怎样确定二次函数的解析式

合集下载

二次函数解析式的求法

二次函数解析式的求法

二次函数解析式的求法二次函数是一种形如y=ax+bx+c的函数,其中a、b、c是常数,且a≠0。

要求二次函数的解析式,需要掌握以下几个步骤:1. 求出a、b、c的值,这可以通过函数的已知点、导数或根的信息来确定。

2. 根据一般式y=ax+bx+c或顶点式y=a(x-h)+k,选择其中一种形式。

3. 将a、b、c的值代入选择的形式中,得到最终的解析式。

具体求法如下:1. 已知点求解析式如果已知二次函数通过两个点(x1,y1)和(x2,y2),可以利用这两个点的坐标和函数的一般式来求解析式。

我们可以将两个点的坐标带入一般式中,得到以下两个方程:y1=ax1+bx1+cy2=ax2+bx2+c将两个方程联立,消去c,得到:a=(y2-y1)/(x2-x1)b=(y1x2-y2x1)/(x2-x1)将a、b的值带入一般式y=ax+bx+c中,得到最终的解析式。

2. 已知导数求解析式二次函数的导数为y'=2ax+b,如果已知导数,可以通过求导数反推出a和b的值,然后代入一般式或顶点式中求解析式。

例如,当已知函数f(x)=2x+4x+1的导数为f'(x)=4x+4时,可以根据导数的定义得到a=2,b=4,然后代入一般式y=2x+4x+c中,用已知点的坐标求解c,得到最终的解析式。

3. 已知根求解析式如果已知二次函数的两个根x1和x2,可以根据根的定义得到(x-x1)(x-x2)=0,将它展开得到x-(x1+x2)x+x1x2=0,然后用已知点的坐标求解a、b、c,最后代入一般式或顶点式中求解析式。

例如,当已知函数f(x)=x+2x-3的两个根为-3和1时,可以利用(x+3)(x-1)=0得到x+2x-3=0,根据二次函数的一般式得到a=1,b=2,c=-3,然后代入一般式y=x+2x-3中即可得到最终的解析式。

总之,求二次函数解析式需要根据不同的已知信息选择合适的求解方法,掌握这些方法可以更加轻松地解决二次函数的相关问题。

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种基本方法二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础;熟练地求出二次函数的解析式是解决二次函数问题的重要保证;二次函数的解析式有三种基本形式:1、一般式:y=ax 2+bx+c a ≠0;2、顶点式:y=ax -h 2+k a ≠0,其中点h,k 为顶点,对称轴为x=h;3、交点式:y=ax -x 1x -x 2 a ≠0,其中x 1,x 2是抛物线与x 轴的交点的横坐标;4.对称点式: y=ax -x 1x -x 2+m a ≠0求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式;2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式;3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式;4.若已知二次函数图象上的两个对称点x 1、mx 2、m,则设成: y=ax -x 1x -x 2+m a ≠0,再将另一个坐标代入式子中,求出a 的值,再化成一般形式即可;探究问题,典例指津:例1、已知二次函数的图象经过点)4,0(),5,1(---和)1,1(.求这个二次函数的解析式. 分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax 2+bx+c a ≠0;解:设这个二次函数的解析式为y=ax 2+bx+c a ≠0 依题意得:⎪⎩⎪⎨⎧=++-=-=+-145c b a c c b a 解这个方程组得:⎪⎩⎪⎨⎧-===432c b a∴这个二次函数的解析式为y=2x 2+3x -4;例2、已知抛物线c bx ax y ++=2的顶点坐标为)1,4(-,与y 轴交于点)3,0(,求这条抛物线的解析式;分析:此题给出抛物线c bx ax y ++=2的顶点坐标为)1,4(-,最好抛开题目给出的c bx ax y ++=2,重新设顶点式y=ax -h 2+k a ≠0,其中点h,k 为顶点;解:依题意,设这个二次函数的解析式为y=ax -42-1 a ≠0又抛物线与y 轴交于点)3,0(;∴a0-42-1=3 ∴a=41 ∴这个二次函数的解析式为y=41x -42-1,即y=41x 2-2x+3; 例3、如图,已知两点A -8,0,2,0,以AB 为直径的半圆与y 轴正半轴交于点C0、4;求经过A 、B 、C 三点的抛物线的解析式;分析:A 、B 两点实际上是抛物线与x 轴的交点,所以可设交点式y=ax -x 1x -x a ≠0,其中x 1,x 2是抛物线与x 轴的交点的横坐标;2解:依题意,设这个二次函数的解析式为y=ax+8x -2例4、 已知函数y=x 2+kx -3k>0,图象的顶点为C 并与x 轴相交于两点A 、B 且AB=4 1求实数k 的值;2若P 为上述抛物线上的一个动点除点C 外,求使S △ABC =S △ABP 成立的点P 的坐标;变式练习,创新发现1、已知抛物线过A -2,0、B1,0、C0,2三点;求这条抛物线的解析式;2、已知抛物线的顶点坐标为)1,2(,与y 轴交于点)5,0(,求这条抛物线的解析式;2、已知二次函数y ax bx c =++2的图象的顶点为1,-92,且经过点-2,0,求该二次函数的函数关系式;3、已知二次函数图象的对称轴是x=-3,且函数有最大值为2,图象与x 轴的一个交点是-1,0,求这个二次函数的解析式;4、已知二次函数y ax bx c =++2的图象如图所示,则这个二次函数的关系式是________;5、已知:抛物线在x 轴上所截线段为4,顶点坐标为2,4,求这个函数的关系式6、已知二次函数y m x mx m m =-++-()()()123212≠的最大值是零,求此函数的解析式; 7. 已知某抛物线是由抛物线y=x 2-x-2经过平移而得到的,且该抛物线经过点A1,1,B2,4,求其函数关系式;9、已知四点A1,2,B0,6,C -2,20,D -1,12,试问是否存在一个二次函数,使它的图象同时经过这四个点 如果存在,请求出它的关系式;如果不存在,说明理由;5、。

二次函数三种解析式的求法

二次函数三种解析式的求法

二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。

本文将分别介绍这三种求法,并且给出相应的例题加以说明。

第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。

二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。

假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。

例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。

将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。

然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。

第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。

对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。

假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。

例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。

我们可以代入上述方程进行求解。

将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。

然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。

十种二次函数解析式求解方法

十种二次函数解析式求解方法

十种二次函数解析式求解方法二次函数是一个形如y = ax^2 + bx + c的函数,其中a、b和c是实数且a不为0。

解析式是一种表示函数的方式,它可以用来求解函数的性质和方程的解。

下面是十种二次函数解析式求解方法:1. 一般式:二次函数的一般式为y = ax^2 + bx + c。

通过将函数写成一般式,可以快速识别出a、b和c的值,进而求解一些重要的性质,如顶点、轴对称线、开口方向等。

2.标准式:二次函数的标准式为y=a(x-h)^2+k,其中(h,k)为顶点的坐标。

通过将一般式转化为标准式,可以直观地找出顶点的坐标及与x轴的交点。

3.因式分解:有时候,二次函数的解析式可以通过因式分解的方式得到。

例如,对于函数y=x^2-5x+6,我们可以将其因式分解为y=(x-2)(x-3),从而得到x=2和x=3是方程的解。

4.完全平方:如果二次函数的解析式可以表示为一个完全平方的形式,那么我们可以通过提取出完全平方的方式得到方程的解。

例如,对于函数y=x^2-4x+4,我们可以将其写成y=(x-2)^2的形式,从而得到x=2是方程的解。

5. 配方法:对于一般的二次方程ax^2 + bx + c = 0,我们可以通过配方法将其转化为一个完全平方的形式。

通过配方法,我们可以找到一个常数k使得ax^2 + bx + c = a(x + p)^2 + k,从而得到方程的解析式。

6.求导方法:通过对二次函数求导,我们可以得到函数的导数。

导数可以帮助我们找到函数的最值点和切线,进而求解其他问题。

7.顶点公式:二次函数的顶点公式为(h,k),其中h=-b/(2a),k=f(h)。

通过顶点公式,我们可以快速找到二次函数的顶点,进而求解一些重要的性质。

8. 零点公式:二次函数的零点公式为x = (-b ± √(b^2 -4ac))/(2a)。

通过零点公式,我们可以求解二次函数的零点或解方程。

9. 判别式:二次函数的判别式为Δ = b^2 - 4ac。

二次函数解析式的方法

二次函数解析式的方法

二次函数解析式的方法
二次函数是高中数学中的一个重要概念。

它是一种二次方程,通常用y=ax+bx+c的形式表示。

其中,a、b、c是常数,a不等于0。

求解二次函数的解析式可以使用以下方法:
1. 完全平方公式:将二次函数的一般式y=ax+bx+c转化为顶点式y=a(x-h)+k,其中(h,k)为顶点坐标。

这个转化可以使用完全平方公式完成,即将x+bx部分平方,得到(x+ b/2a)- (b-4ac)/4a,再乘以a后,得到y=a(x+ b/2a)- (b-4ac)/4a。

2. 配方法:当二次函数的a不为1时,可以使用配方法将其转化为一个完全平方的形式。

具体来说,对于y=ax+bx+c,我们可以先将a提出来,得到y=a(x+ bx/a+c/a),然后将x+ bx/a部分配方,即将它写成(x+b/2a)- (b-4ac)/4a的形式。

这样,原来的二次函数就可以表示为y=a(x+b/2a)- (b-4ac)/4a+c。

3. 公式法:对于已知二次函数的解析式y=ax+bx+c,我们可以使用求根公式来求解它的两个解。

根据二次方程的求根公式,
y=ax+bx+c的解析式可以表示为x=(-b±√(b-4ac))/2a。

以上三种方法都可以求解二次函数的解析式,具体使用哪种方法取决于具体情况。

在解决实际问题时,可以根据需要选择合适的方法,以便更准确地求解问题。

- 1 -。

二次函数的解析式三种方法

二次函数的解析式三种方法

二次函数的解析式三种方法二次函数是一种常见的函数类型,在数学学习中,学生们需要对其进行深入的了解和掌握,以便于解决与二次函数相关的问题。

本文将介绍三种求解二次函数的解析式的方法,包括公式法、顶点法和描点法。

每种方法的步骤和注意事项都将被详细介绍。

一、公式法公式法是一种求解二次函数解析式的基本方法。

二次函数的标准形式可以表示为 y = ax²+bx+c,其中 a、b、c 都是实数常数,而 x 是自变量。

一个常见的二次函数的例子为y = x²。

1. 求取 a、b、c 的值在使用公式法求解二次函数的解析式之前,需要先计算出二次函数中的 a、b、c 值。

通常情况下,这些值可以从已知的条件中直接得到。

如果已知二次函数经过点 (2,4) 和 (−1,3),则可以根据这些坐标计算出 a、b、c的值。

可以得到两个方程:4 = a(2)²+b(2)+c3 = a(−1)²+b(−1)+c然后,可以将这些方程化简为:4 = 4a+2b+c3 = a−b+c接下来,可以使用代数法或消元法来求解 a、b、c 的值。

可以将第二个方程中的 a解出来,然后带入第一个方程中,得到:a = 2b−14 = 8b−4+2b+cc = −8b+8可以得到二次函数的解析式为:y = (2b−1)x²+bx+8−8b2. 使用公式法求解二次函数一旦确定了二次函数中的 a、b、c 值,可以使用公式法求解二次函数的解析式。

具体而言,可以使用以下公式:x = (-b ± √(b²-4ac))/(2a)这个公式可以得到二次函数的解析式中的两个根。

如果二次函数的解析式没有实数根,则说明这个二次函数不存在。

在上面的例子中,可以将 a、b、c 的值带入到公式中,得到:x = (-b ± √(b²-4ac))/(2a)x = (-b ± √(b²-4(2b−1)(8−8b)))/(2(2b−1))根据这个公式,可以得到二次函数的解析式的两个实数根,也就是二次函数与 x 轴相交的点。

求二次函数解析式的方法

求二次函数解析式的方法

求二次函数解析式的方法
一、利用顶点坐标求解析式。

对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a, c-b^2/4a)。

因此,我们可以通过已知的顶点坐标来求解析式。

例如,如果已知
顶点坐标为(2, 3),则可以列出方程组:
a2^2+b2+c=3。

a2+b=0。

通过解方程组,即可求得二次函数的解析式。

二、利用描点法求解析式。

描点法是通过已知的函数图像上的点来求解析式的一种方法。

如果已知二次函数上的两个点的坐标分别为(x1, y1)和(x2, y2),
则可以列出方程组:
ax1^2+bx1+c=y1。

ax2^2+bx2+c=y2。

通过解方程组,即可求得二次函数的解析式。

三、利用配方法求解析式。

对于一般的二次函数y=ax^2+bx+c,我们可以利用配方法将其写成完全平方的形式。

例如,对于函数y=x^2+2x+1,我们可以将其写成(y+1)=(x+1)^2的形式,从而得到解析式y=(x+1)^2-1。

四、利用判别式求解析式。

二次函数的判别式Δ=b^2-4ac可以用来判断二次函数的解的情况。

当Δ>0时,函数有两个不相等的实数根;当Δ=0时,函数有两个相等的实数根;当Δ<0时,函数没有实数根。

因此,我们可以通过判别式来求解析式。

以上是几种常用的求二次函数解析式的方法,当然还有其他一些方法,如利用导数、利用函数的对称性等。

通过这些方法,我们可以灵活地求得二次函数的解析式,从而更好地理解和应用二次函数。

二次函数解析式的几种求法

二次函数解析式的几种求法

二次函数解析式的几种求法一次函数是形如y=ax+b的函数,其中a和b为常数,且a≠0。

而二次函数是形如y=ax^2+bx+c的函数,其中a,b和c为常数,且a≠0。

解析式是用来表示函数关系的公式,可以将二次函数的解析式分为以下几种求法:1.根据已知的顶点和过顶点的直线方程求解。

二次函数的标准形式是y=a(x-h)^2+k,其中(h,k)为顶点的坐标。

如果已知顶点的坐标和过该顶点的一条直线的方程,可以将方程代入二次函数的标准形式,确定a的值。

这样就可以得到二次函数的解析式。

2.根据已知的两个点求解。

如果已知二次函数过两个点,可以利用这两个点的坐标,构建并解方程组。

假设已知点的坐标分别是(x1,y1)和(x2,y2),代入二次函数的标准形式得到两个方程,然后解方程组求解出a,b和c。

这样就可以得到二次函数的解析式。

3.根据已知的轴对称性质求解。

二次函数的图像一般是一个开口向上或向下的抛物线。

如果已知抛物线的轴对称轴和顶点的坐标,可以利用这些信息确定二次函数的解析式。

根据轴对称性质,可得到二次函数的解析式。

4.根据已知的根求解。

二次函数的解析式与其根的关系密切,如果已知二次函数的根,可以根据根的性质得到二次函数的解析式。

设二次函数的根为x1和x2,则根据因式定理,二次函数可表示为y=a(x-x1)(x-x2)的形式。

将已知的根代入该式,可以得到二次函数的解析式。

5. 根据已知的导数求解。

二次函数的导数是一次函数,可以根据已知的导数求解二次函数的解析式。

设二次函数的导数为y'=2ax+b,将一次函数的表达式与二次函数的标准形式进行比较,可以得到a和b的值。

然后,代入二次函数的标准形式,可以得到二次函数的解析式。

以上是求解二次函数解析式的几种方法,每种方法都有其适用的情况和优劣势。

具体选择哪种方法需要根据具体的题目和已知条件来决定。

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解

求二次函数解析式的四种方法详解二次函数是指形如y=ax^2+bx+c的函数,其中a、b、c为常数。

常见的四种方法求二次函数解析式包括配方法、因式分解法、求根公式法和完成平方法。

1.配方法:配方法适用于二次函数的系数不为1时,即a≠1的情况。

步骤:a) 将二次函数写成完全平方的形式,即通过将ax^2+bx+c中的b项分拆成两个相等的项得到。

例如:y=x^2+6x+5可以写成y=(x+3)^2-4b)化简得到二次函数的解析式。

例如:在上述例子中,化简得到y=x^2+6x+5=(x+3)^2-42.因式分解法:因式分解法适用于二次函数可以被因式分解的情况,即可以找到两个一次因式的乘积形式。

步骤:a) 将二次函数写成完全平方的形式,即通过将ax^2+bx+c中的b项分拆成两个相等的项得到。

例如:y=x^2+6x+5可以写成y=(x+1)(x+5)。

b)化简得到二次函数的解析式。

例如:在上述例子中,化简得到y=x^2+6x+5=(x+1)(x+5)。

3.求根公式法:求根公式法适用于二次函数的解存在有理根的情况。

步骤:a) 根据二次函数的系数a、b、c,计算出二次函数的判别式Δ=b^2-4ac。

b)根据判别式Δ的数值,判断方程的解的情况:-如果Δ>0,则有两个不相等的实根;-如果Δ=0,则有两个相等的实根(重根);-如果Δ<0,则没有实根,但可能有两个虚根。

c)根据求根公式x=(-b±√Δ)/(2a),求出实根或复根。

4.完成平方法:完成平方法适用于二次函数的系数为1时,即a=1的情况。

步骤:a)将二次函数进行配方,将其转化成完全平方的形式。

例如:y=x^2+6x+___,需要找到一个数来补全。

根据(b/2)^2的性质,可以将6/2=3得到的平方数补全,即y=x^2+6x+9b)化简得到二次函数的解析式。

例如:在上述例子中,化简得到y=x^2+6x+9=(x+3)^2通过以上四种方法,可以根据具体的二次函数形式,选择适合的方式来求得二次函数的解析式。

确定二次函数解析式的常用方法

确定二次函数解析式的常用方法

确定二次函数解析式的常用方法求二次函数的解析式是初中函数学习的重点,其常用方法就是待定系数法,选择什么样形式的解析式来求解,要根据题目的条件而定,下面介绍求二次函数解析式的三种常用方法:一、已知三点坐标,通常选择一般式:y=ax2+bx+c:例1、已知二次函数的图象经过三点(1,1),(-1,7),(2,4),求其解析式。

解:设二次函数的解析式y=ax2+bx+c,把三点坐标代入得:a+b+c=1 a=2a-b+c=7 解得 b=-34a+2b+c=4 c=2∴二次函数的解析式为:y=2x2-3x+2。

二、已知顶点和另一点,通常选择顶点式:y=a(x-h)2+k。

例2、已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5),求此抛物线的解析式。

解:∵抛物线的顶点为(-1,-3)。

∴设其解析式为y=a(x+1)2-3。

把(0,-5)代入上式得:-5=a-3, 则a =-2∴抛物线的解析式为y=-2(x+1)2-3即:y=-2x2-4x-5,(最后要化为一般式)三、已知抛物线与x轴的两个交点A(x1,0),B(x2,0) 和另一条件时,通常选用交点式:y=a(x-x1)(x-x2)。

例3、已知抛物线与y轴交于点A(0,3),与X轴分别交于B(1,0),C(5,0)两点,求此抛物线的解析式。

解:∵点B(1,0),C(5,0)是抛物线与X轴的交点。

∴可设其解析式为y=a(x-1)(x-5)。

把点A(0,3)坐标代入上式得:3=a(0-1)(0-5), 解得a=3/5∴所求抛物线的解析式为y=3/5(x-1 )(x-5)即:y=3/5 x2-18/5 x+3,(最后要化为一般式)由此可以看出,求二次函数的解析式要根据题目不同条件,灵活的采用不同类型的分析式作为解题模型,这样才能提高解题效率,另外所求的解析式最后要化为一般式。

求二次函数解析式的四种方法

求二次函数解析式的四种方法

求二次函数解析式的四种方法一、根据函数的顶点坐标和开口方向求解析式方法:设二次函数解析式为 y = ax^2 + bx + c,已知顶点坐标为 (h, k)。

1.根据开口方向求a的取值:-若二次函数开口向上,则a>0;-若二次函数开口向下,则a<0。

2.根据已知点求解a、b、c的值:将已知顶点坐标代入解析式,得到方程 k = ah^2 + bh + c。

由此,可得到关系式:- 若 a = 0,则b ≠ 0,方程为 kh + c = k;- 若a ≠ 0,则方程为 ah^2 + bh + c = k。

解方程组,得到a、b、c的值。

3.根据a、b、c的值写出二次函数的解析式:将求得的 a、b、c 的值带入解析式 y = ax^2 + bx + c,即得到最终的二次函数解析式。

二、根据已知的三个点求解析式方法:设已知的三个点为(x₁,y₁),(x₂,y₂),(x₃,y₃)。

1.求解a的值:通过使用待定系数法,假设解析式为 y = ax^2 + bx + c,将三个点代入解析式得到一个方程组:{a(x₁)² + bx₁ + c = y₁{a(x₂)² + bx₂ + c = y₂{a(x₃)² + bx₃ + c = y₃解方程组,得到a的值。

2.求解b、c的值:将求得的a的值带入上述方程组中,并解方程组,得到b、c的值。

3.写出二次函数的解析式:将求得的 a、b、c 的值带入二次函数的一般形式 y = ax^2 + bx + c,即得到最终的二次函数解析式。

三、根据已知的顶点坐标和另一点求解析式方法:设已知的顶点坐标为(h,k),另一点坐标为(x,y)。

1.求解a的值:代入已知顶点坐标 (h, k),得到方程 k = ah^2 + bh + c。

再代入另一点坐标 (x, y),得到方程 y = ax^2 + bx + c。

消去c,并利用两个方程,可以解得a的值。

二次函数的解析式的确定

二次函数的解析式的确定

图像特点
二次函数图像为抛物线,开口方 向由二次项系数\(a\)决定。
顶点坐标
顶点坐标为\((-b/2a, f(-b/2a))\)。
顶点形式的二次函数
顶点形式更容易解释二次函数的图像平移和伸缩。顶点形式为: $$f(x) = a(x-h)^2 + k$$
解析式示例
例如:$$f(x) = 2(x-3)^2 + 1$$
图像特点
通过调整顶点的坐标\((h,k)\),我 们可以平移和伸缩二次函数的图 像。
顶点坐标
顶点坐标为\((h,k)\)。
因式形式的二次函数
因式形式可以帮助我们迅速找到二次函数的根和$x$轴的交点。因式形式为: $$f(x) = a(x-r_1)(x-r_2)$$
解析式示例
例如:$$f(x) = 2(x-1)(x+3)$$
二次函数的解析式的确定
了解二次函数的不同形式以及如何确定解析式,包括标准形式、顶点形式和 因式形式。
标准形式的二次函数
通过探索二次函数的标准形式,我们可以了解其特点和图像的外观。标准形式为: $$f(x) = ax^2 + bx + c$$
解析式示例
例如:$$f(x) = 2x^2 + 3x - 5$$ຫໍສະໝຸດ 解二次方程的技巧和常见错误
掌握一些技巧可以更轻松地解决二次方程,同时避免一些常见的错误。
1 技巧
例如,可以使用因式分解、配方法或二次公式等方法来解决二次方程。
2 常见错误
避免在计算中出现符号错误、忽略或误解负数解等错误。
图像特点
二次函数与$x$轴的交点即为根, 可用于求解方程。
根的性质
根的坐标为\((r_1,0)\)和\((r_2,0)\)。

求二次函数解析式的几种方法

求二次函数解析式的几种方法

求二次函数解析式的几种方法二次函数是数学中重要的函数之一,其一般形式为f(x) = ax^2 +bx + c,其中a,b,c为常数,a≠0。

求二次函数解析式的方法有很多,下面将详细介绍其中几种常用的方法。

1.直接法:直接利用已知的函数图像上的点进行求解。

设过点(x1,y1)、(x2,y2)、(x3,y3)的二次函数解析式为f(x),将点坐标代入方程,即得到3个方程组成的线性方程组,解得a,b,c的值,进而得到二次函数解析式。

2.配方法:如果二次函数的系数a不为1,可利用配方法将其化为标准形式f(x)=a(x-h)^2+k。

配方法的步骤如下:1) 将二次函数右侧展开,得到f(x) = a(x^2 - 2hx + h^2) + k;2) 合并同类项,得到f(x) = ax^2 - 2ahx + ah^2 + k;3) 将二次项与一次项拆开,得到f(x) = ax^2 - 2ahx + ah^2 + k;4) 将二次项与一次项的平方项合并,得到f(x) = a(x - h)^2 +(ah^2 + k);5) 由于平方项的系数为a,根据二次函数的性质,可以确定顶点坐标为(h, ah^2 + k);6)最后,根据顶点坐标和a的值,可以求得二次函数解析式。

3.试探法:当二次函数的系数a为1时,可以利用试探法求解。

试探法的步骤如下:1)根据二次函数的特性,确定顶点坐标为(h,k),其中h为抛物线的对称轴的横坐标,k为抛物线的顶点纵坐标;2)将顶点坐标代入二次函数的解析式,得到f(x)=(x-h)^2+k;3)根据顶点坐标求得的解析式,绘制函数图像,判断是否与已知的函数图像相同。

4.求导法:对于给定二次函数的函数表达式,可以通过求导的方法来求解。

求导法的步骤如下:1) 对二次函数f(x)求导,得到f'(x) = 2ax + b;2)由于二次函数的导数为一次函数,即直线,因此可以根据已知的函数的导数与原函数的关系来确定函数的解析式;3)通过观察导数的图像,可以得到解析式的系数a和b的值。

十种二次函数解析式求解方法

十种二次函数解析式求解方法

十种二次函数解析式求解方法1. 使用配方法:当二次函数无法直接因式分解时,可以使用配方法来求解。

假设二次函数的解析式为y=ax^2+bx+c,先将常数项c移到等式的另一边,得到y=ax^2+bx=-c。

然后再在x^2的系数a前面添加一个实数k,使得ax^2+bx=-c可以表示为(ax^2+bx+k^2)-k^2=-c。

然后将等式两边进行平移,即得到(ax^2+bx+k^2)=k^2-c。

这样,原本的二次函数就可以表示为一个完全平方的形式加上一个常数。

然后可以通过完全平方公式来求解。

2.利用零点的性质:二次函数的解析式可以表示为y=a(x-x1)(x-x2),其中x1和x2分别是二次函数的两个零点。

通过求解方程a(x-x1)(x-x2)=0,即可得到这两个零点的值。

3. 利用判别式:对于一元二次方程ax^2+bx+c=0,方程的判别式Δ=b^2-4ac可以判断方程的解的情况。

当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根,但有两个共轭的复数根。

4.利用顶点的性质:二次函数的解析式可以表示为y=a(x-h)^2+k,其中(h,k)是二次函数的顶点的坐标。

通过将方程和y=k相等,然后通过解方程(x-h)^2=(k-k)/a,可以得到x的值。

然后将x的值代入二次函数的解析式,即可得到y的值。

5. 利用对称性:二次函数的解析式可以表示为y=ax^2+bx+c。

二次函数的对称轴的方程为x=-b/2a。

通过将x=-b/2a代入二次函数的解析式,即可得到对称轴上的y的值。

6. 利用平方差公式:对于二次函数的解析式y=(x-p)^2-q,其中p 和q分别是二次函数的顶点的横坐标和纵坐标。

通过展开平方得到y=x^2-2px+p^2-q,然后将原始的二次函数的解析式和展开后的二次函数的解析式相等,即可得到p和q的值。

7.利用导数的性质:二次函数的导数为一次函数,通过求解一次函数的解析式,可以得到二次函数的极值点,即顶点。

求二次函数解析式的三种方法

求二次函数解析式的三种方法

求二次函数解析式的三种方法二次函数是形如$y=ax^2+bx+c$的函数,其中$a \neq 0$。

它是数学中的基本函数之一,广泛应用于物理学、经济学、工程学等学科中。

解析式是指能够明确表达函数关系的数学表达式。

下面将介绍三种常用的方法来确定二次函数的解析式。

第一种方法是使用差值法。

差值法是通过给定的点来确定二次函数的解析式。

假设已知二次函数过三个不同的点$(x_1,y_1)$,$(x_2,y_2)$,$(x_3,y_3)$,那么可以将这三个点带入二次函数的解析式中,得到如下的方程组:$$\begin{cases}ax_1^2+bx_1+c=y_1 \\ax_2^2+bx_2+c=y_2 \\ax_3^2+bx_3+c=y_3 \\\end{cases}$$解这个方程组可以得到$a$,$b$,$c$的值,从而确定二次函数的解析式。

第二种方法是使用顶点法。

顶点法是通过二次函数的顶点坐标来确定解析式。

二次函数的顶点坐标可以通过公式$x=-\frac{b}{2a}$来求得。

将这个顶点坐标代入二次函数的解析式中,可以得到一个等于顶点对应的函数值的方程。

结合另外一个给定点的坐标,可以得到一个方程组。

解这个方程组可以得到$a$,$b$,$c$的值,从而确定二次函数的解析式。

第三种方法是使用因式分解法。

因式分解法是将二次函数的解析式进行因式分解,从而得到函数的解析式。

对于一般形式的二次函数$y=ax^2+bx+c$,我们可以将其写成$y=a(x-p)(x-q)$的形式,其中$p$和$q$是实数。

展开右边的乘积,可以得到如下的方程:$$ax^2+bx+c=a(x^2-(p+q)x+pq)$$通过比较系数,可以得到以下等式:$$\begin{cases}p+q=-\frac{b}{a} \\pq=\frac{c}{a}\end{cases}$$解这个方程组可以得到$p$和$q$的值,从而确定二次函数的解析式。

以上就是三种常用的方法来确定二次函数解析式的介绍。

怎样确定二次函数的解析式

怎样确定二次函数的解析式

怎样确定二次函数的解析式?确定二次函数的解析式一般采用待定系数法.应根据已知条件的不同特点,适当选取二次函数的一般式、顶点式或交点式,以使计算最简便为宜.(1)已知抛物线上三个点的坐标,最好选用一般式.例1 已知抛物线经过A (0,4),B (1,3)和C (2,6)三点,求二次函数的解析式..c bx ax y 2++=设二次函数的解析式为规范解法因A 、B 、C 三点在函数的图象上,所以它们的坐标满足函数的解析式.把A 、B 、C 三点的坐标代入所设解析式,⎪⎩⎪⎨⎧=++=++=.6c b 2a 4,3c b a ,4c 得方程组⎪⎩⎪⎨⎧=-==.4c ,3b ,2a 解得 .4x 3x 2y 2+-=故所求函数解析式为(2)若已知条件与抛物线的顶点有关,则用顶点式比较恰当.例2 已知二次函数的图象顶点为(2,3),且经过点(3,1),求这个二次函数的解析式..n )m x (a y 2++=式为设二次函数的解析规范解法.3)2x (a y ,)3,2(2+-=得的坐标代入把顶点.3)23(a 1,)1,3(2+-=得的坐标代入再把点解得a =-2..3)2x (2y 2+--=式为故所求二次函数的解析(3)已知抛物线与x 轴两个交点的坐标,选用交点式比较简便.例3 已知A (2,0),B (-1,0),C (1,-3)三个点在抛物线上,求二次函数的解析式.思路启迪由A 、B 两点的纵坐标为0知,这两点是抛物线与x 轴的交点.规范解法 设二次函数的解析式为),x x )(x x (a y 21--=).1x )(2x (a y ,1x ,2x 21+-=-==得代入把再把点C (1,-3)的坐标代入,得-3=a (1-2)(1+1),.23a =解得 ).1x )(2x (23y +-=故所求解析式为点评上述3个例题均可采用二次函数的一般式求解.如例2中的抛物线顶点坐标为(2,3),可以列出两个方程,即 顶点的横坐标22=-a b , ① 顶点的纵坐标3442=-a b ac , ②再把点(3,1)的坐标代入c bx ax y ++=2,得9a+3b+c=1③ 把方程①、②、③联立得方程组,解得 ⎪⎩⎪⎨⎧-==-=.5c ,8b ,2a.5x 8x 2y 2-+-=故所求解析式为显然,选用一般式解决例2的问题比用顶点式麻烦得多.因此,求二次函数的解析式,根据己知条件选取表达式是关键.例4 已知二次函数的图象经过点A (3,—2)和B (1,0),且对称轴是直线x =3.求这个二次函数的解析式.思路启迪一已知对称轴是直线x =3,因对称轴经过顶点,所以这是与顶点有关的问题..h 3)-a(x y 12+=设二次函数的解析式为规范解法把A (3,-2),b (1,0)两点的坐标代入,得⎪⎩⎪⎨⎧-==⎪⎩⎪⎨⎧=+--=+-.2h ,21a .0h )31(a ,2h )33(a 22解得 .2)3x (21y 2--=故所求解析式为思路启迪二由对称轴是直线x =3,且点A 的横坐标是3,知点A (3,—2)是抛物线的顶点,可设解析式为顶点式.23)-a(x y 22-=设二次函数的解析式为规范解法21a ,02)31(a ,)0,1(B 2==--解得得的坐标代入把点.2)3x (21y 2--=故所求解析式为思路启迪三由对称轴是直线x =3,可得关于a 、b 的一个方程.3a 2b =-又知图象经过两定点,可设解析式为一般式,.c bx ax y 32++=设二次函数的解析式为规范解法⎪⎪⎩⎪⎪⎨⎧=++-=++=-.0c b a 2c b 3a 9,3a 2b ,得根据题意 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧=-==.25,3,21c b a .25x 3x 21y 2+-=故所求析式为思路启迪四由点B (1,0)的纵坐标是0知,它是抛物线与x 轴的交点,若能求出抛物线与x 轴的另一个交点,即点B 关于对称轴x =3的对称点.则可设解析式为交点式..5m ,32m 1(m,0),B 3x B(1,0) 4==+'=解得则的对称点关于直线设点规范解法)0,5(B 的坐标为所以点' 设二次函数的解析式为y =a (x -1)(x -5).得代入的坐标把点,)2,3(A -a (3-1)(3-5)=-2,.21a =解得).5x )(1x (21y --=故所求解析式为思路启迪五同解法4得到B′(5,0),就具备了图象过三个定点,可设其解析式为一般式.规范解法5 同解法4,求得点B (1,0)关于对称轴x =3的对称点B '(5,0),设二次函数的解析式为.c bx ax y 2++=),2,3(A 0c bx ax 5x ,1x 2-=++==的两根及图象过点是一元二次方程由⎪⎪⎩⎪⎪⎨⎧=-==⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+++=+=-.25c ,3b ,21a .2c b 3a 9,51a c ,51a b 解得得.25x 3x 21y 2+-=故所求解析式为点评 例4各解法中以解法2最佳.它体现在对点A (3,—2)是所求抛物线的顶点这一隐含条件挖掘得好.因此,我们在解题过程中既要学会一题多思,一题多解,拓开思路;更要注意寻求合理的解题途径,选好突破口.注 本题还可直接把A 、B 、B′三点坐标代入所设一般式,求a 、b 、c 的值.29.如何利用“抛物线x 轴交点间的距离”求二次函数的解析式?已知抛物线与x 轴两交点间的距离,求二次函数的解析式,一般有下列两种情况:例1 已知二次函数的顶点坐标为(3,-2),并且图象与x 轴两交点间的距离为4.求二次函数的解析式.思路启迪在已知抛物线与x 轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x =3,再利用抛物线的对称性,可知图象与x 轴两交点的坐标分别为(1,0)和(5,0). 此时,可随意使用二次函数的一般式或交点式,得二次函数的解析式为.25x 3x 21y 2+-=点评 同一个题目使用不同的方法求解后,应进一步比较分析它们的优缺点,才能不断提高解题水平,求得最简捷的解法.例2 已知二次函数的图象经过⎪⎭⎫ ⎝⎛-25,0A 和)6,1(--B 两点,且图象与x 轴的两个交点间的距离为4.求二次函数的解析式.思路启迪已知抛物线与x 轴的两个交点间的距离,不知道它的对称轴,情况就比上述问题要复杂得多.利用A 、B 两点的坐标可以确定两个方程,即.6c b a 25c -=+--=和根据待定系数法的要求,必须设法找到第三个方程,才能利用二次函数的一般式求得a 、b 、c 的值.确定第三个方程的思路有二. 规范解法1 因为抛物线与x 轴交点的横坐标是一元二次方程0c bx ax2=++的两个根.x ,x 21方程的求根公式为 ,a 2ac 4b b x 22,1-±-=.4|x x |21=-可列方程即.4a 2ac 4b b a 2ac 4b b 22=-----+-.4a ac 4b 2=-化简得 两边平方,得.16422=-a ac b.a 16ac 4b 22=-∴.,0c b a 25c 得方程组即可求解联立和把这个方程与程=+--=规范解法2 根据一元二次方程根与系数的关系,,16x x ,a b x x 2121=-=+,16)x x (,,4|x x |22121=-=-得两边平方把.16x x 4)x x (21221=-+即.a 16ac 4b ,a c x x ,a b x x 222121=-=-=+得代入并整理把点评以上两种变形方法都应熟练掌握,它们对解决“已知抛物线与x 轴的两个交点间的距离,求二次函数解析式”的问题大有益处.30.怎样求二次函数的最大(小)值?求二次函数的最大值和最小值的问题,有着广泛的应用.求二次函数c bx ax y 2++=的最值,有下面三种方法: (1)公式法.由二次函数c bx ax y 2++=的图象看出,当a>0时,抛物线的开口向上,它的顶点⎪⎪⎭⎫ ⎝⎛--a 4b ac 4,a 2b 2在最低处.由此可得:当a>0且a 2b x -=时,函数达到最小值,这个最小值就是抛物线顶点的纵坐标,即.a 4b ac 4y 2-=最小当a<0且a 2b x -=时,函数达到最大值,这个最大值就是抛物线顶点的纵坐标,即.a 4b ac 4y 2-=最大 例1 求函数322--=x x y 的最大值或最小值.规范解法 由a=1>0知抛物线开口向上 故当,122a 2b x 时=--=-= .44412a 4b ac 4y 2-=--=-=最小(2)配方法.变形为利用配方法把二次函数c bx ax y 2++=.a 4b ac 4a 2b x a y 22-+⎪⎭⎫ ⎝⎛+=.0a 2b x ,x 2≥⎪⎭⎫ ⎝⎛+则有对任意实数 ,a 4b ac 4y ,a 2b x 0a 2-=-=>最小时当若.a 4b ac 4y ,a 2b x 0a 2-=-=<最大时当若例2 求二次函数25-2x y 2-+=x 的最大值或最小值.规范解法.8945x 2 1x 25x 22x 5x 2y 222+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+--=-+-= ∵,045,022≥⎪⎭⎫ ⎝⎛-<-=x a.89y ,45x ==∴最大时当点评利用公式法与配方法求二次函数的最值时,应根据具体情况,选用恰当的方法.(3)判别式法.所谓“判别式法”就是利用一元二次方程根的判别式ac 4b 2-来求二次函数的最值的方法.例3 求函数232--=x x y 的最大值或最小值. .0)2y (x 32x 2=+--把解析式变形为规范解法.0)2y (24)3(,0ac 4b ,x 22≥+⨯+-≥-即必有判别式为实数因.825y ,-≥得解这个不等式.8252x 3x 2y 2---=的最小值为故函数 点评用“判别式法”求二次函数的最大值或最小值,有时比公式法和配方法更为简便,它不仅可用来求二次函数的最值,还可求更为广泛的一类函数的最值.31.怎样利用二次函数的最值求得其他函数的最值?利用二次函数的最值,可以进一步研究其他一些函数的最值问题.举例如下.例1 求函数22122+--=x x y 的最大值或最小值.思路启迪在函数的解析式中,含有二次三项式,2x 2x 2+-故可构造关于x 的二次函数,2x 2x t 2+-=,先求出其最值,再通过不等式运算求出函数2x 2x 12y 2+--=的最值. .2x 2x t 2+-=令规范解法.11)-(x t ,2+=得配方得两边同加上,2,0t 11<-≤-22x 2x 12y 1,2t 1212<+--=≤<-≤即.2x 2x 12y 2只有最小值显然函数+--=.1y ,1x ==最小时故当例2 求函数322+--=x x y 的最大值或最小值. 思路启迪在函数解析式中,含有关于x 的二次三项式,3x 2x 2+--可构造二次函数2x t -=,3x 2+-通过求二次函数的最值,求得3x 2x y 2+--=的最值..4)1x (t ,,3x 2-x t 22++-=+-=得配方令规范解法.1x 3x ,03x 2x 2≤≤-≥++-的取值范围是得由当x =-1时,∵a=-1<0, ∴t 有最大值4,即t≤4,从而y≤2. 又∵,0322≥+--x x 当x=1时取“=”号,∴y≥0,综上0≤y≤2. 故函数3x 2x y 2+--=既有最大值,又有最小值.当x =-1时,;2y =最大当x =1时,.0y =最小注 ①以上两例,都是根据已知函数的特征,构造出一个二次函数,先求出二次函数的最值,再通过不等式的运算求得已知函数的最值.②求函数的最值应先考虑自变量的取值范围.如二次函数c bx ax y 2++=的自变量取值范围是全体实数.再如例1中,因2x 2x 12y ,01)1x (2x 2x 222+--=≠+-=+-故的自变量取值范围也是全体实数,在解题过程中可以不作叙述.但例2中,应限制被开方数,03x 2x 2≥+--所得自变量的取值范围不再是全体实数,而是-3≤x≤1,必须加以明确.因为函数的最值一定是自变量取某一确定值时函数的对应值,如果你所求的函数最值,在自变量的取值范围内找不到确定的值,使它对应的函数值就是这个“最值”,那么表明你所求的连函数值都不是,更谈不上是函数的最值了.所以,求自变量的取值范围是求函数最值不可缺少的步骤.例3 已知x 、y 为实数,且x+y=2,求22xy +的最小值.思路启迪在x 、y 满足一定条件的前提下,求函数22y x +的最值,叫做求函数的条件最值.求条件最值最基本的方法是通过代入消元,把表达式转化为只含有一个自变量的一元二次函数的形式,再利用二次函数的最值求解..x 2y 2y x -==+解出由代入①,得.442)2(222+-=-+=x x x x t .2)1x (2t ,2+-=得配平方.2y x 22的最小值是故+例4 设,|x -y|=2求xy 的最小值.思路启迪要想把式子xy 转化为只含有一个未知数,比如只含有x 的式子,就需对,|x -y|=2分类讨论去绝对值符号,从中解出y ,再代入消元.规范解法 由|x -y|=2知x≠y,有以下两种情况:①当x>y 时,x -y =2,解得y =x -2..1)1x (x 2x )2x (x xy 22--=-=-=∴.1xy ,1x -=有最小值时当.1)1x (x 2x )2x (x xy 22-+=+=+=∴.1xy ,1x --=有最小值时当再从①、②中比较出最小值,才是所求的最小值.由于两种情况下的最小值都是-1,故当x =±1时,xy 达到最小值-1.32.解二次函数最值的应用题的方法步骤是什么?解二次函数最值应用题的基本方法,是设法把关于最值的实际问题,转化为二次函数的最值问题,然后按求二次函数最值的方法求解.其一般步骤是:(1)利用题目中的已知条件和学过的有关数学公式列出关系式;(2)把关系式转化为二次函数的解析式;(3)求二次函数的最大值或最小值.例1 用12米长的木料做成如图13—20所示的矩形窗框(包括中间的十字形),问当长、宽各是多少时,矩形窗框的面积最大?最大的面积是多少?规范解法 设窗框长为x 米,.3x 312米则窗框的宽为-.x 4x 3x 312x y 2+-=⎪⎭⎫ ⎝⎛-=矩形窑框的面积为.4)2x (y ,2+--=得配平方).(4y ,)(2x 平方米时米当最大==).(2243x 312,米此时=-=-答:当窗框的长、宽各为2米时,窗框的面积最大,最大的面积是4平方米.例2 已知三角形的两边和为20cm ,这两边的夹角为120°(图13—21).求它的面积的最大值;当面积最大时,这两边的长各是多少?思路启迪已知三角形两边之和为20cm ,应设其中一边为x cm ,并将这条边上的高用x 表示,即可把该三角形的面积表示为x 的函数.规范解法 在如图13—21所示的△AB C 中,设BC 边的长为xcm ,则AB =(20-x )cm .过A 作BC 边上的高AD ,与CB 的延长线交于点D .∵∠ABD=180°-120°=60°,.cm )x 20(23AD -=∴).x 20(23x 21y ABC -⋅=∆∴的面积为 .043a .x 35x 43y 2<-=+-=这里即).cm (325434)35(y ,)cm (1043235x 22=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=有最大值时当 此时20-x =10(cm )..cm 10,;cm 325:2三角形两边的长各为当面积最大时是这个三角形的最大面积答 例3 快艇和轮船分别从A 地和C 地同时开出,航行路线互相垂直.如图13—22.快艇的速度为40千米/小时,轮船的速度是15千米/小时,A 、C 两地间的距离是120千米.问经过多少时间,快艇和轮船的距离最小?(精确到0.1小时)思路启迪设经过t 小时后,快艇和轮船间的距离最小,此时快艇在图13—22所示的B 点位置,轮船在D 点位置.因连结两点以线段最短,故快艇和轮船间的最短距离,就是线段BD 的长.∵快艇速度为40千米/小时,轮船速度为15千米/小时,AC =120千米,∴BC=120-40t ;CD =15t .在Rt△BCD 中,由勾股定理,得即大约经过2.6小时,快艇和轮船间的距离最小.例4某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销路,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)某商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天盈利最多?思路启迪商场所获的利润是由售出的商品数量和这件商品的利润相乘而得到的.如果每件衬衫降价x元,则盈利为(40-x)元,则可多售出2x件衬衫,即每天可售出(20+2x)件衬衫,从而可求出每天的利润.由于这个关系式是一个二次项系数为负数的二次函数,所以可求出盈利的最大值,规范解法(1)设每件衬衫应降价x元,根据题意,得(40-x)(20+2x)=1200.整理,得.0200302=+-xx20x,10x,21==解这个方程即当降价10元或20元时,由于销售量不同,都可获利1200元.但“为了扩大销售”,“尽快减少库存”可降价20元,每天销售量将增加,符合题中要求.(2)设商场平均每天盈利y元,则.1250)15x(2)x220)(x40(y2+--=+-=即每件衬衫降价15元时,商场平均每天盈利最多,达到1250元.答:若商场平均每天盈利1200元时,每件衬衫应降价10元或20元;每件衬衫降价15元时,商场平均每天盈利最多,达到1250元.点评通过解答上述的几个实际问题,会使我们感觉到数学的美在于它源于实践,用于实践.我们从生产、生活的实践中发现和总结规律,进而能根据客观规律指导实践,解决生产、生活中的一些实际问题.初中数学中的一次函数、二次函数问题是与实际问题联。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定二次函数的解析式
一、一般方法
(1)已知抛物线上三个点的坐标,最好选用一般式.
例1已知抛物线经过A(0,4),B(1,3)和C(2,6)三点,求二次函数的解析式.(2)若已知条件与抛物线的顶点有关,则用顶点式比较恰当.
例2已知二次函数的图象顶点为(2,3),且经过点(3,1),求这个二次函数的解析式.
(3)已知抛物线与x轴两个交点的坐标,选用交点式比较简便.
例3已知A(2,0),B(-1,0),C(1,-3)三个点在抛物线上,求二次函数的解析式.
例4已知二次函数的图象经过点A(3,—2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
二、利用抛物线与x轴交点间的距离求二次函数的解析式
例1 已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4.求二次函数的解析式.
例2 已知二次函数的图象经过





-
2
5
,0
A

)6
,1
(-
-
B两点,且图象与x轴的两个交点
间的距离为4.求二次函数的解析式.
三、其它已知条件,灵活运用不同方法求解
1、已知抛物线y=ax2+bx+c与抛物线y=-x2-7x+12形状相同,顶点在直线x=1上,且顶点到x轴的距离为3,求此抛物线解析式
2、.已知二次函数y=ax2+bx+c,当x=2时,有最大值2,其图象在x轴截得的线段长为2,求这个二次函数的解析式。

3、.如图,抛物线y=ax 2+bx+c(a>0)与x 轴交于A(1,0),B(5,0)两点,与y 轴交于M ,抛物线顶点为P ,且PB=25
(1)求这条抛物线的顶点P 的坐标和它的解析式
(2)△MOP (O 为坐标原点)的面积。

4、已知抛物线y=x 2-(2m -1)x+m 2-m -2 (重要提示:三角形的高要加绝对值)
(1)证明抛物线与x 轴有两个不同的交点
(2)分别求出抛物线与x 轴的交点A 、B 的横坐标x A ,x B ,以及与y 轴的交点C 的纵坐标y C (用含m 的代数式表示)
(3)设△ABC 的面积为6,且A 、B 两点在y 轴的同侧,求抛物线的解析式。

5、已知抛物线y=-21
x 2-(n+1)x -2n(n<0)经过A(x 1、0),B(x 2、0),D (0、y 1),其中x 1<x 2,△ABD 的面积为12
(1)求这条抛物线的解析式及它的顶点坐标
(2)如果点C (2,y 2)在这条抛物线上,点P 在y 轴正半轴上,且△BCP 为等腰三角形,求直线BP 的解析式。

6、已知抛物线y=x 2+bx+c 的顶点在第一象限,顶点的横坐标是纵坐标的2倍,对称轴与x 轴的交点在一次函数y=x -c 的图象上,求b 、c 的值。

7、在平面直角坐标系x O y 中,抛物线222
--=mx mx y (0≠m )与y 轴交于点A ,其
对称轴与x 轴交于点B 。

(1)求点A ,B 的坐标;
(2)设直线L 与直线AB 关于该抛物线的对称轴对称,求直线L 的解析式;
(3)若该抛物线在12-<<-x 这一段位于直线的上方,并且在32<<x 这一段位于
直线AB 的下方,求该抛物线的解析式。

8、已知二次函数21:2L y x bx c =-++与x 轴交于A (1,0)、B (3,0)两点;
二次函数22:43L y kx kx k =-+(k ≠0)的顶点为P.
(1)请直接写出:b=_______,c=___________;
(2)当90APB ∠= ,求实数k 的值;
(3)若直线15y k =与抛物线2L 交于E ,F 两点,问线段EF 的长度是否发生变化?如果
不发生变化,请求出EF 的长度;如果发生变化,请说明理由.
自主练习
1、二次函数2y x bx c =++的图象如图所示,其顶点坐标为M (1,-4).
(1) 求二次函数的解析式;
(2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y x n =+与这个新图象有两个公共点时,求n 的取值范围.
2、如图,直线33y x =-+交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线1C 交x 轴
于另一点M (-3,0).
(1)求抛物线1C 的解析式;
(2)直接写出抛物线1C 关于y 轴的对称图形2C 的解析式;
(3)如果点'A 是点A 关于原点的对称点,点D 是图形2C 的顶点,那么在x 轴上是否存在点P ,使得△PAD 与△'A BO 是相似三角形?若存在,求出符合条件的P 点坐标;
若不存在,请说明理由.。

相关文档
最新文档