proportionately more of GFP-RIC1 strating that the ric1phenotype was due to loss of RIC1became distributed to MTs.To further test whether acti-function.Although the cell shape change in ric1-1wasvated ROP2removes RIC1from cortical MTs,we tran-not large(Figure3A versus Figure3B),neck regionssiently coexpressed a fixed amount of GFP-RIC1with were significantly wider compared to wt cells(Figurevariable amounts of CA-rop2.Increasing amounts of 3F).There was no significant difference in lobe lengthCA-rop2caused more GFP-RIC1to shift from cortical (Figure3G).(Note that the ric4-1mutant and ric4-1/MTs to the PM;GFP-RIC1was exclusively distributed ric1-1double mutant are included in Figure3for com-at the PM in most cells transfected with the highest parison with ric1but will be described later.)Thus,thelevels of CA-rop2tested(Figures4I–4K;Figure S5).In ric1-1phenotype is opposite to the RIC1overexpres-addition,we crossed the CA-rop2line to the RIC1OX-3 sion phenotype and more similar to,though less severeline.CA-rop2expression partially suppressed the RIC1 than,the pared to wt,stage Iinhibition of lateral expansion(Figures2F and2G). ric1-1cells contained fewer and shorter cortical MTsTaken together,these results clearly indicate that acti-and much more diffuse unincorporated GFP-tubulinvated ROP2sequesters RIC1and,by removing it from (Figure3H).In stage II ric1-1cells,cortical MTs werecortical MTs,inhibits the establishment of well-ordered fewer,apparently less bundled,and not as uniformlycortical MTs.oriented as in wt cells.We conclude that RIC1pro-motes well-ordered MT arrays in the neck region,con-Active ROP2Interacts with RIC4at Lobe Tips sequently restricting lateral expansion to generate theAnother ROP-interacting protein,RIC4,acts as a ROP1 narrow neck morphology of pavement cells.target activating the assembly of apical MFs in pollentubes(Fu et al.,2001;Y.Gu et al.,submitted).RIC4is Activated ROP2Suppresses RIC1Functionalso expressed in leaves(Wu et al.,2001),so we investi-The above observations show that ROP2/4and RIC1gated whether RIC4might be a ROP2/4target activa-have opposite actions in both cortical MT organizationting the assembly of fine MFs at cortical patches in and cell morphogenesis.RIC1is known to interact withpavement cells.We first examined RIC4distribution the GTP bound,active form of ROP1in vitro(Wu et al.,using GFP-RIC4,which is functional as wt RIC4in the 2001).Thus,we postulated that activated ROP2/4control of pollen tube growth(Wu et al.,2001;Y.Gu et might bind to and inactivate RIC1.We used fluores-al.,submitted).In contrast to the even cytoplasmic and cence resonance energy transfer(FRET)analysis as an nuclear distribution of GFP alone(Figure5D),GFP-RIC4 initial test of this hypothesis.As shown in Figure4A,was patchily distributed,primarily at the cell cortex,in strong FRET signals were detected in cells coexpress-a pattern suggestive of incipient lobes in stage I cells ing CFP-RIC1with YFP-CA-rop2(active form)but not and to lobe tips in stage II cells(see arrows in Figures with YFP-DN-rop2(inactive form),confirming RIC1’s5A and5B).This localization pattern is dependent on binding to the active but not the inactive form of ROPs.ROP2/ROP4activity,because it was eliminated in the FRET signals in cells coexpressing CFP-RIC1and YFP-rop4-1,R2i-34line(Figures5E and5F)and by transient CA-rop2were primarily detected throughout the PM overexpression of DN-rop2(data not shown).Finally, where CA-rop2localizes(Fu et al.,2002).Furthermore,CA-rop2expression caused GFP-RIC4to distribute CFP-RIC1was depleted from cortical MTs when coex-evenly throughout the whole cell cortex(Figures5C pressed with YFP-CA-rop2,but remained associated and5C#).with cortical MTs when coexpressed with YFP-DN-rop2FRET analysis also demonstrated that the RIC4local-(Figure4A).ization to potential incipient lobes and lobe tips may be These results suggest that PM-localized activated the result of a direct interaction with activated ROP2/4. ROP2/4may reduce RIC1’s association with cortical CFP-RIC4strongly interacted with YFP-CA-rop2in the MTs by sequestering RIC1.To test this possibility,we cell cortex but not with YFP-DN-rop2(Figure5G).When investigated how loss of ROP function and CA-rop2ex-wt ROP2fused to YFP was used in the FRET assay,the pression affected RIC1’s distribution patterns.In wt CFP-RIC4/YFP-ROP2FRET signal was patchily distrib-cells at stage I,GFP-RIC1was distributed between the uted in wt cells to presumed incipient lobes and lobe PM and cortical MTs(Figure4B);at stage II,GFP-RIC1tips.Because RIC4specifically interacts with active but was mostly localized to cortical MTs,with some fluores-not with inactive ROP2,these results strongly suggest cence at PM regions(Figure4D).In rop4-1,R2i-34cells,that ROP2is preferentially activated in the lobe-forming the majority of GFP-RIC1was localized to MTs at stageregions of the cell cortex.Cell692Figure3.Phenotype Analysis of ric1-1Knockout Mutant in Comparison to ric4-1Knockdown Mutant and ric1-1,ric4-1Double Mutant(A–D)Pavement cell shapes of wt(A),ric1-1(B),ric4-1(C),and ric1-1,ric4-1double mutants(D).(E)RT-PCR analysis of RIC1transcript levels in ric1-1and ric1-2knockout mutants.(F and G)Quantitative analysis of neck widths and lobe lengths for different ric mutants.The differences in neck widths(F)between wt and ric1-1,ric4-1,or the ric1-1,ric4-1line were significant(p<0.05),but no significant differences were seen between ric4-1and ric1-1,ric4-1 (p>0.05).The average lobe lengths(G)were significantly different(p<0.05)between wt and ric4-1or the ric1-1,ric4-1line but not between wt and ric1-1or between ric4-1and the ric1-1,ric4-1line.All data are represented as mean±standard deviation.(H)Comparison of cortical MTs,visualized using GFP-tubulin described in Figure1,in pavement cells in ric1-1and wt.Arrowheads in the lower left panel indicate unincorporated GFP-tubulin in ric1-1;arrows in the upper right panel point to well-ordered MTs in wt stage II cells, which were rarely seen in ric1-1.RIC4Promotes the Assembly of Fine Cortical MFs fine MFs in about80%(n=55)of both stage I and and Lobe Developmentstage II cells but did not alter the organization of the To analyze RIC4function,we first examined the effect cytoplasmic MF bundles(Figure5H;Figure S7).In a of RIC4overexpression on MF organization.In the con-RIC4knockdown mutant,ric4-1,which has reduced trol,fine MFs were distributed throughout the cortex of RIC4mRNA levels(Y.Gu et al.,submitted),pavement early stage I cells and at incipient lobes and tips ofcells exhibited both narrower necks and shallower expanding lobes in stage II cells(Figure5H).RIC4over-lobes(Figures3C,3F,and3G),similar to loss-of-func-expression increased accumulation and distribution oftion rop mutants.Furthermore,the accumulation of fineControl of Interdigitating Cell Growth693Figure4.Activated ROP2Binds RIC1and Disrupts its Association with Cortical MTs(A)In vivo interaction between RIC1and a constitutively activated(CA-rop2)and dominant-negative form(DN-rop2)of ROP2was studied using FRET analysis in pavement cells expressing CFP-RIC1and YFP-CA-rop2or YFP-DN-rop2.CFP(pseudocolored green)and YFP(pseu-docolored red)signals were simultaneously collected,and the FRET signal was collected separately.The pseudocolor scale was used to indicate the FRET signal intensity.(B–H)These panels show GFP-RIC1localization in the pavement cells of wt(B and D),the rop4-1,R2i-34double(C and E),and the CA-rop2 line(F–H).GFP-RIC1was transiently expressed.(I–K)GFP-RIC1localization in pavement cells transiently coexpressing a fixed amount of GFP-RIC1(1␮g pBI221:GFP-RIC1)with indicated amounts of CA-rop2(pBI221:CA-rop2).All images shown were projections from10–20␮m serial confocal sections(0.8–1µm per section).cortical MFs was greatly reduced in79%(n=43)of confirming that the ric4-1mutation is responsible for ric4-1cells(Figure5H).RIC4(RNAi)-induced suppres-the mutant phenotype(Figure S6).Finally,we confirmed sion of RIC4expression caused similar phenotypes,genetically that RIC4acts downstream of ROP2.TheCell694Figure5.RIC4Is a ROP2Target Promoting the Assembly of Fine Cortical MFs(A and B)Preferential distribution of GFP-RIC4to incipient lobes and the tips of expanding lobes in wt pavement cells(arrows).(C)CA-rop2expression caused GFP-RIC4to disperse evenly throughout the cell periphery(PM).(C#)shows the midsection of the cell in(C). Asterisks indicate the position of the nucleus.(D)Control cells expressing soluble GFP alone.(E and F)Loss of GFP-RIC4localization from lobe tips in the rop4-1,R2i-34line.Note slight increase in GFP-RIC4in the cytoplasmic strands compared to(A)and(B).(G)FRET analysis of RIC4interaction with CA-rop2,DN-rop2,and wt ROP2.(H)MF localization in different backgrounds.The ric4-1and ric1-1lines are described in Figure3.RIC1OX is the RIC1OX-3line(Figure2). RIC4OX refers to transient overexpression of RIC4in wt background(0.5␮g DNA used).MFs were visualized using GFP-mTalin(see Figure 1).Asterisks indicate the nucleus.ric4-1mutation dramatically reduced the levels of fine(n=44)of the RIC1OX-3stage I and II cells(Figure5H). cortical MFs generated by CA-rop2expression(FigureIf RIC1acts upstream of RIC4to inhibit the assembly of S7).Taken together,our results show that RIC4is in-cortical MFs,we would expect ric4-1to be epistatic deed a ROP2target in leaf cells that promotes the as-to ric1-1.Indeed,cell shape of the ric1-1,ric4-1double sembly of fine cortical MFs required for lobe formation mutant is identical to that of ric4-1(Figures3A–3G). and lateral cell expansion.To investigate whether RIC1suppressed the RIC4-dependent pathway by inactivating ROP2/4signaling,we assessed the effect of RIC1expression on ROP2-RIC1Suppresses the ROP2/RIC4Promotion RIC4interaction using FRET analysis.Since RIC4in-of Fine Cortical MFs teracts with active but not inactive ROP2(Figure5),the Since lobe expansion requires RIC4-dependent forma-strength of ROP2-RIC4interaction reflects ROP2activ-tion of fine cortical MFs,whereas RIC1overexpression ity.In wt stage II pavement cells,the RIC4-ROP2FRET suppresses lobe expansion,we postulated that RIC1signals had a patchy distribution pattern,consistent might inactivate the RIC4-dependent outgrowth-pro-with the apparent sites of lobe development(Figures5 moting pathway.We first examined ROP2/4-and RIC4-and6).In the ric1-1stage II cells,the FRET signals were mediated fine cortical MFs in the ric1-1mutant and the found throughout the cell cortex(Figure6A).In con-RIC1OX-3line.Indeed,the quantity of fine cortical MFstrast,in RIC1OX-3cells,the FRET signals were barely was dramatically increased in83%(n=23)of ric1-1detectable anywhere.Semiquantitative analysis shows stage I and II cells,but cortical MFs were absent in90%that the ric1-1mutation and RIC1overexpressionControl of Interdigitating Cell Growth695Figure6.RIC1and Cortical MTs Suppress ROP2Interaction with RIC4FRET analysis of the interaction between wt ROP2and RIC4in pavement cells was performed in ric1-1,RIC1OX-3,or RIC1OX-3cells treated with oryzalin(2␮M)for0or3hr.(A)Representative images of the FRET signals.(B)Semiquantitative analysis of FRET signals.The average signal per cell was significantly higher(p<0.05)in ric1-1cells(n=15)but dramatically lower in RIC1OX-3cells(n=15)compared to wt cells(n=15).Treatment of RIC1OX-3cells(n=15)with oryzalin for3hr significantly increased the FRET signal(p<0.05).All data are represented as mean±standard deviation.clearly had an opposite effect on the overall amount of MT Polymer Status Regulatesthe ROP2-RIC4interaction(Figure6B).These resultsROP2-RIC4Interactiondemonstrate that RIC1can inhibit ROP2-RIC4interac-RIC1suppression of the ROP2-RIC4interaction could tion in a spatially controlled manner.be regulated through a direct competition between。

黄瓜花叶病毒编码2b的基因抑制拟南芥Argonaute1裂解活性来抵抗植物的防御解析

黄瓜花叶病毒编码2b的基因抑制拟南芥Argonaute1裂解活性来抵抗植物的防御解析

黄瓜花叶病毒编码2b的基因抑制拟南芥Argonaute1裂解活性来抵抗植物的防御原文出处:Zhang X, Yuan YR, Pei Y, et al. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense[J]. Genes Dev. 2006 20: 3255-3268黄瓜花叶病毒编码2b的基因抑制拟南芥Argonaute1裂解活性来抵抗植物的防御RNA沉默是指RNA调控介导的微流程,抑制内源基因的表达,从而抵抗宿主病毒的侵害。

病毒编码抑制器作为一种抗宿主防御机制,可以阻止RNA沉默。

黄瓜花叶病毒(CMV)编码的2B蛋白是最先的抑制器,决定着抑制转录后基因沉默(PTGS),但很少或几乎不影响miRNA的功能。

底层2b中抑制RNA沉默的机制是未知的。

在这里,我们证明CMV2B蛋白也能干扰miRNA的途径,引出发展异常部分表型模型AGO1突变的等位基因。

对比大多数抑制器的特征,2b与Argonaute1(AGO1)能在体外和体内直接相互作用,并且这种相互作用主要发生在AGO1表面的一个含PAZ的模块和PIWI—box的一部分。

与此相一致的作用还有在RISC重建试验中2B极大的抑制了AGO1裂解活性。

此外,AGO1新病毒—干扰RNA(siRNA)来源于体内,这表明AGO1是防御CMV感染的主要因素。

我们的结论是2B的AGO1活性通过抑制miRNA的途径,削弱RNA沉默,抵抗宿主防御。

这些发现从分子角度了解了宿主RNA沉默抗病毒的和病毒的自我反抗机制。

关键词:病毒抑制;黄瓜花叶病毒2b蛋白; RNA沉默; AtAGO1;裂解活性; 反防御RNA沉默是指RNA介导的抑制基因表达的过程。

多种途径影响RNA沉默,但他们都有某些核新的生化特点。

Argonaute蛋白在植物逆境胁迫响应中的功能

Argonaute蛋白在植物逆境胁迫响应中的功能

中国农业科技导报,2021,23(2):17-26Journal of Agricultural Science and TechnologyArgonaute蛋白在植物逆境胁迫响应中的功能蒲伟军,谭冰兰,朱莉”(中国农业科学院生物技术研究所,北京100081)摘要:Argonaute(AGO)蛋白是生物体中普遍存在的一类相对分子质量较大(约105)、成员数量众多的蛋白,该家族在不同物种中高度保守,由可变N端、PAZ、MID和PIWI等结构域组成。

AGOs通过与不同的sRNA形成复合体参与植物生长发育、形态建成、细胞增殖凋亡、病毒防御、逆境响应等多种生物过程。

综述了植物AGO家族的结构特点、分类、作用模式及其生物学功能,尤其在逆境胁迫响应中的功能,分析了存在的问题,并对发展趋势进行展望,旨在为今后深入研究植物AGO功能提供理论参考。

关键词:Argonaute蛋白;sRNA;胁迫响应;生物学功能doi:10.13304/j.nykjdb.2020.0670中图分类号:Q78文献标识码:A文章编号:1008-0864(2021)02-0017-10Progress on the Biological Functions of Argonaute Proteinsin Response to Stress in PlantsPU Weijun,TAN Binglan,ZHU Li*(Biotechnology Research Institute,Chinese Academy of Agricultural Sciences,Beijing100081,China)Abstract:Argonaute(AGO)proteins are large relative molecular weight(about105)and numerous members that are ubiquitous in organisms.They are highly conserved among different species and composed of domains including variable N terminus,PAZ,MID and PIWI,etc..AGO proteins were involved in many important biological processes such as plant growth and development,morphogenesis,cell proliferation and apoptosis,virus defense,and stress response through forming complex with different kinds of sRNA.This review mainly focused on the structural characteristics,classification,action patterns and biological functions of the AGO protein family in plants,especially their functions in response to biotic and abiotic stress,as well as the existing problems and prospects of the research,in order to provide a theoretical reference for future study on AGO function in plants.Key words:argonaute proteins;small RNAs(sRNAs);stress response;biological functionArgonaute(AGO)蛋白是一类RNA结合蛋白,在sRNA介导的基因沉默中起关键作用。

DNA指导下利用嗜盐碱杆菌Argonaute蛋白进行基因组编辑

DNA指导下利用嗜盐碱杆菌Argonaute蛋白进行基因组编辑

DNA指导下利用嗜盐碱杆菌Argonaute 蛋白进行基因组编辑
2016-06-12
以RNA为指导的核ቤተ መጻሕፍቲ ባይዱ内切酶Cas9是现在最 常用的基因组编辑工具,它以RNA-DNA杂交 的原理特异的切割基因组序列。尽管很多修饰 被用于Cas9系统以用来提高该系统的效率和特 异性,但是由于它的向导RNA与靶序列的错配 以及gRNA二级结构的形成限制了该系统的实 用性。
经研究证明: NgAgo只能结合5’端发生磷酸化的 单链gDNA,而不能结合单链gRNA和5’端未发生磷酸 化的单链gDNA。而人细胞中存在的5’端发生磷酸化 的单链DNA是非常少的,而且即便存在内源性的单链 DNA,也不会将NgAgo引导到脱靶位点上。 NgAgo非常忠实于它的初始单链gDNA,与哺乳 动物的Ago蛋白相似,不能够在37°C下进行单链 gDNA交换。这些特性使得NgAgo最小可能的结合到 非目的gDNA。 在哺乳动物细胞中比较NgAgo-gDNA系统和Cas9sgRNA系统的编辑效率,发现NgAgo-gDNA系统让靶 基因失活的效率与Cas9-sgRNA系统一样高。
NgAgo介导的靶DNA切割对gDNA每个位置上 的单核苷酸错配非常敏感,任何3个连续位置发生 错配会导致完全无法进行切割。 相比于NgAgo-gDNA,Cas9-sgRNA切割HBA2基 因和GATA4基因上富含G+C DNA位点的效率要差 很多。因此,NgAgo-gDNA系统比Cas9-sgRNA有潜 力用于更为宽广的基因组位点。
Argonautes是以5‘磷酸化的单链短核苷酸为指导去 切割靶位点的核酸内切酶家族,与Cas9相似, Argonautes在基因表达抑制和抵御外来核酸的过程中发 挥着重要的作用,然而,Argonautes与Cas9在很多方面 是不同的。Cas9只存在于原核生物,Argonautes存在于 几乎所有的生物体。Cas9只能切割PAM上游的序列, 而Argonautes对靶位点没有特异的序列要求。研究人员 认为Argonautes蛋白与gDNA一起可以作为哺乳动物细 胞的一种高效、精确的编辑工具。

植物表观遗传学

植物表观遗传学

CG
CNG CHH
Me Me Me
MET1? DRM2
Me
Me
Me
Specific DNA methylation loci in Arabidopsis
(pathogen related)
Chan et al., Nat Rev Genet. 2005 6:351-60.
Arabidopsis Wassilewskija strain
RNA dependent RNA Pol IV
Dorweiler et al, Plant cell, 2000 Alleman et al., Nature, 2006, 442:295-8.
853-bp repeats
In B-I: more methylation, but more open chromatin structure
Me Me Me
promoter Marker gene
外源沉默基因: 带有标记基因的T-DNA插 入;在基因组的某处产生dsRNA, 沉默基 因组同源序列。 内源沉默基因:PAI, Superman
Four classes of DNA methyltransferase in Arabidopsis thaliana
tryptophan enzyme phosphoribosylanthranilate isomerase (PAI)
PAI1-4: 350bp+ORF: hypermethylation hypomethylation
hypomethylation
S15a promoter+ first exon
3.遗传学方法
Me Me Me
promoter Marker gene

医学细胞生物学英文词汇翻译

医学细胞生物学英文词汇翻译

医学细胞生物学英文词汇翻译Ting Bao was revised on January 6, 20021医学细胞生物学专业英语词汇acrocentric chromosome近端着丝粒染色体actin肌动蛋白actin filament肌动蛋白丝actinomycin D放线菌素Dactivator活化物active transport主动运输adenine腺嘌呤adenosine monophosphate, AMP腺苷一磷酸, 腺苷酸adenyl cyclase, AC腺苷酸环化酶adhesion plaque黏着斑agranular endoplasmic reticulum无颗粒内质网Alzheimer disease阿尔茨海默病amino acid氨基酸aminoacyl site, A site氨基酰位,A位amitosis; direct division无丝分裂;直接分裂amphipathic molecule双型性分子anaphase后期anchoring junction锚定连接annular granule孔环颗粒anticoding strand 反编码链antigen抗原antiparallel逆平行性apoptic body凋亡小体apoptosis凋亡assembly组装aster星体asymmetry不对称性autolysis自溶作用autophagolysosome自噬性溶酶体autophagy自噬作用autoradiography放射自显影技术autosome常染色体B lymphocyte B淋巴细胞bacteria细菌base substitution碱基替换belt desmosome带状桥粒bioblast生命小体biological macromolecule生物大分子biomembrane生物膜biotechnology生物技术bivalent二价体breakage断裂cadherin钙粘连素calmodulin, CaM钙调蛋白cAMP环一磷酸腺苷cAMP-dependent protein kinase环一磷酸腺苷依赖型蛋白激酶capping 戴帽carrier protein载体蛋白cat cry syndrome猫叫综合症cell division cycle gene CDC基因cell细胞cell and molecular biology细胞分子生物学cell biology细胞生物学cell coat; glycocalyx细胞衣;糖萼cell culture细胞培养cell cycle细胞周期cell cycle-regulating protein细胞周期调节蛋白cell cycle time细胞周期时间cell determination细胞决定cell differentiation细胞分化cell division cycle, CDC细胞分裂周期细胞分裂周期基因cell division cycle gene, CDCgenecell engineering细胞工程cell fractionation细胞分级分离cell fusion细胞融合cell junction细胞连接cell line细胞系cell membrane; plasma membrane细胞膜;质膜cell plate细胞板cell proliferation细胞增殖cell recognition细胞识别cell surface antigen细胞表面抗原cell theory细胞学说cell strain细胞株cell aging 细胞衰老cell synchronization细胞同步化cellular oxidation细胞氧化cellular respiration细胞呼吸central granule中央颗粒centromere着丝粒chalone抑素channel protein通道蛋白chemiosmotic hypothesis化学渗透假说chiasmata交叉cholesterol胆固醇chromatid染色单体chromatin染色质chromomere染色粒chromosome染色体chromosome arm染色体臂chromosome banding染色体带chromosome disease染色体病chromosome engineering染色体工程chromosome scaffold染色体支架chromosome syndrome染色体综合症cis Golgi networkcisterna(pl. cisternae)顺面高尔基网状结构扁平囊clathrin笼蛋白clone克隆coated pit有被小窝coated vesicle包被小泡coding strand编码链codon密码子codon degeneracy密码子兼并性coenzyme辅酶collagenfibronectin, FN纤连蛋白communication junction通讯连接complementation互补性condensation stage凝集期confocal laser scanningmicroscope共焦激光扫描显微镜connexin连接子constitutive heterochromatin结构异染色质continuous microtubules极微管converting enzyme 转变酶crista(pl. cristae)嵴cyanine 胞嘧啶cyclin细胞周期素cydoeximide放线菌酮cytidine monophosphate, CMP胞苷一磷酸,胞苷酸cytokinesis细胞质分裂cytology细胞学cytoplasm细胞质cytoplasm engineering细胞质工程cytoplasm substitution细胞质代换cytoplasmic plaque胞质斑cytoskeleton细胞骨架dark field microscope暗视野显微镜dedifferentiation去分化degeneracy兼并deletion缺失density gradient centrifugation密度梯度离心脱氧腺苷酸deoxyadenosine monophosphate,dAMPdeoxycytidine monophosphate, dCMP脱氧胞苷酸脱氧鸟苷酸deoxyguanosine monophosphate,dGMPdeoxyribonucleic acid, DNA脱氧核糖核酸脱氧胸苷酸deoxythymidine monophosphate,dTMPdesmosome桥粒diakinesis 终变期differential centrifugation差速离心differential expression差异性表达differentiation induction分化诱导differentiation inhibition分化抑制diplococcus pneumonia肺炎双球菌diplotene 双线期disassembly去组装DNA probe DNA探针DNA synthesis phase DNA合成期dosage compensation剂量补偿doublet二联管duplication重复effector效应器electric coupling 电偶联electron microscope电子显微镜elementary particle基粒eletronfusion 电融合elongation factor, EF延长因子embryonic induction胚胎诱导作用endocytosis内吞作用endolysosome内体性溶酶体endomembrane system内膜系统endoplasmic reticulum, ER内质网enhancer增强子enzyme酶equatorial plane赤道面eucaryotes真核生物euchromatin常染色质eukaryotic cell真核细胞exocytosis 胞吐作用exon外显子extracellular matrix, ECM细胞外基质extrinsic; peripheral protein外在蛋白;外周蛋白F body荧光小体facilitated diffusion易化扩散facultative heterochromatin兼性异染色质fibrillar component原纤维成分fibronectin, FN纤粘连蛋白fibrous actin, F-actin纤维状肌动蛋白flanking sequence侧翼顺序fluid mosaic model液态镶嵌模型fluorescence microscope荧光显微镜荧光漂白恢复fluorescence recovery afterphotobleaching, FRAPfork-initiation protein叉起始蛋白frameshift mutation移码突变free cell游离细胞free diffusion自由扩散free energy自由能galactocerebroside半乳糖脑苷脂ganglioside神经节苷脂gap junction间隙连接gene基因gene cluster基因簇gene engineering基因工程gene expression基因表达gene family基因家族gene mutation基因突变genetic code遗传密码genetic message 遗传信息genome基因组genome engineering染色体工程genomic DNA library基因组DNA文库glycogen storage disease typeⅡⅡ型糖原蓄积病glycolipid糖脂glycoprotein糖蛋白glycosaminoglycan, GAG氨基聚糖glycosylation糖基化Golgi apparatus高尔基器Golgi body高尔基体Golgi complex高尔基复合体granular component颗粒成分granular drop脱粒granular endoplasmic reticulum颗粒内质网growth factor生长因子GT-AG rule GT-AG法则guanine鸟嘌呤guanosine monophosphate, GMP鸟苷一磷酸,鸟苷酸hemidesmosome半桥粒hereditary factor遗传因子heterochromatin异染色质heterogeneous nuclear RNA, hnRNA不均一核RNA heterokaryon异核体heterophagolysosome异噬性溶酶体heterophagy异噬作用heteropyknosis异固缩highly repetitive sequence高度重复序列histone组蛋白holoenzyme全酶homokaryon同核体housekeeping gene管家基因housekeeping protein管家蛋白human leukocyte antigen, HLA人白细胞抗原hyaluronic acid, HA透明质酸hybrid cell杂交细胞hyperdiploid超二倍体hypodiploid亚二倍体immunofluorescence microscopy免疫荧光显微镜技术immunoglobulin免疫球蛋白in vitro离体的in vivo体内的inactive X hypothesis失活X假说inborn errors of metabolism先天性代谢缺陷病inducer诱导物induction诱导inhibitor of mitotic factor, IMF有丝分裂因子抑制物initiation factor, IF起始因子inner membrane内膜inner nuclear membrane内层核膜insertion sequence, IS插入顺序Integral protein整合蛋白integrin整连蛋白膜间腔;外室inter membrane space; outerchamberintercellular communication细胞间通讯intercristal space; inner chamber嵴间腔;内室intermediate filament中间纤维internal membrane内膜internal reticular apparatus内网器interphase间期interstitial deletion中间缺失interzonal microtubules区间微管intracristal space嵴内腔intra-nucleolar chromatin核仁内染色质intrinsic; integral protein内在蛋白;整合蛋白intron内含子inversion倒位inverted repetitive sequence 倒位重复顺序ionic channel离子通道ionic coupling离子偶联jumping gene跳跃基因karyotype核型kinetochore着丝点kinetochore microtubules动粒微管Klinefelter’s syndrome先天性睾丸发育不全症lagging strand后随链laminin, LN层粘连蛋白lateral diffusion侧向扩散leading strand前导链leptotene 细线期ligand; chemical signal配体;化学信号light microscope光学显微镜linear polymer线性多聚体linker连接线liposome脂质体liquid crystal液晶low density lipoprotein, LDL低密度脂蛋白luxury gene奢侈基因luxury protein奢侈蛋白lymphokine淋巴激活素lymphotoxin淋巴毒素lysosome溶酶体major histocompatibility complex, MHC组织相容性复合体malignancy恶性matrical granule基质颗粒matrix基质matrix fibronectin, mFN基质纤连蛋白maturation-prompting factor, MPF成熟促进因子medial Golgi stack高尔基中间囊膜meiosis减数分裂membrane antigen膜抗原membrane carbohydrate膜碳水化合物membrane flow膜流membrane lipid膜脂membrane protein膜蛋白membrane receptor膜受体membranous structure膜相结构messenger RNA信使核糖核酸mesosome 中间体metabolic coupling代谢偶联metacentric chromosome中央着丝粒染色体metaphase中期micelle微团microfilament微丝microscopy显微镜技术microsome微粒体microtrabecular lattice微梁网格microtubule微管microtubule associated protein,微管结合蛋白MAP微管组织中心microtubule organizing centers,MTOCmicrovillus微绒毛middle repetitive sequence 中度重复序列miniband微带missense mutation错义突变mitochondria线粒体mitosis有丝分裂mitosis phase有丝分裂期mitotic apparatus有丝分裂器mitotic factor, MF有丝分裂因子mobility流动性model for controlling gene基因表达调控模型expressionmolecular biology分子生物学molecular disease分子病monopotent cell单能细胞monosomy单体性multiple coiling model多级螺旋模型multipotent cell多能细胞myasthenia gravis重症肌无力症mycoplasma支原体myofibrils肌原纤维necrosis坏死neuropeptide 神经肽non-continuation不连续性non-histone非组蛋白non-membranous structure非膜相结构nonsense mutation无义突变nuclear envelope核被膜nuclear lamina核纤层nuclear matrix核基质nuclear pore核孔nuclear pore complex核孔复合体nuclear sap核液nuclear sex核性别nuclear skeleton核骨架nucleic acid 核酸nucleic acid hybridization核酸分子杂交nucleo-cytoplasmic ratio核质比nucleoid 类核体nucleoids拟核nucleolar associated chromatin核仁相随染色质nucleolar organizing region核仁组织区nucleolus核仁nucleosome核小体nucleotide核苷酸nucleosome core核小体核心nucleus细胞核nucleus transplantation核移植法nucleus-cytoplasm hybrid核质杂种Okazaki fragment岗崎片段oligomer fibronectin,oFN寡聚纤连蛋白oncogene癌基因operator gene 操纵基因operon操纵子operon theory操纵子学说organelle细胞器origin起点outer membrane外膜outer nuclear membrane外层核膜overlapping gene重叠基因oxidative phosphorylation氧化磷酸化pachytene 粗线期pairing stage配对期partial monosome部分单体partial trisomy部分三体passive transport 被动运输patching成斑现象peptide bond肽键peptidyl site, P site 肽基位;P位perinuclear space核间隙perinucleolar chromatin 核仁周围染色质peripheral granule周边颗粒peripheral protein外周蛋白permeability通透性peroxisome; microbody过氧化物酶体;微体phagocytosis吞噬作用phagolysosome吞噬性溶酶体phagosome自噬体phase contrast microscope相差显微镜phenylalanine hydroxylase, PAH苯丙氨酸羟化酶phenylketonuria, PKU苯丙酮尿症phosphatidylinositol, PL磷脂酰肌醇phosphodiester bond磷酸二酯键phosphodiesterase, PDE磷酸二酯酶phosphoglyceride磷酸甘油酯phospholipase C,PLC磷脂酶C phospholipid磷脂pinocytosis胞饮作用pinocytotic vesicle吞饮泡plasma cell浆细胞plasma fibronectin, pFN血浆纤连蛋白plasmid质粒point mutation点突变polar microtubule极间微管polarizing microscope偏光显微镜polyadenylation多聚腺苷酸反应polyploid多倍体polyribosome多聚核糖体premature condensed chromosome,早熟染色体PCCpremeiosis interphase减数分裂前间期primary constriction主缢痕primary culture原代培养primary culture cell原代细胞programmed cell death 细胞程序性死亡prokaryotes原核生物prokaryotic cell原核细胞promotor启动子promotor gene 启动基因prophase前期protein蛋白质protein kinase C, PKC蛋白激酶C proteoglycan, PG蛋白聚糖protofilament原纤维protooncogene原癌基因protoplasm原生质purine嘌呤碱pyrimidine嘧啶碱receptor mediated endocytosis受体介导的内吞作用reciprocal translocation相互易位recombinant DNA technology重组DNA技术recombination nodules重组小节recombination stage重组期recondensation stage再凝集期redifferentiation再分化regulator gene调节基因release factor, RF释放因子replication复制replication eyes复制眼replication fork复制叉replicon复制子repressor阻碍物resolving power分辨力residual body残体respiratory chain呼吸链restriction endonuclease限制性内切核酸酶restriction point 限制点reverse transcription逆转录rho factor, ρρ因子ribonucleic acid, RNA核糖核酸ribophorin核糖体结合蛋白ribosomal RNA核糖体核糖核酸ribosome核糖核蛋白体RNA polymerase RNA聚合酶rough endoplasmic reticulum, rER sac 粗面内质网扁平囊same sense mutation同义突变sarcoplasmic reticulum肌质网satellite随体scanning electron microscope扫描电子显微镜scanning tunneling microscope 扫描隧道电子显微镜secondary constriction 次缢痕secondary culture传代培养semiautonomous organelle半自主性的细胞器semiconservative replication半保留复制semidiscontinuous replication半不连续复制sensor感受器sequential expression顺序表达sex chromosome 性染色体signal codon信号密码子signal hypothesis信号肽假说signal molecule信号分子signal peptide信号肽signal recognition particle, SPR信号识别颗粒simple diffusion简单扩散single sequence单一序列single-stranded DNA binding单链DNA结合蛋白proteinsinglet单管small nuclear RNA, snRNA小分子细胞核RNA smooth endoplasmic reticulum, sER滑面内质网solenoid螺线管sparsomycin稀疏酶素sphingomyelin神经鞘磷脂spindle纺锤体splicing 剪接split gene断裂基因start codon起始密码子stem cell干细胞stress fiber张力基因structural gene结构基因submetacentric chromosome亚中着丝粒染色体supersolenoid超螺线管suppressor tRNA校正tRNA synapsis联会synaptonemal complex联会复合体synkaryon合核体synonymous codon同义密码子synonymous mutation同义突变T lymphocyte T淋巴细胞tailing加尾telomere端粒telophase末期terminal deletion末端缺失terminalization端化terminator终止子tetrad四分体tetraploid四倍体thymine胸腺嘧啶three dimensional structure,3D三维结构tight junction紧密连接tissue cell组织细胞tissue engineering组织工程totipotency全能性trans Golgi network反面高尔基网状结构transcribed spacer转录间隔区transcription转录transdifferentiation转分化transfer RNA转运核糖核酸transformation转化transition转换translation翻译translocation易位transport protein运输蛋白transposition转座transversion颠换transmission electron microscope透视电子显微镜tricarboxylic acid cycle三羧酸循环trigger protein触发蛋白triplet三联管triploid三倍体triskelion三臂蛋白trisomy三体tubulin微管蛋白tumor necrosis factor肿瘤坏死因子Turner’s syndrome先天性卵巢发育不全症tyrosinase, TN酪氨酸酶ultravoltage electron microscope超高压电子显微镜unit membrane单位膜untranscribed spacer非转录间隔区unwinding protein解链蛋白uracil尿嘧啶uridine monophosphate, UMP vacuole 尿苷一磷酸;尿苷酸大囊泡vector vesicle 载体小囊泡vinculin粘着斑连接蛋白wobble hypothesis摇摆学说X chromatin X染色质Y chromatin Y染色质zygotene 偶线期麻醉学Public Health公共健康Cancer/Oncology癌症/肿瘤Pulmonary Disease肺脏疾病Cardiac Electrophysiology心脏电生理Radiation辐射病学Cardiology - Interventional 心脏病-介入Radiology放射病学Cardiology - Noninvasive心脏病-无创介入Reproductive Endocrinology 生殖内分泌病学Cardiology and Circulation 心脏与循环系统疾病Respiratory呼吸科Clinical Genetics临床遗传学Rheumatology风湿病学Clinical Immunology临床免疫学Stomatology口腔医学clinical laboratory检验科Sexual Dysfunction性功能障碍医学Clinical Pharmacology 临床药理学Spinal Cord Injury脊髓损伤病学Clinical Psychology临床心理学Surgery - General普通外科Critical Care Medicine 危重病医学Toxicology毒理学Dentistry牙科Urology泌尿科Dermatology皮肤科Veterinary Science兽医学Dermatopathology皮肤病理学Virology病毒学Diabetes糖尿病Occupational Medicine 职业医学Emergency Medicine急诊医学Oncology - Medical肿瘤医学Endocrinology内分泌医学Oncology - Radiation 放射肿瘤学Epidemiology流行病学Oncology - Surgical 肿瘤外科手术学Family Practice家庭实践医学Ophthalmology眼科Gastroenterology胃肠病学Orthopedics骨科学Geriatrics老年病学Other Clinical Medicine 其他临床医学Gynecology妇产科学Otorhinolaryngology耳鼻咽喉科Hematology血液学Pain Medicine疼痛医学Hematology - Oncology 血液肿瘤学Palliative Medicine姑息医学Hepatology肝脏病学Pathology病理学Hypertension高血压Pediatrics小儿科Infectious Diseases传染病学Physical Medicine & Rehab 理疗与康复Internal Medicine内科学Physiology生理学Maternal & Fetal Medicine 孕产妇和胎儿医学plastic surgery整形外科Microbiology微生物学Preventive Medicine预防医学Nephrology肾脏病学Psychiatry精神病学Neurology神经病学Psychiatry - Addiction 精神病学-成瘾学Neurology - Child儿童神经病学Psychiatry - Child精神病学-儿童Nuclear Medicine核医学Psychiatry - General 精神病学-一般Nursing护理学Psychiatry - Geriatric精神病学-老年Nutrition营养学Pharmacology药理学Obstetrics & Gynecology 妇产科学Plant Science植物科学Occupational Medicine职业医学Zoology动物学麻醉学Public Health公共健康Cancer/Oncology癌症/肿瘤Pulmonary Disease肺脏疾病Cardiac Electrophysiology 心脏电生理Radiation辐射病学Cardiology - Interventional 心脏病-介入Radiology放射病学Cardiology - Noninvasive心脏病-无创介入Reproductive Endocrinology 生殖内分泌病学Cardiology and Circulation 心脏与循环系统疾病Respiratory呼吸科Clinical Genetics临床遗传学Rheumatology风湿病学Clinical Immunology临床免疫学Stomatology口腔医学clinical laboratory检验科Sexual Dysfunction性功能障碍医学Clinical Pharmacology 临床药理学Spinal Cord Injury脊髓损伤病学Clinical Psychology临床心理学Surgery - General普通外科Critical Care Medicine 危重病医学Toxicology毒理学Dentistry牙科Urology泌尿科Dermatology皮肤科Veterinary Science兽医学Dermatopathology皮肤病理学Virology病毒学Diabetes糖尿病Occupational Medicine 职业医学Emergency Medicine急诊医学Oncology - Medical肿瘤医学Endocrinology内分泌医学Oncology - Radiation 放射肿瘤学Epidemiology流行病学Oncology - Surgical 肿瘤外科手术学Family Practice家庭实践医学Ophthalmology眼科Gastroenterology胃肠病学Orthopedics骨科学Geriatrics老年病学Other Clinical Medicine 其他临床医学Gynecology妇产科学Otorhinolaryngology耳鼻咽喉科Hematology血液学Pain Medicine疼痛医学Hematology - Oncology 血液肿瘤学Palliative Medicine姑息医学Hepatology肝脏病学Pathology病理学Hypertension高血压Pediatrics小儿科Infectious Diseases传染病学Physical Medicine & Rehab 理疗与康复Internal Medicine内科学Physiology生理学Maternal & Fetal Medicine 孕产妇和胎儿医学plastic surgery整形外科Microbiology微生物学Preventive Medicine预防医学Nephrology肾脏病学Psychiatry精神病学Neurology神经病学Psychiatry - Addiction 精神病学-成瘾学Neurology - Child儿童神经病学Psychiatry - Child精神病学-儿童Nuclear Medicine核医学Psychiatry - General 精神病学-一般Nursing护理学Psychiatry - Geriatric精神病学-老年Nutrition营养学Pharmacology药理学Obstetrics & Gynecology 妇产科学Plant Science植物科学Occupational Medicine 职业医学Zoology动物学 s。

argonaute dedx催化四联体基序 -回复

argonaute dedx催化四联体基序 -回复

argonaute dedx催化四联体基序-回复什么是Argonaute Dedx 催化四联体基序?Argonaute Dedx 催化四联体基序是一种催化四联体结构,其中Argonaute 是一类蛋白质家族,参与调控RNA 目标的剪切、修饰及调控。

Dedx 则是在Argonaute 蛋白质中一个关键的结构域,其具有重要的催化活性。

本文将逐步回答关于Argonaute Dedx 催化四联体基序的相关问题。

第一步:什么是Argonaute 蛋白质家族?Argonaute 是一类保守的蛋白质家族,存在于多种生物中,包括植物、动物和真核生物等。

Argonaute 蛋白质在调控RNA 的剪切、修饰及调控过程中发挥着重要的作用。

它主要通过与小分子RNA(small RNA)结合,在转录后水平调控基因表达。

Argonaute 蛋白质家族包括Argonaute 1-4 和Piwi 1-4 等多种成员,在不同类型的细胞和组织中具有不同的表达模式和功能。

第二步:什么是Dedx 结构域?Dedx 结构域是Argonaute 蛋白质中的一个关键结构域,其名称来源于其中一个高度保守的蛋白质残基序列D-E-D-X(D:天冬氨酸,E:谷氨酸,X:任意氨基酸)。

这个结构域在Argonaute 蛋白质中常常位于催化中心区域,参与催化反应的进行。

Dedx 结构域在小RNA 的合成和修饰过程中起着重要的作用,它能催化RNA 降解以及RNA 的修改和修饰等重要生物学过程。

第三步:Argonaute Dedx 催化四联体基序的组成及作用机制是什么?Argonaute Dedx 催化四联体基序结构是Argonaute 蛋白质中具有催化活性的四联体结构。

它主要由Argonaute 蛋白质的Dedx 结构域和与之相互作用的小RNA(如小干扰RNA,siRNA)共同组成。

这个四联体结构通过小RNA 和Argonaute 蛋白质之间的相互作用,实现了将小RNA 导向到特定的RNA 分子靶标上,进而调控目标RNA 的剪切和修饰等生物过程。

植物降解组测序-华联生物科技

植物降解组测序-华联生物科技

利用成熟的miRNA 微陣列晶片或是real-time qPCR 技術可以高效快速地篩選出差異表達的miRNA,而進一步找出差異miRNA 作用的基因成為研究其重要生物學功能的關鍵!植物miRNA 通常與mRNA 進行完全或幾近完全的配對引起標靶基因(target gene) 的剪切從而調控基因的表達,因此發展出一種稱之為降解組測序(Degradome Sequencing) 的方法,可真正從實驗中找到miRNA 的作用基因,減低由生物資訊預測產生之誤差。

藉由上游的miRNA 晶片/miRNA 下一代測序(Next generation sequenng, NGS) 資料結合降解組測序與下游的全基因晶片之高通量技術資料,可將植物從miRNA 表現量,miRNA 調控基因到後序相關基因調控做一完整且串連的研究。

miRNA 的重要功能近幾年,miRNA 從原本不被重視的配角,成為了研究人員競相研究的主角。

這種非編碼的單股miRNA 分子廣泛存在於植物、線蟲及動物的細胞中,控制著不僅包括細胞增殖、細胞凋亡、器官發生、個體發育、造血以及腫瘤發生等等調控路徑,還可能同時具有腫瘤抑制因子和原發癌基因的功能,因此在癌症的診斷和治療中亦發揮重要的作用。

動物與植物 miRNA 的分別功能在動物中,大多數miRNA 的表現量在不同的組織、不同的發育階段有顯著差異,具有嚴謹的空間分佈和時間順序。

儘管對多數miRNAs 的功能還不甚瞭解,但通過對果蠅、線蟲等生物體內miRNA 的研究,已經認識到這類小RNA 分子在生命過程中扮演著重要的角色,甚至可能與腫瘤等疾病的形成相關。

不過植物miRNA的功能與動物不太一樣的是,miRNA 正常表達為植物正常生長發育所必需的(圖一)。

圖一、miRNA 的表現與植物生長有密切關係,本圖為阿拉伯芥(Arabidopsis thaliana)。

當miRNA 的表現受到干擾無法正常作用,植物的發育即受到影響而較矮小。

siRNA介导的染色质基因沉默

siRNA介导的染色质基因沉默

siRNA介导的染色质基因沉默摘要探讨了siRNA在染色质调控中的作用,指出siRNA可使靶DNA发生甲基化并参与异染色质的形成以抑制基因表达。

关键词异染色质;siRNA;RNAiTheGeneSilenceingonsiRNAMediatedby chromationREN LiZHANG Mei-pingSUN Chun-yuJIANG Shi-cuiWANG Yi*(Jilin Agriculture University,ChangchunJilin 130118)AbstractThe effect of siRNA on chromatin regulation was studied. It was pointed out that RNA interfering could make targeted DNA methylation and participates formation of heterochromatin to inhibit gene expression.Key wordsheterochromatin;siRNA;RNA interferenceRNA干扰(RNA interference,RNAi)是近期发现的一种新的基因调控机制,研究发现同源dsRNA引发的基因沉默在生物体中是一种普遍现象[1]。

随着研究的深入,染色质水平的调控已成为研究热点,生物的染色质可以分为转录活性区的常染色质以及低转录水平的异染色质。

真核异染色质通常包括大量重复序列和转座子等,外源基因在异染色质区域的插入会导致此基因的沉默而不会被转录。

染色质水平的基因沉默主要依赖组蛋白H3的去乙酰化以及其第9位赖氨酸的甲基化,使得甲基化的第9位赖氨酸能够结合异染色质蛋白,从而终止转录。

RNAi中的重要因子siRNA不仅可在mRNA水平上抑制靶基因表达,还可在染色质水平上沉默基因[2],而后者近来更为人们所关注。

实验Arabidopsis叶片总RNA的提取及浓度测定(1)

实验Arabidopsis叶片总RNA的提取及浓度测定(1)

a
12
从植物组织中提取Total RNA
使用本试剂盒从马铃薯块根、香菇子实体、烟草叶片、水稻叶片、芒 果果实、花生果实等组织中提取了Total RNA,电泳结果见图2。
M1 2 3 4 56 7 8
RNA extraction from Arabidopsis leaves
a
13
●Troubleshooting
2. 纯度俱佳。提取的Total RNA纯度高,基本不含蛋白质及 基因组DNA,可以直接用于Northern杂交、斑点杂交、 mRNA纯化、体外翻译、RNA分解酶实验操作快速方便,整个操作在一小时内便可完 成。
4. 颜色鲜明。加入氯仿离心后,会形成无色的上清层和鲜红色 的下层(有机层)。
a
3
●RA分解酶和防止所用器具 及试剂中的RNA分解酶的污染。因此,在实验中必须采取以下 措施:戴一次性干净手套;使用RNA操作专用实验台;在操作
过程中避免讲话等等。通过以上办法可以防止实验者的汗液、 唾液中的RNA分解酶的污染。 【使用器具】
预冷的研钵中,用研杵研磨组织,其间不断加入液氮,直
至研磨成粉末状(无明显的可见颗粒,如果没有研磨彻底 会影响RNA的收率和质量)。 ② 对于普通的RNA提取样品,可以向研钵中加入适量的 RNAiso Plus,将研磨成粉末状的样品完全覆盖,然后室温
静置,直至样品完全融化,再用研杵继续研磨至裂解液呈透 明状。
a
9
3. Total RNA的提取。 ① 向上述步骤2的匀浆裂解液中加入氯仿(RNAiso Plus的 1/5体积量),盖紧离心管盖,用手剧烈振荡15秒(氯仿沸
点低、易挥发,振荡时应小心离心管盖突然弹开)。待溶 液充分乳化(无分相现象)后,再室温静置5分钟。 ② 12,000 g 4℃离心15分钟。 ③ 从离心机中小心取出离心管,此时匀浆液分为三层,即:

北葶苈子GGPS基因的克隆、序列分析与原核表达

北葶苈子GGPS基因的克隆、序列分析与原核表达

北葶苈子GGPS基因的克隆、序列分析与原核表达马利刚;赵乐;李英超;冯卫生;匡海学;郑晓珂【摘要】This study was aimed to clone the GGPS (geranylgeranyl pyrophosphate synthase) gene from Lepidium apetalum, to analyze its sequence, and to express the protein in E.coli expression system. Specific PCR cloning primers were designed for GGPS gene from Lepidium apetalum according to the full-length sequence from a previous transcriptome sequencing project. PCR amplification was performed with this primer pair on a leaf cDNA template. TA cloning, sequencing and sequence analysis were performed. GGPS gene from Lepidium apetalum was expressed in the E.coli expression system. The results showed that the full-length GGPS cDNA from Lepidium apetalum was 1 146 bp coding a protein of 381 amino acids. The LaGGPS protein had an isoprenoid synthase domain. According to a phylogenetic tree constructed with multiple alignment of GGPS protein sequences from various plant species, GGPS protein from Lepidium apetalum was the closest to Arabidopsis thaliana and Sinapis alba. The prokaryotic expression vector pET-32a-LaGGPS was also constructed successfully. The protein was expressed in E.coli BL21 strain. It was concluded that the cloning and prokaryotic expression of LaGGPS gene provided a foundation for a follow-up research of its function with protein purification and activity analysis.%目的:获得北葶苈子(Lepidium apetalum)中牻牛儿基牻牛儿基焦磷酸合成酶(geranylgeranyl pyrophosphate synthase,GGPS)的编码基因,进行生物信息学分析,在大肠杆菌中表达该蛋白.方法:根据北葶苈子转录组测序结果中的GGPS基因序列,设计特异性引物,通过PCR扩增得到北葶苈子GGPS的cDNA序列,进行TA克隆、测序及序列分析,构建原核表达载体并于大肠杆菌中表达北葶苈子GGPS蛋白.结果:得到北葶苈子GGPS cDNA全长1 146 bp,编码381个氨基酸;序列分析表明北葶苈子GGPS 基因编码的氨基酸序列包含类异戊二烯合成酶结构域,氨基酸序列进化关系表明北葶苈子GGPS与拟南芥(Arabidopsis thaliana)和白芥(Sinapis alba)亲缘关系最近;成功构建了pET-32a-LaGGPS原核表达载体,并在大肠杆菌BL21菌株中成功诱导表达.结论:首次克隆得到北葶苈子GGPS基因,并在大肠杆菌中成功表达了北葶苈子GGPS蛋白,为纯化该蛋白并研究其结构和功能奠定了基础.【期刊名称】《世界科学技术-中医药现代化》【年(卷),期】2015(017)003【总页数】7页(P485-491)【关键词】北葶苈子GGPS;基因克隆;序列分析;原核表达【作者】马利刚;赵乐;李英超;冯卫生;匡海学;郑晓珂【作者单位】河南中医学院药学院郑州 450046;呼吸疾病诊疗与新药研发河南省协同创新中心郑州450046;河南中医学院药学院郑州 450046;呼吸疾病诊疗与新药研发河南省协同创新中心郑州450046;河南中医学院药学院郑州 450046;河南中医学院药学院郑州 450046;呼吸疾病诊疗与新药研发河南省协同创新中心郑州450046;黑龙江中医药大学药学院哈尔滨 150040;河南中医学院药学院郑州450046;呼吸疾病诊疗与新药研发河南省协同创新中心郑州450046【正文语种】中文【中图分类】R282北葶苈子是十字花科独行菜属植物独行菜(Lepidium apetalum)的干燥成熟种子,为我国传统常用中药,始载于《神农本草经》,是中医临床上常用的泻肺平喘、利水消肿药[1]。

Argonaute蛋白结构与功能

Argonaute蛋白结构与功能

RNA干扰和所有由小RNA分子介导的基因表达沉默机制都有一个一路的特点,那确实是会有一个负责沉默作用的小RNA分子(在本文中咱们称那个分子为向导链)与Argonaute家族蛋白发生彼此作用。

这种RNA-Argonaute蛋白复合体就组成了RISC复合体里最大体的,也是最为核心的效应元件。

在RISC复合体中,小RNA分子起到如此的作用:通过碱基互补配对原那么,以序列特异性的方式引导Argonaute蛋白与靶标分子结合。

mRNA的这些靶标分子被Argonaute蛋白识别以后会被切割或抑制翻译,最终被细胞降解。

Argonaute蛋白在进化进程中演变出了各类亚科蛋白。

这些亚科蛋白能够识别各类不同类型的小RNA分子,从而在各类小RNA沉默途径中发挥作用。

siRNA和miRNA都能与Argonaute亚科蛋白AGO蛋白结合,可是piRNA那么与Argonaute亚科蛋白PIWI蛋白结合。

在经典的由siRNA分子介导的RNAi途径中,Argonaute蛋白能够用内切核酸酶活性来沉默mRNA靶分子,这种进程被称作切割。

在生殖细胞中,面对各类外来的遗传物质,Argonaute亚科蛋白PIWI蛋白在piRNA介导的RNA沉默途径中,利用的也是切割机制。

在进行切割反映时,目标RNA分子要紧在磷酸基团处被切割,该处主若是对应向导链5’端开始第10和第11位碱基处磷酸基团处的位点。

只有向导链和靶标链在切割位点处互补情形超级好,切割反映才能发挥作用。

Argonaute蛋白也能够不依托切割反映来达到沉默RNA的目的。

在动物细胞的miRNA沉默途径中,Argonaute蛋白能够通过抑制目的mRNA翻译的方法,和诱导目的mRNA发生脱腺苷化作用(deadenylation)后降解的方式来达到基因沉默的作用。

只是,有关miRNA介导基因沉默的精细机制咱们此刻还不是超级清楚。

作为小RNA介导基因沉默途径里的效应分子,Argonaute蛋白必需要能够在与siRNA 双链或miRNA-miRNA*双链分子结合时准确识别出小RNA向导链并与之结合,剔除掉没有功能的侍从链和miRNA*链,然后依照向导链的指引觉察目的RNA(背景知识框1)。

植物 miR164 家族研究进展

植物 miR164 家族研究进展

85
Hale Waihona Puke 为 NAM(No Apical Meristem, 无顶端分生组织),次年 Aida 等[17]在拟南芥中又发现另外 3 个成员,命名为 CUC2(Cup-shaped cotyledon, 杯状子叶)、ATAF1 和 ATAF2,随后在多 种植物中发现大量的结构类似的转录调控因子。 Aida 等[17]将这类转录因子归集为一个家 族,取最先发现的三个成员的首字母组合为家族名称 NAC (矮牵牛 NAM 和拟南芥 ATAF1&2、CUC2)。
50
植物 miRNA 具有以下典型的生物学特征:1)一般来源于基因间隔区;2)作用位点通 常位于靶 mRNA 序列的侧翼区域;3)成熟 miRNA 的长度为 20~24 nt,其 5'端为磷酸基团, 3'端为羟基;4)成熟序列在不同物种间具有高度的进化保守性;5)表达具有严格的时序和 组织特异性,且受环境胁迫影响[1,4]。
90
NAC 家族的共同特征是 N 端为 150 个氨基酸序列高度保守的结构域,能特异性地结合 目标 DNA 和其它蛋白。该结构域可分为 5 个亚结构域(A、B、C、D 和 E),其中 A、C 和 D 相对保守,另 2 个亚结构域在不同成员中存在一定的差异。NAC 基因的 C 端为富含丝 氨酸、苏氨酸、脯氨酸和谷氨酸等氨基酸残基的转录激活区,具有丰富的序列多样性[18]。 Rushton 等[19]通过对烟草、拟南芥、水稻、白杨树、茄科植物中 450 个 NAC 基因的进化关
2 miR164 家族成员序列特征
55 Reinhart 等[5]通过 Northern 检测和克隆测序,首先在拟南芥(Arabidopsis thaliana)中 发现了 2 个 miRNA,即 ath-miR164a 和 ath-miR164b,并在水稻(Oryza sativa)基因组数据 库中检测到 2 个同源的 miRNA 序列(osa-miR164a 和 osa-miR164b)。此后,人们通过克隆 测序[6,7]、 Northern 检测[8]、 深度测序[9,10]、 同源比对[11]、 高通量测序[12,13]等技术方法, 陆续在多种植物中发现了众多序列相同或相近的成熟 miRNA,它们构成 miR164 家族。在 60 英 国 曼 彻 斯 特 大 学 生 命 科 学 院 2012 年 8 月 发 布 的 miRBase 19.0 版 数 据 库 中 ()进行检索,可发现 miR164 家族共 91 个 miRNA 成员,它们来自 拟南芥、水稻、玉米(Zea mays)、高粱(Sorghum bicolor)、烟草(Nicotiana tabacum)、 胡杨(Populus trichocarpa)等 26 个物种。这些 miRNA 由不同的物种或同一物种不同的基 因位点产生,其前体序列各不相同,但成熟序列完全相同或非常相近。目前尚未在动物中发 65 现 miR164 家族成员,似可认为这是植物特有的 miRNA 类群。 在已报道的 91 个成员中,有 58 个成员(包括 ath-miR164a 和 ath-miR164b 在内)的成 熟序列完全相同,均为 5'-uggagaagcagggcacgugca-3'(21 nt),7 个成员(osa-miR164d、 sbi-miR164b、zma-miR164f、bdi-miR164、cme-miR164a、cme-miR164b 和 nta-miR164c)的 3'末端为 u, 5 个成员 (ath-miR164c、 aly-miR164c、 bna-miR164b、 bna-miR164c 和 bna-miR164d) 70 的 3'末端为 g, 3 个成员(gma-miR164b、 gma-miR164c 和 gma-miR164d)的 3'末端缺失 1 个 a, 长为 20 nt;2 个成员(osa-miR164c 和 cca-miR164)的第 14 位核苷酸为 u;与 ath-miR164a 相 比,2 个成员存在 1 个核苷酸差异,12 个成员存在 2 个核苷酸差异,4 个成员存在 3 个核苷 酸差异,1 个成员存在 5 个核苷酸差异。这些差异核苷酸均位于第 2~8 位种子序列之后。在 一些植物中,某些 miR164 前体的另一条臂也被加工产生成熟 miRNA,这种情况下,分别 75 用-5p 和-3p 标示 miRNA 成熟序列是来源于前体的 5'端还是 3'端,如 zma-miR164a-5p 和 zma-miR164a-3p、zma-miR164b-5p 和 zma-miR164b-3p 等。由 3'端生成的 miRNA 序列与一 般的 miR164 完全不同,它们不属于 miR164 家族(以前人们将这类 miRNA 用星号标识, 如 zma-miR164a*、zma-miR164b*等)。

拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导

拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导

作物学报 ACTA AGRONOMICA SINICA 2011, 37(4): 612-619/zwxb/ ISSN 0496-3490; CODEN TSHPA9 E-mail: xbzw@ 本研究由国家自然科学基金项目(30570990), 国家转基因生物新品种培育重大专项(2008ZX08004), 黑龙江省重大科技攻关项目(GA06B103)和东北农业大学创新团队项目(CXT004)资助。

* 通讯作者(Corresponding author):朱延明, E-mail: ymzhu2001@Received(收稿日期): 2010-06-25; Accepted(接受日期): 2011-01-06. DOI: 10.3724/SP.J.1006.2011.00612拟南芥bZIP1转录因子通过与ABRE 元件结合调节ABA 信号传导 孙晓丽 李 勇 才 华 柏 锡 纪 巍 季佐军 朱延明*东北农业大学生命科学学院植物生物工程研究室, 黑龙江哈尔滨150030摘 要:ABA 作为一种重要的植物激素和生长调节剂, 介导了高等植物在营养生长阶段对各种外界环境的响应和适应。

bZIP 类转录因子可以通过ABA 依赖途径和ABA 非依赖途径调节植物的生长发育和对非生物胁迫的耐性。

本研究通过AtbZIP1 T-DNA 插入突变的拟南芥植株ko-1 (SALK_059343)和ko-2 (SALK_069489C)在ABA 处理后的表型实验, 验证了AtbZIP1参与ABA 依赖的信号传导通路。

采用“三引物法”, 分别在DNA 水平和RNA 水平通过PCR 和RT-PCR 验证了AtbZIP1基因在拟南芥突变体中的沉默效果。

定量分析数据表明, 在种子萌发阶段, 经过0.6 μmol L -1 ABA 和0.8 μmol L -1 ABA 处理后, AtbZIP1缺失突变体拟南芥植株萌发率和叶片展开/绿色率比野生型植株高, 在幼苗生长阶段, 经过50 μmol L -1 ABA 处理后, AtbZIP1缺失突变体拟南芥植株根长比野生型植株长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Arabidopsis ARGONAUTE1is an RNA Slicer that selectively recruits microRNAs and short interfering RNAsN.Baumberger and D.C.Baulcombe*Sainsbury Laboratory,Norwich Research Park,Norwich NR47UH,United Kingdom Contributed by D.C.Baulcombe,June 30,2005ARGONAUTE (AGO)RNA-binding proteins are involved in RNA silencing.They bind to short interfering RNAs (siRNAs)and microRNAs (miRNAs)through a conserved PAZ domain,and,in animals,they assemble into a multisubunit RNA-induced silencing complex (RISC).The mammalian AGO2,termed Slicer,directs siRNA-and miRNA-mediated cleavage of a target RNA.In Arabi-dopsis ,there are 10members of the AGO family,and the AGO1protein is potentially the Slicer component in different RNA-silencing pathways.Here,we show that AGO1selectively recruits certain classes of short silencing-related RNA.AGO1is physically associated with miRNAs,transacting siRNAs,and transgene-derived siRNAs but excludes virus-derived siRNAs and 24-nt siRNAs involved in chromatin silencing.We also show that AGO1has Slicer activity.It mediates the in vitro cleavage of a mir165target RNA in a manner that depends on the sequence identity of amino acid residues in the PIWI domain that are predicted by homology with animal Slicer-competent AGO proteins to constitute the RNase catalytic center.However,unlike animals,we find no evidence that AGO1Slicer is in a high molecular weight RNA-induced silencing complex.The Slicer activity fractionates as a complex of Ϸ150kDa that likely constitutes the AGO1protein and associated RNA without any other proteins.Based on sequence similarity,we predict that other Arabidopsis AGOs might have a similar catalytic activity but recruit different subsets of siRNAs or miRNAs.posttranscriptional regulation ͉ribonuclease ͉viral RNA ͉silencingARGONAUTE (AGO)proteins are implicated in RNA-silencing processes that also involve 21-to 26-nt short RNAs (sRNAs)(1)cleaved from double-stranded or partially double-stranded (ds)RNAs by the RNase III enzyme Dicer.There are several types of RNA-silencing mechanisms,including RNA inter-ference (RNAi),the micro RNA (miRNA)pathway,and RNA-directed chromatin silencing (1).RNAi is a type of RNA silencing in which the Dicer substrate is fully double stranded,the sRNA cleavage product is short interfering RNA (siRNA),and the outcome is targeted destruction of siRNA-complementary RNAs.The miRNA pathway is similar except that the Dicer substrate is an inverted repeat RNA with a partially ds structure,the sRNA is referred to as a miRNA,and the target RNAs can be suppressed at the translational level or degraded as in RNAi,depending on the degree of complementarity between the sRNA and its target.Plants possess an additional class of degradative sRNAs called transacting siRNAs (ta-siRNAs)whose formation depends on the miRNA-mediated cleavage of their precursor and its conversion into a dsRNA by RDR6(2–4).The last pathway,RNA-directed chro-matin silencing,is similar to RNAi,but the siRNA targets are either DNA or chromatin-associated RNAs and the outcome is DNA methylation or histone modification at the target locus.In the best understood of these RNA-silencing mechanisms,the duplex siRNAs or miRNAs produced by Dicer are unwound in an ATP-dependent process.One strand of this RNA is then preferentially assembled with an AGO protein to form an RNA-induced silencing complex (RISC)(5–7).RISC has an associated ribonuclease activity (Slicer)that cleaves its substrateat sRNA-complementary sites.The size and composition of RISC varies (8–10),but AGO proteins are a common compo-nent in all systems.The crystal structure of an archaebacterial AGO homologue revealed that the PIWI domain,one of the two signature domains of AGO proteins,adopts a fold similar to RNase H (11).This finding prompted the suggestion that AGO proteins may be the Slicer nuclease,and,consistent with this idea,the human AGO2has a DDH motif that is essential for Slicer activity and is functionally equivalent to the catalytic metal-coordinating triad DDE of RNase H (12,13).Final proof that hAGO2has Slicer activity was from the finding that the bacterially expressed recombinant protein is competent for sRNA-directed RNA cleavage (13).The PAZ domain is a second signature of AGO proteins,and it has been implicated by structural studies as an sRNA-binding feature (14–17).Many eukaryotes,with the notable exception of fission yeast,have AGO multigene families whose members have specialized biological function,as revealed by the variety of mutant phenotypes (18).For example,mutants defective in RDE1,one of the 23Caenorhabditis elegans AGO family members,are resistant to RNAi,but the miRNA pathway operates normally (19),whereas AGO-like gene (alg)-1and alg-2mutants are competent for RNAi but have heterochronic defects due to defects in a miRNA-silencing pathway (20).Drosophila ago mutants also reveal diversification of siRNA and miRNA pathways:ago2mutants are RNAi-defective but are able to mediate miRNA-directed RNA cleavage.The ago1mutants,in contrast,are deficient in miRNA processing and subsequent miRNA-mediated RNA cleavage but not in RNAi (21).The four human ARGONAUTES are equally competent for binding siRNAs and miRNAs,but only AGO2is able to mediate RNA cleavage of target RNAs (12,22).Although AGO2is essential for embryo development,it is still unclear whether this requirement is related to its unique ability to cleave mRNAs (12).In Arabidopsis ,the AGO family comprises 10members (18,23)of which two have been unambiguously associated with different forms of RNA silencing.It is therefore likely that,as in animals,the functional diversification of RNA silencing is linked to the variation between AGO family members.AGO1is associated with the miRNA pathway and transgene-silencing pathway (23,24),and AGO4with endogenous siRNAs affecting epigenetic silencing (25,26).In addition,AGO7and ZLL ͞AGO10have a function in the transition from juvenile to adult phases of plant growth (27)and meristem maintenance (28,29),respectively.Although a role in sRNA-mediated regulation seems likely,it is not yet supported by evidence.Freely available online through the PNAS open access option.Abbreviations:sRNA,short RNA;siRNA,short interfering RNA;miRNA,microRNA;AGO,Argonaute;RNAi,RNA interference;ta-siRNA,transacting siRNA;RISC,RNA-induced si-lencing complex;CMV,Cucumber Mosaic Virus ;GF-IR,GFP inverted repeat;PHV,PHAVOLUTA ;T-DNA,portion of the Ti (tumor-inducing)plasmid that is transferred to plant cells.*To whom correspondence should be addressed.E-mail:david.baulcombe@.©2005by The National Academy of Sciences of the USA11928–11933͉PNAS ͉August 16,2005͉vol.102͉no.33 ͞cgi ͞doi ͞10.1073͞pnas.0505461102The most studied Arabidopsis AGO protein is AGO1.It is clearly implicated in miRNA silencing because strong ago1 alleles affect miRNA accumulation and miRNAs target regula-tion(24),as do dcl1,hen1,and hyl1(30–33).The ago1mutants are also impaired in spontaneous silencing of a foreign transgene (cosupression)(23)and exhibit hypersusceptibility to Cucumber Mosaic Virus(CMV)(34),suggesting that,in plants,miRNA-mediated silencing,transgene silencing,and virus induced si-lencing share a common AGO factor.However,those observa-tions could be explained equally well if AGO1functions in either the biogenesis of sRNAs or as Slicer.Here,we investigate the role of AGO1in RNA silencing.We show that affinity-purified AGO1is associated with miRNAs, endogenous ta-siRNAs,and transgene-derived siRNAs but not virus-specific siRNAs or siRNAs involved in chromatin silenc-ing.We also show that,dependent on conserved amino acid residues in the PIWI domain,AGO1mediates the in vitro cleavage of PHAVOLUTA RNA at the mir165target site.It is therefore likely that AGO1is a Slicer that selectively recruits sRNAs.The Slicer activity fractionates in a complex ofϷ150 kDa that likely constitutes the AGO1protein and associated RNA without any other proteins.Materials and MethodsFLAG-AGO Transgenic Arabidopsis.A FLAG-AGO1construct was generated by fusing the AGO1cDNA to an N-terminal FLAG sequence under the regulation of the AGO1promoter in the binary vector pGreen0229.The construct was transformed into heterozygous ago1-36(Salk࿝087076)(http:͞͞)and homozygous ago1-36transgenic seedlings were identified by PCR.The expression levels of the AGO1gene and transgene were assessed by RT-PCR on2-week-old WT,ago1-36,and FLAG-AGO1seedlings.Immunoprecipitation and sRNA Analysis.FLAG-AGO1immuno-precipitation from inflorescences of transgenic FLAG-AGO1 plants or WT plants was performed with␣-FLAG M2agarose beads(Sigma).RNA extracted either from the immunoprecipi-tate or directly from tissues as control was analyzed by Northern blotting.For analysis of transgene-derived siRNAs,we used F1 plants from crosses between FLAG-AGO1plants and two ge-notypes that were silencing GFP.One of these was an RNAi line in which the transgene expressed a GFP inverted repeat(GF-IR) (35).The second genotype(GF-amp)expressed a viral transgene and exhibited sense RNA silencing(previously described as GxA)(36).Virus infections were performed by rub-inoculation on2-week-old FLAG-AGO1plants.For the RNA methylation test,GFP synthetic unmethylated siRNAs were added to the AGO1-associated RNA sample,and a␤-elimination reaction was performed as described in ref.37.Slicer Assay.PHAVOLUTA(PHV)cleavage assays were per-formed with immunoprecipitated FLAG-AGO1and32P-labeled PHV or phv in vitro transcripts(mMESSAGE mMACHINE T7, Ambion,Austin,TX).As a positive control,20␮l of wheat germ extract was used.Cleavage was tested after90min at25°C by extracting and separating the RNA on an8M urea͞3%poly-acrylamide gel.Nicotiana benthamiana Transient Expression.Specific mutations in FLAG-AGO1were introduced by PCR.For transient expression in N.benthamiana,the constructs were transferred into the pBIN61vector(38)and Agro-infiltrated into N.benthamiana leaves.Immunoprecipitations,Slicer assay and sRNA analysis were as described above.Size Exclusion Chromatography.Immunoprecipitated and eluted FLAG-AGO1were concentrated by ultrafiltration and fraction-ated on a Superose6column(Amersham Pharmacia).Fractions were concentrated again and used for the Slicer assay and western analysis.A more detailed version of Materials and Methods is available as Supporting Materials and Methods,which is published as supporting information on the PNAS web site.Results and DiscussionEpitope Tagging of Arabidopsis AGO1.If AGO1is an RNA-silencing Slicer,it would physically interact with miRNAs and siRNAs and would cleave mRNA targets that are complemen-tary to these small RNAs.To test these predictions,we con-structed an N-terminal FLAG-tagged version of the AGO1 cDNA coupled to1,648bp of the AGO1promoter(Fig.1A).The construct was transformed into an ago1mutant(salk࿝087076, named ago1-36)(Fig.1B)in which a T-DNA[portion of the Ti (tumor-inducing)plasmid that is transferred to plant cells] insertion at the end of the PAZ domain resulted in production of a truncated protein.The ago1-36alleles are likely null because the encoded protein lackedϾ50%of the protein sequence, including the PIWI domain and because they show a stunted growth phenotype like that of strong ago1alleles(Fig.1C) (39–41).The tagged AGO1transgene(FLAG-AGO1)fully restored a WT phenotype in ago1-36homozygous mutants, indicating that the introduced tag does not interfere with AGO1 function(Fig.1C and D).The expression level of the transgene assessed by RT-PCR was similar to that of the endogenous AGO1gene in WT plants(Fig.1E).AGO1Interacts Selectively with miRNAs and siRNAs.FLAG-AGO1 could be immunoprecipitated from young inflorescence extracts, thereby demonstrating that the N terminus of the protein is accessible under native conditions(Fig.2A).The AGO1-associated RNA was extracted from immunoprecipitated AGO1, and the presence of siRNAs and miRNAs was assessed by Northern blotting.All tested miRNA species specifically copurified with FLAG-AGO1and were absent from FLAG immunoprecipitates of nontransformed(WT)extracts(Fig.2B).The associated RNAs include both21-nt(miR160,167,and319)and24-nt(miR163) species.The AGO1-associated miRNAs,in common with the total pool of plant miRNAs,are methylated(42).In a␤-elimination test,the miRNAs associated with AGO1remained unmodified,consistent with the presence of an O-methyl group on the3Јterminal nucleotide either on the2Јor3Јcarbon of the ribose(37),whereas a synthetic unmethylated siRNA included in the samples as internal control underwent the predicted increase in electrophoretic mobility(Fig.2C).The ta-siRNA255was also physically associated with AGO1 (Fig.2D),but the24-nt siRNAs produced by DCL3,including siRNAs02,cluster2,and1003,were not(Fig.2E)(43).Thus, AGO1is selective for certain types of endogenous silencing-related sRNAs.We could also demonstrate selectivity of AGO1 with siRNAs of foreign nucleic acids.Transgene-specific siRNAs,either from an inverted repeat transgene(GF-IR)or from a viral amplicon͞sense GFP transgene silencing system (GFP-Amp),were associated with AGO1(Fig.2F)but virus-specific siRNAs(CMV,Turnip Crinkle Virus,and crucifer To-bacco Mosaic Virus)were not(Fig.2G).The AGO1association of GF-IR siRNAs was unexpected because ago1-27plants retain the ability to carry out RNAi from inverted repeat transgenes(44).However,the genetic test might not have been conclusive because ago1-27is a weak allele and might encode a protein still competent for RNAi(34,44). Conversely,we had anticipated that viral siRNAs would be associated with AGO1because Arabidopsis ago1plants were previously reported to be hypersusceptible to CMV(34).ThisBaumberger and Baulcombe PNAS͉August16,2005͉vol.102͉no.33͉11929P L A N T B I O L O GYphenotype could have been accounted for by the involvement of AGO1in virus-induced silencing.However,it is now unlikely that AGO1is a major cofactor of virus-induced silencing because the viral siRNAs were not associated with AGO1(Fig.2G )and we could not reproduce the hypersusceptibility phenotype even with plant genotype (ago1-27)and strain of CMV (I17F)used previously (34)(data not shown).To reconcile the earlier findings with the results presented here,we propose that there could be subtle environmental factors affecting the experiments.For example,there could be an environmentally influenced miRNA that targets the mRNA of a plant-encoded suppressor of viral defense or there could be an environmentally sensitive ago1phenotype that influences the virulence of CMV.The Molecular Basis of AGO1Selectivity.The profile of RNAassociated with AGO1implies that there is selectivity in themechanism by which this protein recruits sRNA.Among the different factors that might determine this specificity,we have considered sRNA size,subcellular localization,and the effects of virus-encoded suppressors of silencing.Of these factors,sRNA size can be ruled out because 21-and 24-nt sRNAs were present in both the AGO1-associated and AGO1-excluded fractions (Fig.2).Subcellular location may be involved,but it is unlikely to be the sole determining factor in the AGO1selection of sRNA because certain classes of both nuclear (chromatin associated siRNAs)(43,45)and cytoplasmic sRNAs (viral siRNAs)were excluded from AGO1.A third possible factor involves the virus-encoded silencing suppressors produced in virus-infected plants.In principle,the absence of viral siRNAs in the AGO1-associated sRNA could be due to the action of these suppressors.However,this result does not seem likely,because these proteins had no effect on AGO1association with a miRNA (miR167;Fig.2G ).An attractive alternative mechanism of selectivity involves linking the mode of sRNA biogenesis with particular AGOs.Perhaps different Dicers dock onto specific AGO proteins so that sRNAs are addressed to specialized effector complexes.Consistent with this idea,the Dicers in animal systems not only are required for the processing of sRNAs from their precursors but they also play a role in the assembly of RISC (8,46–48).In addition,there is a direct interaction in vitro between a subregion of the PIWI domain of hAGO2and the RNase III domain of human Dicer (49).Evidence consistent with this channeling model is from the finding that miRNAs and ta-siRNAs associ-ated with AGO1(Fig.2B –D )all require DCL1for their biogenesis (2,4,30)whereas the AGO1excluded 24-nt siRNAs,and viral siRNAs are instead produced by DCL3and possibly DCL2(43).A prediction from this Dicer-channeling hypothesis is that the Dicer for production of transgene siRNAs would also interact directly with AGO1.In principle,this Dicer could be either DCL1or DCL4,whose function is unknown,that channels transgene sRNAs into AGO1.The finding that RNAi from inverted repeat transgenes functions in dcl1-9plants (50)does not necessarily rule out this prediction.Functional redundancy in the DCL family or residual function of the dcl1-9allele could mask the role of DCL1in production of transgene siRNAs.FLAG-AGO1Has Slicer Activity and Is Not in a High Molecular Weight RISC.To find out whether AGO1is present in a RISC complexor is itself Slicer,we first examined the ability of immunopurified FLAG-AGO1to mediate in vitro cleavage of a PHV transcript,a target of miR165(40,51).The results,shown in Fig.3,reveal that PHV 5Јand 3ЈRNA cleavage products were specifically formed in extracts from FLAG -AGO1plants but not from control non transformed plants.No cleavage products were either observed when a G 3A mutation was inserted into the PHV RNA sequence at the residue complementary to positions 6of miR165(phv ,Fig.3).This alteration induces a dominant mutation phenotype in planta by preventing miRNA-mediated clearing of the PHV and PHB transcripts (52,53)and abolishes cleavage in a wheat germ in vitro assay (51).This miRNA-directed RNA cleavage could result from Slicer activity of either AGO1or other associated proteins.To inves-tigate these possibilities,we modified the core PIWI domain of AGO 1at residues that are conserved in cleavage-competent AGO proteins from animals (Fig.4A ).In AGO1,the aspartate residue at position 760is equivalent to the first metal coordi-nating aspartate D597of hAGO2.Mutation of this residue to alanine in hAGO2abolishes in vitro cleavage activity,and we predicted that a similar mutation in AGO1would yield the same result if AGO1is Slicer.The Gly-758and His-798are also strongly conserved throughout AGOs.Gly-758is mutated to proline in the hypomorphic ago1-25mutant allele (34)whereasFig.1.Generation of epitope-tagged AGO1transgenic Arabidopsis .(A )Diagram of the FLAG -AGO1construct.Positions of the restriction sites used for the cloning are given relative to the start codon.The sequence and position of the FLAG epitope is indicated.Thick lines,regions encoding the PAZ and PIWI domains;thin broken arrow,translation start;black dot,translation stop.(B )Diagram of the AGO1genomic locus.Gray boxes,exons;triangle,T-DNA insertion in ago1mutant Salk ࿝087076line (ago1-36)with left border (Lb)and right border (Rb)orientation.Other symbols as in A .(C )FLAG -AGO1comple-ments the ago1-36phenotype.Photographs are taken 2weeks postgermina-tion.(D )PCR genotyping of the FLAG -AGO1line.The ago1-36(Upper )and not the WT allele (Lower )is amplified from the selected FLAG -AGO1transgenic line.(E )Expression of FLAG AGO1transcripts.ago1-36mutants produce a truncated transcript comprising the sequence 5Ј(Middle )but not 3Ј(Bottom )of the T-DNA insertion.Expression of a full-length AGO1transcript is restored in the selected FLAG -AGO1line.Actin primers (Top )were used to confirm equal loading,and reactions without reverse transcriptase were performed to exclude DNA contamination.DNA,control PCR with genomic DNA.11930͉ ͞cgi ͞doi ͞10.1073͞pnas.0505461102Baumberger andBaulcombethe H798P mutation in hAGO2(12)results in loss of RNA cleavage activity.The G758S and H798P mutations were introduced into FLAG -AGO1constructs under the cauliflower mosaic virus (CaMV)35S promoter and expressed transiently in N .benthami-ana leaves,whereas the construct carrying the D760A mutation was transformed stably in Arabidopsis under the AGO1pro-moter.The immunoaffinity-purified FLAG-AGO1mutant pro-teins could be detected by Western blotting,and the WT protein was correctly programmed by endogenous miR165as it cleaved the PHV RNA in vitro into the predicted 5Јand 3Јfragments (Fig.4B ).The AGO1G758S,was also able to cleave the PHV RNA target,and it is possible that the hypomorphic phenotype of the corresponding Arabidopsis mutant and its impaired cosuppres-sion ability (34)are due to altered kinetic properties of AGO1but not to total inactivity.In contrast,D760A and H798P were totally cleavage-deficient (Fig.4B and C )despite their ability to recruit miRNAs.We interpret the effect of changes at conserved catalytic site residues as a strong indication that AGO1is Slicer.Slicer in animal cells is part of a high molecular weight RISC that includes accessory proteins including TSN nuclease,Gemin,Fragile X syndrome-associated protein,and other proteins (8–10,54–57).However,if such a large complex exists in plants,the accessory proteins are not required for Slicer activity because size exclusion chromatography revealed that the FLAG-AGO1and the associated Slicer activity from Arabidopsis inflorescences eluted together close to the 158-kDa molecular mass standard (Fig.5).The predicted molecular mass of the tagged version of AGO1is 116kDa,the associated siRNA would be Ϸ7kDa and,given the imprecision of size determination by gel filtration,itFig.2.AGO1recruitment of small RNAs.(A )Immunoprecipitation of FLAG-AGO1.FLAG-AGO1was immunoprecipitated from crude inflorescence extract as described in Materials and Methods .Input,crude extract before immuno-precipitation;unbound,supernatant after immunoprecipitation;IP,immuno-precipitate.AGO1(ϩ),FLAG -AGO1transgenic extracts;AGO(-),WT extracts.(B )miRNAs are recruited by AGO1.sRNA blots were hybridized with DNA oligonucleotide probes complementary to the indicated miRNAs.RNAs were either extracted directly from plant material (RNAtot)or from ␣-FLAG immu-noprecipitate (␣FLAG IP).(C )AGO1-recruited miRNAs are methylated at the 3Јterminus.A synthetic unmethylated GFP 21-nt RNA oligomer mixed with the immunoprecipitated RNAs (Upper )displays an increased electrophoretic mo-bility after a ␤-elimination reaction (␤-El ϩ)whereas miR167(Lower )does not,indicating that its 3Јend is protected by methylation.Both GFP and miR167hybridization were done on the same blot after stripping.(D )ta-siRNAsareFig.3.AGO1copurifies with Slicer activity.In vitro -labeled WT PHV or mutant G 3A phv target RNAs were incubated with immunoprecipitates from FLAG -AGO1and WT plants or with wheat germ extracts (Wg)as positive control.The sizes of the predicted 5Јand 3ЈPHV RNA cleavage products are indicated.recruited by AGO1.(E )Endogenous chromatin siRNAs are not recruited by AGO1.In B ,D ,and E ,the IP samples were derived from 7-fold more tissue than directly extracted RNA.(F )Transgene-derived siRNAs are associated with AGO1.FLAG -AGO1plants were crossed with plants coexpressing the GFP together with a GF inverted repeat silencer construct (GF -IR line)or with plants coexpressing the GFP together with a Potato Virus X-GFP silencer construct (GFP -Amp ).Blots show GFP -derived siRNAs (Top )or miR167(Middle )from parent and F 1plants.The IP samples were derived from 20-fold more tissue than directly extracted RNA.(Bottom )A Western blot of FLAG-AGO1.(G )Viral siRNAs are not associated with AGO1.FLAG-AGO1or WT plants were infected with Cucumber Mosaic Virus strain I17F (CMV),Turnip Crinkle Virus (TCV),and Cruciferae Tobacco Mosaic Virus (CrTMV).siRNAs (Upper )were detected by hybridization with an in vitro transcribed sense probe corresponding to the coat protein sequence of the virus (CMV and TCV)or the full-length cDNA (TMV).miR167(Lower )was detected with a complementary DNA oligonucle-otide probe on the same blot after stripping.The IP samples were derived from 10-fold more tissue than directly extracted RNA.Baumberger and Baulcombe PNAS ͉August 16,2005͉vol.102͉no.33͉11931P L A N T B I O L O GYseems that,as with hAGO2(13,58),the minimal Arabidopsis RISC contains little more than AGO1and an associated sRNA.These findings do not rule out that a high molecular weight complex,for example including Dicer,HYL1,and other pro-teins,such as TSN nuclease,is formed during the assembly of a miRNA ͞siRNA-programmed AGO1Slicer.Such a complex could be difficult to detect because it exists only transiently or ismuch less stable in vitro than the equivalent complexes in animals.Alternatively,the high molecular weight complex might have a structure that impairs accessibility of the epitope tag on the N terminus of AGO1and prevents the purification of the native complex.However,only a minor fraction of the total AGO1pool would be present in a high molecular weight complex because most AGO1can be immunoprecipitated from a crude extract (Fig.2A ).Selective sRNA Recruitment and Slicer Activity in Other Arabidopsis AGO Proteins?All of the 10Arabidopsis AGO proteins have PAZdomains and so are potentially able to recruit siRNAs and miRNAs.All 10also resemble the RNA cleavage-active hAGO2in that they have conserved aspartates as two of the putative metal-coordinating residues in the catalytic site (Fig.4A )(11,12).However,AGO2and -3differ from the other AGOs in that they have an additional aspartate as the third coordinating residues in place of the conserved histidine.This third carboxylic acid residue is not likely to impair Slicer activity because two other related enzymes,RNaseH1and Tn5integrase,can use aspartate efficiently in that position (13,59,60).Most of the AGO proteins,also like hAGO2,have a conserved histidine at the equivalent of AGO1position 798,and it is likely that they selectively recruit siRNAs or a subset of miRNAs and use them as guides in RNA cleavage reactions.The exceptions are AGO4,-6,-8,and -9.AGO6and AGO9have a proline residue aligned with AGO1position 798and,Fig.4.Mutations of conserved residues of the AGO1PIWI domain affect Slicer activity.(A )Alignment of the catalytic center of the Arabidopsis and human ARGONAUTE PIWI domains.The positions of the Mg 2ϩcoordinating residues in the DDH catalytic triad are indicated above the alignment (arrows),as well as the mutations introduced in FLAG-AGO1(*).(B and C )Slicer activity of mutant AGO1proteins.FLAG -AGO1,FLAG -AGO1G758S ,and FLAG -AGO1H798P were expressed transiently in N .benthamiana by Agrobacterium infiltration,and Slicer activity of the immunoprecipitated proteins was assayed in vitro (B top ).FLAG -AGO1D760A could not be assayed because it was unstable in the transient assay,but it did accumulate and its PHV Slicer activity could be assayed in extracts of transgenic Arabidopsis (C Top ).Recruitment of miR165was verified by Northern blotting of sRNAs extracted from immunoprecipitates (Bottom ).The level of immunopurified FLAG-AGO1proteins was tested by Western blotting (Middle).Fig.5.FLAG-AGO1Slicer is present in low molecular weight complexes.FLAG-AGO1was immunopurified and eluted from ␣-FLAG M2agarose beads by competition with 3XFLAG peptides.The concentrated eluate was fraction-ated on a Superpose 6column,and the fractions were tested for cleavage of PHV target RNA (Upper )and for presence of AGO1by Western blotting (Lower ).The elution profile of the molecular weight markers is indicated.V o ,void volume;In,input;Wg,wheat germ.11932͉ ͞cgi ͞doi ͞10.1073͞pnas.0505461102Baumberger andBaulcombebased on the in vitro phenotype of the H798P mutant,it is probable that they are not active Slicer proteins.Perhaps these more variant AGO proteins recruit siRNAs but regulate their targets by way of translation interference or DNA methylation.For example,AGO4, which has a serine residue at position798,has been implicated in chromatin modification and DNA methylation and so may be directly targeted to DNA(25,26).It will be interesting to find out to what extent selective recruitment of siRNA and miRNA plays a role in the functional diversification of AGO protein function and of RNA silencing pathways.We thank the Salk Institute and the Nottingham Arabidopsis Stock Centre for providing the Salk࿝087076line and Attila Molnar and Alan Herr for critical reading of the manuscript and fruitful discus-sions.Herve´Vaucheret(Institut National de la Recherche Agronomique,Versaille,France)is thanked for ago1-27mutant plants and CMV I17N.The use of imported strains of virus was under license (DEFRA161A͞4391(01͞03).This work was partly supported by a European Molecular Biology Organization fellowship and a Swiss National Science Foundation fellowship(to N.B.).We are grateful to the Gatsby Charitable Foundation for supporting the Sainsbury Laboratory.1.Baulcombe,D.(2004)Nature431,356–363.2.Vazquez,F.,Vaucheret,H.,Rajagopalan,R.,Lepers,C.,Gasciolli,V.,Mallory,A.C.,Hilbert,J.-L.,Bartel,D.P.&Crete,P.(2004)Mol.Cell16,69–79.3.Allen,E.,Xie,Z.,Gustafson,A.M.&Carrington,J.C.(2005)Cell121,207–221.4.Peragine,A.,Yoshikawa,M.,Wu,G.,Albrecht,H.L.&Poethig,R.S.(2004)Genes Dev.18,2368–2379.5.Schwarz,D.S.,Hutvagner,G.,Du,T.,Xu,Z.,Aronin,N.&Zamore,P.D.(2003)Cell115,199–208.6.Khvorova,A.,Reynolds,A.&Jayasena,S.D.(2003)Cell115,209–216.7.Tomari,Y.,Matrange,C.,Haley,B.,Martinez,N.&Zamore,P.D.(2004)Science306,1377–1380.8.Pham,J.W.,Pellino,J.L.,Lee,Y.S.,Carthew,R.W.&Sontheimer,E.J.(2004)Cell117,83–94.9.Nykanen,A.,Haley,B.&Zamore,P.D.(2001)Cell107,309–321.10.Hammond,S.M.,Bernstein,E.,Beach,D.&Hannon,G.(2000)Nature404,293–296.11.Song,J.J.,Smith,S.K.,Hannon,G.J.&Joshua-Tor,L.(2004)Science305,1434–1437.12.Liu,J.,Carmell,M.A.,Rivas,F.V.,Marsden,C.G.,Thomson,M.,Song,J.J.,Hammond,S.M.,Joshua-Tor,L.&Hannon,G.J.(2004)Science305, 1437–1441.13.Rivas,F.V.,Tolia,N.H.,Song,J.J.,Aragon,J.P.,Liu,J.D.,Hannon,G.J.&Joshua-Tor,L.(2005)Nat.Struct.Mol.Biol.12,340–349.14.Ma,J.B.,Ye,K.Q.&Patel,D.J.(2004)Nature429,318–322.15.Song,J.J.,Liu,J.,Tolia,N.H.,Schneiderman,J.,Smith,S.K.,Martienssen,R.A.,Hannon,G.J.&Joshua-Tor,L.(2003)Nat.Struct.Mol.Biol.10, 1026–1032.16.Yan,K.S.,Yan,S.,Farooq,A.,Han,A.,Zeng,L.&Zhou,M.-M.(2003)Nature426,1–5.17.Lingel,A.,Simon,B.,Izaurralde,E.&Sattler,M.(2003)Nature426,465–469.18.Carmell,M.A.,Xuan,Z.,Zhang,M.&Hannon,G.J.(2002)Genes Dev.16,2733–2742.19.Tabara,H.,Sarkissian,M.,Kelly,W.G.,Fleenor,J.,Grishok,A.,Timmons,L.,Fire,A.&Mello,C.C.(1999)Cell99,123–132.20.Grishok,A.,Pasquinelli,A.E.,Conte,D.,Li,N.,Parrish,S.,Ha,I.,Baillie,D.L.,Fire,A.,Ruvkun,G.&Mello,C.(2001)Cell106,23–34.21.Okamura,K.,Ishizuka,A.,Siomi,H.&Siomi,M.C.(2004)Genes Dev.18,1655–1666.22.Meister,G.,Landthaler,M.,Patkaniowska,A.,Dorsett,Y.,Teng,G.&Tuschl,T.(2004)Mol.Cell15,185–197.23.Fagard,M.,Boutet,S.,Morel,J.-B.,Bellini,C.&Vaucheret,H.(2000)Proc.A97,11650–11654.24.Vaucheret,H.,Vazquez,F.,Crete,P.&Bartel,D.P.(2004)Genes Dev.18,1187–1197.25.Zilberman,D.,Cao,X.,Johansen,L.K.,Xie,Z.,Carrington,J.C.&Jacobsen,S.E.(2004)Curr.Biol.14,1214–1220.26.Zilberman,D.,Cao,X.&Jacobsen,S.E.(2003)Science299,716–719.27.Hunter,C.,Sun,H.&Poethig,R.S.(2003)Curr.Biol.13,1734–1739.28.Moussian,B.,Schoof,H.,Haecker,A.,Jurgens,G.&Laux,T.(1998)EMBOJ.17,1799–1809.29.Lynn,K.,Fernandez,A.,Aida,M.,Sedbrook,J.,Tasaka,M.,Masson,P.&Barton,M.K.(1999)Development(Cambridge,U.K.)126,469–481.30.Park,W.,Li,J.,Song,R.,Messing,J.&Chen,X.(2002)Curr.Biol.12,1484–1495.31.Chen,X.,Liu,J.,Cheng,Y.&Jia,D.(2002)Development(Cambridge,U.K.)129,1085–1094.32.Han,M.-H.,Goud,S.,Song,L.&Fedoroff,N.(2004)A101,1093–1098.33.Vazquez,F.,Gasciolli,V.,Crete,P.&Vaucheret,H.(2004)Curr.Biol.14,346–351.34.Morel,J.-B.,Gordon,C.,Mourrain,P.,Beclin,C.,Boutet,S.,Feuerbach,F.,Proux,F.&Vaucheret,H.(2002)Plant Cell14,629–639.35.Schwach,F.,Vaistij,F.E.,Jones,L.&Baulcombe,D.(July22,2005)PlantPhysiol.,10.1104͞pp.105.063537.36.Dalmay,T.,Hamilton,A.J.,Mueller,E.&Baulcombe,D.C.(2000)Plant Cell12,369–379.37.Alefelder,S.,Patel, B.K.&Eckstein, F.(1998)Nucleic Acids Res.26,4983–4988.38.Bendahmane,A.,Querci,M.,Kanyuka,K.&Baulcombe,D.C.(2000)PlantJ.21,73–81.39.Kidner,C.A.&Martienssen,R.A.(2005)Dev.Biol.280,504–517.40.Kidner,C.A.&Martienssen,R.A.(2004)Nature428,81–84.41.Bohmert,K.,Camus,I.,Bellini,C.,Bouchez,D.,Caboche,M.&Benning,C.(1998)EMBO J.17,170–180.42.Yu,B.,Yang,Z.,Li,J.,Minakhina,S.,Yang,M.,Padgett,R.W.,Steward,R.&Chen,X.(2005)Science307,932–935.43.Xie,Z.,Johansen,L.K.,Gustafson,A.M.,Kasschau,K.D.,Lellis,A.D.,Zilberman,D.,Jacobsen,S.E.&Carrington,J.C.(2004)PLoS Biol.2,E104.44.Beclin,C.,Boutet,S.,Waterhouse,P.&Vaucheret,H.(2002)Curr.Biol.12,684–688.45.Hamilton,A.J.,Voinnet,O.,Chappell,L.&Baulcombe,D.C.(2002)EMBOJ.21,4671–4679.46.Lee,Y.S.,Nakahara,K.,Pham,J.W.,Kim,K.,He,Z.,Sontheimer,E.J.&Carthew,R.W.(2004)Cell117,69–81.47.Tabara,H.,Yigit,E.,Siomi,H.&Mello,C.C.(2002)Cell109,861–871.48.Tomari,Y.,Du,T.,Haley,B.,Schwarz,D.S.,Bennett,R.,Cook,H.A.,Koppetsche,B.S.,Theurkauf,W.E.&Zamore,P.D.(2004)Cell116,831–841.49.Tahbaz,N.,Kolb,F.A.,Zhang,H.,Jaronczyk,K.,Filipowicz,W.&Hobman,T.C.(2004)EMBO Rep.5,189–194.50.Finnegan,E.J.,Margis,R.&Waterhouse,P.M.(2003)Curr.Biol.13,236–240.51.Tang,G.,Reinhart,B.J.,Bartel,D.P.&Zamore,P.D.(2003)Genes Dev.17,49–63.52.Mallory,A.C.,Reinhart,B.J.,Jones-Rhoades,M.W.,Tang,G.,Zamore,P.D.,Barton,M.K.&Bartel,D.P.(2004)EMBO J.23,3356–3364.53.McConnell,J.R.,Emery,J.,Eshed,Y.,Bao,N.,Bowman,J.&Barton,M.K.(2002)Nature411,709–713.54.Ishizuka,A.,Siomi,M.C.&Siomi,H.(2002)Genes Dev.16,2497–2508.55.Caudy,A.A.,Myers,M.,Hannon,G.J.&Hammond,S.M.(2002)Genes Dev.16,2491–2496.56.Caudy,A.,Ketting,R.F.,Hammond,S.M.,Denli,A.,M.,Bathoorn,A.M.P.,Tops,B.B.J.,Silva,J.M.,Myers,M.M.,Hannon,G.J.&Plasterk,R.(2003) Nature425,411–414.57.Mourelatos,Z.,Dostie,J.,Paushkin,S.,Sharma,A.,Charroux,B.,Abel,L.,Rappsilber,J.,Mann,M.&Dreyfuss,G.(2002)Genes Dev.16,720–728. 58.Rand,T.A.,Ginalski,K.,Grishin,N.V.&Wang,X.(2004)Proc.Natl.Acad.A101,14385–14389.59.Katayanagi,K.,Okumura,M.&Morikawa,K.(1993)Proteins17,337–346.60.Peterson,G.&Reznikoff,W.(2003)J.Biol.Chem.278,1904–1909.Baumberger and Baulcombe PNAS͉August16,2005͉vol.102͉no.33͉11933P L A N T B I O L O GY。

相关文档
最新文档