余杭区2007年“假日杯”初中数学竞赛试卷
2007年全国初中数学联合竞赛试题(含解竞赛试题(含解答)-48
2007年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1. 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为 ( ) (A )1. (B )31. (C )31-. (D )21. 【答】B.解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ). 注:本题也可用特殊值法来判断. 2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211x x +-的值,将所得的结果相加,其和等于 ( ) (A )-1. (B )1. (C )0. (D )2007.【答】C.解 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选(C ).3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( ) (A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形.【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ).4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )(A )30°. (B )45°. (C )60°. (D )75°. 【答】C. 解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为 ( )(A )91. (B )92. (C )94. (D )32. 【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=. 易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=. 所以:DEF S △19ABC S =△.故选(A ). 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是 ( )(A )101. (B )51. (C )103. (D )52. 【答】 B.AE C B D O H解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y . 因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 二、填空题(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333____1___. 解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a .2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =.10034016- 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a=11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为____4_____.解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是___17____. 解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A )一、 (本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt +.由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥. 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m A B C DE F G M N 2007年全国初中数学联合竞赛试题参考答案及评分标准 第4页(共8页)22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME . 证明 设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PCPE PB PN =, ∴PC PN PE PB ⋅=⋅. 又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.∴PF PM PC PN ⋅=⋅,故PFPC PN PM = 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根.解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得 []056)18()1(2=+++-x a x x因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 AB C D E F M N P⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-.第二试 (B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ; 一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22.所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔ 09)46()4(222≥-+-+-⇔n t n m t m (1)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)题目和解答与(A )卷第二题相同. 三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy 56=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值.解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x 56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.第二试 (C )一、(本题满分25分)题目和解答与(B )卷第一题相同.二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点. 解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++= 113a x-,即0113)710()232(223=-+-+++a x a x a x ,分解因式得 []0311)12()12(2=-+++-a x a x x (1)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程 0311)12(2=-+++a x a x (2)必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数,而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-.。
全国初中数学竞赛试题及答案(2007年)
2007年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题(本题满分42分,每小题7分)本题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.1. 已知z y x ,,满足x z z y x +=-=532,则z y y x 25+-的值为 ( )(A )1. (B )31. (C )31-. (D )21. 【答】B.解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ).注:本题也可用特殊值法来判断.2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211x x +-的值,将所得的结果相加,其和等于 ( )(A )-1. (B )1. (C )0. (D )2007.【答】C.解 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选(C ). 3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是 ( )(A )等腰三角形. (B )锐角三角形. (C )钝角三角形. (D )直角三角形.【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ). 4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )(A )30°. (B )45°. (C )60°. (D )75°. 【答】C.解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F,则ABC DEF S S △△:的值为 ( )(A )91. (B )92. (C )94. (D )32. 【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=.易证△DEF ∽△M N P ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=. 所以:DEF S △19ABC S =△.故选(A ). 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是 ( )(A )101. (B )51. (C )103. (D )52. 【答】B.解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 二、填空题(本题满分28分,每小题7分)1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333____1___.解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a ,∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =.10034016- 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为____4_____.解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是___17____.AB CD E F G M N解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得 ))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A )一、 (本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt +.由题意,32mt t n+≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥. 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME . 证明 设MN 与EF 交于点P ,∵NE //BC ,∴△PNE ∽△PBC ,∴PC PE PB PN =, ∴PC PN PE PB ⋅=⋅.又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.∴PF PM PC PN ⋅=⋅,故PFPC PN PM = 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC ∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根.解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 A B D E F M N P⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-. 第二试 (B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22.所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔09)46()4(222≥-+-+-⇔n t n m t m (1)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 二、(本题满分25分)题目和解答与(A )卷第二题相同. 三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. 解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点. 因为a 是正整数,所以关于x 的方程 056)18(2=+++x a x(2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根. 而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a 当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.第二试 (C )一、(本题满分25分)题目和解答与(B )卷第一题相同.二、(本题满分25分)题目和解答与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点.解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++=113a x-,即0113)710()232(223=-+-+++a x a x a x ,分解因式得 []0311)12()12(2=-+++-a x a x x (1)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程 0311)12(2=-+++a x a x(2)必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数, 而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a . 显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以 ⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-.。
2007年八年级数学竞赛(决赛)试题
2007年八年级数学竞赛(决赛)试题一、选择题(每小题5分,共30分) 1.如果1233121231231t t t t t tt t t t t t ++=-,则的值为( ) (A )1 (B )-1 (C )±1 (D )不确定2.已知2110 x x x x-<<,则,,的大小关系是( ) (A )21x x x << (B )21x x x << (C )21x x x << (D )21x x x<<3.在平面直角坐标系内,已知点A (2,2),B (2,-3),点P 在y 轴上,且△APB 为直角三角形,则点P 的个数为( ) (A )2 (B )3(C )4(D )5 4.下图是由一些相同的小正方形构成的几何体的三视图。
这些相同的小正方形的个数是( ) (A )4 (B )5 (C ) 6 (D )75.已知22204(2) a b x a b y b a x y =++=-、是实数,,,则、的大小关系是( )(A )x y < (B ) x y > (C ) x y ≤ (D )x y ≥ 从左边看从上面看从正面看(图2)EDCBA6.关于x 的不等式组255,332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩ 只有5个整数解,则a 的取值范围是( )(A )1162a -<<-(B )1162a -≤<- (C )1162a -<≤- (D )1162a -≤≤-二、填空题:(每小题5分,共30分)7.如图1,已知AD=DB=BC ,∠C=50°,则∠ABC=8.已知实数35a b x y ax by ay bx +=-=,,,满足,,则2222)()a b x y ++(的值是 . 9.如图2,1ABCDEC ACE S S S === BDE ,若S ,则ADE S = . 10.已知114340 04323a ab ba b a b a ab b++≠≠+==-+-,,且,那么 .11.正五边形广场ABCDE 的周长为2000m ,甲、乙两人分别从A 、C 两点同时出发,绕广场沿A →B →C →D →E →A 的方向行走,甲的速度为50m/min ,乙的速度为46m/min ,则出发后,经过 min ,甲、乙第一次行走在同一条边上。
2007—2014全国初中数学联赛试题汇编(含答案)
第二试 ( A)
一、 (本题满分 20 分)设 m, n 为正整数,且 m 2 ,如果对一切实数 t ,二次函数
y x 2 (3 mt) x 3mt 的图象与 x 轴的两个交点间的距离不小于 2t n ,求 m, n 的值.
解 因为一元二次方程 x (3 mt ) x 3mt 0 的两根分别为 mt 和 3 ,所以二次函
y 6, z 4 .
因此,共有 1+2+3+4=10 种可能的摸球结果,其中摸出的球中恰好有 3 个红球的结 果有 2 种,所以所求的概率为
2 1 . 故选(B). 10 5
二、填空题(本题满分 28 分,每小题 7 分) 1. 设 x
1 2 1 1
,a 是 x 的小数部分,b 是 x 的小数部分, 则 a 3 b 3 3ab ____1___.
注:本题也可用特殊值法来判断.
2.当 x 分别取值
1 1 1 1 , , ,…, ,1 ,2 ,…, 2005 ,2006 , 2007 时, 2007 2006 2005 2
的 值 , 将 所 得 的 结 果 相 加 , 其 和 等 于
1 x2 计 算 代 数 式 1 x2
( ) (A)-1. 【答】C.
3 3
2. 对于一切不小于 2 的自然数 n , 关于 x 的一元二次方程 x (n 2) x 2n 0 的两个根
2 2
记作 a n , bn( n 2 ) , 则
1 1 1 = (a 2007 2)(b2007 2) (a 2 2)(b2 2) (a3 2)(b3 2)
2007 年全国初中数学联合竞赛
第一试
一、选择题(本题满分 42 分,每小题 7 分) 1. 已知 x, y, z 满足
2007联赛答案
2007年全国初中数学联合竞赛试题参考答案及评分标准【答】B. 解 由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选(B ).注:本题也可用特殊值法来判断.【答】C.解 因为=+-++-222211)1(1)1(1n n nn 011112222=+-++-n n n n ,即当x分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,...,21,1,2, (2005)2006,2007时,计算所得各代数式的值之和为0.故选(C ).【答】D.解 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选(D ).【答】C.解 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选(C ).【答】A.解 分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=. 易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=. 所以:DEF S △19ABC S =△.故选(A ). 【答】B.解 设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;AECB D O H当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选(B ). 解 ∵12121+=-=x ,而3122<+<,∴122-=-=x a .又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a , ∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a . 解 由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以=--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+,则11111()(2)(2)2(1)21n n a b n n n n =-=----++,)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 解 延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .解 设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得 ))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .第二试 (A )解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt +.由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥. 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以A BCD E FGM N⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 证明 设MN 与EF 交于点P ,∵NE //BC ,∴△PNE ∽△PBC ,∴PCPEPB PN =, ∴PC PN PE PB ⋅=⋅.又∵ME //BF ,∴△PME ∽△PBF ,∴PFPEPB PM =, ∴PF PM PE PB ⋅=⋅. ∴PF PM PC PN ⋅=⋅,故PFPCPN PM = 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.解 观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (1)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-. 当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-.ABCDE F MN P第二试 (B )解 因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ; 一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22. 所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔09)46()4(222≥-+-+-⇔n t n m t m (1)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m 解 联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x 56=,即 056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点. 因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.解 联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x ay a x a x y 消去y 得a x a x 710)232(22-+++= 113ax-,即0113)710()232(223=-+-+++a x a x a x ,分解因式得 []0311)12()12(2=-+++-a x a x x (1)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程0311)12(2=-+++a x a x (2)必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数,而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-.。
2007年八年级第一学期数学竞赛题(B)题(B)(含答案)-83
2007年八年级第一学期数学竞赛题(B)(满分120分,时间120分钟)一、选择题:(每小题5分,共40分)1. 若a > b,则下列各式中正确的是( )** > b2 B.< C.-a> -b D.-+a>-+b 、2.方程(x+1)2 + (y-2)2 = 1的整数解有( )**组 B.2组 C.1组 D.无数多组3. 已知x 和y 满足235x y +=,则当x =4时,代数式31222x xy y ++的值是( )A. 4B.3C. 2D.1 4. 如下左图,△ABC 为等边三角形,且BM=CN ,AM 与BN 相交于点P ,则∠APN 的度数( )** B.600 C.450 D.大小无法确定CNMAP B5.桌面上摆着一些相同的小正方体木块,从正南方向看如上右图a ,从正西方向看如图b ,那么桌面上至少有这样的小正方体木块 ( )**块 B. 16块 C. 10块 D. 6块 6. 如果11a b +=,21b c +=, 那么2c a +的值等于( ) A .1 B .2 C .3 D .47. 设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[21⨯]+[32⨯]+[43⨯]+…+[101100⨯]的值为( )A .5151B .5150C .5050D .50498. 一个正整数,如果把它的数字逆排,所得的数仍然和原数相同,便称之为“回文数”.设n 是5位回文数,n 的个位数字是6,如果n 恰巧又是完全平方数,那么n=( )A .61616 B. 63636 C .65656 D .69696二、填空题: (每小题5分,共40分)1. 在直角坐标系中,点(2,-3)与它关于x 轴的对称点的距离是 .2. 已知012=-+x x ,则2006223++x x = .3.已知4=-b a ,042=++c ab ,则c b a ++的值为 。
2007年全国初中数学联赛试题及答案
2007年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1. 已知z y x ,,满足x z z y x +=-=532,则zy y x 25+-的值为( ) A .1. B .31. C .31-. D .21. 2.当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算代数式2211xx +-的值,将所得的结果相加,其和等于( ) A .-1. B .1. C .0. D .2007.3. 设c b a ,,是△ABC 的三边长,二次函数2)2(2b a cx x ba y ----=在1=x 时取最小值b 58-,则△ABC 是( ) A .等腰三角形. B .锐角三角形. C .钝角三角形. D )直角三角形.4. 已知锐角△ABC 的顶点A 到垂心H 的距离等于它的外接圆的半径,则∠A 的度数是( )A .30°.B .45°.C .60°.D .75°.5.设K 是△ABC 内任意一点,△KAB 、△KBC 、△KCA 的重心分别为D 、E 、F ,则ABC DEF S S △△:的值为( )A .91.B .92.C .94.D .32. 6.袋中装有5个红球、6个黑球、7个白球,从袋中摸出15个球,摸出的球中恰好有3个红球的概率是( )A .101.B .51.C .103.D .52. 二、填空题:(本题满分28分,每小题7分) 1. 设121-=x ,a 是x 的小数部分,b 是x -的小数部分,则=++ab b a 333___ .2. 对于一切不小于2的自然数n ,关于x 的一元二次方程22(2)20x n x n -+-=的两个根记作n n b a ,(2≥n ),则)2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a = . 3. 已知直角梯形ABCD 的四条边长分别为6,10,2====AD CD BC AB ,过B 、D 两点作圆,与BA 的延长线交于点E ,与CB 的延长线交于点F ,则BF BE -的值为.4. 若64100+a 和64201+a 均为四位数,且均为完全平方数,则整数a 的值是 .第二试(A )一、(本题满分20分)设n m ,为正整数,且2≠m ,如果对一切实数t ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离不小于2t n +,求n m ,的值.二、(本题满分25分)如图,四边形ABCD 是梯形,点E 是上底边AD 上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,BM 与AD 交于点N .证明:∠AFN =∠DME .三、 (本题满分25分)已知a 是正整数,如果关于x 的方程056)38()17(23=--+++x a x a x 的根都是整数,求a 的值及方程的整数根.第二试(B )一、(本题满分20分)设n m ,为正整数,且2≠m ,二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为1d ,二次函数nt x n t x y 2)2(2+-+-=的图象与x 轴的两个交点间的距离为2d .如果21d d ≥对一切实数t 恒成立,求n m ,的值.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,二次函数a x a x y -+++=38)17(2,反比例函数xy 56=,如果两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值. 第二试(C )一、(本题满分20分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分)设a 是正整数,如果二次函数a x a x y 710)232(22-+++=和反比例函数xa y 311-=的图象有公共整点(横坐标和纵坐标都是整数的点),求a 的值和对应的公共整点.A B C D EF M N P2007年全国初中数学联合竞赛试题答案第一试一、选择题:(本题满分42分,每小题7分)1.B2.C3.D4.C5.A6.B(解析:1.由x z z y x +=-=532得x z x y 23,3==,所以31333525=+-=+-x x x x z y y x ,故选B. 注:本题也可用特殊值法来判断.2. 因为=+-++-222211)1(1)1(1n n n n 011112222=+-++-n n n n ,即当x 分别取值n 1,n n (为正整数)时,计算所得的代数式的值之和为0;而当1=x 时,0111122=+-.因此,当x 分别取值20071,20061,20051,…,21,1,2,…,2005,2006,2007时,计算所得各代数式的值之和为0.故选C.3. 由题意可得⎪⎪⎩⎪⎪⎨⎧-=----=---,5822,1)2(2b b a c b a b a c 即⎪⎩⎪⎨⎧==+,53,2b c a c b 所以b c 53=,b a 54=,因此222b c a =+,所以△ABC 是直角三角形. 故选D.4. 锐角△ABC 的垂心在三角形内部,如图,设△ABC 的外心为O ,D 为BC 的中点,BO 的延长线交⊙O 于点E ,连CE 、AE ,则CE //AH ,AE //CH ,则OD CE AH OB 2===,所以∠OBD =30°,∠BOD =60°,所以∠A =∠BOD =60°.故选C.5. A.分别延长KD 、KE 、KF ,与△ABC 的三边AB 、BC 、CA 交于点M 、N 、P ,由于D 、E 、F 分别为△KAB 、△KBC 、△KCA 的重心,易知M 、N 、P 分别为AB 、BC 、CA 的中点,所以ABC MNP S S △△41=.易证△DEF ∽△MNP ,且相似比为3:2,所以MNP DEF S S △△2)32(=ABC S △4194⋅=ABC S △91=.所以:DEF S △19ABC S =△.故选A. 6.设摸出的15个球中有x 个红球、y 个黑球、z 个白球,则z y x ,,都是正整数,且7,6,5≤≤≤z y x ,15=++z y x .因为13≤+z y ,所以x 可取值2,3,4,5.当2=x 时,只有一种可能,即7,6==z y ;当3=x 时,12=+z y ,有2种可能,7,5==z y 或6,6==z y ;当4=x 时,11=+z y ,有3种可能,7,4==z y 或6,5==z y 或5,6==z y ;当5=x 时,10=+z y ,有4种可能,7,3==z y 或6,4==z y 或5,5==z y 或4,6==z y .因此,共有1+2+3+4=10种可能的摸球结果,其中摸出的球中恰好有3个红球的结果有2种,所以所求的概率为51102=.故选B.) 二、填空题:(本题满分28分,每小题7分) 1.1 2. 10034016- 3.4 4.7 (解析:1.∵12121+=-=x ,而3122<+<,∴122-=-=x a . 又∵12--=-x ,而2123-<--<-,∴22)3(-=---=x b .∴1=+b a , ∴=++ab b a 333=++-+ab b ab a b a 3))((221)(3222=+=++-b a ab b ab a .2.由根与系数的关系得2+=+n b a n n ,22n n a b n ⋅=-,所以 =--)2)(2(n n b a (2-n n b a 4)++n n b a 222(2)42(1)n n n n =--++=-+, 则11111()(2)(2)2(1)21n n a b n n n n =-=----++, )2)(2(122--b a )2)(2(133--+b a +)2)(2(120072007--+b a =11111111111003()()()()22334200720082220084016⎡⎤--+-++-=--=-⎢⎥⎣⎦. 3.延长CD 交⊙O 于点G ,设DG BE ,的中点分别为点N M ,,则易知DN AM =.因为10==CD BC ,由割线定理,易证DG BF =,所以42)(2)(2==-=-=-=-AB AM BM DN BM DG BE BF BE .4.设264100m a =+,264201n a =+,则100,32<≤n m ,两式相减得))((10122m n m n m n a -+=-=,因为101是质数,且101101<-<-m n ,所以101=+m n ,故1012-=-=n m n a .代入264201n a =+,整理得020*******=+-n n ,解得59=n ,或343=n (舍去).所以171012=-=n a .)第二试 (A )一、(本题满分20分)解:因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以二次函数mt x mt x y 3)3(2--+=的图象与x 轴的两个交点间的距离为3mt + (5分) 由题意,32mt t n +≥+,即22(3)(2)mt t n +≥+,即222(4)(64)90m t m n t n -+-+-≥(10分) 由题意知,042≠-m ,且上式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m (15分) 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m 或⎩⎨⎧==.1,6n m (20分) 二、(本题满分25分) 证明:设MN 与EF 交于点P ,∵NE //BC , ∴△PNE ∽△PBC ,∴PCPE PB PN =, ∴PC PN PE PB ⋅=⋅.(5分) 又∵ME //BF ,∴△PME ∽△PBF ,∴PF PE PB PM =, ∴PF PM PE PB ⋅=⋅.(10分)∴PF PM PC PN ⋅=⋅,故PFPC PN PM =(15分) 又∠FPN =∠MPE ,∴△PNF ∽△PMC ,∴∠PNF =∠PMC ,∴NF//MC(20分)∴∠ANF =∠EDM.又∵ME//BF ,∴∠FAN =∠MED.∴∠ANF +∠FAN =∠EDM +∠MED ,∴∠AFN=∠DME.(25分)三、(本题满分25分)解:观察易知,方程有一个整数根11=x ,将方程的左边分解因式,得[]056)18()1(2=+++-x a x x (5分)因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (1) 的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.而原方程的根都是整数,所以方程(1)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.(10分)设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .(15分) A B C D E FM N P显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a ⎩⎨⎧==.26,12k a (20分) 当39=a 时,方程(1)即056572=++x x ,它的两根分别为1-和56-.此时原方程的三个根为1,1-和56-.当12=a 时,方程(1)即056302=++x x ,它的两根分别为2-和28-.此时原方程的三个根为1,2-和28-.(25分) 第二试 (B )一、(本题满分20分)解:因为一元二次方程03)3(2=--+mt x mt x 的两根分别为mt 和3-,所以31+=mt d ;一元二次方程02)2(2=+-+-nt x n t x 的两根分别为t 2和n -,所以n t d +=22.(5分)所以,21d d ≥22)2()3(23n t mt n t mt +≥+⇔+≥+⇔ 09)46()4(222≥-+-+-⇔n t n m t m (1)(10分)由题意知,042≠-m ,且(1)式对一切实数t 恒成立,所以⎪⎩⎪⎨⎧≤----=∆>-,0)9)(4(4)46(,042222n m n m m (15分) 22,4(6)0,m mn >⎧⇒⇒⎨-≤⎩⎩⎨⎧=>,6,2mn m 所以⎩⎨⎧==,2,3n m ⎩⎨⎧==.1,6n m (20分) 二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分) 解:联立方程组⎪⎩⎪⎨⎧=-+++=,56,38)17(2x y a x a x y 消去y 得a x a x -+++38)17(2x56=,即056)38()17(23=--+++x a x a x ,分解因式得[]056)18()1(2=+++-x a x x (1)(5分)显然11=x 是方程(1)的一个根,(1,56)是两个函数的图象的一个交点.因为a 是正整数,所以关于x 的方程056)18(2=+++x a x (2)的判别式0224)18(2>-+=∆a ,它一定有两个不同的实数根.(10分)而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,因此它的判别式224)18(2-+=∆a 应该是一个完全平方数.设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即 224)18)(18(=-+++k a k a .(15分)显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a (20分)当39=a 时,方程(2)即056572=++x x ,它的两根分别为1-和56-,此时两个函数的图象还有两个交点)56,1(--和)1,56(--.当12=a 时,方程(2)即056302=++x x ,它的两根分别为2-和28-,此时两个函数的图象还有两个交点)28,2(--和)2,28(--.(25分) 第二试 (C )一、(本题满分25分)题目与(B )卷第一题相同.二、(本题满分25分)题目与(A )卷第二题相同.三、(本题满分25分) 解:联立方程组⎪⎩⎪⎨⎧-=-+++=,311,710)232(22x a y a x a x y 消去y 得a x a x 710)232(22-+++=113a x -,即0113)710()232(223=-+-+++a x a x a x ,分解因式得[]0311)12()12(2=-+++-a x a x x (1)(5分)如果两个函数的图象有公共整点,则方程(1)必有整数根,从而关于x 的一元二次方程0311)12(2=-+++a x a x (2)必有整数根,所以一元二次方程(2)的判别式∆应该是一个完全平方数.(10分)而224)18(10036)311(4)12(222-+=++=--+=∆a a a a a .所以224)18(2-+a 应该是一个完全平方数,设22224)18(k a =-+(其中k 为非负整数),则224)18(22=-+k a ,即224)18)(18(=-+++k a k a .(15分)显然k a ++18与k a -+18的奇偶性相同,且1818≥++k a ,而8284562112224⨯=⨯=⨯=,所以⎩⎨⎧=-+=++,218,11218k a k a 或⎩⎨⎧=-+=++,418,5618k a k a 或⎩⎨⎧=-+=++,818,2818k a k a 解得⎩⎨⎧==,55,39k a 或⎩⎨⎧==,26,12k a 或⎩⎨⎧==,10,0k a 而a 是正整数,所以只可能⎩⎨⎧==,55,39k a 或⎩⎨⎧==.26,12k a (20分) 当39=a 时,方程(2)即0106512=-+x x ,它的两根分别为2和53-,易求得两个函数的图象有公共整点)53,2(-和)2,53(-.当12=a 时,方程(2)即025242=-+x x ,它的两根分别为1和25-,易求得两个函数的图象有公共整点)25,1(-和)1,25(-. (25分)。
2007年初中数学竞赛试题赏析(含解答)-
2007年初中数学竞赛试题赏析2007年春末夏初,国内的初中数学竞赛基本告一段落,暑假期间,在放松避暑纳凉的同时,对数学爱好者来说,把玩一下新的试题,也是一件乐事.下面为大家选析一些试题,供同学们玩赏.一、代数问题例1 已知a ,b ,c 是实数,若2222b c a bc +-,2222c a b ac +-,2222a b c ab+-之和恰等于1,求证:这三个分数的值有两个为1,一个为-1.(2007年北京市初二数学竞赛试题三)证明 由题设2222b c a bc +-+2222c a b ac +-+2222a b c ab+-=1, 即(2222b c a bc +--1)+(2222a c b ac +--1)+(2222a b c ab+-+1)=0, 通分,分子部分因式分解,(请自己完成演算)可得()()()2a b c c a b c a b abc+-+--+=0. 所以,或者a+b-c=0或者c+a-b=0或者b+c-a=0.①若a+b-c=0,则222222222222222222()21;222()21;222()2 1.222b c a b c b c bc bc bc bcc a b c a c a ac ac ac cab c a a b a b ab bc ab ab+-+--===+-+--===+-+-+-===- ②若c+a-b=0,同理可得2222b c a bc +-=1,2222c a b ac +-=-1,2222a b c ab+-=1, ③若c+a-b=0,同理可得2222b c a bc +-=-1,2222c a b ac +-=1,2222a b c ab+-=1. 综合①、②、③可得,三个分数2222b c a bc +-,2222c a b ac +-,2222a b c ab+-的值有两个为1,一个为-1.评析:由题设2222b c a bc +-+2222c a b ac +-+2222a b c ab+-=1,要证这三个分数的值有两个为1,一个为-1,想到证(2222b c a bc +--1)+(2222a c b ac +--1)+(2222a b c ab+-+1)=0 是关键.其中分子部分的因式分解,可检验你的代数式恒等变形的基本功是否过硬. 例2 设a 是正整数,二次函数y=x 2+(a+17)x+38-a ,反比例函数y=56x,•如果这两个函数的图象的交点都是整点(横坐标和纵坐标都是整数的点),求a 的值.(2007年全国初中数学联合竞赛(B 组)试题第三大题)解 联立方程组2(17)38,56,y x a x a y x ⎧=+++-⎪⎨=⎪⎩消去y 得x 2+(a+17)x+38-a=56x, 即x 3+(a+17)x 2+(38-a )x-56=0,分解因式得(x-1)[x 2+(a+18)x+56]=0. (1)显然x 1=1是方程(1)的一个根,(1,56)是两个函数的图象的一个交点, 因为a 是正整数,所以关于x 的方程x 2+(a+18)x+56=0 (2)的判别式△=(a+18)2-224>0,它一定有两个不同的实数根.而两个函数的图象的交点都是整点,所以方程(2)的根都是整数,•因此它的判别式△=(a+18)2-224应该是一个完全平方数.设(a+18)2-224=k 2(其中k 为非负整数),则(a+18)2-k 2=224,即(a+18+k )(a+18-k )=224.显然a+18+k 与a+18-k 的奇偶性相同,且a+18+k ≥8,而224=112×2=56×4=28×8,18112,1856,1828,182,184,188.39,12,0,55,26,10.a k a k a k a k a k a k a a a k k k ++=++=++=⎧⎧⎧⎨⎨⎨+-=+-=+-=⎩⎩⎩===⎧⎧⎧⎨⎨⎨===⎩⎩⎩所以或或解得或或 而a 是正整数,所以只可能39,12,55,26,a a k k ==⎧⎧⎨⎨==⎩⎩或 当a=39时,方程(2)即x 2+57x+56=0,它的两根分别为-1和-56,此时两个函数的图象还有两个交点(-1,-56)和(-56,-1).当a=12时,方程(2)即x 2+30x+56=0,它的两根分别为-2和-28,此时两个函数的图象还有两个交点(-2,-28)和(-28,-2).评析:这是初中数学的重点知识与方法高度综合的题目,要求会自行演算独立解答.二、几何问题在初中阶段,图形的运动主要是合同变换,包含平移、轴对称、旋转和中心对称.另外,在我国的几何教学中,对等积变换的知识日益普及,主要是利用“同底等高的两个三角形面积相等”和三角形面积公式来证题、计算,包括解决线段的比例问题.例3 如图1所示,△ABC 中,∠ABC=46°,D 是BC 边上一点,DC=AB ,∠DAB=21°,•试确定∠CAD 的度数.(2007年北京市中学生数学竞赛初二年级试题四)图1 图2解如图2,作△ABD关于AD的轴对称图形△AED,即∠EAD=21°,AE=AB,•所以DE=BD.易知∠ADC=21°+46°=67°,所以∠ADE=∠ADB=180°-67°=113°,∠CDE=113°-67°=46°,连接CE,DC=AB,△ABD≌△CDE≌△ADE.设O为AE与DC的交点,由于∠ODE=∠OED=46°,所以OD=OE.又DC=AE,所以AO=CO ∠OCA=∠OAC ∠COE=2∠ACO.易知∠COE=2×46°=92°,因此2∠ACO=∠COE=92°∠ACO=46°=∠OAC.所以∠DAC=∠DAE+∠EAC=21°+46°=67°.例4如图3,已知等腰△ABC中,AB=AC,P、Q分别为AC、AB上的点,且AP=PQ=•QB=BC,则∠PCQ=______.(2007年北京市中学生数学竞赛初二年级试题)图3 图4解:如图4,过P作AB的平行线,过B作PQ的平行线,二平行线相交于O,则PQBO•是个菱形.连接CO.由AB=AC,AP=QB,则PC=AQ,AP=QB=PO,∠CPO=∠PAQ,所以△PQC≌△APQ,因此CO=PQ=CB=OB,可知△BCO为等边三角形,∠BCO=∠CBO=60°,•设∠CAB=θ,•则∠PCO=∠QBO=θ,由三角形内角和定理,得3θ+2×60°=180°⇒θ=20°,因此∠PCQ=80°-•50°=30°.例5 如图5,四边形ABCD 是梯形,点E 是上底AD 边上一点,CE 的延长线与BA 的延长线交于点F ,过点E 作BA 的平行线CD 交的延长线于点M ,BM 与AD 交于点N .证明:∠AFN=∠DME .(2007全国初中数学联合竞赛试题)例5分析 延长BF ,CM 相交于Q ,因为EM ∥AF ,所以∠DME=∠DQA .要证∠AFN=∠DME ,只需证∠AFN=∠DQA 即可.为此,只需证FN ∥MC .证明 (面积法)连接FM ,BE ,CN ,因为EM ∥AF ,所以S △PFM =S △PBE ,因为AD ∥BC ,S △BNE =S △CNE ,因此S △BNE +S △PNE =S △CNE +S △PNE .即S △PBE =S △PNC ,所以S △PFM =S △PNC .两边同加S △PMC 得S △FMC =S △NMC ,所以FN ∥MC ,又已知FB ∥ME ,所以∠AFN=∠DME .至于其它的证法我们就不再例举了.例6 试问:18能否表示为3个互异的正整数的倒数的和?18能否表示为3•个互异的完全平方数的倒数的和?如果能,请给出一个例子;如果不能,请说明理由. (第12届华杯赛初一组决赛试题14)解:(1)由于18=14×12=14×(112+16+14)=114824++116,所以18能表示为3个互异的正整数的倒数的和.(2)不妨设三个正整数a<b<c ,满足18=21a +21b +21c. 由于a ,b ,c 是互异的正整数,则21c <21b <21a, 从而18=21a +21b +21c <23a ,所以a 2>24.又18>21a,所以a 2>8,故a 2=9或16. 若a 2=9,则21b +21c =18-19=172,于是172>21b,有b 2>72; 又因为21c <21b ,所以172=21b +21c <22b , 因此b 2<144,所以72<b 2<144.故b 2=81,100或121,将b 2=81,100,121分别代入c 2=227272b b -,没有一个是完全平方数,此时无解.若a 2=16,则21b +21c =18-116=116, 同上讨论可得:16<b 2<32,所以b 2=25,c 2=22161625169b b ⨯=-不是整数. 综上所述,18不能表示为3个互异的完全平方数的倒数之和. 例7 已知a ,b 都是正整数,试问关于x 的方程x 2-abx+12(a+b )=0是否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.解 不妨设a ≤b ,且方程的两个整数根为x 1,x 2(x 1≤x 2),则有12121()2x x ab x x a b +=⎧⎪⎨=+⎪⎩ 所以x 1x 2-x 1-x 2=12a+12b-ab ,4(x 1-1)(x 2-1)+(2a-1)(2b-1)=5. 因为a ,b 都是正整数,所以x 1,x 2均是正整数.于是x 1-1≥0,x 2-1≥0,2a-1≥1,2b-1≥1,所以12(1)(1)0(21)(21)5x x a b --=⎧⎨--=⎩或12(1)(1)1(21)(21)1x x a b --=⎧⎨--=⎩ (1)当12(1)(1)0(21)(21)5x x a b --=⎧⎨--=⎩时,由于a ,b 都是正整数,且a ≤b ,可得a=1,b=3. 此时,一元二次方程为x 2-3x+2=0,它的两个根为x=1,x=2.(2)当12(1)(1)1(21)(21)1x x a b --=⎧⎨--=⎩时,可得a=1,b=1,此时,一元二次方程为x 2-x+1=0,它无整数解.综上所述,当且仅当a=1,b=3时,题设方程有整数解,且它的两个整数解为x 1=1,x 2=2.例8 (1)是否存在正整数m ,n ,使得m (m+2)=n (n+1)?(2)设k (k ≥3)是给定的正整数,是否存在正整数m ,n ,使得m (m+k )=n (n+1)? 解:(1)答案是否定的.若存在正整数m ,n ,使得m (m+2)=n (n+1). 则(m+1)2=n 2+n+1,显然n>1.于是n 2<n 2+n+1<(n+1)2,所以n 2+n+1不是平方数,矛盾.(2)当k=3时,若存在正整数m ,n ,使得m (m+3)=n (n+1),则4m 2+12m=4n 2+4n ⇔(2m+3)2=(2n+1)2+8即(2m+3-2n-1)(2m+3+2n+1)=8⇔ (m-n+1)(m+n+2)=2, 而m+n+2>2,故上式不可能成立.当k ≥4时,若k=2t (t 是不小于2的整数)为偶数,取m=t 2-t ,n=t 2-1,则m (m+k )=(t 2-t )(t 2+t )=t 4-t 2,n (n+1)=(t 2-1)t 2=t 4-t 2,因此这样的(m ,n )满足条件.若k=2t+1(t是不小于2的整数)为奇数,取m=22t t-,n=222t t+-,则m(m+k)=22t t-(22t t-+2t+1)=14(t4+2t3-t2-2t)n(n+1)=222t t+-·22t t+=14(t4+2t3-t2-2t),因此这样的(m,n)满足条件.综上所述,当k=3时,答案是否定的;当k≥4时,答案是肯定的.(注:当k≥4时,构造的例子不是唯一的.)四、组合与极值组合问题对锻炼思维意义重大,初中只适宜分类计数、加法原理、乘法原理的简单运用,简单的包含排除原理,基本的抽屉原理也是重要的内容.但在初中阶段,不应提前引入排列组合的计算公式.特别是提前较大范围的培训高中的排列组合知识,会激起大范围超前学习的竞争热,从而影响基础教育,并且也影响竞赛的公平性.建议命一些以几何元素为背景的构造性的问题,容易引发学生兴趣,又使套用组合公式的人容易出错,这类问题的研制特别引人注目.例9 平面上有6个点,其中任何3个点不在同一条直线上,以这6个点为顶点可以构造多少个不同的三角形?从这些三角形中选出一些,如果要求其中任何两个三角形没有公共点,则最多可以选出多少个三角形?(第12届华杯赛初一组决赛试题12)解答:(1)先从6个点中选取1个做三角形的一个顶点,有6种取法;•再从余下的5点中选取1个做三角形的第二个顶点,有5种取法;再从余下的4个点中选取1个点做三角形的第三个顶点者,有4种取法.因为任何3个点不在同一条直线上,所以,这样选出的三个点可以做出一个三角形.但是,如果选出的三个点相同的话,则做出的三角形相同,•三个点相同的取法有3×2×1=6种,所以,以这6个点为顶点可以构造654321⨯⨯⨯⨯=20个不同的三角形.(2)每个三角形有3个顶点,所以,6个点最多只能做出2个三角形,•它们没有公共顶点,如图4(1).(3)用英文大写字母A,B,C,D,E,F记这6个点,如果可以选出5个三角形,它们共有15个顶点,需要15个英文大写字母.但是,不同的英文大写字母仅有6个,因此,这5•个三角形中至少有三个三角形有同一个顶点,不妨设为点A.根据题目条件,这三个三角形没有公共边,即除去公共顶点A之外,其余6•个顶点互不相同,即表示这6个顶点的字母不相同.否则,根据题目条件,它们将有公共边.但是,除A之外,我们仅有5个不同的字母,所以,不可能存在5个三角形,它们没有公共边.如图4(2)所示,△ABC,△ADE,△BDF和△CEF这4个三角形没有公共边,所以,最多可以选出4个三角形,它们没有公共边.例10 若对于任意n个连续正整数中,总存在一个数的数字之和8是的倍数.试确定n的最小值,并说明你的理由.(2007北京市中学生数学竞赛初二年级试题五)解先证n≤14时题设的性质不成立.因为,当n=14时,对于9999993,9999994,…,999999,…,10000006这14个连续整数中,任意一个数字的数字之和均不能被8整除.所以n≤14时题设的性质不成立.因此要使题设的性质成立,应有n≥15.再证n=15时,题设的性质成立.设a1,a2,…,a15为任意的连续15个正整数,则这15个正整数中,个位数字为0•的整数最多有两个,最少有一个,可分为:(1)当a1,a2,…,a15中个位数字为0的整数有两个时,设a i<a j,且a i,a j的个位数字为0.则满足a i,a i+1,a i+2,…,a i+9,a j为连续的11个整数,其中a i,a i+1,a i+2,…,a i+9无进位设n i表示a i各位数字之和.则前10个数的各位数字之和分别为n i,n i+1,…,n i+9则这连续的10个数中至少有一个被8整除.(2)当a1,a2,…,a15中个位数字为0的整数只有一个时,设其中的a i的个位数字为0,•①若整数满足1≤i≤8,则在a i后面至少有7个连续整数,则a i,a i+1,a i+2,…,a i+7这8个连续整数的各位数字和也为8个连续整数,所以必有一个数能被8整除.②若整数i满足9≤i≤15,则在a前面至少有8个连续整数,不妨设为a i-8,a i-7,a i-5,a i-4,a i-3,a a-2,a a-2,a i-1,这8个连续整数的各位数字和也为8个连续整数,所以必有一个数能被8整除.由①、②可知,当a1,a2,…,a15中个位数字为0的整数只有一个时,必有一个数,其各位数字之和是8的倍数.综上(1)、(2)所述,对于任意15个连续整数中,必有一个数,•其各位数字之和是的倍数.而小于15个的任意连续整数不成立此性质,所以n的最小值是15.例11 平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,并按下面的规则用线段连接:①在同一组的任意两点都没有线段连接;②不在同一组的任意两点间一定有线段连接.(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2)若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段?(3)若平面上共有192条线段,那么平面上至少有多少个点?(第十八届“希望杯”全国数学邀请赛初二第2试23题)解:(1)平面上恰好有9个点,且平均分成三组,每组3个点,•按题设规则用线段连接,可以连出3×3+3×3+3×3=27条线段.(2)平面上恰好有9个点,且点数分成2,3,4三组,按题设规则用线段连接,可以连出2×3+2×4+3×4=26条线段.(3)设平面上三组点数为m,n,p个,s=m+n+p,目标求s的最小值?按题设规则用线段连接,可以连出mn+mp+np=192条线段.由于s2=(m+n+p)2=m2+n2+p2+2mn+2mp+2np≥mn+mp+np+2mn+2mp+2np=3mn+3mp+3np=•3(mn+mp+np)=3×192=576=242所以s≥24.s的最小值是24.事实上,当这24个点平分为3组,每组8个点,按题设规则用线段连接,恰可以连出8×8+8×8+8×8=3×64=192条线段.因此平面上至少有24个点.- 11 -。
2007年全国初中数学竞赛(浙江赛区)初赛试题参考答案.
2007年全国初中数学竞赛(浙江赛区)初赛试题参考答案一、选择题(共8小题,每小题5分,满分40分) 1. 答案:D解:当x >0时,x y 1-=,图象在第四象限;当x <0时,xy 1=,图象在第三象限. 所以原函数的图象在第三、四象限. 2. 答案:A解:根据题意可知老王去上班路上所用的时间在40至50分钟之间,所以350035005040x ≤≤,即70≤x ≤87.5. 3. 答案:D解:连接AC ,设∠DAC =∠DAB =x º,∠ABC =y º,则有x +y =60,2x +y =90,解得 x =30.所以tan ∠DAC. 4. 答案:D解:由题意得,20p p p ++=,解得122,0p p =-=(舍去)当22p =-时,抛物线是22y x x =+-,求得顶点坐标是(19,24--).5. 答案:C解:如图所示,易证AD =DC =BC ,△CDB ∽△ABC . 所以BC BD AB BC =,BC AB BC AB BC -=,1BC ABAB BC=-.可解得BC AB =. 所以 DBC ABC S BD AB ADS AB AB ∆∆-===ABBC -1=. 6. 答案:B解:解方程组,10.y px y x =⎧⎨=+⎩,得101x p =-,因为x 和p 都是整数,所以110,5,2,1p -=±±±±,即11,9,6,4,3,1,2,0p =---共8个值,0p =舍去. 7. 答案:C解:设三个连续的正整数分别为n -1,n ,n +1(n 为大于1的整数),当一次项系数是n -1或n 时,方程的判别式△均小于零,方程无实数根;当一次项系数是n +1时,方程的判别式△=()22141314n n n n +--=--+()(),要使△≥0,由于n 为大于1的整数,所以n 只能取2.当n =2时,方程2320x x ++=,22310x x ++=均有整数根,所以满足要求的a ,b ,c 只有两组:(1,3,2)、(2,3,1) 8.答案:A解:每掷一次可能得到6个点的坐标是(其中有两个点是重合的):(1,1),(1,1), (2,3),(3,2),(3,5),(5,3),通过描点和计算可以发现,经过(1,1),(2,3), (3,5)三点中的任意两点所确定的直线都经过点P (4,7),所以小明第三次掷得的点也在直线l 上的概率是3264=. 二、填空题(共6小题,每小题5分,满分30分) 9.答案:1a +解:比a大的最小完全平方数是21)1a =+. 10.答案:解:作如图所示的辅助线,易知小正方形的边长是故所求周长为 11.答案:40º<∠B <80°解:如图,当BC 最短时,∠ABC =40º,现以B 为圆心,AB 长为半径画弧交直线AC 于点C 1,当BC 1长等于AB 时, ∠ABC 1=80º,所以40º<∠B <80º. 12解:当△ABC 按顺时针方向旋转60°时(如图1),连结OA ,OB ′, ∵∠AOB ′=60°, ∴△OAB ′为正三角形,∴AB ′. 当△ABC 按逆时针方向旋转60°时(如图2),AB ′=2×OA=3a . 13.答案:(178,3)解:梯形AOCD 的面积=358322+⨯=().过P 作PE ⊥y 轴于点E ,∵PAD POC S S ∆∆=,∴3AE =5OE ,即3(8-OE )=5OE ,解得OE =3.∴PAD POC S S ∆∆==7.5,PAO PCD S S ∆∆==(32-2×7.5)÷2=8.5.(第11题)(第10题)(图1)(图2)(第12题)C A ′ B C ′ CC ′A B ′(第13题)∴188.52PE ⨯⨯=,PE =178. ∴ P 点的坐标是(178,3). 14.答案:35解:∵ A +B =45,……①A +C =49,……② C +D =64,B +D =60,②-①,得C -B =4,则B +C =B +(B +4)=2×B +4为偶数. 在54千克与55千克中,只有54为偶数,∴ B =25,∴D =35.三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15.(12分)解: ①×2-②, 得a a b 3222=-.由题意,得 a ≠0.两边同除以2a ,得32b a a -=.16.(12分)解:(1) 图1中火柴棒的总数是(31m +)根,图2中火柴棒的总数是(52n +)根, 因为火柴棒的总数相同,所以3152m n +=+, 所以513n m +=. (2) 设图3中有3 p 个正方形,那么火柴棒的总数是(73)p +根, 由题意得a =315273m n p +=+=+,所以325177m n p --==. 因为m ,n ,p 均是正整数,所以当m =17,n =10时,p =7,此时a 的值最小,31715102773a =⨯+=⨯+=⨯+=52.1,8b a -= ……①212.4a a +=……②17.(12分)解:过点E 作BC 的垂线与圆交与点H ,与AC 交于点O , 连结AH 和DH ,作AM ⊥BC ,垂足是M .因为E 是切点,所以EH 必过圆心,即EH 是直径, 所以DH ⊥DE ,因为D ,E 是切点,所以BD =BE , 又因为∠B =60°,所以△DBE 是正三角形, 所以∠BDE =∠BAC =60°, 所以DE ∥AC ,DH ⊥AC .由已知得AM =EH ,又AM ∥EH ,所以四边形AMEH 是矩形, 所以AH ⊥H E ,即AH 是切线,所以AD =AH ,AC 垂直平分DH ,AC 必过圆心, 所以AC 与EH 的交点O 是圆心, 所以OE =OF ,因为∠COE =90°-∠C =30°,所以∠OEF =75°, 又∠DEO =∠EOC =30°, 所以∠DEF =30°+75°=105°.18.(14分)解:(1) 当a =1时,因为22221y ax amx am m =-+++=()221x m m -++.所以顶点A (m ,2m +1),又P (1,3),设直线AB 的解析式是y =kx +b ,把点A ,P 的坐标代入,得①—②,得2m -2=(m -1)k ,因为m ≠1(若m=1,则A ,B ,P 三点重合,不合题意),所以k =2,b =1,所以直线AB 的解析式是y =2x +1,得 l 2的顶点B (0,1),因为l 2与l 1关于点P 成中心对称,所以抛物线的开口大小相同,方向相反,得 l 2的解析式是21y x =-+.(第17题)B21,m kmb +=+…①3.k b =+…②(第18题图1)因为点A ,B 关于点(1,3)P 成中心对称(如图1),作PE ⊥y 轴于点E ,作AF ⊥y 轴于点F ,则△BPE ∽△BAF ,所以AF =2PE ,即m =2.(2) 在Rt △ABF中,因为AB =<5,所以当△ABC 为等腰三角形时,只有以下两种情况:i) 如图2,若BC AB ==OC =得0)C因为0)C 在12+-=ax y 上, 所以119a =ii) 如图3,若A C B C =,设C (x ,0),作AD ⊥x 轴于点D ,在Rt △OBC 中,221BC x =+,在Rt △ADC 中,()22225AC x =-+,由()221225x x +=-+,解得7x =. 因为C (7,0)在12+-=ax y 上,所以149a =. 综上可得,满足使△ABC 是等腰三角形的a 值有两个,1211,1949a a ==.(第18题图2)(第18题图3)。
余杭区年“假日杯”初中数学竞赛试卷
余杭区年“假日杯”初中数学竞赛试卷(年11月25日 上午9∶00—10∶30) 题次 一 二 三 总分 1~8 9~14 15 16 17 18 得分一、选择题 (共8小题,每小题5分,满分40分.以下每小题均给出代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分)1. 以下三个结论:①两个无理数的和一定是无理数;②两个无理数的和有可能是有理数;③两个无理数的和一定是实数,其中正确的结论是( ) (A) ①和② (B) ①和③ (C) ②和③ (D) 只有③ 2. 如图所示,直线//a b ,则∠A 等于( )(A) 20º (B) 21º(C) 22º (D) 23º3. 从长度是2cm 、2cm 、4cm 、4cm 的四条线段中任意选三条线段,这三条线段能够组成等腰三角形的概率是( )(A)41(B) 31(C)21 (D)14. 一个几何体的主视图和左视图如图所示,那么这个几何体的俯视图不可能...是( )5. 如图,已知每个小方格的边长为1,A ,B ,C 三点都在小方格的顶点上,则点C 到AB 所在直线的距离等于( )(A) 810(B) 108(C) 10 (D)8BAC(第5题)得 分 评卷人 b a AB C44º21º (第2题) (A) (B) (C)(第4题) 主视图 左视图6. 设“●,▲,■”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )(A) 5 (B) 4 (C) 3 (D)27. 如图是一个立方体的表面展开图,已知立方体相对两个面上的数值相同,则“★”面上的数为( ) (A) 4 (B) 3 (C) 2(D) 18. 已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆(如图所示),已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是( )(A) 6 (B) 7(C) 8 (D) 9二、填空题(共6小题,每小题5分,满分30分)9. 将一条两边沿互相平行的纸带按如图折叠.若∠1=64º,则∠2的度数是 .10.如图,已知正方形ABCD 的边长为2,△BPC 是等边2 1(第9题) ADP(1)(2) (3)(第6得 分 评卷人(第8题)1 2x -yx +yy -2xy -x ★ (第7题)三角形,则△CDP的面积是 _______;△BPD的面积是.11.某地夏天连续九天的最高气温统计如下表:最高气温(ºC) 34 35 36 37 天 数1242则这组数据的中位数和众数分别是 .12.已知一组数据共有100个,其中有15个数在这组数据的中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是 . 13.已知一组数据x 1,x 2,x 3,…,x n 的平均数是x ,方差是2S ,那么另一组数据2x 1– 1,2x 2 – 1,2x 3– 1,…,2x n – 1的平均数是 ,方差是 . 14.定义一种对正整数n 的“F 运算”:① 当n 为奇数时,结果为53+n ;② 当n 为偶数时,结果为k n 2(其中k 是使k n2为奇数的正整数),并且运算重复进行.例如,取26=n ,则:若n =449,则第449次“F 运算”的结果是 .三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15. 如图,在△ABC 中,AC =1,BC =2,∠ACB =60º,将△ABC 折叠,使点B 和点C 重合,折痕为DE .请说明△AEC ≌△DEC 的理由.26 F ② 13 F ① 44 F ② 11… 第1次 第2次 第3次 BACE(第15题)得 分评卷人16.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22, 20=62-42,因此4,12,20这三个数都是神秘数.(1) 36和2 012这两个数都是神秘数吗?为什么?(2) 设两个连续偶数为2k +2和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是8的倍数吗?为什么?(3) 两个连续奇数的平方差(取正数)是神秘数吗?为什么?得 分评卷人17.边长为整数的等腰三角形一腰上的中线将其周长分为1∶2的两部分,求所有这些等腰三角形中,面积小于8且周长最大的三角形的三边长.得分评卷人18.在矩形ABCD 中,AD =4,点P 在AD 上,且AP ∶PD =a ∶b .(1) 求△PCD 的面积S 1与梯形ABCP 的面积S 2的比值21S S(用含a ,b 的代数式表示); (2) 将线段PC 绕点P 逆时针旋转90º至PE ,求△APE 的面积S (用含a ,b 的代数式表示).得 分 评卷人ADP (第18题)S 2S 1S。
2007年浙江省初中数学竞赛试题
2007年浙江省初中数学竞赛试题2007年3月11日9:00-11:00一、选择题(共8小题,每小题5分,满分40分。
以下每小题均给出了代号为A 、B 、C 、C 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号未老先衰题后的括号里,不填、多填或错填均得零分)1.函数y =1x-图象的大致形状是( )2.老王家到单位的路程是3500米,老王每天早上7:30离家步行去上班,在8:10(含8:10)到8:20(含8:20)之间到达单位。
如果设老王步行的速度为x 米/分,则老王步行的速度范围是( )A .70≤x ≤87.5B .70≤x 或x ≥87.5C .x ≤70D .x ≥87.53.如图,AB 是半圆的直径,弦AD ,BC 相交于P ,已知∠DPB =60°,D 是弧BC 的中点,则tan ∠ADC 等于( )A .12B .2C .D .34.抛物线()20y x x p p =++≠的图象与x 轴一个交点的横坐标是P ,那么该抛物线的顶点坐标是( )A .(0,-2)B .19,24⎛⎫- ⎪⎝⎭C .19,24⎛⎫- ⎪⎝⎭D .19,24⎛⎫-- ⎪⎝⎭5.如图,△ABC 中,AB =AC ,∠A =36°,CD 是角平分线,则△DBC 的面积与△ABC 的面积的比值是( )A .22B .23C .32-D .33- 6.直线l :()0y px p =是不等于的整数与直线y =x +10的交点 恰好是(横坐标和纵坐标都是整数),那么满足条件的直线l 有 ( )A .6条B .7条C .8条D .无数条7.把三个连续的正整数a ,b ,c 按任意次序(次序不同视为不同组)填入20x x ++=的三个方框中,作为一元二次方程的二次项系数、一次项系数和常数项,使所得方程至少有一个整数根的a ,b ,c ( )A .不存在B .有一组C .有两组D .多于两组8.六个面上分别标有1,1,2,3,3,5六个数字的均匀立方体的表面菌 如图所示,掷这个立方体一次,记朝上一面的数为平面直角坐标系中某个点的横坐标,朝下一面的数主该点的纵坐标。
2007年全国初中数学竞赛(浙江赛区)复赛试题及参考答案
2007年全国初中数学竞赛(浙江赛区)复赛试题(2007年4月1日 下午1:00—3:00)答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共6小题,每小题5分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分) 1.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )2 2.定义:定点A 与⊙O 上的任意一点之间的距离的最小值称为点A 与⊙O 之间的距离.现有一矩形ABCD 如图,AB =14cm ,BC =12cm ,⊙K 与矩形的边AB 、BC 、CD 分别相切于点E 、F 、G ,则点A 与⊙K 的距离为( )(A )4cm (B )8cm (C )10cm (D )12cm3.某班选举班干部,全班有50名同学都有选举权和被选举权,他们的编号分别为1,2,…,50.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”. 如果令⎩⎨⎧=号同学当选.号同学不同意第,第号同学当选,号同学同意第,第,j i j i a j i 01其中i =1,2,...,50;j =1,2, (50)则同时同意第1号和第50号同学当选的人数可表示为( )(A )2111,,a a ++ … ++++250150501,,,a a a … +5050,a (B )1211,,a a ++ … ++++502501150,,,a a a … +5050,a (C ) 50111,,a a +50212,,a a + … +5050150,,a a (D ) 15011,,a a +25021,,a a + … +5050501,,a aA(第2题)4.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限5.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个 6.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( )(A) 12 (B) 16(C)(D)二、填空题(共6小题,每小题6分,满分36分)7.函数321+++++=x x x y ,当x = 时,y 有最小值,最小值等于 .8.以立方体的8个顶点中的任意3个顶点为顶点的三角形中,正三角形的个数为 .9.如图,△ABC 中,∠A 的平分线交BC 于D ,若AB =6 cm ,AC =4 cm ,∠A =60°,则AD 的长为 cm . 10.设,,,321x x x … ,2007x 为实数,且满足321x x x …2007x =321x x x -…2007x =321x x x -…2007x =…=321x x x …20072006x x -=1,则2000x 的值是 .11.正六边形轨道ABCDEF 的周长为7.2米,甲、乙两只机器鼠分别从A ,C 两点同时出发,均按A →B →C →D →E →F →A →… 方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过 秒钟时,甲、乙两只机器鼠第一次出现在同一条边上.12.正整数M 的个位上的数字与数20152013的个位上的数字相同,把M 的个位上的数字移到它的左边第一位数字之前就形成一个新的数N .若N 是M 的4倍,T 是M 的最小值,则T 的各位数字之和等于 .ABCEFO(第6题) (第9题)ABCD三、解答题(共4小题,满分54分)13.(本题满分12分)已知二次函数2y ax bx c =++的图象G 和x 轴有且只有一个交点A ,与y 轴的交点为B (0,4),且ac b =. (1)求该二次函数的解析表达式;(2)将一次函数y =3-x 的图象作适当平移,使它经过点A ,记所得的图象为L ,图象L 与G 的另一个交点为C ,求△ABC 的面积.如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、N 、P 、Q,求证:MN +PQ =2PN .BACMN P EFQDG2007个质点均匀分布在半径为R 的圆周上,依次记为1P ,2P ,3P ,…,2007P .小明用红色按如下规则去涂这些点:设某次涂第i 个质点,则下次就涂第i 个质点后面的第i 个质点.按此规则,小明能否将所有的质点均涂成红色?若能,请给出一种涂点方案;若不能,请说明理由.从连续自然数1,2,3,…,2008中任意取n个不同的数,(1)求证:当n=1007时,无论怎样选取这n个数,总存在其中的4个数的和等于4017.(2)当n≤1006(n是正整数)时,上述结论成立否?请说明理由.2007年全国初中数学竞赛(浙江赛区)复赛试题参考答案一、选择题(共6小题,每小题5分,满分30分) 1.答案:C解:由3210x x x +++=,得1x =-,所以2627--+x x + … +x x ++-11+ … +2726x x +=-1.2.答案:A解:连结AK 、EK ,设AK 与⊙O 的交点为H ,则AH 即为所求, 因为AK =22AE EK +=10,所以AH = 4. 3.答案:C解:由题意得C 正确. 4.答案:A解:由已知可得t c b a c b a )(2++=++,当0a b c ++≠时,12t =,1124y x =+,直线过第一、二、三象限; 当0a b c ++=时,1t =-,1y x =-+,直线过第一、二、四象限.综合上可得,直线必定经过的象限是第一、二象限.5.答案:C解:设直角三角形的两条直角边长为,a b (a b ≤),则12a b k ab ++=⋅(a ,b ,k 均为正整数),化简,得(4)(4)8ka kb --=,所以4148ka kb -=⎧⎨-=⎩或4244ka kb -=⎧⎨-=⎩.解得1512k a b =⎧⎪=⎨⎪=⎩或234k a b =⎧⎪=⎨⎪=⎩或⎪⎩⎪⎨⎧===.8,6,1b a k 即有3组解.6.答案:B解:在AC 上取一点G ,使CG =AB =4,连接OG ,则△OG C ≌△OAB ,所以OG =OA =26, ∠AOG =90°,所以△AOG 是等腰直角三角形,AG =12,所以AC =16.A(第2题)AB CEFO G(第6题)二、填空题(共6小题,每小题6分,满分36分) 7.答案:-2,2解:当x ≤-3时,y = -3x -6;当-3<x ≤-2时,y = -x ; 当-2<x ≤-1时,y =x +4; 当x >-1时,y =3x +6.;所以当x =-2时,y 的值最小,最小值为2. 8.答案:8个解:正三角形的各边必为立方体各面的对角线,共有8个正三角形. 9.答案:5312 解:由S △ABC =S △ABD + S △ADC ,得︒⋅⋅60sin 21AC AB =︒⋅⋅+︒⋅⋅30sin 2130sin 21AC AD AD AB . 解得AD =5312.10.答案:1,或253±-解:由已知,321x x x ...200032120001x x x x x -=1,321x x x (1999)32119991x x x x x -=1,解得12320001231999x x x x x x x x ==. 所以12000=x,或2000x = 11.答案:238104解:设甲跑完x 条边时,甲、乙两老鼠第一次出现在同一条边上,此时甲走了120x 厘米,乙走了2.91208x ⨯厘米,于是⎪⎪⎩⎪⎪⎨⎧≤-+⨯>--+-⨯.,1201202402.91208120)1(1202402.9)1(1208x x x x解得328327<≤x .因x 是整数,所以x =8,即经过2.98120⨯=232400=238104秒时,甲、乙两只机器鼠第一次出现在同一条边上.12.答案:36 解:20152013的个位数字是7,所以可设710+=k M ,其中k 是m 位正整数,则k N m+⨯=107.由条件N =4M ,得k m+⨯107=)710(4+k ,即39)410(7-=m k .当m =5时,k 取得最小值17948.所以T =179487,它的各位数字之和为36.三、解答题(共4题,满分54分) 13.(12分)解:(1)由B (0,4)得,c =4.G 与x 轴的交点A (2ba-,0), 由条件ac b =,得b c a =,所以2b a -=22c -=-,即A (2-,0).所以4,4240.b a a b =⎧⎨-+=⎩解得1,4.a b =⎧⎨=⎩所求二次函数的解析式为244y x x =++.(2)设图象L 的函数解析式为y =3-x +b ,因图象L 过点A (2-,0),所以6b =-,即平移后所得一次函数的解析式为y =36x --.令36x --=244x x ++, 解得12x =-,25x =-.将它们分别代入y =36x --, 得10y =,29y =.所以图象L 与G 的另一个交点为C (5-,9). 如图,过C 作CD ⊥x 轴于D ,则 S △ABC =S 梯形BCDO -S △ACD -S △ABO =111(49)53924222+⨯-⨯⨯-⨯⨯=15.(第13题)14.(12分)证明:延长BA 、EC ,设交点为O ,则四边形OADC 为平行四边形. ∵ F 是AC 的中点, ∴ DF 的延长线必过O 点,且31=OG DG . ∵ AB ∥CD , ∴DNANPN MN =. ∵ AD ∥CE ,∴DNCQPN PQ =. ∴ +PN MN =PN PQ DN AN DNCQ+ =DNCQ AN +.又=OQ DN 31=OG DG , ∴ OQ =3DN .∴ CQ =OQ -OC =3DN -OC =3DN -AD ,AN =AD -DN , 于是,AN +CQ =2DN , ∴+PN MN =PNPQ DN CQAN +=2,即 MN +PQ =2PN .15.(14分)解:不能.理由:设继i P 点涂成红色后被涂到的点是第j 号,则j =2,22007,22007,22007.i i i i ≤⎧⎨->⎩若i =2007,则j =2007,即除2007P 点涂成红色外,其余均没有涂到. 若i ≠2007,则2i ≠2007,且2i ≠4014,即2i -2007≠2007, 表明2007P 点永远涂不到红色.BACMN P E FQDG O 初中数学资源网第11页(共6页) 16.(16分)解:(1)设123x x x ,,,…,1007x 是1,2,3,…,2008中任意取出的1007个数.首先,将1,2,3,…,2008分成1004对,每对数的和为2009,每对数记作(m ,2009-m ) ,其中m =1,2,3, (1004)因为2008个数取出1007个数后还余1001个数,所以至少有一个数是1001个数之一的数对至多为1001对,因此至少有3对数,不妨记为112233(2009)(2009)(2009)m m m m m m ---,,,,, (123m m m ,,互不相等)均为123x x x ,,,…,1007x 中的6个数.其次,将这2008个数中的2006个数(除1004、2008 外)分成1003对,每对数的和为2008,每对数记作(k ,2008-k ) ,其中k =1,2, (1003)2006个数中至少有1005个数被取出,因此2006个数中除去取出的数以外最多有1001个数,这1003对数中,至少有2对数是123x x x ,,,…,1007x 中的4个数,不妨记其中的一对为11(2008)k k -,.又在三对数112233(2009)(2009)(2009)m m m m m m ---,,,,,,(123m m m ,,互不相等)中至少存在1对数中的两个数与11(2008)k k -,中的两个数互不相同,不妨设该对数为11(2009)m m -,,于是1111200920084017m m k k +-++-=.(2)不成立.当1006n =时,不妨从1,2,…,2008中取出后面的1006个数:1003 ,1004, (2008)则其中任何四个不同的数之和不小于1003+1004+1005+1006=4018>4017;当1006n <时,同样从1,2,…,2008中取出后面的n 个数,其中任何4数之和大于1003+1004+1005+1006=4018>4017.所以1006n ≤时都不成立.。
余杭区年“假日杯”初中数学竞赛试卷答案
余杭区“假日杯”初中数学竞赛参考答案和评分标准一、选择题 (共8小题,每小题5分,满分40分)1. C2. D3. C4. D5. B6. A7. B8. A二、填空题(共6小题,每小题5分,满分30分)9. 52º 10. 1,13- 11. 36和36 12. 35%或65% 13. 12-x ,24S14. 8(注:以上有两个答案的小题,答对一个给3分)三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)15. 解:连接AD ,……3分∵AC =DC =1,∠ACB =60º,∴△ADC 是等边三角形.……3分∵BD =DC =DA ,∠ADC =60º,∴∠BAD =30º, ……2分 ∴∠BAC =90º.……2分在Rt △AEC 和Rt △DEC 中,∵AC =DC ,EC =E C ,∴△AEC ≌△DEC (HL ). ……2分16. 解:(1) 36=102-82,2 012=5042-5022,所以28和2 012都是神秘数.……4分(各2分)(第(1)问评分注:只有猜想36和2 012是神秘数但没有理由,各得1分)(2) (2k +2)2-(2k )2=4(2k +1),……1分因为2k +1是奇数,因此由这两个连续偶数2k +2和2k 构造的神秘数不是8的倍数.……2分(第(2)问评分注:如果只通过猜想或举例来说明神秘数不是8的倍数,也得1分)(3) 设两个连续奇数为2n +1和2n -1,……1分 A C E (第15题)则(2n+1)2-(2n-1)2=8n,……1分即两个连续奇数的平方差是8的倍数.……1分由(2)知,神秘数不是8的倍数,因此,两个连续奇数的平方差不是神秘数.……2分(第(3)问评分注:通过几个特例来说明两个连续奇数的平方差不是神秘数,可以得2分;只有猜想“两个连续奇数的平方差不是神秘数”也得1分)17. 解:设这个等腰三角形的腰为x ,底为y ,分为的两部分边长分别为n 和2n ,根据题意,得⎪⎩⎪⎨⎧=+=+;22,2n y x n x x 或 ⎪⎩⎪⎨⎧=+=+.2,22n y x n x x ……2分解得 ⎪⎩⎪⎨⎧==;35,32n y n x 或 ⎪⎩⎪⎨⎧==.3,34n y n x ……2分∵ 35322n n <⨯(此时不能构成三角形,舍去), ……1分∴ 取⎪⎩⎪⎨⎧==,3,34n y n x 其中n 是3的倍数. ……2分 三角形的面积2223663)6()34(321n n n n S Δ=-⨯⨯=(或127). ……1分当n =3时,8463<=ΔS ;当n =6时,863<=ΔS ;当n =9时,84639>=ΔS . 因此取n =6,此时,x =8,y =2.……2分 故所求的面积小于8且周长最大的三角形的三边长是8,8,2. ……2分18. 解:(1) b a a AP +=4,b a b PD +=4,……2分 设AB =h ,则S 1=b a bh +2,S 2=ba hb a ++)24(. ……2分 ∴ ba b S S +=221. ……2分(2) 过E 作AD 的垂线交AD (或AD 的延长线)于点F ,过P 作BC 的垂线交BC 于点G . ……2分在Rt △PFE 和Rt △PGC 中, PE =PC ,∠EPF =∠CPG ,∴△PFE ≌△PGC .……2分 ∴EF =GC =PD =b a b +4. ……2分 ∴2)(8442121b a ab b a b b a a EF AP S +=+⋅+⋅=⋅⋅=. ……2分年11月B AC D P(第18题) F S S 1 S 2。
2007 全国初中数学竞赛试题及答案
2007年全国初中数学竞赛试题参考答案 中国教育学会中学数学教学专业委员会“《数学周报》杯”2007年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里. 不填、多填或错填得零分)1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).(A )1 (B ) 2 (C ) 3 (D )4答:(A ).解:若x ≥0,则12,6,x y x y +=⎧⎪⎨+=⎪⎩于是6y y -=-,显然不可能.若0x <,则 12,6,x y x y -+=⎧⎪⎨+=⎪⎩于是18y y +=,解得9y =,进而求得3x =-.所以,原方程组的解为⎩⎨⎧=-=,9,3y x 只有1个解.故选(A ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ).(A ) 14 (B ) 16 (C )18 (D )20答:(B ). 解:用枚举法:红球个数 白球个数 黑球个数 种 数5 2,3,4,5 3,2,1,0 4 4 3,4,5,6 3,2,1,0 4 3 4,5,6,7 3,2,1,0 4 2 5,6,7,8 3,2,1,0 4所以,共16种.故选(B ).3.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相交于点D ,E . 若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ).(A )内心 (B )外心 (C )重心 (D )垂心 答:(B ).解: 如图,连接BE ,因为△ABC 为锐角三角形,所以BAC ∠,ABE ∠均为锐角.又因为⊙O 的半径与△ADE 的外接圆的半径相等,且DE为两圆的公共弦,所以BAC ABE ∠=∠.于是,2BEC BAC ABE BAC ∠=∠+∠=∠.若△ABC 的外心为1O ,则12B O C B A C ∠=∠,所以,⊙O一定过△ABC 的外心.故选(B ).4.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx(第3题答案图)恰有一个公共实数根,则222a b c bc ca ab++的值为( ).(A ) 0 (B )1 (C )2 (D )3 答:(D ). 解:设0x 是它们的一个公共实数根,则0020=++c bx ax ,0020=++a cx bx ,0020=++b ax cx .把上面三个式子相加,并整理得200()(1)0a b c x x ++++=.因为22000131()024x x x ++=++>,所以0a b c ++=. 于是222333333()a b c a b c a b a b bc ca ab abc abc +++-+++== 3()3ab a b abc-+==.故选(D ).5.方程323652x x x y y ++=-+的整数解(x ,y )的个数是( ). (A )0 (B )1 (C )3 (D )无穷多 答:(A ). 解:原方程可化为2(1)(2)3(1)(1)2x x x x x y y y ++++=-++(),因为三个连续整数的乘积是3的倍数,所以上式左边是3的倍数,而右边除以3余2,这是不可能的.所以,原方程无整数解.故选(A).二、填空题(共5小题,每小题6分,满分30分) 6.如图,在直角三角形ABC 中,90ACB ∠=︒,CA =4.点P 是半圆弧AC 的中点,连接BP ,线段BP 把图形APCB 分成两部分,则这两部分面积之差的绝对值是 .答:4.解:如图,设AC 与BP 相交于点D ,点D 关于圆心O 的对称点记为点E ,线段BP 把图形APCB 分成两部分,这两部分面积之差的绝对值是△BEP 的面积,即△BOP 面积的两倍.而1122222BPO S PO CO ∆=⋅=⨯⨯=.因此,这两部分面积之差的绝对值是4.7.如图, 点A ,C都在函数0)y x =>的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 .答:(0).解:如图,分别过点A ,C 作x 轴的垂线,垂足分别为E ,F .设OE =a ,BF =b , 则AE,CF,所以,点A ,C 的坐标为(a),(2a +b),(第7题答案图)所以2(2)a a b =+=解得a b ⎧=⎪⎨=⎪⎩ 因此,点D的坐标为(0).8.已知点A ,B 的坐标分别为(1,0),(2,0). 若二次函数()233y x a x =+-+的图象与线段AB 恰有一个交点,则a 的取值范围是 .答:1-≤12a <-,或者3a =-解:分两种情况:(Ⅰ)因为二次函数()233y x a x =+-+的图象与线段AB 只有一个交点,且点A ,B 的坐标分别为(1,0),(2,0),所以[][]032)3(231)3(122<+⨯-+⨯+⨯-+a a ,得112a -<<-.由031)3(12=+⨯-+a ,得1a =-,此时11=x ,32=x ,符合题意;由032)3(22=+⨯-+a ,得12a =-,此时21=x ,232=x ,不符合题意.(Ⅱ)令()2330x a x +-+=,由判别式0∆=,得3a =±.当3a =+时,12x x ==3a =-12x x ==综上所述,a 的取值范围是1-≤12a <-,或者3a =-9.如图,90A B C D E F G n ∠+∠+∠+∠+∠+∠+∠=⋅︒,则n = .答:6.解:如图,设AF 与BG 相交于点Q ,则AQG A D G ∠=∠+∠+∠,于是A B C D E F G ∠+∠+∠+∠+∠+∠+∠B C E F AQG =∠+∠+∠+∠+∠ B C E F BQF =∠+∠+∠+∠+∠ 540690=︒=⨯︒. 所以,n =6.10.已知对于任意正整数n ,都有312n a a a n +++= ,则23100111111a a a +++=--- . 答:33100. 解:当n ≥2时,有3121n a a a a n n =++++- ,3121(1)n a a a n -+++=- ,两式相减,得 2331n a n n =-+, 所以),111(31)1(3111n n n n a n --=-=- ,4,3,2=n 因此23100111111a a a +++--- 11111111(1)()()32323399100=-+-++- 1133(1)3100100=-=. 三、解答题(共4题,每小题15分,满分60分)11(A ).已知点M ,N 的坐标分别为(0,1),(0,-1),点P 是抛物线214y x =上的一个动点. (1)判断以点P 为圆心,PM 为半径的圆与直线1y =-的位置关系; (2)设直线PM 与抛物线214y x =的另一个交点为点Q ,连接NP ,NQ ,求证:PNM QNM ∠=∠. 解:(1)设点P 的坐标为2001(,)4x x ,则 PM20114x ==+;又因为点P 到直线1y =-的距离为220011(1)144x x --=+, 所以,以点P 为圆心,PM 为半径的圆与直线1y =-相切.…………5分(2)如图,分别过点P ,Q 作直线1y =-的垂线,垂足分别为H ,R .由(1)知,PH =PM ,同理可得,QM =QR .因为PH ,MN ,QR 都垂直于直线1y =-,所以,PH∥MN ∥QR ,于是QM MPRN NH =, 所以Q RP H R NH N=, 因此,Rt △PHN ∽Rt △QRN .于是HNP RNQ ∠=∠,从而PNM QNM ∠=∠.…………15分12(A ).已知a ,b 都是正整数,试问关于x 的方程21()02x abx a b -++=是否有两个整数解?如果有,请把它们求出来;如果没有,请给出证明.解:不妨设a ≤b ,且方程的两个整数根为12,x x (1x ≤2x ),则有1212,1(),2x x ab x x a b +=⎧⎪⎨=+⎪⎩所以 12121122x x x x a b ab --=+-,124(1)(1)(21)(21)5x x a b --+--=.…………5分因为a ,b 都是正整数,所以x 1,x 2均是正整数,于是,1x -≥0,1x -≥0,21a -≥1,21b -≥1,所以12(1)(1)0,(21)(21)5,x x a b --=⎧⎨--=⎩ 或 ⎩⎨⎧=--=--.1)12)(12(,1)1)(121b a x x ((1)当12(1)(1)0,(21)(21)5x x a b --=⎧⎨--=⎩时,由于a ,b 都是正整数,且a ≤b ,可得a =1,b =3,此时,一元二次方程为2320x x -+=,它的两个根为11x =,22x =.(2)当12(1)(1)1,(21)(21)1x x a b --=⎧⎨--=⎩时,可得a =1,b =1,此时,一元二次方程为210x x -+=,它无整数解.综上所述,当且仅当a =1,b =3时,题设方程有整数解,且它的两个整数解为11x =,22x =. ……………15分13(A ).已知AB 为半圆O 的直径,点P 为直径AB 上的任意一点.以点A 为圆心,AP 为半径作⊙A ,⊙A 与半圆O 相交于点C ;以点B 为圆心,BP 为半径作⊙B ,⊙B 与半圆O 相交于点D ,且线段CD 的中点为M .求证:MP 分别与⊙A 和⊙B 相切.证明:如图,连接AC ,AD ,BC ,BD ,并且分别过点C ,D 作AB 的垂线,垂足分别为,E F ,则CE ∥DF .因为AB 是⊙O 的直径,所以90ACB ADB ∠=∠=︒.在Rt △ABC 和Rt △ABD 中,由射影定理得22PA AC AE AB ==⋅,22PB BD BF AB ==⋅.……………5分两式相减可得()22PA PB AB AE BF -=-,又 ()22()()PA PB PA PB PA PB AB PA PB -=+-=-, 于是有 AE BF PA PB -=-, 即 PA AE PB BF -=-, 所以PE PF =,也就是说,点P 是线段EF 的中点.因此,MP 是直角梯形CDFE 的中位线,于是有MP AB ⊥,从而可得MP 分别与⊙A 和⊙B 相切.……………15分14(A ).(1)是否存在正整数m ,n ,使得(2)(1)m m n n +=+? (2)设k (k ≥3)是给定的正整数,是否存在正整数m ,n ,使得()(1)m m k n n +=+?解:(1)答案是否定的.若存在正整数m ,n ,使得(2)(1)m m n n +=+,则22(1)1m n n +=++,显然1n >,于是2221(1)n n n n <++<+,(第13A 题答案图)所以,21n n ++不是平方数,矛盾. ……………5分(2)当3k =时,若存在正整数m ,n ,满足(3)(1)m m n n +=+,则2241244m m n n +=+,22(23)(21)8m n +=++,(2321)(2321)8m n m n +--+++=,(1)(2)2m n m n -+++=,而22m n ++>,故上式不可能成立.………………10分当k ≥4时,若2k t =(t 是不小于2的整数)为偶数,取22,1m t t n t =-=-,则 2242()()()m m k t t t t t t +=-+=-, 2242(1)(1)n n t t t t +=-=-,因此这样的(m ,n )满足条件.若2k t =+1(t 是不小于2的整数)为奇数,取222,22t t t t m n -+-==,则 224321()(21)(22)224t t t t m m k t t t t t --+=++=+--, 2243221(1)(22)224t t t t n n t t t t +-++=⋅=+--, 因此这样的(m ,n )满足条件.综上所述,当3k =时,答案是否定的;当k ≥4时,答案是肯定的.……………15分注:当k ≥4时,构造的例子不是唯一的.11(B ).已知抛物线1C :234y x x =--+和抛物线2C :234y x x =--相交于A ,B 两点. 点P 在抛物线1C 上,且位于点A 和点B 之间;点Q 在抛物线2C 上,也位于点A 和点B 之间. (1)求线段AB 的长;(2)当PQ ∥y 轴时,求PQ 长度的最大值.解:(1)解方程组2234,34,y x x y x x ⎧=--+⎪⎨=--⎪⎩得 112,6,x y =-⎧⎨=⎩ 222,6,x y =⎧⎨=-⎩所以,点A ,B 的坐标分别是(-2,6),(2,-6). 于是AB ==…………5分(2)如图,当PQ ∥y 轴时,设点P ,Q 的坐标分别为)43,(2+--t t t , )43,(2--t t t , 22t -<<,因此 PQ 22(4)t =-≤8, 当0t =时等号成立,所以,PQ 的长的最大值8.12(B ).实数a ,b ,c 满足a ≤b ≤c ,且0ab bc ca ++=,abc =1.求最大的实数k ,使得不等式a b +≥k c恒成立.解:当a b ==2c =时,实数a ,b ,c 满足题设条件,此时k ≤4. ……………5分下面证明:不等式a b +≥4c 对满足题设条件的实数a ,b ,c 恒成立. 由已知条件知,a ,b ,c 都不等于0,且0c >.因为2110,0ab a b c c=>+=-<,所以a ≤b 0<.由一元二次方程根与系数的关系知,a ,b 是一元二次方程22110x x c c++=的两个实数根,于是414c c∆=-≥0,所以 3c ≤14.……………10分因此21()a b a b c +=-+=≥44c c =. ……………15分13(B ).如图,点E ,F 分别在四边形ABCD 的边AD ,BC 的延长线上,且满足DE ADCF BC =.若CD ,FE 的延长线相交于点G ,△DEG 的外接圆与△CFG 的外接圆的另一个交点为点P ,连接P A ,PB ,PC ,PD .求证:(1)AD PDBC PC=; (2)△PAB ∽△PDC .证明:(1)连接PE ,PF ,PG ,因为PDG PEG ∠=∠,所以PDC PEF ∠=∠.又因为PCG PFG ∠=∠,所以△PDC ∽△PEF , 于是有,PD PECPD FPE PC PF=∠=∠, 从而 △PDE ∽△PCF ,所以PD DEPC CF =. 又已知DE AD CF BC =,所以,AD PDBC PC=. ………………10分(2)由于PDA PGE PCB ∠=∠=∠,结合(1)知,△PDA ∽△PCB ,从而有,PA PDPB PC= DPA CPB ∠=∠, 所以APB DPC ∠=∠,因此△PAB ∽△PDC . ………………15分14(B ).证明:对任意三角形,一定存在两条边,它们的长u ,v 满足1≤u v <证明:设任意△ABC 的三边长为a ,b ,c ,不妨设a b c >>.若结论不成立,则必有a b, ○1 b c. ○2 ………………5分记,b c s a b t c s t =+=+=++,显然,0s t >,代入○1得c s t c s +++≥12+, 11s t c c s c+++≥12+, 令,s tx y c c==,则11x y x +++. ○3 由a b c <+,得c s t c s c ++<++,即t c <,于是1ty c=<. 由○2得1b c s x c c +==+, ○4 由○3,○4得y≥11(1)2x ⎛⎫-+ ⎪ ⎪⎝⎭1=, 此式与1<y 矛盾.从而命题得证.………………15分。
余杭区2007年“假日杯”中小学网络应用能力竞赛试题(中学组)
余杭区2007年“假日杯”中小学网络应用能力竞赛试题中学组学校姓名得分注意事项:1、全卷共100分,考试时间为60分钟。
2、利用因特网完成题目。
3、答案直接做在本文档中,凡由答题者输入的文字一律以红色加粗显示,完成后请将文档排版,总页数控制在6页以内(2分)。
4、试卷做完后,将本文档改名为:“学校名称+队名.doc”,例如:“××中学一队”。
并上传到本组的专用FTP内,同时删除其余所有文件。
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●一、填空:(20分)2、2008北京奥运会将于8 月8 日举行,那一天农历是初8。
3、2008年北京奥运会奖牌于今年 3 月27 日正式发布,奖牌正面采用国际奥委会规定的图案: 插上翅膀站立的希腊胜利女神和希腊潘纳辛纳科竞技场,背面镶嵌取自中国古代龙纹玉璧造型的玉璧,背面正中的金属图形上镌刻着北京奥运会会徽。
4、清华大学的域名 ,对应IP地址是。
二、牧师过河问题:请描述牧师过河问题,并用自然语言描述过河步骤。
(5分)有三个牧师和三个野人过河,只有一条能装下两个人的船,在河的任何一方或者船上,如果野人的人数大于牧师的人数,那么牧师就会有被吃掉的危险。
你能不能找出一种安全的渡河方法呢?三、国家统计局对全国县域社会经济综合发展测算结果显示,2005年浙江共有30个县(市、区)跻身全国最发达100个县(市、区)行列(以下简称百强县),百强县数量与2004、2003年持平,并连续六年位居全国第一。
请在WORD文档中完成以下内容:(1)浙江入围全国百强县(30个)的名单、名次及社会经济综合发展指数表(5分)2005年县(市)社会经济综合发展指数前100名(浙江省)(2)请比较我区与周边六个县市(区):萧山区、富阳市、临安市、海宁市、桐乡市、德清县的社会经济综合发展指数情况(用EXCEL 柱形图表示)。
(10分)社会经济发展综合指数四、拥有一辆合适的汽车越来越成为很多人的梦想,请把下表中的部分排量为2.0升汽车的资料填写完毕,五、全国中小学课程改革已经由个别省市试点逐步向其它省市全面推广,作为改革的重点之一:高考方案的确定倍受关注。
2007年余杭区假日杯试卷
2007年余杭区“假日杯”小学数学竞赛试题(60分钟)班级 姓名一、填空题:(每题5分,共35分)1.计算:(1+0.12+0.23)=+⨯+++-++⨯)23.012.0()34.023.012.01()34.023.012.0( ( )2.计算:=++++++817716615514413312211( ) 3.=⨯⨯÷÷7.07.17.237.0285.714( )4.“重阳节”那天,临平老年茶社来了25位老人品茶。
他们的年龄恰好25个连续的自然数,两年后这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年( )岁。
5. 要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为( )段、90毫米的铜管为( )段时,所损耗的铜管才能最少。
6.把1、2、3、4、……9这九个数字填入下面算式的九个方框中(每个数字只用一次),使三个三位相乘的积最大。
7.如果右图中任意相邻的三个点构成的三角形的面积都是2平方厘米。
那么三角形ABC 的面积是( )个平方厘米。
8.在右边的减法竖式中,“☆”“△”“○”各代表一个不同的数字。
可以推算出“○”代表( )。
9.某校为表扬好人好事核实一件事,校长找了A 、B 、C 、D 四人。
A 说:“是B 做的。
”B 说:“是D 做的。
”C 说:“不是我做的”。
D 说:“B 说的不对。
”这四个人中只有一个人说了实话。
问:做这件好事的人是( )。
10.一根木料长21米,把它锯成3米长的一段。
每锯一段用6分钟,共用( )分钟。
二、解答题:(写出过程)每题10分,最后一题12分,共52分)1.马路上有一辆车身为15米的公共汽车由东向西行驶,车速为每小时18千米。
马路一旁的人行道上有甲、乙两名年轻人在练习长跑,甲由东向西跑,乙由西向东跑。
某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余杭区2007年“假日杯”初中数学竞赛试卷
(2007年11月24日 上午9∶00—10∶30)
一、选择题 (共8小题,每小题5分,满分40分.以下每小题均给出代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分) 1. 已知
x
x x x -=
-11
,则x 应满足( ) (A) x <1
(B) x ≤0
(C) x >1
(D) x ≥0且x ≠1
2. 有一个游戏的规则是:你想一个数,乘以2,加上6,再除以2,最后减去你所
想的数,我就知道结果.这个结果是( )
(A) 1 (B) 2 (C) 3 (D) 4
3. 如图,Rt ABC Δ中,DC 是斜边AB 上的中线,EF 过点C 且平行于AB .若
︒=∠35BCF ,则ACD ∠的度数是( )
(A) 35° (B) 45°
(C) 55°
(D) 65°
4. 一个立方体的表面展开图如下面左图所示,将其折叠成立方体后的立体图形是
( )
5. 已知x ,y ,z 满足
x
z z
y x +=
-=
532,则
z
y y x
25
+-
的值为( ) (A)
3
1 (B) 3
1-
(C) 1
(D)
2
1
(第4题)
(A)
(B) (C) (D)
E
(第3题)
6. 801班的全体同学为本校一贫困生共捐款125元,根据下表(不完整)中该班的
捐款数和捐款人数,可以知道该班捐款数的平均数和中位数依次是( )
(A) 2.5元,2元 (B) 2.5元,2.5元 (C) 2元,2.5元 (D) 2元,2元 7. 袋中装有3个红球、4个黑球、5个白球.现从袋中任意摸出2个球,摸出的球
中恰好有1个红球的概率是( )
(A)
44
9 (B)
22
9 (C)
11
5 (D)
3
1
8. 如图,点A 是5×5方格图形中的一个格点(小正方形的顶点),图中每个小正方形
的边长都是1.那么,面积等于
2
5
,并且一个顶点是A 点的格点..等腰直角三角形(三角形的三个顶点都是格点)的个数有( )
(A) 10个 (B) 12个 (C) 14个 (D) 16个
二、填空题(共6小题,每小题5分,满分30分) 9. 化简1
)1
11(2
-÷
-+
x
x x 得 ,
当x = (选择一个你喜欢的x 值)时,求得原式的值为 . 10. 计算
008
2006218
616
414
21⨯+
+⨯+
⨯+
⨯ 的结果是 .
11. 观察下列各式:225100)11(115+⨯+⨯=;
2
2
5100)12(225+⨯+⨯=; 2
2
5100)13(335
+⨯+⨯=;
……
依此规律,第n 个等式(n 为正整数)为 .
12. 一个等腰三角形的一个外角等于110°,则这个三角形的三个角应该
为 .
(第8题
)
13. 三个同学对问题“若二元一次方程组⎩⎨⎧=+=+2
221
11,c y b x a c y b x a 的解是⎩⎨
⎧==,4,
3y x 求方程组⎩⎨
⎧=+=+2
22111523,
523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 14. 某文具店销售的水笔只有A ,B ,C 三种型号,下表中给出了上月这三种型号水笔每
支的利润和销售量.若该店计划下月共进货这三种型号水笔600支,结合上月销售情况,你认为A ,B ,C 三种型号的水笔
各进货多少支总利润最高?此时所获得
的总利润是多少?答:进A 型水笔 支,B 型水笔 支,C 型水笔 支,总利润最高,此时所获得的总利润为 元.
三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分) 15. 当x 分别取值
008
21,
007
21,…,3
1,
2
1,1,2,3,…,2 007,2 008时,
求所得各代数式2
211x
x +-值的和.
16. 已知一组数据x 1,x 2,x 3,…,x n 的平均数是x ,
方差是2S ,设另一组数据b ax x +='11,b ax x +='22,
b ax x +='31
,…,b ax x n n +='的平均数是x ',方差是2S '.
请说明以下等式成立的理由:(1) b x a x +=';(2) 222S a S ='.
17. 已知四边形ABCD两条对角线互相垂直,点O是对角线的
交点,∠ACD=60 ,∠ABD=45 ,点A到CD的距离是6,点D到AB的距离是8,求四边形ABCD的面积S.
A
B
C
D O
(第17题)
18. 现有一张矩形纸片ABCD (如图),其中AB =4cm ,BC =6cm ,
点E 是BC 的中点.将纸片沿直线AE 折叠,点B 落在四边
形AECD 内,记为点B '.求线段C B '的长.
B
A
C
D
E (第18题)
B '。