INTEGERS ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A13 THE TRIBONACCI

合集下载

中科院计算机类SCI期刊及分区(2016年10月发布)

中科院计算机类SCI期刊及分区(2016年10月发布)
中科院计算机类SCI期刊及分区(201
期刊 IEEE TRANSACTIONS ON FUZZY SYSTEMS International Journal of Neural Systems IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION INTEGRATED COMPUTER-AIDED ENGINEERING IEEE Transactions on Cybernetics IEEE Transactions on Neural Networks and Learning Systems MEDICAL IMAGE ANALYSIS Information Fusion INTERNATIONAL JOURNAL OF COMPUTER VISION IEEE TRANSACTIONS ON IMAGE PROCESSING IEEE Computational Intelligence Magazine EVOLUTIONARY COMPUTATION IEEE INTELLIGENT SYSTEMS PATTERN RECOGNITION ARTIFICIAL INTELLIGENCE KNOWLEDGE-BASED SYSTEMS NEURAL NETWORKS EXPERT SYSTEMS WITH APPLICATIONS Swarm and Evolutionary Computation APPLIED SOFT COMPUTING DATA MINING AND KNOWLEDGE DISCOVERY INTERNATIONAL JOURNAL OF APPROXIMATE REASONING SIAM Journal on Imaging Sciences DECISION SUPPORT SYSTEMS Swarm Intelligence Fuzzy Optimization and Decision Making IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING JOURNAL OF MACHINE LEARNING RESEARCH ACM Transactions on Intelligent Systems and Technology NEUROCOMPUTING ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS ARTIFICIAL INTELLIGENCE IN MEDICINE COMPUTER VISION AND IMAGE UNDERSTANDING JOURNAL OF AUTOMATED REASONING INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS COMPUTATIONAL LINGUISTICS ADVANCED ENGINEERING INFORMATICS JOURNAL OF INTELLIGENT MANUFACTURING Cognitive Computation IEEE Transactions on Affective Computing JOURNAL OF CHEMOMETRICS MECHATRONICS IEEE Transactions on Human-Machine Systems Semantic Web IMAGE AND VISION COMPUTING Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery issn 1063-6706 0129-0657 0162-8828 1089-778X 1069-2509 2168-2267 2162-237X 1361-8415 1566-2535 0920-5691 1057-7149 1556-603X 1063-6560 1541-1672 0031-3203 0004-3702 0950-7051 0893-6080 0957-4174 2210-6502 1568-4946 1384-5810 0888-613X 1936-4954 0167-9236 1935-3812 1568-4539 1041-4347 1532-4435 2157-6904 0925-2312 0952-1976 0169-7439 0933-3657 1077-3142 0168-7433 0884-8173 0891-2017 1474-0346 0956-5515 1866-9956 1949-3045 0886-9383 0957-4158 2168-2291 1570-0844 0262-8856 1942-4787

IEEEIEE Electronic Library IEL全文数据库

IEEEIEE Electronic Library IEL全文数据库
IEEE/IEE Electronic Library IEL 全文数据库
中国矿业大学图书馆 信息咨询部
简 介
IEEE/IEE Electronic Library (IEL) 数据库提供美国电 气电子工程师学会( 气电子工程师学会(IEEE)和英国电气工程师学会 ) 种期刊, 种会议录, (IEE)出版的 )出版的207种期刊,6279种会议录,1496种标 种期刊 种会议录 种标 准的全文信息.多数出版物提供1988年以后的全文数据, 准的全文信息.多数出版物提供 年以后的全文数据, 年以后的全文数据 但有IEEE学会下属的 个技术学会的 种出版物可以 学会下属的13个技术学会的 种出版物可以 但有 学会下属的 个技术学会的18种出版物 看到更早的全文. 看到更早的全文. 校园网的用户均可通过连接INTERNET访问美国 访问美国IEL主 校园网的用户均可通过连接 访问美国 主 采用IP地址限定用户范围 不需要帐号和口令. 地址限定用户范围, 页,采用 地址限定用户范围,不需要帐号和口令. 由于数据库的并发用户数限制在15个 会出现" 由于数据库的并发用户数限制在 个,会出现"All available online seats are currently being occupied"的信 的信 并提示输入用户名和帐号. 息,并提示输入用户名和帐号.请用户检索之后尽快退 以便他人能够联通.网上浏览期刊全文( 格式) 出,以便他人能够联通.网上浏览期刊全文(PDF格式) 格式 需要使用Acrobat Reader软件. 软件. 需要使用 软件
谢谢大家! 谢谢大家!

IEL主页 主页
检索方法
直接在检索输入框中输入检索词进行 直接在检索输入框中输入检索词进行Basic Search,系统默认是在全文字段中进行检索 , 在主页上部"Browse"和"Search"栏目下分别 在主页上部" 和 栏目下分别 列出IEL数据库不同的检索方式,点击相应的 数据库不同的检索方式, 列出 数据库不同的检索方式 选项选择检索方式

专业英语术语翻译整理

专业英语术语翻译整理

central processing unit 中央处理单元plug and play即插即用electronic commerce电子商务artificial intelligence人工智能URL(Uniform Resource Locator)网址software life cycle软件生命周期e-journal 电子期刊FAQ(Frequently Asked Question)常问问题network security 网络安全objective-oriented 以目标为导向Trojan horse 木马ink cartridge 墨盒object linking and embedding (OLE)对象链接和嵌入procedural language 程序语言Windows socket 窗口操作系统插座character set字集cost effectiveness成本效益run a computer program 运行的计算机程序event-driven programming 事件驱动编程scroll bar 滚动条analogue computer模拟计算机polymorphism多态性rotating shafts and gears 旋转轴和齿轮numerical approximation 数值逼近equation 方程middleware中间件integrated circuit 集成电路transistor 晶体管fabricate 编造scalability可扩展性silicon substrate 硅衬底throughput吞吐量operating instruction 操作指令microminiaturization 微型化superconductivity超导parser分析器convergence收敛Data Modification Language (DML)数据修改语言Distributed Component Object Model (DCOM)分布式组件对象模型electronic bulletin board电子公告板Random Access Memory (RAM)随机存取存储器assignment statement赋值语句relational database关系型数据库data access数据访问bootstrap sector引导扇区system expandability系统的可扩展性entity relationship diagram实体关系图permanent table永久表clustered index聚集索引synchronization同步file transfer protocol (FTP)文件传输协议load balancing负载均衡data encryption数据加密graphical user interface (GUI) 图形用户界面universal serial bus (USB)通用串行总线OSI(Open System Interconnection)开放系统互连virtual reality虚拟现实liquid crystal display (LCD) 液晶显示器database management system (DBMS)数据库管理系统development tool开发工具peer-to-peer network对等网络prototype原型赋值语句Assignment statement非易失性 Nonvolatile(NV)关系数据库Relational Database数据存取Data Access外围设备Peripheral Equipment系统可扩展性 System scalability多核处理器Multi-core processors实体关系图Entity Relationship Diagram(ERD)派生类 Derived class数据修改语言 Data Modification Language神经网络Neural Network永久(固定)表Permanent (fixed) Table簇索引Clustered index体系结构框架 Architecture Framework分布式组件对象模型 Distributed Component Object Model对象关系数据库Object-Relational Database电子公告板Electronic bulletin board随机存储器Random Access Memory(RAM)网络适配器 Network Adapter文件传输协议File Transfer Protocol(TCP)负载平衡Load Balancing嵌入式操作系统 Embedded operating system图形用户接口Graphical User Interface通用串行总线Universal Serial Bus(USB)Open Systems Interconnection Reference Model 开放式系统互联参考模型液晶显示器LCD display数字用户线路 Digital Subscriber Line(DSL)数据库管理系统Database Management Systems开发工具 Development Tools元数据 Metadata对等网络 Peer network谓词演算Predicate calculus。

Small ramsey numbers

Small ramsey numbers
Small Ramsey Numbers
*
Stanisław P. Radziszowski Department of Computer Science Rochester Institute of Technology Rochester, NY 14623, spr@ Submitted: June 11, 1994; Accepted: July 3, 1994 Current revision: August 28, 1995
2. Classical Two Color Ramsey Numbers We split the data into the table of values and a table with corresponding references. Known exact values appear as centered entries, lower bounds as top entries, and upper bounds as bottom entries. All the critical graphs for the numbers R (k , l ) (graphs on R (k , l ) − 1 vertices without Kk and without Kl in the complement) are known for k = 3 and l = 3, 4, 5, 6 [Ka2], 7 [RK3, MZ], and there are 1, 3, 1, 7 and 191 of them, respectively. There exists a unique critical graph for R (4,4) [Ka2]. There are 4 such graphs known for R (3,8) [RK2], 1 for R (3,9) [Ka2] and 350904 for R (4, 5) [MR5], but there might be more of them.

西文电子连续出版物编目著录规则EJournalCatRules

西文电子连续出版物编目著录规则EJournalCatRules

印刷型连续出版物联机版本的两 种编目策略

同一记录编目法 (Single Record Approach)
即不为连续出版物的电子版单独编目,而只是 在原有的纸本书目记录的基础上作适当的修改,增加 有关的电子版本的信息。


分记录编目法 (Separate record approach)

即为联机版和印刷版各做一个单独的书目记录。
西文电子连续出版物 编目著录规则
北京大学图书馆 何峻
2002.11.27
西文电子连续出版物编目著录规则

*
基本概念 目*
*
■ “远程访问方式”电子连续出版物的编

“直接访问方式”电子连续出版物的编 目*
第一章 :基本概念
■书目资源的分类 * ■电子连续出版物的定义及分类 * ■电子连续出版物的常用编目工具 *
两种编目策略的优缺点比较
*
■ 同一记录编目法:编目成本较低,对编目人员要求较
低,可在短时间内完成大批的书目记录,但会丢失某 些专与电子版有关的数据与检索点,而且若是馆内没 有印刷版书目记录的出版物仍需重新编目 ■ 分记录编目法:可以充分揭示电子版的数据特征及检 索点,使检索更为容易和明确,并且有利于资源共享, 但要求编目员必须有专门的编目知识,成本较高,难 以在短期完成大量品种的编目任务 以上两种编目策略,各有利弊,各图书馆可以根 据自己的实际情况,斟情选用。
电子连续出版物编目的常用工具 *


两个有用的网址:
CONSER主页 *
/acq.conser/

MARC标准的主页 * /marc/
CONSER主页:*
MARC标准:*

国外英语论文网站

国外英语论文网站

国外英语论文网站Worcester Polytechnic Institute/Pubs/ETD/伍斯特工学院:包括670余篇学位论文,其中有550多篇全文,硕士论文4篇。

涵盖生物、电子、计算机、材料、物理、机械等学科。

The university of Nottingham/诺丁汉大学的论文数据库。

含131篇免费硕博论文,涵盖医学、艺术、教育、法学、工学等学科。

Australian Digital Theses Program.au澳洲数字论文计划,由澳洲大学图书馆员协会发起。

包含澳洲40余所大学的15440篇硕博论文,涵盖各个学科。

University of South Florida/cgi-bin/ETD-db/ETD-...D-search/search南佛罗里达大学的989篇电子版博硕论文,涵盖地理学、医学、电子学等学科的内容。

其中绝大部分可以在线免费获取全文。

Virginia Commonwealth University/ETD-db/ETD-search/search弗吉尼亚公共资产大学的768篇博硕论文,包括化学、生物、医学、会计学、艺术、语言、工学、教育等学科。

其中614篇可以在线免费获取全文。

The Pennsylvania State University's electronic Theses and Dissertations Archives/ETD-db/ETD-search/search宾夕法尼亚州大学电子论文库,包含1848篇全文,涵盖材料学、教育学、工学、法学、医学、航空、经济、化工、建筑等各个学科。

可在线免费获取。

North Carolina State University/ETD-db/ETD-search/search北卡罗来纳州州立大学的3937篇免费博硕论文,涵盖了化学、物理学、电子电气、核能、机械、材料、食品、林业、土壤等各学科。

University of Pretoria : Electronic Theses and Dissertationshttp://upetd.up.ac.za/比勒陀利亚大学的电子学位论文,含3000多篇电子博硕论文,涵盖社会学、食品、建筑、经济、信息、生化、教育、管理、心理学、法学等学科,其中2876篇可免费获取全文。

《兵工自动化》投稿模板

《兵工自动化》投稿模板

文章标题(中文20字以内,两英文字符为一个汉字) 第一作者姓名,第二作者姓名(作者人数不能超过4个)(XXXX 学院,山东 青岛 266071)摘要:稿件摘要篇幅应在200至300字(5-6行),其中要包含有目的、方法、结果、结论四要素。

全文篇幅为五号字体(包括题目和文献)A4纸张4-5页左右。

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………关键词: XXX ;XXX ;XXX ;XXX (最少3个,最多6个,而且中文关键词中不能有外文) 中图分类号:(作者自己填写) 文献标识码:(作者自己填写)文 章 标 题(英文)ZHANG San ,FAN Yan-bin(College of Information Engineering, Qingdao University, Qingdao Shandong 266071, China)ABSTRACT :Large amount utility of digital data brings about much maladies for the multimedia information’s security. Digital watermark technology appearred under this circumstance. It is an effective measure for Copyright protection, distortion informing, unauthorized copy tracking etc. The adaptive algorithm based on wavelet packet and the feature of texture chooses the embedded position and computes embedded depth adaptively through the analysis of the texture to coordinate robustness and inperceptibility better. In the experiment, geometry crops, Gaussian noise, mosaic, etc. were applied as the attacks. The experimental results show that robustness of this scheme gets a large progress, especially for the attacks of geometry crops and mosaic.KEYWORDS :digital watermark; wavelet packet; adaptive; feature of texture1 引言……………………………………………………………………………………………………………… 2 XXXX …………………………………………………………………………………………………………………………… 2.1 XXXX ……………………………………………………………………………………………………………………… XXXXXXXX 如下方法: (),ij N i j T g B =-∑ (1)(),1ij N i j B g m m =⨯∑ (2) ()4k M M N N ⨯=⨯ (3)2.1.1 XXXXX …………………………………………………………………………………………………………………………………………………………………………………………如图1和图2。

INTEGERS ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A22 TRUNCATING BINOMI

INTEGERS ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A22 TRUNCATING BINOMI

INTEGERS:ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY7(2007),#A22 TRUNCATING BINOMIAL SERIES WITH SYMBOLIC SUMMATIONPeter PauleResearch Institute for Symbolic Computation,J.Kepler University Linz,A-4040Linz,AustriaPeter.Paule@risc.uni-linz.ac.atCarsten Schneider1Research Institute for Symbolic Computation,J.Kepler University Linz,A-4040Linz,AustriaCarsten.Schneider@risc.uni-linz.ac.atReceived:1/4/07,Accepted:4/3/07,Published:4/24/07AbstractTaking an example from statistics,we show how symbolic summation can be used tofind generalizations of binomial identities that involve infinite series.In such generalizations,the infinite series are replaced by truncated versions.1.IntroductionConsider the identity∞ k=m+1mk(k−1)mj=0kjx k−j(1−x)j=x,m≥1,0≤x≤1,(1)which arose in the theory of records[Blo86,Isr88].In an attempt to generalize this result, Tam´a s Lengyel[Len06]found the binomial seriesa m,n(x)=mn−1∞k=m+1kn−1mj=0kjx k−j(1−x)j,which evaluates for all integers n and m with0≤n−1≤m toa m,n(x)=nn−11−(1−x)n−1,if n≥2and0≤x≤1−ln(1−x),if n=1and0≤x<1.(2)1Supported by the SFB-grant F1305and the grant P16613-N12of the Austrian FWF.For n =2one obtains the original identity.In this note we illustrate how algorithms from symbolic summation can be used to obtain generalizations of (2)where Lengyel’s a m,n (x )series is replaced by the truncated versiona (K )m,n (x )=m n −1 K k =m +1 k n −1m j =0k jx k −j(1−x )jin which K ≥m +1.In Section 2we present an automatic evaluation of a m,n (x )using Gosper’s telescopingand Zeilberger’s creative telescoping algorithms,respectively.In Section 3we observe that for specific values of n creative telescoping can be replaced by plain telescoping.This givesrise to conjecture that identities for the truncated version a (K )m,n (x )exist.In Section 4we derive such identities which in the limit K →∞give (2);see (7)and (8).To obtain the limit for K →∞,a generating function identity (9)is used.In Section 5we demonstrate that (9)can be also derived with symbolic summation.In Section 6some concluding remarks are given.All computations are done using the package Sigma [Sch04a];to derive (7)and (8)special Sigma features are applied.2.Automatic Evaluation of a m,n (x )Before applying computer algebra it is convenient to rewrite a m,n (x )as a series expanded in powers of x .To this end,in a m,n (x )we replace (1−x )j with l (−1)l j l x l .Then collecting coefficients of x N (N =k −j +l )turns Lengyel’s series intoa m,n (x )=mn −1 ∞ N =1(−1)N x N∞ k =m +1(−1)k k n −1A m (N )whereA m (N )=mj =0(−1)jk j jN −k +j.Now the rest can be done with computer algebra.After loading the Sigma package into thecomputer algebra system MathematicaIn[1]:=<<Sigma .mSigma -A summation package by Carsten Schneider cRISC-Linz we insert the hypergeometric sum S =A m (N ).Note that various Sigma functions supportthe user,like SigmaSum for sums,SigmaProduct for products,SigmaPower for powers,or SigmaBinomial for binomials.In[2]:=S=SigmaSum[SigmaPower[−1,j]SigmaBinomial[k,j]SigmaBinomial[j,N−k+j],{j,0,m}]Out[2]=mj=0(−1)jkjjN−k+jThen,by telescoping,Sigma produces the following closed form for A m(x)(=S): In[3]:=SigmaReduce[S]Out[3]=−(−1)m(m−k)NkmmN−k+m.This can also be achieved by any implementation of Gosper’s algorithm[Gos78],so we omit details here.Hencea m,n(x)=(−1)mmn−1∞N=1(−1)N x NNB m,n(N)(3)whereB m,n(N)=∞k=m+1(−1)kkn−1kmmN−k+m(k−m).Since telescoping fails to simplify B m,n(N),we continue diffly,for definite sums one can execute the Sigma functionIn[4]:=GenerateRecurrence[∞k=m+1(−1)kkn−1kmmN−k+m(k−m),N]Out[4]={(−1+n−N)SUM[N]−N SUM[1+N]==0}which is based on creative telescoping[Zei91]and which computes the recurrence Out[4] for SUM[N]=B m,n(N).This can be also achieved by any implementation of Zeilberger’s algorithm,so we omit details here.The recurrence Out[4]gives B m,n(N)=(−1)N+1N−nN−1B m,n(1).With the initial valueB m,n(1)=−n(−1)mmn−1−1wefindB m,n(x)=(−1)N+m nmn−1−1N−nN−1,(4)i.e.,a m,n(x)=n∞N=1x NNN−nN−1.Finally,for n=1,a m,1(x)=∞N=1x NN=−ln(1−x);for n>1,because ofN−nN−1=(−1)N−1n−2N−1,a m,n(x)=−nn−1∞N=1(−x)Nn−1N=−nn−1(−1+(1−x)n−1).3.A Truncated Variant of the Original Identity(1)With respect to our starting point,identity(1),the computer algebra approach taken in Section2brings along an additional ly,if n=2,one observes that the B(K)m,2(N)sum telescopes for N>1.Thus one hasB(K)m,2(N)=Kk=m+1(−1)kk(k−1)kmmN−k+m(k−m) =(−1)K(K−m)(K−m−N)Km(1−N)KmmK−Nfor N>1and arbitrary K≥m+1.Obviously for N=1,B(K)m,2(1)=(−1)m+1mfor K≥m+1.Consequently,the truncated version a(K)m,2(x)of a m,2(x)finds the following evaluation for K≥m+1:a(K) m,2(x)=2(−1)m mKN=1(−1)N x NNB(K)m,2(N)=2x+2m(−1)K+mK−1mKN=2(−1)N x NN(N−1)m−1K−N.(5)In the limit K→∞,one retrieves identity(1).One observes that B(K)m,n(x)also telescopes for all other specific values of n≥3.This suggests that a nice truncated generalization like(5)might exist for generic n.To obtain such a formula,one could try to guess a pattern from the evaluations at n=2,3,etc. However,we prefer to utilize specific features of Sigma which will lead us to an answer in the form of identities(7)and(8).4.Closed Form Evaluations of a (K )m,n (x )In contrast to Sections 2and 3,we will apply Sigma to a (K )m,n (x )in its original form.To this end,it will be convenient to proceed with a slight variation of the truncated generalizationof a (K )m,n (x ),namely,α(K )m,n (x ):=K k =1x m +k nD m,k (x )withD m,k (x )=m j =0(1−x )j x j m +kj.Note that for K ≥m +1≥n ≥1,a (K )m,n (x )=m n −1α(K −m )m,n (x ).(6)Also note that we restrict to x =0;the case x =0is trivial.4.1.PreprocessingA first step to simplify the sum α(K )m,n (x )is to represent the inner sum D m,k (x )as an indefinite sum in k .This means,we try to express D m,k (x )in form of a sumk j =0f (m,j )where the summand f (m,j )is free of k .In order to accomplish this goal,we insert D m,k (x )withIn[5]:=D =m j=0(1−x)j x j m +kj;and compute a recurrence 2for SUM[k ]=D m,k (x ):In[6]:=rec =GenerateRecurrence[D ,k][[1]]Out[6]=x mSUM[k ]−xm +1SUM[k +1]==(1−x )m +1k +m mNext,we solve this recurrence with the Sigma functionIn[7]:=recSol =SolveRecurrence[rec ,SUM[k]]Out[7]={{0,k i =11x },{1,− k i =11x (1−x )m +1x m +1k i =0i m +i m x i m +i }}This means that1x kis a solution of the homogeneous version,and−(1−x )m +1x m +k +1ki =0i (m +i m )x im +iis2As in Out[4],this can be achieved by any implementation of Zeilberger’s algorithm.a particular solution of the recurrence itself.As a consequence we can writeD m,k(x)=cx k−(1−x)m+1x m+k+1ki=0im+imx im+ifor a constant c which is free of k.Looking at the case k=0givesm j=0(1−x)jx jmj=c;i.e.,c=1x m.Summarizing,we can representα(K)m,n(x)=:A in the formIn[8]:=A=Kk=1x−(1−x)m+1ki=0im+imx im+ixk+mn;4.2.The Case n>1.Now Sigma is ready to simplify A in one stroke(i.e.,no splitting into two sums is needed): In[9]:=result=SigmaReduce[A,SimpleSumRepresentation→True]Out[9]=−K+m−n+1(n−1)K+mn+1+m−n(n−1)mn+(K+m−n+1)(1−x)m+1(n−1)xK+mnKi=0ix ii+mmi+m−(1−x)n+1x(n−1)Ki=1ix ii+mmi+mnRemark.Sigma automatically found the additional sumKi=1ix ii+mmi+mn−1in order tosimplify A=α(K)m,n(x)to an expression consisting only of single sums;for details of the method see[Sch04b].Summarizing,using relations likei+m−1m=ii+mi+mmor ii+mmi+mn−1=m+1n−1m+i−ni−1,one obtains that,for K≥m+1≥n≥2,a(K) m,n (x)=nn−11−mn−1Kn−1+mn−1Kn−1(1−x)m+1K−m−1i=0(−1)i−m−1ix i−(1−x)m+1K−m−1i=0(−1)in−m−2ix i.(7)In the limit K→∞,owing to the binomial theorem,we retrieve Lengyel’s identity(2).Concerning the case n=2we remark that the equivalence of(5)and(7)is based on a non-trivial transformation;e.g.,for the elementary special case x=1it specializes to (K≥m+1)K N=2(−1)NN(N−1)m−1K−N=(−1)K+m+1KK−1m−1.Of course,such identities could be proved easily with computer algebra;however,it is instructive to consult background information like the discussion related to[GKP94,(5.41)].4.3.The Case n=1.After insertingα(K)m,1(x)byIn[10]:=A1=A/.n→1Out[10]=Kk=1x−(1−x)m+1ki=0im+imx im+ix(m+k)we get the simplificationIn[11]:=SigmaReduce[A1,SimpleSumRepresentation→True]Out[11]=1−(1−x)m+1Ki=0x ii+mmKi=11i+m+(1−x)m+1Ki=1x ii+mmij=11j+mRemark.Similar as in Out[9]Sigma automatically found the sum expressionsKi=11andKi=1x ii+mmij=11in order to simplify A1=α(K)m,1(x)in Out[11];for details see[Sch05].UsingKi=11=HK+m−H m where H m=1+1+···+1are the harmonic numbers,we can write a(K)m,1(x)in the form(K≥m+1and m≥0)a(K) m,1(x)=H K+m−H m−(1−x)m+1H K+mKi=0i+mmx i−Ki=0i+mmH m+i x i.(8)In the limit K→∞we retrieve(2),owing to the binomial theorem and the fact[GKP94, (7.43)]that∞ i=0i+mmH m+i x i=−1(1−x)m+1ln(1−x)−H m.(9)5.Generating Functions with SigmaIdentity(9)can be also derived with computer algebra.A standard method would be to utilize holonomic closure properties by using the packages[SZ94]or[Mal96].However,in the given context,wefind it instructive to show that(9)can be also obtained with Sigma, namely as follows.We input the sumIn[12]:=E =∞ i=0i +mmH m+i x i ;and compute a recurrence relation satisfied by it:In[13]:=GenerateRecurrence[E ,m]Out[13]=−(m +2)(x −1)2SUM[m +2]−(2m +3)(x −1)SUM[m +1]+(−m −1)SUM[m ]==0Next,we solve the recurrence with the Sigma functionIn[14]:=recSol =SolveRecurrence[rec[[1]],SUM[m]]Out[14]={{0,mi =111−x },{0,m i =111−x m i =11i },{1,0}}Denoting the left hand side of (9)by E m (x )this meansE m (x )=c 0(1−x )m +c 1H m(1−x )mfor constants c 1and c 2which are free of m .Finally,we determine the constants c 1and c 2.The two initial conditions at m =0and m =1lead toc 0=∞ i =0H i x i (=E 0(x ))andc 0(1−x )+c 1(1−x )=∞i =0(i +1)H i +1x i (=E 1(x )).Finally,we succeed in expressing a truncated version of E 1(x )by a truncated version ofE 0(x );namely byIn[15]:=SigmaReduce[K i=0(i +1)H i+1x i,Tower →{Ki=0H i x i }]Out[15]=(x −2)x K +1+(K +1)(x −1)H K x K +1+1+(1−x )Ki =0H i x i(x −1)2Hence,with K →∞and the assumption that 0≤x <1,we getE 1(x )=1(1−x )2+11−x ∞i =0H ix i .Thus c 1=11−x,and thereforeE m (x )= ∞i =0H i x i (1−x )m +H m(1−x )m +1.Invoking the knowledge∞i =0H i x i =−ln(1−x )/(1−x ),we arrive at (9).6.ConclusionWith identity(2)as an illustrative example,we showed how symbolic summation methods can be used tofind generalizations of binomial identities where infinite series are replaced by truncated versions.In the given context the Sigma package has led us tofind the relations(5), (7)and(8)for terminating variants of Lengyel’s infinite series a m,n(x).From a combinatorial point of view it might be interesting to explore whether such truncated variants do also have statistical interpretations,e.g.,within the theory of records like identity(1).References[Blo86]G.Blom.Poblem6522.Amer.Math.Monthly,93:485,1986.[GKP94]R.L.Graham,D.E.Knuth,and O.Patashnik.Concrete Mathematics:a foundation for computer science.Addison-Wesley Publishing Company,Amsterdam,2nd edition,1994.[Gos78]R.W.Gosper.Decision procedures for indefinite hypergeometric summation.Proc.Nat.Acad.Sci.U.S.A.,75:40–42,1978.[Isr88]R.B.Israel.Persistence of a distribution.Amer.Math.Monthly,95:360–362,1988.[Len06]T.Lengyel.An invariant sum related to record statistics.Preprint,2006.[Mal96] C.Mallinger.Algorithmic manipulations and transformations of univariate holonomic functions and sequences.Master’s thesis,RISC,J.Kepler University,Linz,August1996.[Sch04a] C.Schneider.The summation package Sigma:Underlying principles and a rhombus tiling appli-cation.Discrete put.Sci.,6(2):365–386,2004.[Sch04b] C.Schneider.Symbolic summation with single-nested sum extensions.In J.Gutierrez,editor, Proc.ISSAC’04,pages282–289.ACM Press,2004.[Sch05] C.Schneider.Finding telescopers with minimal depth for indefinite nested sum and product expressions.In M.Kauers,editor,Proc.ISSAC’05,pages285–292.ACM,2005.[SZ94] B.Salvy and P.Zimmermann.Gfun:A package for the manipulation of generating and holonomic functions in one variable.ACM Trans.Math.Software,20:163–177,1994.[Zei91]Doron Zeilberger.The method of creative telescoping.Journal of Symbolic Computation,11:195–204,1991.。

生物信息学_复习题与答案(打印)

生物信息学_复习题与答案(打印)

一、名词解释:1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。

利用数学知识建立各种数学模型 ; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。

2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。

3.FASTA序列格式:是将DNA 或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。

4.genbank 序列格式:是GenBank数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。

该文件格式按域划分为 4 个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。

5.Entrez 检索系统:是NCBI开发的核心检索系统,集成了NCBI 的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。

6.BLAST :基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。

P947.查询序列( query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。

P988.打分矩阵( scoring matrix ):在相似性检索中对序列两两比对的质量评估方法。

包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM )两类方法。

P299.空位( gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。

P2910.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。

25种外文期刊目录

25种外文期刊目录

25种外文期刊目录1. 刊名:ACM SIGARCH (Computer Architecture): Computer Architecture News.中译名:美国计算机学会计算机体系结构专业组计算机体系结构新闻ISSN:0163-5964电子版来源数据库:ACM Digital Library2.刊名:ACM SIGMOD (Management of Data): SIGMOD Record..中译名:美国计算机学会数据管理专业组记录ISSN:0163-5808电子版来源数据库:ACM Digital Library3.刊名:ACM SIGOPS (Operating Systems): Operating Systems Review中译名:美国计算机学会操作系统专业组综论ISSN:0163-5980电子版来源数据库:ACM Digital Library4.刊名:ACM SIGCOMM (Data Communication): Computer Communication Review 中译名:美国计算机学会数据通信专业组计算机通信评论ISSN:0146-4833电子版来源数据库:ACM Digital Library5. 刊名:ACM SIGSOFT Software Engineering Notes.中译名:美国计算机学会软件工程专业组软件工程札记ISSN:0163-5948电子版来源数据库:ACM Digital Library6. 刊名:Proceedings of the Institution of Civil Engineers: Civil Engineering中译名:土木工程师学会会报:土木工程ISSN:0965-089X电子版来源数据库:国家科技文献中心(NSTL)宁波服务站7. 刊名:Proceedings of the Institution of Civil Engineers: Structures and Buildings中译名:土木工程师学会会报:结构与建筑ISSN:0965-0911电子版来源数据库:国家科技文献中心(NSTL)宁波服务站8. 刊名:Proceedings of the Institution of Civil Engineers: Geotechnical Engineering 中译名:土木工程师学会会报:土工技术工程ISSN:1353-2618电子版来源数据库:国家科技文献中心(NSTL)宁波服务站9. 刊名:Ground Engineering中译名:地面工程ISSN:0017-4653电子版来源数据库:国家科技文献中心(NSTL)宁波服务站10. 刊名:Concrete Construction中译名:混凝土建筑ISSN:1533-7316电子版来源数据库:Gale数据库/国家科技文献中心(NSTL)宁波服务站11. 刊名:ACI Materials Journal中译名:美国混凝土学会材料杂志ISSN:0889-325X电子版来源数据库:国家科技文献中心(NSTL)宁波服务站12. 刊名:International Journal of Intelligent Information Technologies.中译名:国际智能信息技术杂志ISSN:1548-3657电子版来源数据库:国家科技文献中心(NSTL)宁波服务站13. 刊名:International Journal of E-Business Research.中译名:国际电子商务研究杂志ISSN:1548-1131电子版来源数据库:国家科技文献中心(NSTL)宁波服务站14. 刊名:International Journal of E-Collaboration.中译名:国际电子协作杂志ISSN:1548-3673电子版来源数据库:国家科技文献中心(NSTL)宁波服务站15. 刊名:International Journal of Knowledge Management.中译名:国际知识管理杂志ISSN:1548-0666电子版来源数据库:国家科技文献中心(NSTL)宁波服务站16. 刊名:International Journal of Electronic Government Research.中译名:国际电子政府研究杂志ISSN:1548-3886电子版来源数据库:国家科技文献中心(NSTL)宁波服务站17. 刊名:International Journal of Business Data Communications and Networking.中译名:国际企业信息通讯与网络化杂志ISSN:1548-0631电子版来源数据库:国家科技文献中心(NSTL)宁波服务站18. 刊名:International Journal of Information and Communication Technology Education. 中译名:国际信息与通讯技术教育杂志ISSN:1550-1876电子版来源数据库:国家科技文献中心(NSTL)宁波服务站19. 刊名:Energy & Environment.中译名:能源与环境ISSN:0958-305X电子版来源数据库:国家科技文献中心(NSTL)宁波服务站20. 刊名:International review of finance中译名:国际金融评论ISSN:1369-412X电子版来源数据库:Ebscohost21. 刊名:Asian Economic Journal中译名:亚洲经济杂志ISSN:1351-3958电子版来源数据库:Ebscohost22. 刊名:International Journal of Constitutional Law中译名:国际宪法杂志ISSN:1474-2640电子版来源数据库:OUP(Oxford University Press)23. 刊名:ELT Journal. (English Language Teaching)中译名:英语教学杂志ISSN:0951-0893电子版来源数据库:OUP(Oxford University Press)24. 刊名:Journal of Applied Linguistics中译名:应用语言学杂志ISSN:1479-7887电子版来源数据库:ALJC(欧洲中小协学会出版社全文电子期刊)25. 刊名:Translation and Literature中译名:翻译与文学ISSN:0968-1361电子版来源数据库:EBSCOhost/ALJC。

All regular multigraphs of even order and high degree are 1-factorable

All regular multigraphs of even order and high degree are 1-factorable

All regular multigraphs of even order and high degreeare1-factorableMichael J.PlantholtShailesh K.TipnisDepartment of MathematicsIllinois State UniversityNormal,IL61790-4520,USAmikep@,tipnis@Submitted:March13,2001;Accepted:December8,2001.Mathematical Reviews Subject Classification(2000):05C15,05C70.AbstractPlantholt and Tipnis(1991)proved that for any even integer r,a regular multi-graph G with even order n,multiplicityµ(G)≤r and degree high relative to n andr is1-factorable.Here we extend this result to include the case when r is any oddinteger.H¨a ggkvist and Perkovi´c and Reed(1997)proved that the One-factorizationConjecture for simple graphs is asymptotically true.Our techniques yield an ex-tension of this asymptotic result on simple graphs to a corresponding asymptoticresult on multigraphs.1IntroductionLet G be a multigraph with vertex set V(G)and edge set E(G).We denote the maximumdegree of G by∆(G),the minimum degree of G byδ(G)and the multiplicity of G,thatis,the maximum number of parallel edges between any pair of vertices of G byµ(G).Gis said to be simple ifµ(G)=1.We say that G is1-factorable if the edges of G canbe partitioned into1-factors of G.We denote by simp(G),the simple graph underlying G,i.e.simp(G)is the graph obtained by replacing all edges of G with multiplicity greater than one by single edges.In this paper,a decomposition of G into edge-disjointsubgraphs H1,H2,...,H k of G means a partition of E(G)into the union of the edge sets of H1,H2,...,H k,and we abuse the notation and write G=H1∪H2∪...∪H k instead of E(G)=E(H1)∪E(H2)∪...∪E(H k).The reader is referred to Bondy and Murty[2] for all terminology undefined in this paper.The following long-standing conjecture whoseorigin is unclear claims that any regular,simple graph of even order and with degree at least half the number of vertices is 1-factorizable (see [10]).One-factorization Conjecture Let G be a ∆-regular simple graph with even order n .If ∆≥12n in Conjecture 1by the stronger condition that ∆(G )≥√∈n .Theorem 1(Chetwynd and Hilton [3])Let G be a simple graph with even order n .If G is ∆-regular with ∆≥√∈n then G is 1-factorable.H¨a gkvist [6]and Perkovi´c and Reed [7]proved that Conjecture 1is asymptotically true.Theorem 2(H¨a ggkvist [6],Perkovi´c and Reed [7])For every >0,there exists N ( )such that if G is a simple graph that is ∆-regular with even order n >N ( )and with ∆≥(12rn then G is 1-factorable .In this paper we prove extensions of Theorems 1and 2to multigraphs as given in Theorems 3and 4below.Theorem 3Let G be a ∆-regular multigraph with even order n and multiplicity µ(G )≤r .(i)If r is even and ∆≥√∈n +1 r ,then G is 1-factorable.(ii)If r is odd and ∆≥ √∈n +2 r +1,then G is 1-factorable.Theorem 4For every >0,there exists N ∗( )such that if G is a ∆-regular multigraph with µ(G )≤r and even order n >N ∗( ),then G is 1-factorizable if(i)r is even and ∆≥(12+1The proof of part(i)of Theorem3appeared in[8].The approach taken in this proof was to decompose the edges of the multigraph G with even order n and multiplicity µ(G)≤r(where r is even)into a relatively small number of1-factors of G and a number of regular,simple graphs,each with degree high relative to n.Theorem1was then applied to each of the simple graphs in the decomposition to yield a1-factorization of the original multigraph G.In Section2of this paper we use this decomposition result for the case when r is even and Tutte’s f-factor theorem[9]to obtain a similar decomposition of the edges of G with even order n and multiplicityµ(G)≤r,where r is odd.In Section3we use our decomposition result from Section2to prove Theorem3and Theorem4.2Decomposition of regular multigraphs into regular simple graphsThe following decomposition result for regular multigraphs G with even order n,multi-plicityµ(G)≤r,where r is even,and with degree high relative to n and r was proved in[8].Many similar results on decompositions of multigraphs into simple graphs were obtained in[5].Theorem5(Plantholt and Tipnis[8])Let G be a∆-regular multigraph with even order n and multiplicityµ(G)≤r,where r is an even integer.If∆=kr+r for some integer k≥n2+n2n then Gcontains a Hamilton cycle.We now define some terminology needed to state Tutte’s f-factor theorem.See Bollob´a s [1]for most of this terminology and the statement of Theorem8.We will denote the degree of vertex v∈V(G)by deg G(v).Let G be a multigraph and suppose that each v∈V(G)is assigned a positive integer f(v).An f-factor of G is a spanning subgraph F of G such that deg F(v)=f(v)for each v∈V(G).For X,Y⊆V(G)we denoteby (X,Y ;G )the set of edges of G that have one end-vertex in X and the other end-vertex in Y .For disjoint subsets D,S ⊆V (G )and a component C of G −D −S ,we define ρ(D,S ;C )=|(C,S ;G )|+ x ∈C f (x ).Component C is said to be an odd or even component of G −D −S with respect to D and S according as ρ(D,S ;C )is odd or even.The number of all odd components of G −D −S is denoted by q [D,S ;G ].Theorem 8(Tutte [9])Let G be a multigraph and suppose that each v ∈V (G )is assigned a positive integer f (v ).Then,G has an f -factor if and only ifq [D,S ;G ]+ x ∈S f (x )≤ x ∈S deg G −D (x )+ x ∈Df (x )for all disjoint subsets D,S ⊆V (G ).We mention here that in proving Theorem 5,we will only use the sufficiency of a condition stronger than the condition in Theorem 8to guarantee an f -factor in a certain multigraph.We need two Lemmas before we turn to the proof of Theorem 6.Lemma 1Let G be a ∆-regular multigraph with maximum multiplicity µ(G )≤r and suppose that ∆=rs .Suppose that G contains r2 Hamilton cycles in G ,deg G (v )>0for each v ∈V (G ).Define f (v )=1rx ∈S deg G (x )=1r |(S,D ;G )|.(2)To examine the second sum in inequality (1),let G +be the multigraph whose underlying simple graph is simp(G )and the multiplicity of each of whose edges is r .Let l denotethe number of edges(including multiplicity)from the rrx∈Sdeg(G+−D)(x).Now,since for all u,v∈V(G),if t of the rrx∈Sdeg(G+−D)(x)≥lrx∈Sdeg(G −D)(x).(3)Finally,for the third sum in inequality(1),the definition of f impliesx∈D f(x)=1r|(D,S;G )|+12Hamilton cycles and none of the edges in these Hamiltoncycles have multiplicity r,we have that|(C,DS;G )|≥ rr |(D,S;G )|+1r|(D,S;G )|+12+n2identical pairs of edge-disjoint Hamilton cycles.Proof.For a multigraph H,denote by H2the spanning subgraph of H whose edge set consists of all edges of H with multiplicity at least two.Suppose that H is a∆-regular multigraph with even order n and multiplicityµ(H)≤r,where r>1is an odd integer.If∆≥nr2then deg simp(H2)(v)≥n2forsome v∈V(H)implies that deg H(v)<rn2=rn2−1,a contradiction.Now let G be a∆-regular multigraph with even order n and multiplicityµ(G)≤r,where r>1is an odd integer,and∆(G)=kr+2r+1for some integer k≥n2r .Then,∆(G)≥nr2+2r+1and so,deg simp(G2)(v)≥n2 times.Thisclaim is justified because iterating the procedure i times leaves a regular multigraph G iwith even order n and multiplicity µ(G i )≤r ,where r >1is an odd integer,and with ∆(G i )≥nr 2+2r +1−4i ≥nr 2if i ≤( r2+n2+n 2 identical pairs of edge-disjoint Hamilton cycles.Denote these identical pairs of Hamilton cycles by(H i,A ,H i,B )for i =1,2,..., r 2 ,A .Clearly,G is an r (k +1)-regular multigraph with maximum multiplicity µ(G )≤r .Also,G contains r2 ,B ,such that for all u,v ∈V (G ),if t of these Hamilton cycles contain an edge of the form (u,v ),then the multiplicity of the edgeuv in G is at most r −t .Now,Lemma 1implies that G contains a simple (k +1)-factor F such that µ(G −F )≤r −1.Let G =G −F .Clearly,G is a (k (r −1)+(r −1))-regular multigraph with even order n and with k ≥n 2r .Since (r −1)is even,Theorem 5implies that the edges of G can be decomposed into (r −1)1-factors,F 1,F 2,...,F (r −1),of G ,and (r −1)k -regular simple graphs S 1,S 2,...,S (r −1).Overall we have that G =(H 1,A ∪H 2,A ...∪H r2are Hamilton cycles of G ,F 1,F 2,...,F (r −1)are1-factors of G ,F is a simple (k +1)-factor of G ,and S 1,S 2,...,S (r −1)are k -regular simple subgraphs of G .Since n is even,each of the Hamilton cycles H i,A for i =1,2,..., r 7−17−1Proof.If r is even and ∆≥ √∈n +1 r ,then it is clear that by repeated application of Theorem 7we can remove 1-factors of G till we are left with a multigraph G that is∆ -regular with even order n ,multiplicity µ(G )≤r ,and where ∆ =kr +r for some integer k ≥√∈n .Now,Theorem 5implies that the edges of G can be decomposed intor 1-factors and r k -regular simple graphs.Applying Theorem 1from the Introduction to each of these k -regular simple graphs in the decomposition of G yields a 1-factorization of the edges of G .If r is odd and ∆≥ √∈n +2 r +1,similar applications of Theorem 7,followed by an application of the decomposition result in Theorem 6,and finally followed by several applications of Theorem 1yields a 1-factorization of the edges of G .Theorem 4For every >0,there exists N ∗( )such that if G is a ∆-regular multigraph with µ(G )≤r and even order n >N ∗( ),then G is 1-factorable if(i)r is even and ∆≥(12+13)such that if G is a simple graph that is ∆-regular with even order n >N ( 2+ 3), 32+ )rn .Then,we have that ∆≥(12+ 3rn >(13)rn +2r .Now by repeated application of Theorem 7to G ,remove at most (r −1)1-factors of G to get a multigraph G that is ∆∗-regular with even order n >M ∗( ),with multiplicity µ(G )≤r ,where r is even,and with ∆∗=rs for some integer s >(13)n +1.Theorem 5implies that the edges of G can be decomposed into r 1-factors of G and r simple graphs that are regular with degree s −1>(13)n .Theorem 2implies that each of these r (s −1)-regular simple graphs are 1-factorable.This in turn yields a 1-factorization of G and hence a 1-factorization of G .Let L ∗( )=max {N ( }.Now,suppose that G is a ∆-regular multigraph with even order n >L ∗( ),with multiplicity µ(G )≤r ,where r >1is odd,and with ∆≥(12r + )rn .Then,we have that ∆≥(12r + )rn =(12r + 2rn >(12r + 2+12)n +2.Theorem 6implies that the edges of G can be decomposed into 2r 1-factors of G ,one (s −1)-regular simple graph,and (r −1)simple graphs that are regular with degree s −2>(1r +Corollary For every >0,there exists N∗( )such that if G is a∆-regular multigraph with multiplicityµ(G)≤r,even order n>N∗( ),and with∆≥(2。

【国家自然科学基金】_滥用_基金支持热词逐年推荐_【万方软件创新助手】_20140802

【国家自然科学基金】_滥用_基金支持热词逐年推荐_【万方软件创新助手】_20140802

科研热词 甲基苯丙胺 合谋攻击 双线性对 代理签名 陆海分界 门限代理签名 门限 金融期权 酒精中毒 跨境流失 误诊 规划制度 行政制度 行为,成瘾 融资受限 蛆虫 董事会治理 药理活性 自由裁量权 自由现金流量 群体特征 网络访问 综述[文献类型] 纳什均衡 管理层持股 签名 秘密分享 种质资源 离散对数 离子液体 破产法研究 研究 短签名 知识产权 眩晕 病因 电致化学发光检测 电力市场 生物治疗 生态和经济风险 现金持有水平 现金价值 物质相关性障碍 物质滥用,静脉内 物理期权 滩涂 滥用诉权 滥用破产防范 滥用 海洋渔业资源 海岸线 法医毒理学
治疗 河海分界 河口 水产养殖业 毛细管电泳 毒品类生物碱 橡胶 模型,动物 椭圆曲线 椎基动脉供血不足 新型毒品 数字签名 控制规则 拆迁危机 报告消息 抗生素抗性基因 抗生素 抗性菌株 抗寒品种 投资者保护 心脏病 强代理签名 年报披露 尿样分析 安全分析 复发 基于身份的签名 圈钱 国际破产 国际前沿 后循环缺血 可追查性 可收回代理签名权 可持续利用 古诺模型 反垄断法 单向函数 募集资金滥用 前向安全 创面愈合 再发行 内部网络 信誉 信任模型 依赖性 依赖(心理学) 以侵权诉讼相威胁 代理成本 人象冲突 产权制度 云南 二异表达谱 基因表达系列分析(sage) 基因兴奋剂 基于身份 因素分析,统计学 四环素 同时多线程 古诺模型 反兴奋剂 双线性映射 危险因素 博弈论 利益输送 初中生 分析检测 内源性类固醇激素 兴奋剂 共用注射器具 公司治理 健康风险 健康知识,态度,实践 健康教育 债权人 信号转导 依赖 代理签名 代理盲签名 五粮液 争议裁决机制 中药 中专生 不可伪造性 rsa公钥密码体制 qtl定位 dna甲基化 "新二元"社会保险体系

永久保护真实的电子文件国际研究项目_InterPARES_

永久保护真实的电子文件国际研究项目_InterPARES_

有基本要求。 除了一些新的概念以外,有关档案方面的一些新的 行为也由项目小组进行了鉴定,例如 “ 确定保护真实的 “ 电子文件的可行性 ” , 监督电子文件鉴定 ” 等。 在 #)*+,-"./0 项目研究中, 对基本概念和结构的理 解是很必要的,它有助于研究方法的实行。这就是为什 么从需求中提炼出来的框架主要集中在原则和标准上, 这些原则和标准必须嵌入到有关电子文件长期保护的 任何策略、 战略或规范之中。也是为什么 #)*+,-"./0 项 目需要每一个参与国家在细节上进行检查。这些细节是 根据其文化、 法律、 管理、 程序、 文件和技术范围等而制 定的原则和标准;需要每一个参与国家在报告中对其有 在研究过程中逐渐意识到,对行政和法律文件的长 期保管问题已亟待解决,这方面的文件产生的数量大, 随意性强, 文件系统较复杂, 要确保其持久的真实性, 文 档管理系统还不能充分满足要求。因此,#)*+,-"./0 项 目的第二个阶段, 将于 1221 年 3 月开始, 除了对文件的 真实性保护方面进行研究外,主要集中研究在动态的、 些创造性的活动及这些活动的完成过程中产生的文件 的可靠性。这个附加的研究迫在眉睫,其根据有以下几 个事实: 第一, 一些政府 ( 包括加拿大 ) 期待在短期内提 供全部的在线服务,使得所有公众的事务处理都要通过 交互式的站点来实行;第二,在一些创造性的活动及这 些活动的完成过程中生成的文件是以数字形式产生的, 而这种数字形式不受任何现行的标准所控制;第三,针 对使用计算机技术产生的文件所制定的标准,不可能考 虑到文化的差异和多元化;第四,对一些综合的信息系 统, 其生产者和使用者都只注重 “ 即时 ” 性, 而对我们这 个时代存贮的文件的真实性的永久保护,却显示出极大 的漠视。行政的透明度、 历史的责任、 长期的法律需求以 及文化的保护,都需要政府、大学和企业有超越现在的 观点,要考虑到在对永久保护文件的真实性制定适当的 策略和标准之前,政治、社会和经济方面目前所采用的 数字系统将来可能被废弃。 #)*+,-"./0 的各部分工作在来自各地的专家的热情 支持下, 不顾文化上、 学术门类和意向的差异, 取得了一 致的和完善的方法。我们通过对由政府和私营企业界在 旧业务中实施新的方法产生的文件,以及由最多变的和 最少的控制活动产生的文件的研究,发现并发展了影响 整个文件生命周期的结论,进而形成了我们大家空前 的、 和谐的合作, 这是 #)*+,-"./0 最重要的成就之一。 4 此文为露西安娜・杜兰蒂在 1223 年 33 月国家档 案局在北京组织召开的 “ 永久保护真实的电子文件国际 研究项目研讨会 ” 上的发言稿 5 兰台 世界

《信息检索与应用》总复习题

《信息检索与应用》总复习题

《信息检索》期末复习一、单项选择题1、文摘、题录、目录等属于(B )。

A、一次文献B、二次文献C、零次文献D、三次文献2、从文献的(B )角度区分,可将文献分为印刷型、电子型文献。

A、内容公开次数 B 载体类型 C 出版类型 D 公开程度3、按照出版时间的先后,应将各个级别的文献排列成(C )。

A、三次文献、二次文献、一次文献B、一次文献、三次文献、二次文献C、一次文献、二次文献、三次文献D、二次文献、三次文献、一次文献4、手稿、私人笔记等属于(C )文献,辞典、手册等属于(C )文献。

A、一次,三次 B 零次、二次C、零次、三次 D 一次、二次5、逻辑“与”算符是用来组配(C)。

A、不同检索概念,用于扩大检索范围。

B、相近检索概念,扩大检索范围。

C、不同检索概念,用于缩小检索范围。

D.相近检索概念,缩小检索范围。

6、利用文献后面所附的参考文献进行检索的方法称为(A)A、追溯法B、直接法C、抽查法D 综合法7、如果检索结果过少,查全率很低,需要调整检索范围,此时调整检索策略的方法有(B )等。

A、用逻辑“与”或者逻辑“非”增加限制概念。

B.用逻辑”或“或截词增加同族概念。

C、用字段算符或年份增加辅助限制。

D、用”在结果中检索“增加限制条件。

8、根据国家相关标准,文献的定义是指“记录有关(C)的一切载体。

A、情报 B 、信息C、知识D、数据9、以作者本人取得的成果为依据而创作的论文、报告等,并经公开发表或出版的各种文献,称为(B )A、零次文献B、一次文献C、二次文献D、三次文献10、哪一种布尔逻辑运算符用于交叉概念或限定关系的组配?(A )A、逻辑与(AND)B、逻辑或(OR)C、逻辑非(NOT)D、逻辑与和逻辑非11、逻辑算符包括(D)算符。

A、逻辑“与”B、逻辑“或”C、逻辑“非”D、A、B和C12、事实检索包含检索课题(A )等内容。

A、背景知识、事件过程、人物机构B、相关文献、人物机构、统治数据C、事件过程、国外文献、国内文献D、国内文献、国外文献、统计数据13、区别于一般期刊论文或者教科书,参考工具书的突出特点是(C )。

外文参考文献资料范例

外文参考文献资料范例

外文参考文献资料范例[1] Andrea H. Creating ‘buzz’:opportunities and limitations of social media for arts institutions and their viral marketing, International Journal of Nonprofit and Voluntary Sector Marketing,2012; 17(3), 173-182.[2] Andreas M. K,Michael Haenlein.Two hearts in three-quarter time: How to waltz the social media/viral marketing dance.Business horizons,2011,54(3),253-263.[3] Angela D.,David T.. Controlled infection! Spreading the brand message through viral marketing. Business Horizons. 2005,3(48).143-149,[4] Bowman D.,Narayandas D.. Managing customerinitiated contacts with manufacturers: The impact on share of category requirements and word-of-mouth behavior Journal of Marketing Research, 2001,38(3),281-297.[5] Brown J. J., Reingen P. H.. Social ties and word-of-mouth referral behavior. The Journal of Consumer Research, 1987,14(3),350—362,[6] Carmen C. Social and attitudinal determinants of viral marketing dynamics. Computers in Human Behavior,2011,27(6),2292-2300.[7] Douglas R.Media Virus. New York;Ballantine Books,1994,3-16.[8] Ennew C.,Banerjee A.. Li D..Managing Word of mouth communication: empirical evidence.International Journal of Bank Marketing, 2000,18(2).75-83.[9] Goldenberg J.,Libai B., Muller E.. Talk of the network: A complex systems look at the underlying process of word-of-mouth. Marketing Letters, 2001, 3(12).211-223.[10] Hinz, 01iver,Skiera.Seeding Strategies for Viral Marketing: An Empirical Comparison. Journal of Marketing,2011,75(6),55-72,[11] Ho Jason Y.C., Dempsey.vral marketing: Motivations to forward online content.ournal of Business Research?2010,63(9-10), 1000-1006.[12] Hoedemaekers, Casper.Viral marketing and imaginary ethics, or the joke that goes too far. Psychoanalysis, Culture & Society,2011,16(2),162-178.[13] Jinshuang L.. Scalable Influence Maximization in Social Networks Using theCommunity Discovery Algorithm. Genetic and Evolutionary Computing(1CGEC), 2012 Sixth International Conference on.2012.8(25),284-287.[14] Judith C. Dina M.. The effect of word of mouth on sales: Online bookreviews.Journal of Marketing Research.2006. 43(3).345-356.[15] Jure L, Lada A. A, Bernardo A. H. The dynamics of viral marketing. In ACMconference on Electronic Commerce,2006,pages 228-237.[16] Joseph E. ,Regina L..Viral Marketing or Electronic Word-of-MouthAdvertising:Examining Consumer Responses and Motivations to Pass Along Email. Journalof Advertising Research,2004,12(44),333-348.[17] Lucy H..Viral Marketing: Share index is measure of a viral's success,MarketingWeek,2010,5(4),24-32.[18] M. J. S"Game Plan For Viral Marketing. Meetings and Conventions,2010,45(6),41-53.[19] Malcolm G. The Tipping Point. New York: Little,Brown and Company,2000,5-20.[20] Mani R. S.,Balaji R. Knowledge-sharing and influence in online social networksvia viral marketing. Communications of the ACM, 2003,46(12),300—307.[21] Matt H.The art of buzz; Viral marketing agency knows how to get a lot ofattention. National Post,2011,FP4.[22] McConnell, Michael.'Viral' marketing's power - and time torenew.Snips,2011,80(6),5-20.[23] Michalski, Radoslaw J.. Negative Effects of Incentivised Viral Campaigns for Activity in Social Networks. Cloud and Green Computing(CGC).2012,11(1-3),391-398.[24] Palka, Wolfgang.Mobile word-of-mouth - A grounded theory of mobile viralmarketing. Information Technology Journal,2009.24(2), 172-185.[25] Pandit S.,Yang Y..Maximizing Information Spread through Influence Structuresin Social Networks. Data Mining Workshops (ICDMW), 2012 IEEE 12thInternational Conference on. 2012,12(10),258-265.[26] Raei H. A New Algorithm for Positive Influence Dominating Set in SocialNetworks. Advances in Social Networks Analysis and Mining (AS ON AM), 2012IEEE/ACM International Conference on.2012,8(26),253-257.[27] Ralph F.W. The Six Simple Principles of Viral Marketing. 2005-02-01.[28] Scott, David M. The New Rules of Marketing and PR: How to Use NewsReleases, Blogs, Podcasting,Viral Marketing and Online Media to Reach BuyersDirectly, John Wiley & Scons.2011,41-101[29] Sabrina H. Viral marketing-establishing customer relationships by 'word-of-mouse'. Electronic Markets,2000,10(3),158-161.[30] Shapiro,Michael J.. Building Buzz:How Viral Marketing PromotesMeetiongs.Meetings and Conventions,201045(6).36-42.[31] Watts D., Peretti J.. Viral marketing for the Real Word. Harvard BusinessReview,2007,10(1),22-23.[32] Wonyeol L.. CT-IC: Continuously Activated and Time-Restricted Independent Cascade Model for Viral Marketing. Data Mining (ICDM),2012 IEEE 12thInternational Conference on. 2012,12(10),960-965.[33] Xiaxiu F. Mining Core Groups Based on Network-Influence Set for Web Viral Marketing. Business Computing and Global Informatization (BCGIN),2012Second International Conference on. 2012,10(12),867-870.[34] Yang H., Zhou C..Extending TPB and TAM to mobile viral marketing: Anexploratory study on American young consumers' mobile viral marketing attitude,intent and behavior, Journal of Targeting. Measurement and Analysis forMarketing,2011,19(2),85-98.[35] Zhuoqi L.,How Well-Connected Individuals Help Spread Influences —AnalysesBased on Preferential Voter Model. Advances in Social Networks Analysis andMining (ASONAM), 2012 IEEE/ACM International Conference on.2012,08(26),674-678.。

数字出版物的数据挖掘与应用考核试卷

数字出版物的数据挖掘与应用考核试卷
3.在进行数据挖掘之前,首先要进行的步骤是__________。
4.数据挖掘中的__________是指从原始数据中提取出有价值的信息的过程。
5.在数字出版物数据挖掘中,__________是一种常用的分类算法。
6.数据挖掘中的__________是指通过分析数据集来发现数据之间的内在关系。
7.朴素贝叶斯算法是基于__________定理来进行分类的。
数字出版物的数据挖掘与应用考核试卷
考生姓名:__________答题日期:__________得分:__________判卷人:__________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.以下哪种技术不属于数据挖掘的范畴?()
A.分类
D.图像识别
8.在数据挖掘中,以下哪个指标用于评估分类模型的性能?()
A.准确率
B.召回率
C. F1值
D.以上都对
9.以下哪个不是数字出版物数据挖掘的主要应用方向?()
A.个性化推荐
B.内容审核
C.知识图谱构建
D.数据压缩
10.在数字出版物数据挖掘中,以下哪个方法主要用于处理文本数据?()
A.词嵌入
B.聚类
C.数据清洗
D.数据压缩
2.数字出版物数据挖掘的主要目的是什么?()
A.提高出版效率
B.优化出版质量
C.分析用户行为
D.降低出版成本
3.以下哪个不是数据挖掘的步骤?()
A.数据收集
B.数据预处理
C.数据建模
D.数据压缩
4.在数字出版物数据挖掘中,以下哪个环节最重要?()
A.数据采集
B.数据处理

文摘索引数据库的检索与利用

文摘索引数据库的检索与利用

nanotechnology
Molecular motors: nature's nanomachines
environmental science
Impact of science and technology on energy and environmental research and development
顶级控制词 相关控制词 相关分类代码 收录时间 前词
Date of Input
Prior Terms
Inspec 检索 - 主题字段 – 分类代码
一级代码 Computer software 学科编码 Computers & Control 二级代码 Software techniques and systems
文献资源系列讲座之—
Inspec、CSA及 OCLC FirstSearch 文献检索与利用
一、INSPEC数据库
什么是Inspec? INSPEC(Information Service in Physics,Electronic Technology and Computer and Control)是理工学科领域的权 威数据库之一,前身科学文摘(Science Abstract)始于1898 年,由IET(前IEE,英国电机工程师学会(IEE-Institute of Electrical and Engineers)编制 )出版。是涉及物理学、电子工 程、电子学、计算机科学以及信息技术领域的权威性英文文摘数 据库,与它对应的印刷本是Science Abstracts。它收录全球发表 在有关专业领域的4200种期刊中的论文以及1500种会议录、专 著、报告、学位论文等。所涵学科范畴如下: 光学和激光,电 力系统,热力学,磁学,生物物理和生物工程,原子物理,基本 粒子,仪器制造与测量,半导体物理,天文学与大气物理,材料 科学,超导体。 INSPEC-Electronics: 包括电路、电路元件和电路设计,电讯, 超导体,电子光学和激光,电力系统,微电子学,医学电子学 INSPEC-Physics包括:原子物理及分子物理,凝聚态物理,气 体、流体、等离子体

安徽大学第二届信息检索大赛初赛试题

安徽大学第二届信息检索大赛初赛试题

安徽大学第二届信息检索大赛初赛试题安徽大学第二届信息检索大赛初赛试题单选题(从A、B、C、D四个选项中选出一个正确的答案,共50题,每题2分, 总分100 分)1、读秀平台中,通过()可以查阅馆藏图书A •本馆馆藏纸书 B. 相似文档下载C. 文献互助D. 按需印刷服务2、北京理工大学出版社出版的《信息检索实用教程》在安徽大学图书馆中索取号是什么?A. F678.1B. T45.6/103C. E774/130D. G252.7/1863、超星中,《亚洲经济的第三次浪潮》的ISBN号为?A. ISBN 7-5426-0648-0B. ISBN 7-5624-0678-0C. ISBN 7-3426-6648-0D.ISBN 7-5416-0648-04、以下哪本是陆和建学者的著述?A. 《信息检索》B. 《知识管理概论》C.《目录学导论》D. 《图书馆学基础》5、在读秀中,以知识频道为例,如果想查找“数字图书馆”,但不希望关于“主要特征”的结果出现,可以输入关键词()查找。

A.数字图书馆-主要特征B. 数字图书馆-主要特征C.数字图书馆NOT主要特征D. 数字图书馆N主要特征6、期刊《中国图书馆学报》在我校图书馆馆藏中的索取号是多少?A. G25/16B. G25/13C. G25/14D. G25/307、超星中,几米所著的《地下铁》一书其总策划是?A. 何琛B. 胡言送C. 余力D. 郝明义8、在图书馆特色数据库下的安徽大学学位论文库中,指导教师为“谢阳群”的有论文多少篇?A.30B. 25 C. 2D. 359.在读秀中,对知识的检索可以进行()A.按作者查找B. 分类浏览C. 专题聚类D. 按学科查找10、维普资讯、万方数据资源均收录了国内出版的各类期刊,请问他们分别收录的数量是():A. 8000 余种,7671多种B. 7671 种, 6000 余种C. 8000 余种,6000余种D. 8000 余种,6000 余种11、在超星数字图书馆中,其高级检索条件不包括()字段?书名 D.主题A. 作者B.出版社C.12、万方数据库跨库检索有()检索字段。

CADAL数字图书馆使用指南

CADAL数字图书馆使用指南

在首页点击“图像检索”进入此页, 可直接键入检索词语进行模糊检索
在首页点击“视频检索” 进入此页面,既可选择不 同字段检索,也可以直接 点击图片观看视频
在首页点击“书法字检索” 进入此页面,选不同类别检 索、浏览、查看全文。
CADAL数字图书检索步骤

登录:通过吉大图书馆主页或者地学馆主页→中文 数据库→图书栏目下→进入“CADAL数字图书馆”
选择检索方法:快速检索、高级检索、图像检索、 视频检索、书法字检索,也可以分类浏览 在CADAL数字图书馆下载Djvu插件可以在线阅读民 国图书和期刊、中文古籍、英文图书全文;欣赏书 法、绘画;可以观看视频文献。 登录及检索过程请看下面图例
第一次使用cadal需要下载并安装djvu插件cadal吉大图书馆主页或者数据库数据库选择检索方法快速检索高级检索图像检索选择检索方法快速检索高级检索图像检索视频检索书法字检索也可以分类浏览视频检索书法字检索也可以分类浏览登录通过登录通过吉大图书馆主页图书栏目下或者地学馆主页地学馆数字图书馆在在cadal数字图书馆下载数字图书馆下载djvu国图书和期刊中文古籍英文图书全文欣赏书国图书和期刊中文古籍英文图书全文欣赏书法绘画可以观看视频文献
关于CADAL数字图书馆
CADAL是高等学校中英文图书数字化国际合作计划的 英文缩写,它是全球数字图书馆的组成部分,于日 前正式开通,向全世界开放提供免费数字化信息服 务。 目前该数据库有现代图书295608册、中文古籍图书 146669册、民国图书181977册、学位论文103012册、 期刊3802册、英文图书130523册、绘画3427幅、视 频69部、敦煌莫高窟285窟、敦煌文献特藏692件, 另外还有一些书法等。我校用户可阅读大部分全文。 第一次使用CADAL需要下载并安装Djvu插件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

where {·} denotes the fractional part. • The Fibonacci word is a Beatty sequence, [L] sect.2.1.2. In fact ∀m ≥ 1 : fm = (m + 1)γ 2 − mγ 2 . • The Fibonacci word is a cutting sequence, [S]. In fact, in the x-y -plane the broken Fibonacci halfline that you get by starting in (0, 0) and going 1 in the direction of the x-axis when fm = 0 and 1 in the direction of the y -axis when fm = 1 is an ideal discrete approximation to the halfline given by y = γx, x ≥ 0. See Figure 1. Up to now we have considered one-sided words and halflines. The definition of the broken Fibonacci word as a Beatty sequence (or as a rotation sequence) allows a straightforward extension to a biinfinite word (fm )m∈Z . Actually there is another natural extension, viz.
the broken Fibonacci line, of the line y = γx. It is given by (the 10 of f−1 f0 is put in between vertical bars to indicate the positions −1 and 0) . . . 1001001010010|10|0100101001001 . . . .
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A13
THE TRIBONACCI SUBSTITUTION
S.W. Rosema
Mathematical Institute, Leiden University, Postbus 9512, 2300 RA Leiden, The Netherlands
2. Discretisation of the line In this section we study projections of the broken Fibonacci halfline to the y -axis more closely. The integer points pm for m ∈ Z≥0 on this halfline are fixed by p0 = (0, 0), pm = pm−1 + efm where e0 , e1 denote the unit vectors in the directory of the x-axis and ˜Fn+2 , |u ˜ m |1 = y -axis, respectively. Let u ˜m denote the word f1 f2 . . . fm . Hence un = u m ˜ m |0 = m − |u ˜m |1 and pm = (|u ˜ m |0 , |u ˜m |1 ). Now we project each integer point j =1 fm , |u parallel to the line y = γx, x ≥ 0 to the y -axis. By P (pm ) we denote the second coordinate of the projection of pm . See Figure 2. Note that a 0 means going one step to the right on the broken Fibonacci halfline, and for the projection this corresponds to going down γ along the y -axis. Similarly a 1 corresponds to going up 1 along the y -axis. We have ˜ m |1 − γ |u ˜ m |0 = P (p m ) = | u (m + 1)γ 2 − γ 2 − γ (m − (m + 1)γ 2 + γ 2 )
1. The Fibonacci Word If there would exist Miss Word elections, the Fibonacci word would be an excellent candidate to win. In this section we give an overview of the properties of the Fibonacci word. For background information for this and other sections we refer to [L] and [B]. The Fibonacci substitution is the substitution φ over the 2-letter alphabet A := {0, 1} defined by φ(0) = 01, φ(1) = 0. If we start with 0 and repeatedly apply φ we get successively u0 = 0 u1 = 01 u2 = 010 u3 = 01001 u4 = 01001010 u5 = 0100101001001 u6 = 010010100100101001010 ...
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A13
2
Note that un = un−1 un−2 for every integer n > 1. This sequence of words converges to the so-called Fibonacci word f = (fm )∞ m=1 . If we define F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for any integer n > 1, then the number of symbols of un , denoted by |un |, equals Fn+2 and the number of 0’s and 1’s in un , denoted by |un |0 and |un |1 , equals Fn+1 and Fn , respectively. The Fibonacci word has the following properties: √ Fn+1 1 1 = − + 5 =: γ , the frequency of 1 equals • The frequency of 0 equals limn→∞ F 2 2 n+2 √ Fn 3 1 2 2 limn→∞ Fn+2 = 2 − 2 5 = γ , hence γ + γ = 1, [L] sect.2.1.1. Since the frequencies are irrational, the Fibonacci sequence is non-periodic. • The Fibonacci word is balanced, which means that for all subwords u, v of f of equal lengths we have ||u|1 − |v |1| ≤ 1, [L] sect.2.1.1. Note that ||u|0 − |v |0 | ≤ 1 is an equivalent requirement. • The Fibonacci word is sturmian, that is, P (n) = n + 1 for every n, where P (n) equals the number of different subwords of f of length n, [L] sect.2.1.1. Because a word is (ultimately) periodic if there exists an n for which P (n) ≤ n, [CH] sect.2, a sturmian word is in this sense the most regular non-periodic word. • The Fibonacci word is a rotation word, [L] sect.2.1.2. In fact ∀m ≥ 1 : fm = 0 if {(m + 1)γ } ∈ (0, γ ] 1 if {(m + 1)γ } ∈ {0} ∪ (γ, 1)
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(3) (2005), #A13
3
y
y = γx 1 10 0 10 0 10 10 0 10 0 10 10 0 10 10 0 10 0 10 10 0 0 x Figure 1: The Fibonacci sequence is a cutting sequence.
∗ = (m + 1)γ if {(m + 1)γ } ∈ [0, γ ) 1 if {(m + 1)γ } ∈ [γ, 1).
相关文档
最新文档