一次函数试题01

合集下载

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质一、一次函数的概念1、概念:一般地,解析式形如y kx b =+(k 、b 是常数,且0k ≠)的函数叫做一次函数。

定义域:一切实数。

2、一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数不一定是正比例函数。

3、常值函数一般的,我们把函数()y c c =为常数叫做常值函数。

二、一次函数的图像与性质1、 一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线. 2、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标是(0)b ,,直线y kx b =+(0k ≠)的截距是b .3、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”) 4、 直线位置关系:如果12b b ≠,那么直线1y kx b =+与直线2y kx b =+平行.反过来,如果直线11y k x b =+与直线22y k x b =+平行,那么12k k =,12b b ≠.5、一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质:当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升; 当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降. 6、一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得) 当0k >,且0b >时,直线y kx b =+经过一、二、三象限; 当0k >,且0b <时,直线y kx b =+经过一、三、四象限; 当0k <,且0b >时,直线y kx b =+经过一、二、四象限; 当0k <,且0b <时,直线y kx b =+经过二、三、四象限.考点一:一次函数识别【例题1】(2021·上海普陀·八年级期中)下列四个函数中,一次函数是( ) A .y =x 2﹣2xB .y =x ﹣2C .11y x=+D .y x +1【变式训练1】(2021·上海奉贤·八年级期中)下列函数中是一次函数的是( ) A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)考点二:根据一次函数的定义求参数【例题2】(2021·上海市川沙中学南校八年级期中)当k ______时,y kx x =+是一次函数.【变式训练1】(2021·上海普陀·八年级期中)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.【变式训练2】(2021·上海民办华二宝山实验学校八年级阶段练习)已知关于x 函数224(5)1m y m x m -=-++,若它是一次函数,则m =______.考点三:求一次函数的自变量与值域【例题3】(2021·上海杨浦·八年级期末)如果点A(3,)a 在一次函数31yx 的图像上,则a =__________.【变式训练1】(2021·上海市川沙中学南校八年级期中)已知一次函数24y x =+的图象经过点(),8A m ,那么m 的值等于______. 考点四:列一次函数的解析式并求值【例题4】(2021·上海市松江区新桥中学八年级期中)汽车油箱中现有汽油60升,若每小时耗油10升,则油箱中剩余油量y (升)与燃烧的时间x (小时)之间的函数关系式是______.【变式训练1】(2020·上海浦东新·八年级期末)汽车以60千米/时的平均速度,由A 地驶往相距420千米的上海,汽车距上海的路程s (千米)与行驶时间t (时)的函数关系式是_____.考点五:一次函数平移【例题5】(2021·上海市松江区新桥中学八年级期中)将直线112y x =--向上平移4个单位所得的直线表达式为______.【变式训练1】(2021·上海杨浦·八年级期中)将一次函数y =2x ﹣3的图象向上平移___个单位后,图象过原点.【变式训练2】(2021·上海浦东新·八年级期末)如果将函数31y x =-的图象向上平移3个单位,那么所得图象的函数解析式是________. 考点六:一次函数与坐标轴交点【例题6】(2021·上海普陀·八年级期末)将平面直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标轴三角形.如图中的一次函数图像与,x y 轴分别交于点,,A B 那么ABO 为此一次函数的坐标轴三角形.一次函数142y x =-+的坐标轴三角形的面积是_____.【变式训练1】(2021·上海杨浦·八年级期中)一次函数y =﹣2x ﹣3的截距是_____. 【变式训练2】(2021·上海·八年级期中)直线36y x =-与坐标轴所围成的三角形的面积是_____.【变式训练3】(2021·上海奉贤·八年级期末)直线21y x =-与x 轴交点坐标为_____________.考点七:根据一次函数解析式判断其经过象限【例题7】(2021·上海·上外附中八年级期末)一次函数y =2(x +1)﹣1不经过第( )象限 A .一B .二C .三D .四【变式训练1】(2021·上海徐汇·八年级期末)一次函数21y x =-+的图象经过哪几个象限( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限 【变式训练2】(2021·上海崇明·八年级期末)一次函数53y x =-+的图象不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限【变式训练3】(2021·上海金山·八年级期末)在直角坐标系中,一次函数y =12x ﹣1的图像不经过第____象限.考点八:已知函数经过的象限求参数范围【例题8】(2019·上海市西延安中学八年级期中)在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .【变式训练1】(2020·上海市奉贤区弘文学校八年级期末)正比例函数()0y mx m =≠的图像在第二、四象限内,则点(--1m m ,)在( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式训练2】(2020·上海金山·八年级阶段练习)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【变式训练3】(2019·上海市闵行区七宝第二中学八年级期中)如果关于x 的一次函数(3)y m x m =-+的图像不经过第三象限,那么m 的取值范围________.【变式训练4】(2021·上海静安·八年级期末)已知一次函数y =(k ﹣1)x +1的图像经过第一、二、三象限,那么常数k 的取值范围是____.【变式训练5】(2021·上海·上外附中八年级期末)一次函数y =(2m ﹣1)x +m ﹣7的图像不经过第二象限,则m 的取值范围是 ___.【变式训练6】(2017·上海嘉定·八年级期中)若正比例函数25m m y mx +-=的图像经过第二、四象限,则m =____________【变式训练7】(2018·上海普陀·八年级期末)如果关于x 的一次函数y =mx +(4m ﹣2)的图象经过第一、三、四象限,那么m 的取值范围是_____. 考点九:已知两条直线位置关系求参数【例题9】直线2(13)(22)y k x k =-+-与已知直线21y x =-+平行,且不经过第三象限,求k 的值.1.已知一次函数21544m y x +=-与233my x =-+的图像在第四象限内交于一点,求整数m 的值.2.已知两个一次函数144b y x =--和212y x a a=+;(1)a、b为何值时,两函数的图像重合?(2)a、b满足什么关系时,两函数的图像相互平行?(3)a、b取何值时,两函数图像交于x轴上同一点,并求这一点的坐标.3.(1)一次函数3y x b=+的图象与两坐标轴围成的三角形的面积为48,求b的值;(2)一次函数y kx b=+的图像与两坐标围成的三角形的面积是105,求一次函数的解析式.4.1)求直线14222y x y x=-=+和与y轴所围成的三角形的面积;(2)求直线24y x=-与直线31y x=-+与x轴所围成的三角形的面积.5.如图,已知由x轴、一次函数4(0)y kx k=+<的图像及分别过点C(1,0)、D(4,0)两点作平行于y轴的两条直线所围成的图形ABDC的面积为7,试求这个一次函数的解析式.6.在式子()y kx b k b =+,为常数中,3119x y -≤≤≤≤当时,,kb 求的值.7.已知一次函数1121y x k =+-中y 随x 的增大而增大,它的图像与两坐标轴构成的直角三 角形的面积不超过32,反比例函数23k y x-=的图像在第二、四象限,求满足以上条件的k 的 整数值.8.如图,已知函数1y x=+的图象与y轴交于点A,一次函数y kx b=+的图象经过点B(0,1-),并且与x轴以及1y x=+的图象分别交于点C、D;(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形;如果存在,求出点P坐标;如果不存在,说明理由;(3)若一次函数y kx b=+的图象与函数1y x=+的图象的交点D始终在第一象限,则系数k 的取值范围是________(请直接写出结果)题组A 基础过关练一、单选题1.下列关于x的函数中,是一次函数的是()222211.3(1) (3)A y xB y xC y xD y x xx x=-=+=-=+-2.正比例函数y=(1-2m)x的图象经过点(x1,y1)和点(x2,y2)当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<12D.m>123.(2018·上海金山·八年级期中)一次函数51y x=-的图像经过的象限是()A.一、二、三B.一、三、四C.二、三、四D.一、二、四分层提分4.(2018·上海金山·八年级期中)一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <5.(2020·上海浦东新·八年级期末)直线y =2x ﹣1在y 轴上的截距是( ) A .1 B .﹣1C .2D .﹣2二、填空题6.(2019·上海普陀·八年级期中)如果将直线22y x =-向上平移3个单位,那么所得直线的表达式是___________.7.(2019·上海普陀·八年级期末)已知直线(2)3y k x =-+与直线32y x =-平行,那么k =_______.题组B 能力提升练1.一次函数(2)3y k x k =-+-的图像能否可以不经过第三象限?为什么?2.已知直线26x y k -=-+和341x y k +=+,若它们的交点第四象限,那么k 的取值范围是______________.3.如图,据函数y kx b =+的图像,填空:(1) 当1x =-时,y =____________;(2) 图像与坐标轴的交点坐标是_________________; (3) 当24x -≤≤时,y 的取值范围是______________.4.根据下列条件求解相应函数解析式: (1)直线经过点(45),且与y=2x +3轴无交点; (2)直线的截距为3(123).5.已知函数1y x =+与3y x =-+,求: (1)两个函数图象交点P 的坐标.(2)这两条直线与x 轴围成的三角形面积.6.把一次函数的图像向上平移323y x =-,求平移前的函数图像与函数23y x =--题组C 培优拔尖练1.直线31y =+和x 轴、y 轴分别相交于点A 、点B ,以线段AB 为边在第一象限内作等边三角形ABC ,如果在第一象限内有一点P (12m ,)且△ABP 的面积与△ABC 的面积相等,求m 的值.2.函数12y y y =+且12y x m =+,2131y x m =+-. (1)若12y y 与图像的交点的纵坐标为4,求y 关于x 的函数解析式;(2)若(1)中函数y 的图像与x 轴、y 轴交于A 、B 两点,若将此函数绕A 点顺时针旋转90°后交y 轴于C 点,求直线AC 的解析式.3.如图所示,直线323y x =-+与x 轴、y 轴分别交于点A 和点B ,D 是y 轴上的一点,若将DAB ∆沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,求直线CD 的解析式.4.直线31y =+与x 轴、y 轴分别交于点A 、点B ,以线段AB 为直角边在第一象限内作等腰Rt ABC ∆,且90BAC ∠=,如果在第二象限内有一点P (a ,12),且ABP ∆的面积与Rt ABC∆的面积相等,求a 的值.。

精品 八年级数学下册 一次函数基础复习+综合能力提高题

精品 八年级数学下册 一次函数基础复习+综合能力提高题

一次函数01函数与变量1.变量:在一个变化过程中可以取不同数值的量,函数中用x 表示。

常量:在一个变化过程中只能取同一数值的量,往往用c 来表示。

2.函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

3.定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4.函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式5.函数的图像:一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6.函数的表示方法:(1)列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

(2)解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

(3)图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

例1:(1)摄氏温度C 与华氏温度F 之间的对应关系为5(F-32)9C =℃,则其中的变量是 ,常量是(2)在△ABC 中,它的底边是a ,底边上的高是h ,则三角形的面积 ah S 21=,当底边a 的长一定时,在关系式中的常量是 ,变量是(3)写出下列各问题中的关系式,并指出其中的常量与变量。

①甲乙两地相距1000千米,一人骑自行车以15千米/小时的速度从甲地前往乙地,用行驶时间t(小时)表示自行车离乙地的距离S(千米);②直角三角形中一个锐角α与另一个锐角β之间的关系;③一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y (吨);④小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x 之间的关系.例2.某校师生为四川汶川地震灾民捐款,平均每人捐50元.(1)写出捐款总额y (元)与捐款人数x (人)之间的关系式,指出式子中的变量与常量,并指出在这个变化过程中,哪一个量是自变量?哪一个量是因变量?(2)如果该校有师生3000人,那么此次该校师生共为汶川灾区捐款多少元?例3.某公司决定投资新项目,通过考察确定有6个项目可供选择,各项目所需要资金及预计年利润如下表:所需资金(亿元)12 467 8 预计利润(千万元) 0.20.350.55 0.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果投资一个4亿元的项目,那么其年利润预计有多少?(3)如果预计获得0.9千万元的年利润,投资一个项目需要多少资金?(4)如果该公司可以拿出10亿元进行多少个项目的投资,预计最大利润是多少?例4.下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x 表示时间,y 表示小明离他家的距离.小明家,菜地,玉米地在同一条直线上。

专题01一次函数的图象及性质(原卷版)

专题01一次函数的图象及性质(原卷版)

题型一 一次函数的图象及性质【要点提炼】一、【正比例函数和一次函数的概念】一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

二、【一次函数的图象】所有一次函数的图象都是一条直线三、【一次函数、正比例函数图象的主要特征】:一次函数b kx y +=的图象是经过点(0,b )的直线;正比例函数kx y =的图象是经过原点(0,0)的直线。

k 的符号 b 的符号 函数图象图象特征 k>0 b>0图象经过一、二、三象限,y 随x 的增大而增大。

b<0图象经过一、三、四象限,y 随x 的增大而增大。

K<0 b>0 y图象经过一、二、四象限,y 随x 的增大而减小b<0y0 x图象经过二、三、四象限,y 随x 的增大而减小。

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

四、【正比例函数的性质】一般地,正比例函数kx y =有下列性质:(1)当k>0时,图象经过第一、三象限,y 随x 的增大而增大;(2)当k<0时,图象经过第二、四象限,y 随x 的增大而减小。

五、【一次函数的性质】一般地,一次函数b kx y +=有下列性质:(1)当k>0时,y 随x 的增大而增大(2)当k<0时,y 随x 的增大而减小【专题训练】1.(2020•陕西)在平面直角坐标系中,将直线y =kx ﹣6沿x 轴向左平移3个单位后恰好经过原点,则k 的值为( )A .﹣2B .2C .﹣3D .32.(2020•广安)一次函数y =﹣x ﹣7的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2020•济南)若m <﹣2,则一次函数y =(m +1)x +1﹣m 的图象可能是( )A .B .C .D .4.(2020•西藏)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3B.4C.5D.65.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.6.(2019•辽阳)若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.7.(2016•雅安)若式子(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.8.(2011•张家界)关于x的一次函数y=kx+k2+1的图象可能正确的是()A.B.C.D.9.(2005•湖州)如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a 10.(2018•常德)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<0二.填空题(共6小题)11.(2011•长春)如图,一次函数y=kx+b(k<0)的图象经过点A.当y<3时,x的取值范围是.12.(2010•龙岩)已知一次函数y=kx+b的图象如图,当x<0时,y的取值范围是.13.(2014•自贡)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是.14.(2013•济南)若直线y=kx与四条直线x=1,x=2,y=1,y=2围成的正方形有公共点,则k 的取值范围是.15.(2013•潍坊)一次函数y=﹣2x+b中,当x=1时,y<1,当x=﹣1时,y>0.则b的取值范围是.16.(2005•安徽)写出一个图象经过点(﹣1,﹣1),且不经过第一象限的函数表达式.。

一次函数经典题型+习题(精华-含答案)

一次函数经典题型+习题(精华-含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

八下数学第十九章一次函数19.2.2一次函数(共四课时全)

八下数学第十九章一次函数19.2.2一次函数(共四课时全)

法是,以厘米为单位量出身高值 h ,再减常数105,所得
差是 m的值;
m=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包 括月租费22元和拨打电话 x min 的计时费(按0.1元/min
收取);
y=0.1x+22
(4)把一个长10 cm,宽5 cm的矩形的长减少 x cm, 宽不变,矩形面积 y(单位:cm2)随x的值而变化.
y=-5x+50(0≤x<10)
探究新知
观察以上出现的四个函数解析式,它们是不是正比例函 数,那么它们共同的特征如何表示呢?
(1) c = 7 t - 35 (2) m = h -105 (3) y = 0.1 x + 22 (4) y = -5 x + 50
y = k(常数)x + b(常数)
探究新知
(4)由v=16,得2t=16
t=8. 当t=8s时,小球的速度为16m/s
探究新知 利用一次函数的概念求字母的值
例1 已知函数y=(m-2)x+4-m2 (1)当m为何值时,这个函数是一次函数?
(2)当m为何值时,这个函数是正比例函数?
解:(1)由题意可得m-2≠0,解得m≠2. 即m≠2时,这个函数是一次函数.
-2 -1 O 1 2 3 x
描点
连线
观察与比较:
比较上面两个函数图象的相同点与不同点.填出你的观 察结果并与同伴交流.
这两个函数的图象形状都是 一条直线 ,并且倾斜
程度 相同 .函数y = -6x的图象经过原点,函数ห้องสมุดไป่ตู้ = -6x+5 的图象与y 轴交于点 (0,5) ,即它可以看作由直线y = -6x

八年级数学下册期中期末-专题01 一次函数的概念与图像(考点串讲)(原卷版)

八年级数学下册期中期末-专题01 一次函数的概念与图像(考点串讲)(原卷版)

专题01 一次函数的概念与图像【考点剖析】1.一次函数的概念___________________________________________()(()_0),k b y kx b k c ⎧⎨⎩⎧⎨=+≠⎩定义:解析式形如、为常数,的函数;(1)概念定义域:一切实数;正比例函数一次函数;(2)与正比例函数关系:一次函数当时,它是正比例函数;(3)常值函数:函数为常数步:设一次函数解析式(4)方法:求一次函数的解析式_______________:步:___将_①②⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩_______________代入函数关系式;步:求出,得出关系式.③ 2.一次函数的图像11221122(1)(0)(2)(3);(_______________4_)y kx b k y k x b y k x b y k x b y k x b =+≠⎧⎨⎩=+=+⇔=+=+图像:一次函数的图像是;画法:列表,描点,连线;;截距:;截距:一条直线与y 轴的交点的叫__________________________这条直线在y 轴上的截距;区别距离:总是;直线与直线平行且两直线位置关系直线与直_________线___①②________⎧⎪⎪⎪⎪⎨⎪⎪⎧⎪⎨⎪⇔⎩⎩相交; 【典例分析】例题1(松江2019期中1)以下函数中,属于一次函数的是( ) A. 2x y =- B. y=kx+b(k 、b 是常数) C. y=c(c 为常数) D. 2yx =. 例题2.(黄浦2018期中1)一次函数y =kx +b 的图象如图所示,当y >3时,x 的取值范围是( )A. B. C. D. .例题3(静安2019期末2)下列函数中,图像不经过第二象限的是( )A.35y x =+;B.35y x =-;C.35y x =-+;D.35y x =--.例题4(静安2019期末3)如果点(,)A a b 在正比例函数23y x =-的图像上,那么下列等式一定成立的是( ) A.320a b +=; B.320a b -=; C.230a b -=; D.230a b +=.例题5.(嘉定2019期末7)已知一次函数()32f x x =+,那么(2)f -= .例题6(静安2018期末8)点A (1,3) (填“在”、或“不在”)直线y =﹣x +2上. 例题7(金山2018期中7)一次函数4y x =--的截距是 .例题8(闵行2018期末8)已知一次函数y =kx +k ﹣3的图象经过点(2,3),则k 的值为 .例题9.(嘉定2019期末9)如果将直线2y x =向上平移1个单位,那么平移后所得直线的表达式是 .例题10(普陀2018期末12)直线l 与直线y =3﹣2x 平行,且在y 轴上的截距是﹣5,那么直线l 的表达式是 .例题11(松江2019期中7)直线24y x =-与x 轴的交点坐标是______.例题12(松江2018期中24)已知,点(2,)P m 是第一象限内的点,直线PA 交y 轴于点(0,2)B ,交x 轴负半轴于点A ,联结OP ,6AOP S ∆=.(1)求BOP ∆的面积;(2)求点A 的坐标和m 的值.【真题训练】一、选择题1.(崇明2018期中1)下列函数中,为一次函数的是( )A.11y x=+; B.2y x =-; C.21y x =+; D.1()y kx k =+是常数. 2.(金山2018期中1)下列四个函数中,是一次函数的是( ) A.21y x =+; B.y x =; C.21y x =+; D.1y x =. 3.(静安2018期末2)下列函数中,一次函数的是( )A. 1y x =- B .12y = C .y =x ﹣1 D .y =2x 2+44.(普陀2018期中1)下列函数关系式:①y =2x ;②y =2x +11;③y =3-x ;④2y x=.其中一次函数的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个5.(金山2018期中5)一次函数图像如图所示,当2y >时,x 的取值范围是( )A.0x >;B.0x <;C.2x >;D.2x <.6.(金山2018期中4)一次函数51y x =-的图像经过的象限是( )A.一、二、三;B.一、三、四;C.二、三、四;D.一、二、四.7.(浦东四署2019期中2)在平面直角坐标系中,函数4y x =-+的图像经过( )A.一、二、三象限;B.一、二、四象限;C. 一、三、四象限;D. 二、三、四象限.8. (浦东2018期末2)函数y =-x -3的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.(闵行2018期末2)已知直线y =kx +b 与直线y =﹣2x +5平行,那么下列结论正确的是( ) A .k =﹣2,b =5 B .k ≠﹣2,b =5 C .k =﹣2,b ≠5 D .k ≠﹣2,b =510.(崇明2018期中4)在平面直角坐标系中,一次函数y kx b =+的图像如图所示,那么下列判断正确的是( )A.0,0k b >>;B. 0,0k b ><;C. 0,0k b <>;D. 0,0k b <<.11. (普陀2018期中2)如图所示,函数y =mx +m 的图象可能是( )C D O x y yx O O x y y x OB A12.(黄浦2018期中6)一次函数y =x +1的图象交x 轴于点A ,交y 轴于点B .点C 在x 轴上,且使得△ABC 是等腰三角形,符合题意的点C 有( )个.A. 2B. 3C. 4D.二、填空题 13. (黄浦2018期中8)已知一次函数1()22f x x =--,则f (-2)=______. 14. (浦东2018期末9)当m =______时,函数y =(m -1)x +m 是常值函数.15.(静安2019期末7)直线35y x =--的截距是 .16. (奉贤2018期末6)一次函数y =2x -1的图象在y 轴上的截距为______17.(浦东四署2018期中7)一次函数42y x =--的图像在y 轴上的截距是 .18.(青浦2018期末7)一次函数y =1﹣5x 的截距是 .19.(崇明2018期中7)一次函数5y x b =-+的图像不经过第一象限,则b 的取值范围是 .20. (普陀2018期中9)如果一次函数y =-x +b 的图象经过第二、三、四象限,那么b 的取值范围是______.21.(崇明2018期中9)直线32y x =--向上平移3个单位后,所得直线的表达式是 .22.(浦东一署2018期中8)直线y =-8x -6可以由直线y =-8x 向______平移______个单位得到.23. (松江2019期中9)函数y=2x -3的图像向下平移3个单位,所得新图像的函数表达式是___________. 24. (黄浦2018期中18)把直线314y x =+向右平移______个单位可得到直线324y x =-. 25. (杨浦2019期中2)要使直线32y x =-不经过第四象限,则该直线至少向上平移 个单位.26.(松江2018期中1)直线572y x =-与直线3y kx =+平行,则k= . 27. (黄浦2018期中16)已知函数y =-3x +7,当x >2时,函数值y 的取值范围是______.28.(崇明2018期中11)如图,一次函数y kx b =+的图像与x 轴、y 轴分别相交于A 、B 两点,那么当0y <时,自变量x 的取值范围是 .-12y xB A O29. (浦东2018期末11)已知一次函数y =2x +5,当函数值y <0时,自变量x 值的取值范围是______.30.(浦东四署2019期末10)一次函数33y x =-+与x 轴的交点是 .31.(浦东一署2018期中9)用m 的代数式表示,一次函数y =2mx +2与x 轴的交点坐标______.32.(浦东一署2018期中17)一个一次函数的图象经过点(0,2),且与两坐标轴围成的三角形面积为4,则一次函数解析式是______.33.(浦东四署2018期中17)已知一次函数y kx b =+的图像经过点(1,2),且不经过第三象限,那么关于x 的不等式kx+b >2的解集是____________.34.(普陀2018期末17)如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是 .35.(长宁2019期末11)我们知道:当x =2时,不论k 取何实数,函数y =k (x ﹣2)+3的值为3,所以直线y =k (x ﹣2)+3一定经过定点(2,3);同样,直线y =(k ﹣2)x +3k 一定经过的定点为 .三、解答题36.(浦东一署2018期中21)直线l 经过点(2,-1),且截距为8,求直线l 的解析式.37. (杨浦2019期中25)如图,在平面直角坐标系XOY 中,O 为坐标原点,已知直线1l 经过点A (-6,0),它与y 轴交于点B,点B 在y 轴正半轴上,且OA=2OB(1)求直线1l 的函数解析式(2)若直线2l 也经过点A (-6,0),且与y 轴交于点C ,如果ΔABC 的面积为6,求C 点的坐标OYBXA38. (普陀2018期中23)如图,已知一次函数y=2x+4的图象与x轴、y轴分别交于点A、B,且BC∥AO,梯形AOBC的面积为10.(1)求点A、B、C的坐标;(2)求直线AC的表达式.39.(崇明2018期中25)如图,平面直角坐标系xOy中,点(,1)A a在双曲线3yx=上,函数y kx b=+的图像经过点A,与y轴交于点(0,2)B-.(1)求直线AB的解析式;(2)设直线AB交x轴于点C,求三角形OAC的面积.yxO CBA40. (普陀2018期中19)在平面直角坐标系xOy中,直线y=x向下平移2个单位后和直线y=kx+b(k≠0)重合,直线y=kx+b(k≠0)与x轴交于点A,与y轴交于点B.(1)请直接写出直线y=kx+b(k≠0)的表达式和点B的坐标;(2)求△AOB 的面积.41.(松江2018期中26)如图,一次函数y kx b =+的图像与反比例函数m y x=的图像相交于(2,2)(1,4)A B --、两点. (1)求出两函数的解析式;(2)根据图像回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?(3)联结AO 、BO ,试求AOB ∆的面积.42. (黄浦2018期中26)已知一次函数的图象与坐标轴交于A 、B 点(如图),AE 平分∠BAO ,交x 轴于点E .(1)求点B 的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.。

2014年全国中考数学试题汇编《一次函数》(01)

2014年全国中考数学试题汇编《一次函数》(01)

全国中考数学试题汇编《一次函数》(01)选择题.CD .2.(2007•台湾)如图是四直线L 1、L 2、L 3、L 4在坐标平面上的位置,其中有一条直线为方程式y+4=0的图形,求此方程式图形为( )3.(2007•乐山)已知一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是( ).CD .6.(2007•玉溪)下列图形中阴影部分面积相等的是( )8.(2010•本溪)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()10.(2007•济南)已知y=ax2+bx的图象如图所示,则y=ax﹣b的图象一定过()13.(2009•枣庄)如图,把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB 的解析式是()14.(2007•镇江)在直角坐标系中有两条直线l1、l2,直线l1所对应的函数关系式为y=x﹣2,如果将坐标纸折叠,.C或D.或17.(2007•大连)如图,直线y=kx+b经过点A(0,3),B(﹣2,0),则k的值为()C D.18.(2007•山西)如图是关于x的函数y=kx+b(k≠0)的图象,则不等式kx+b≤0的解集在数轴上可表示为().C D.19.(2007•临沂)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()21.(2007•聊城)如图,以两条直线l1,l2的交点坐标为解的方程组是().C D.22.(2007•陕西)如图,一次函数图象经过点A,且与正比例函数y=﹣x的图象交于点B,则该一次函数的表达式为()23.(2007•金华)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()25.(2007•宜宾)2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为()26.(2007•天门)如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )27.(2007•台湾)甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁( )28.(2007•长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c …,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号y=;当明码对应的序号x 为偶数时,密码对应的序号y=+13.30.(2007•庆阳)若k <0,则函数y 1=kx ,y 2=的图象可能是( ) .CD .2007年全国中考数学试题汇编《一次函数》(01)参考答案与试题解析选择题 .CD .2.(2007•台湾)如图是四直线L 1、L 2、L 3、L 4在坐标平面上的位置,其中有一条直线为方程式y+4=0的图形,求此方程式图形为( )3.(2007•乐山)已知一次函数y=kx+b 的图象如图所示,当x <1时,y 的取值范围是( ).C D.6.(2007•玉溪)下列图形中阴影部分面积相等的是()则三角形的面积为则面积为3=;则面积为则面积为8.(2010•本溪)已知一次函数y=(a﹣1)x+b的图象如图所示,那么a的取值范围是()10.(2007•济南)已知y=ax2+bx的图象如图所示,则y=ax﹣b的图象一定过()>13.(2009•枣庄)如图,把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB 的解析式是()14.(2007•镇江)在直角坐标系中有两条直线l1、l2,直线l1所对应的函数关系式为y=x﹣2,如果将坐标纸折叠,.C或D.或(,即k=;17.(2007•大连)如图,直线y=kx+b经过点A(0,3),B(﹣2,0),则k的值为()C D.18.(2007•山西)如图是关于x的函数y=kx+b(k≠0)的图象,则不等式kx+b≤0的解集在数轴上可表示为().C D.19.(2007•临沂)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b>k2x的解为()21.(2007•聊城)如图,以两条直线l1,l2的交点坐标为解的方程组是().C D.22.(2007•陕西)如图,一次函数图象经过点A,且与正比例函数y=﹣x的图象交于点B,则该一次函数的表达式为()得:,该一次函数的表达式为23.(2007•金华)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()25.(2007•宜宾)2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为()根据题意得,解之得y=时,有x=26.(2007•天门)如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量()27.(2007•台湾)甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()28.(2007•长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a ,b ,c …,z (不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x 为奇数时,密码对应的序号y=;当明码对应的序号x 为偶数时,密码对应的序号y=+13.为偶数,则密码对应序号为+13=1930.(2007•庆阳)若k <0,则函数y 1=kx ,y 2=的图象可能是( ) .CD .。

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)
题型一:识别一次函数
题型二:根据一次函数的定义求参数
题型三:求一次函数自变量或函数值
一、单选题
1.(2023下·上海·八年级专题练习)已知点()1,2A 在一次函数3y x m =-的图象上,则m 等于( )A .3
-B .2-C .0D .1
二、填空题
题型四:列一次函数解析式并求值
一、填空题
二、解答题
一、单选题
二、填空题
三、解答题
(1)求A,C坐标;
(2)若点Q(a,2a﹣6)位于第一象限内,问点
若能,请求出此时a的值,若不能,请说明理由.
(1)当△ABC是以BC为底的等腰三角形时,求点A的坐标;
(2)当△ABC的面积为4时,求点A的坐标;
(3)在直线l上是否存在点A,使∠BAC=90°?若存在,求出点A的坐标;若不存在请说明理由.。

精品 八年级数学下册 一次函数综合题01

精品 八年级数学下册 一次函数综合题01

一次函数 练习题一、选择题:1.如图是蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面图象中,能大致表示水的最大深度h 与时间t 之间的关系是( )2.图1是水滴进玻璃容器的示意图(滴水速度不变),图2是容器中水高度随滴水时间变化的图像.给出下列对应:(1):(a )-(e ) (2):(b )-(f ) (3):(c )-h (4):(d )-(g )其中正确的是( )A .(1)和(2) B.(2)和(3) C. (1)和(3) D.(3)和(4) 3.直线y=kx +b 经过一、二、四象限,则k 、b 应满足( )A k>0, b<0B . k>0, b>0C . k<0, b<0;D . k<0, b>0 4.关于函数12+-=x y 下列结论正确的是( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当21>x 时,0<y D .y 随x 的增大而增大 5.已知一次函数y=ax+4与y=bx-2的图象在x 轴上相交于同一点,则ba的值是( )A .4B .-2C . 12D . - 126.已知关于x 的一次函数72-+=m mx y 在51≤≤-x 上的函数值总是正的,则m 的取值范围( ) A. m>7 B. m>1 C. 7m 1≤≤ D.以上都不对7.把直线x y 2-=向上平移后得到直线AB ,直线AB 经过点(m ,n ),且2m+n=6,则直线AB 的解析式是( ) A. 32--=x y B. 62--=x y C. 32+-=x y D. 62+-=x y8.已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵坐标为( ) A.3 B.-3 C.6 D.3± 9.已知一次函数的图象与直线1+-=x y 平行,且过点(8,2),那么此一次函数的解析式为( ) A.2--=x y B. 6--=x y C.10+-=x y D.1--=x y 10.在直线2121+=x y 且到x 轴或y 轴距离为1的点有( )个。

一次函数图像与性质复习课

一次函数图像与性质复习课
上平移与下平移
如果一次函数的b值增大或减小,图像会在y轴方向上平移。b值增大,图像向 上平移;b值减小,图像向下平移。
左平移与右平移
如果一次函数的k值增大或减小,图像会在x轴方向上平移。k值增大,图像向右 平移;k值减小,图像向左平移。
03 一次函数的性质
一次函数的单调性
一次函数的单调性取决于其斜率。如果斜率大于0,函数在定义域内单调 递增;如果斜率小于0,函数在定义域内单调递减。
利用一次函数解决数学问题
代数问题
通过一次函数可以解决代数问题,如求方程的根、求解不等 式等。
几何问题
一次函数与几何图形结合,可以解决一些几何问题,如求三 角形面积、求直线交点等。
一次函数与其他数学知识的综合应用
与二次函数的结合
一次函数和二次函数结合,可以解决一些更复杂的数学问题,如求函数的极值、判断函数的单调性等 。
上。
提高练习题
提高练习题是在基础练习题的基础上,进一步加深对一次函数性质的理解和应用。
题目类型包括计算题、作图题和解答题,难度适中,适合大部分学生练习。
示例题目:求函数$y = -x + 4$与坐标轴围成的三角形面积;作出函数$y = x - 3$ 的图像,并求出与直线$y = 2x$的交点坐标。
描点作图
在坐标系上标出这些点的 位置,用平滑的曲线连接 这些点,得到一次函数的 图像。
一次函数图像的特点
直线性
一次函数的图像是一条直线。
正斜率与负斜率
当一次函数的斜率为正时,图像从左下到右上上 升;当斜率为负时,图像从左上到右下下降。
截距
一次函数与y轴的交点称为截距,截距可以是正数、 负数或零。
一次函数图像的平移
一次函数的截距在解决实际问题中具有 重要意义,例如在预测销售量时,可以 通过一次函数的截距来预测当销售额为

期末复习一次函数大题练习

期末复习一次函数大题练习

一次函数大题练习1.甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟 米,乙在A 地时距地面的高度b 为 米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?2.某市举行“迷你马拉松”长跑比赛,运动员从起点甲地出发,跑到乙地后,沿原路线再跑回点甲地.设该运动员离开起点甲地的路程s (km)与跑步时间t (min)之间的函数关系如图所示.已知该运动员从甲地跑到乙地时的平均速度是0.2 km/min ,根据图像提供的信息,解答下列问题:(1)a = km ;(2)组委会在距离起点甲地3km 处设立一个拍摄点P ,该运动员从第一次过P 点到第二次过P 点所用的时间为24min .①求AB 所在直线的函数表达式; ②该运动员跑完全程用时多少min ?3.为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号的设备,其中A 种型号的设备每台价格为12万元,B 种型号的设备每台价格为10万元;A 种型号的设备每台每月可以处理污水240吨,B 种型号的设备每台每月可以处理污水200吨,经预算,该企业购买设备的资金不高于..........105...万元....(1)写出购买设备的资金y 万元与购买A 型设备的台数x 之间的函数关系(不需要写出自变量的取值范围(2)该企业有几种购买方案,写出每种方案,并说明理由(3)若该企业每月产生的污水量为2040吨,利用函数的知识.....说明,应该选哪种购买方案? 4.A 市和B 市分别有库存的某联合收割机12台和6台,现决定开往C 市10台和D 市8台,已知从A 市开往C 市、D 市的油料费分别为每台400元和800元,从B 市开往C 市和D 市的油料费分别为每台300元和500元.(1)设B 市运往C 市的联合收割机为x 台,求运费w 关于x 的函数关系式.(2)若总运费不超过9000元,问有几种调运方案?(3)求出总运费最低的调运方案,并求出最低运费.5.某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:()2140(4060),{806070x x y x x -+≤<=-+≤≤⋅(1)若企业销售该产品获得的利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.6.如图,直线l 1:y 1=−34x+m 与y 轴交于点A (0,6),直线l 2:y 2=kx+1分别与x 轴交于点B (-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .(1)求两直线交点D 的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.7.李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时间.8.如图,已知一次函数y=x+2与y=-2x+6的图象相交于点A,函数y=-2x+6的图象分别交x轴、y轴于点B、C,函数y=x+2的图象分别与x轴、y轴交于点E、D.(1)求点A的坐标;(2)求△ABE的面积.9某校在去年购买A,B两种足球,费用分别为2400元和2000元,其中A种足球数量是B种足球数量的2倍,B种足球单价比A种足球单价多80元/个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?10.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元(1) 求甲、乙两种商品每件的进价分别是多少元?(2) 商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润11.如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D.直线l2经过点A、B,直l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)在直线l2上存在异于点C的另一个点P,使得△ADP与△ADC的面积相等,求P点的坐标.12.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)15 20 30 …y(件)25 20 10 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?13.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.14.济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?15.如图,请根据图象所提供的信息解答下列问题:(1)当x 时,kx+b≥mx-n;(2)不等式kx+b<0的解集是;(3)交点P的坐标(1,1)是一元二次方程组:的解;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M 的坐标和四边形OMPN的面积.16.(2016湖南衡阳第23题)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:运费(元/台)港口甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.17.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.18.如图,已知直线y 1=﹣21x+1与x 轴交于点A ,与直线y 2=﹣23x 交于点B .(1)求△AOB 的面积;(2)求y 1>y 2时x 的取值范围.19.甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,因有事按原路原速返回A 地.乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是 千米/时,t= 小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.20.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y 与x 之间的关系式?(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?21.如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.如图,直线l 1:y 1=x 和直线l 2:y 2=﹣2x+6相交于点A ,直线l2与x轴交于点B,动点P沿路线O→A→B运动.(1)求点A的坐标,并回答当x取何值时y1>y2?(2)求△AOB的面积;(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.23.小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是m/分,点B的坐标是;(2)线段AB所表示的y与x的函数关系式是;(3)试在图中补全点B以后的图象.24.如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=2x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=2x的图象于点C,D.(1)求点A的坐标;(2)若OB=CD,求a的值.25.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.参考答案1.(1)10;30(2)乙登山全程中,距地面的高度y (米)与登山时间x (分)之间的函数关系式为y=()()1502{3030211x x x x ≤≤-≤≤. (3)登山4分钟、9分钟或15分钟时,甲、乙两人距地面的高度差为50米.2.(1)5千米.(2)直线AB 解析式为s =-t +.60分. 3.(1)y =2x +100;(2)有三种购买方案:①购A 型0台,B 型10台;②购A 型1台,B 型9台;③购A 型2台,B 型8台;(3)为节约资金,应选购A 型1台,B 型9台4.(1)2008600W x =+(06x ≤≤);(2)有三种方案;(3)总运费最低的方案是, A C →10台, A D →2台, B C →0台, B D →6台,此时总运费为8600元.5.(1)年利润W(万元)关于售价x(元/件)的函数解析式为()2222004200(4060),{11024006070.x x x W x x x -+-≤<=-+-≤≤; (2)当该产品的售价定为50元/件时,销售该产品的年利润最大,最大利润为800万元;(3)要使企业销售该产品的年利润不少于750万元,该产品的销售价x(元/件)的取值范围为45≤x ≤55.6.(1)D 点坐标为(4,3)(2)15;(3)x <47.(1)a=20,b=1100,c=50;(2)李老师从学校到家的共用60分钟.8.(1)A (410,33);(2)2539.(1)A 种足球单价为120元/个,B 足球单价为200元/个.(2)本次购买A 种足球6个,B 种足球12个,才能使购买费用W 最少.10.(1) 甲种商品每件的进价为30元,乙种商品为70元;(2) 购进甲种商品80件,则购进乙种商品20件时获利最大,为1200元.11.(1)、(1,0);(2)、y=1.5x﹣6;(3)、(6,3).12.(1)一次函数的关系式为y=﹣x+40;(2)产品的销售价应定为25元,此时每日的销售利润为225元.13.(1)18;(2)有6种购买方案,每月最多处理污水量的吨数为2000吨.14.(1)y1=0.15x+58,y2=0.19x;(2)1450分钟时;(3)当月通话时间多于1450分钟时.15.(1)x≤1(2)x>3;(3)y mx ny kx b=-⎧⎨=+⎩,(4)1.16.(1)y=﹣8x+2560,x的取值范围是30≤x≤80;(3)1920,方案为把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.17.(1)、y=2x-2;(2)、(2,2).18.(1)1.5;(2)x>﹣1.19.(1)60,3;(2)y=﹣120x+840(4<x≤7);(3)乙车出发83小时、4小时、6小时后两车相距120千米.20.(1)、5元;(2)、y=12x+5;(3)、12元;(4)、45kg.21.(1)D(1,0);(2)y=32x-6;(3)92;(4)P(6,3)22.(1)当x>2时,y1>y2;(2)3;(3)P(1,1)或(,1).23.(1)60,120;(2)y=kx+b,(3)24.(1)(6,0);(2)425.见解析.。

【教师卷】初中数学八年级数学下册第十九章《一次函数》知识点复习(培优)(1)

【教师卷】初中数学八年级数学下册第十九章《一次函数》知识点复习(培优)(1)

一、选择题1.已知点P(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.C解析:C【分析】根据点P在第二象限,确定m<0,n>0,根据k,b的符号,确定图像的分布即可.【详解】∵点P(m,n)在第二象限,∴m<0,n>0,∴图像分布在第一,第三象限,第四象限,故选C.【点睛】本题考查了根据k,b的符号确定一次函数图像的分布,熟记k,b的符号与图像分布的关系是解题的关键.2.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<32B.32<x<6 C.32<x<4 D.0<x<3B解析:B【分析】先求解A的坐标,再求解一次函数的解析式及B的坐标,结合函数图像解0<ax+4<2x即可得到答案.【详解】解:一次函数y=2x和y=ax+4的图象相交于点A(m,3),23,m ∴=3,2m ∴= 3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=- 24,3y x ∴=-+ 令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6,ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方, 3,3,2A ⎛⎫ ⎪⎝⎭x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.3.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( )A .21m -<<-B .21m -≤<-C .322m -≤<-D .322m -<≤-D 解析:D【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-. 【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点,此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点,此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-. 故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.4.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =-D .3y x =-D解析:D【分析】 设直线l 与y 轴交于点C ,由已知条件求出点C 的坐标后利用待定系数法可以得到直线l 的函数表达式.【详解】解:分别令x=0和y=0可得B 、A 的坐标为(0,-4)、(3,0),∴AB=22345+=,则三角形OAB 的周长为12如图,设直线l 与y 轴交于点C (0,c ),则OA+OC=6,即3-c=6,∴c=-3,即C 的坐标为(0,-3),设l 的函数表达式为y=kx+b ,由l 经过A 、C 可得:033k b b =+⎧⎨-=⎩,解之得: 13k b =⎧⎨=-⎩, ∴l 的函数表达式为:y=x-3,故选D .【点睛】本题考查一次函数的应用,熟练掌握一次函数的图象、勾股定理的应用及待定系数法求解析式的方法是解题关键.5.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D .A 解析:A【分析】根据△ABC 为等边三角形,得到∠A=∠C=∠ABC=60︒,利用DE //AC ,证得△DEB 是等边三角形,求出DE=BD=2-x ,利用EF ⊥DE ,求出223DF DE =-,再根据面积公式求出函数解析式,依据函数的性质确定函数图象.【详解】∵△ABC 为等边三角形,∴∠A=∠C=∠ABC=60︒,∵DE //AC ,∴∠DEB=∠C=60︒,∠EDB=∠A=60︒,∴∠DEB=∠EDB=∠DBE=60︒,∴△DEB 是等边三角形,∴DE=BD=2-x ,∵EF ⊥DE ,∴∠DEF=90︒,∴∠DFE=30,∴DF=2DE=4-2x,∴223DF DE -,∴△DEF 的面积为y=213(2)3(2)2)22x x x --=-(0<x<2), ∵此函数为二次函数,开口向上,对称轴为直线x=2,且0<x<2,故选:A .【点睛】此题考查等边三角形的判定及性质,平行线的性质,勾股定理,直角三角形30度角所对的直角边等于斜边的一半,函数的性质,函数图象,根据题意分别求出DE 、EF ,由此得到函数解析式是解题的关键.6.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是()A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.→→→匀速运7.如图,边长为2的正方形ABCD中,点P从点A出发沿路线A B C D动至点D停止,已知点P的速度为1,运动时间为t,以P.A.B为项点的三角形面积为S,则S与t之间的函数图象可能是()A .B .C .D .C解析:C【分析】需分0≤t≤2、2<t≤4、4<t≤6三种情况分别分析即可.【详解】解:当0≤t≤2时,P 在AB 上运动,P .A .B 为项点的三角形AB 边上的高为0,即面积s=0;当2<t≤4时,P 在BC 上运动,P .A .B 为项点的三角形AB 边上的高为逐渐增大,即面积s 逐渐增大;当4<t≤6时,P 在DC 上运动,P .A .B 为项点的三角形AB 边上的高恒为2,即面积s 为1222⨯⨯=2; 综上可以发现C 满足题意.故答案为C .【点睛】本题主要考查的是动点图象问题,弄清楚不同时间段、函数图象和图形的对应关系成为解答本题的关键.8.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限C解析:C【分析】根据一次函数图象与系数的关系解答.【详解】∵一次函数31y x =-+中,k=-3<0,b=1>0,∴一次函数的图象经过第一、二、四象限,∵点P 在一次函数31y x =-+的图象上,∴点P 一定不在第三象限,故选:C .【点睛】此题考查一次函数图象与系数的关系: k>0,b>0时,直线经过第一、二、三象限; k>0,b<0时,直线经过第一、三、四象限; k<0;b>0时,直线经过第一、二、四象限; k<0,b<0时,直线经过第二、三、四象限.9.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.10.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表: 所挂物体的质量m/kg0 1 2 3 4 5 弹簧的长度y/cm10 12.5 15 17.5 20 22.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m,质量为mkg,y为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A.在没挂物体时,弹簧的长度为10cm,根据图表,当质量m=0时,y=10,故此选项正确,不符合题意;B、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C、当物体的质量为mkg时,弹簧的长度是y=10+2.5m,故此选项正确,不符合题意;D、由C中y=10+2.5m,m=4,解得y=20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B.【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.二、填空题11.如图,直线y=kx+1经过点A(-2,0)交y轴于点B,以线段AB为一边,向上作等腰Rt ABC,将ABC向右平移,当点C落在直线y=kx+1上的点F处时,则平移的距离是_________.5【分析】先把A坐标代入y=kx+1求得k=则直线AB的解析式为y=x+1再确定B点坐标(01)作CH⊥x轴于H如图根据等腰直角三角形的性质得AC=AB∠BAC=90°接着证明△ABO≌△CAH得到解析:5【分析】先把A坐标代入y=kx+1求得k=12,则直线AB的解析式为y=12x+1,再确定B点坐标(0,1),作CH⊥x轴于H,如图,根据等腰直角三角形的性质得AC=AB,∠BAC=90°,接着证明△ABO≌△CAH,得到OB=AH=1,OA=CH=2,于是可确定C点坐标(-3,2),然后根据平移的性质得点F的纵坐标与C点的纵坐标相等,则可把y=2代入y=12x +1得12x+1=2,解得x=2,所以F点的坐标为(2,2),点F与点C的横坐标之差就是平移的距离.【详解】解:把A(-2,0)代入y=kx+1得-2k+1=0,解得k=12,则直线AB的解析式为y=12x+1,当x=0时,y=12x=1=1,则B点坐标为(0,1),如图,作CH⊥x轴于H∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,AOB CHAABO CAHAB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABO≌△CAH,∴OB=AH=1,OA=CH=2,∴OH=OA+AH=3,∴C点坐标为(-3,2),∵△ABC向右平移,∴F的纵坐标与C点的纵坐标相等,把y=2代入y=12x+1得12x+1=2,解得x=2,∴F点的坐标为(2,2),∴点C向右平移了2-(-3)=5个单位.故答案为5.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质和平移的性质.12.如果直线y=2x+3与直线y=3x﹣2b的交点在y轴上,那么b的值为___.【分析】先求出y=2x+3与y轴交点坐标为(03)代入y=3x﹣2b即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y轴交点为(03)将(03)代入y=3x﹣2b中得-2b=解析:3 2 -【分析】先求出y=2x+3与y轴交点坐标为(0,3),代入y=3x﹣2b,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y轴交点为(0,3),将(0,3)代入y=3x﹣2b中,得-2b=3,解得b=32 -,故答案为:32 -.【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键.13.如图所示的平面直角坐标系中,点A坐标为(2,2),点B坐标为(﹣1,1),在x 轴上有点P,使得AP+BP最小,则点P的坐标为_____.(00)【分析】先作点B关于x轴的对称点C再连接AC求出AC的函数解析式再把y=0代入即可【详解】解:如图作点B关于x轴的对称点C再连接AC点B坐标为(﹣11)点B关于x轴的对称点C的坐标为(-1-解析:(0,0)【分析】先作点B 关于x 轴的对称点C ,再连接AC ,求出AC 的函数解析式,再把y=0代入即可.【详解】解:如图,作点B 关于x 轴的对称点C ,再连接AC ,点B 坐标为(﹣1,1),∴点B 关于x 轴的对称点C 的坐标为(-1,-1),在x 轴上有点P ,∴线段BP 和CP 关于x 轴对称,∴BP=CP ,∴AP+BP= CP+AP ,当AP+BP 取最小值时,最小值即为线段AC 的长,点A 坐标为(2,2),设直线AC 的方程为:y=kx+b ,∴代入A 、C 的坐标,221k b k b +=⎧⎨-+=-⎩,解得10k b =⎧⎨=⎩, ∴AC l y x =:,点P 的纵坐标为0,代入y=0,∴x=0,∴点P 的坐标为(0,0),故答案为:(0,0).【点睛】此题主要考查最短路线问题,综合运用了一次函数的知识,熟练掌握最短路线问题的求解方法是解题的关键.14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②2y x =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.15.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒. (或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2解析:254(或6.25). 【分析】 根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可.【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米, ∴父子共用时间20-20÷5=16秒,∴儿子的速度为10016=254米/秒, 故答案为:254. 【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟解析:()1+()1()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =, 22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2),故答案为:()1+、()1-、()0,2..【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.18.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A车掉头以原速前往乙处,拿到文件后,A车加快速度迅速往甲地驶去,此时,A车速度比B车快32千米/小时,A车掉头和拿文件的时间忽略不计,如图是两车之间的距离y(千米)与B车出发的时间x(小时)之间的函数图象,则当A车到达甲地时,B车离工厂还有_____千米.96【分析】根据题意和题目的函数图像先求出A车和B车的速度然后求出A车到乙地拿到文件后前往甲地的时间再得到B车的总时间即可求出A车到达甲地时B车离工厂的距离【详解】解:根据题意设A 车的速度为B车的速解析:96【分析】根据题意和题目的函数图像,先求出A车和B车的速度,然后求出A车到乙地拿到文件后,前往甲地的时间,再得到B车的总时间,即可求出A车到达甲地时B车离工厂的距离.【详解】解:根据题意,设A 车的速度为1V ,B 车的速度为2V ,则12()640080V V +⨯=+①,A 车前往乙地取文件的过程,有12()(76)8016V V -⨯-=-②,结合①②两式,得148V =,232V =,∴A 车的速度为48千米/小时;B 车的速度为32千米/小时;A 车拿到文件后,距离甲地的距离为:32764160⨯-=千米,∴A 车加速后达到甲地的时间为:160(3232) 2.5÷+=小时;∴B 车一共所走的时间有:7 2.59.5+=小时,∴当A 车到达甲地时,B 车离工厂的距离为:400329.596-⨯=千米;故答案为:96.【点睛】本题考查了二元一次方程组的应用——行程问题,以及函数图像的识别,解题的关键是熟练掌握题意,正确求出A 、B 两车的速度,从而进行解题.19.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k ,再求出b ,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b ,∵y=2x+b 的图象经过A (4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.20.平面直角坐标系中,点A 坐标为(),将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数y =-的图象上,则a 的值为__________.【分析】根据点的平移规律可得平移后点的坐标是(2-a3)代入计算即可【详解】解:∵A 坐标为(23)∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(2-a3)∵恰好落在正比例函数的图象上∴解得:a= 解析:532 【分析】 根据点的平移规律可得平移后点的坐标是(23-a ,3),代入23y x =-计算即可.【详解】解:∵A 坐标为(23,3),∴将点A 沿x 轴向左平移a 个单位后得到的点的坐标是(23-a ,3),∵恰好落在正比例函数23y x =-的图象上,∴()23233a --=,解得:a=532. 故答案为532. 【点睛】此题主要考查了正比例函数图象上点的坐标特点,以及点的平移规律,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加..三、解答题21.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.解析:解:(1)k=13,b=1;(2)5;(3)(-5,2)或(-3,4)或(-3,2).【分析】(1)利用待定系数法即可求出k 和b 的值;(2)根据题意得到点A 、B 、E 、C 的坐标,再利用S 四边形AOBE =S △ACE +S 四边形OBEC 即可表示出结果;(3)分点A 为直角顶点,点E 为直角顶点,点P 为直角顶点三种情况分别求出点P 的坐标即可.【详解】解:(1)∵直线y kx b =+过点A (-3,0),B (0,1),则031k b b=-+⎧⎨=⎩, 解得:131k b ⎧=⎪⎨⎪=⎩,∴k=13,b=1; (2)∵A (-3,0),B (0,1),E (-1,m ),C (-1,0),∴S 四边形AOBE =S △ACE +S 四边形OBEC =()1121122m m ⨯⨯+⨯+⨯ =3122m +; 当3m =时,S 四边形AOBE =313=522⨯+ (3)∵m=2,∴E (-1,2),∴CE=AC=2,∴△ACE 为等腰直角三角形,当直角顶点为点A 时,AP=AE ,∠PAE=90°,∴∠AEP=∠CAE=45°,∴PE ∥AC ,过P 作PF ⊥x 轴于F∴∠PAF=180º-∠PAE-∠CAE=180°-90°-45=45°∴△PAF ≌△EAC (AAS )∴PF=FA=AC=CE=2∴OF=AF+AC+OC=2+2+1=5∴点P (-5,2);当直角顶点为点E时,EP=EA,∠AEP=90°,∠EAP=45°,∴∠PAC=90°,过E作EG⊥AP于G,PG=AG=GE=AC=CE=2AO=AC+OC=2+1=3,AP=2AG=4∴P(-3,4);当点P为直角顶点时,PA=PE,∠APE=90°,可得四边形APEC为正方形,∴AP=AC=PE=EC,∴AO=AC+OC=2+1=3,∴P(-3,2),综上:点P的坐标为(-5,2)或(-3,4)或(-3,2).【点睛】本题考查了待定系数法求一次函数的解析式,等腰直角三角形的性质,分类考虑以点A、E、P为直角,正确的作出图形是解题的关键.22.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y ,图中的折线表示y 与x 之间的函数关系.(1)甲,乙两地之间的距离为 千米;图中点B 的实际意义是 ;(2)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 解析:(1)900km ,4小时两车相遇;(2)()22590046y x x =-≤≤; (3)0.75小时【分析】(1)根据观察图象可得甲乙两地间的距离,根据图象中的点的实际意义即可得到答案; (2)根据观察图象先求得B 、C 两点的坐标,然后利用待定系数法求线段BC 的函数解析式即可;(3)求得第二列快车与慢车相遇所用的时间和此时第一列快车行驶的时间,即可求得第二列快车比第一列快车晚出发的时间.【详解】解:(1)由图象可知,甲乙两地间的距离是900km ;图中点B 的实际意义是:4小时两车相遇.(2)∵观察图象可得:慢车速度为9001275/km h ÷=;两车的速度和为9004225/km h ÷=∴快车的速度为22575150/km h -=∴两车相遇后快车到达乙地所用时间为90015042h ÷-=∴相遇后两小时两车行驶的距离和为2252450km ⨯=∴()4,0B ,()6,450C∴设线段BC 的解析式为:y kx b =+∴406450k b k b +=⎧⎨+=⎩∴225900k b =⎧⎨=-⎩∴线段BC 所表示的y 与x 之间的函数关系式为:()22590046y x x =-≤≤. (3)130min h 2= ∵相遇时快车行驶的路程为1504600km ⨯=∴第二列快车与慢车相遇时行驶的路程为160075562.52km -⨯= ∴第二列快车与慢车相遇时所用时间为562.5150 3.75h ÷=,此时快车行驶了14 4.52h += ∴4.5 3.750.75h -= ∴第二列快车比第一列快车晚出发了0.75小时. 【点睛】本题主要考查了用一次函数模型解决实际问题的能力和读图能力,会根据图象得出所需要的信息是解题的关键.23.如图,一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点()0,2B ,与正比例函数32y x =的图象交于点()4,C c . (1)求k 和b 的值.(2)如图1,点P 是y 轴上一个动点,当PA PC -最大时,求点P 的坐标.(3)如图2,设动点D ,E 都在x 轴上运动,且2DE =,分别连结BD ,CE ,当四边形BDEC 的周长取最小值时直接写出点D 和E 的坐标.解析:(1)1k =,2b =;(2)()0,6P ;(3)5,02E ⎛⎫ ⎪⎝⎭,1,02D ⎛⎫ ⎪⎝⎭. 【分析】(1)将C 的坐标代入正比例函数中,求出点C 坐标,进而用待定系数法即可得出结论; (2)利用三角形的两边之差小于第三边,判断出点P 是直线PC'和y 轴的交点,即可得出结论;(3)先判断出点D 的位置,先求出点G 的坐标,进而得出点F 的坐标,利用待定系数法求出直线BF 解析式即可得出结论. 【详解】解:(1)把点C (4,c )代入32y x =, 解得:c=6,则点C (4,6), ∵一次函数交y 轴于点B (0,2),∴函数表达式为:y=kx+2, 把点C 坐标代入上式,解得:k=1, 故:k=1,b=2, (2)如图,作A 关于y 轴的对称点A ',连接CA '交y 轴于P 点, 此时PA PC -最大,()2,0A ',PA PA '=,设A C '的解析式为y ax m =+, 将()4,6C ,()2,0A '代入得4620a m a m +=⎧⎨+=⎩,解得36a m =⎧⎨=-⎩, ∴36CA y x '=-PA PC PA PC CA --'==',∴()0,6P -.(3)以下各点的坐标分别为:B (0,2),C (4,6),过点C 作CG ∥DE ,使GC=DE , 则:四边形DECG 为平行四边形,作点G 作关于x 轴的对称点F ,连接BF ,交x 轴于D ,点D 即为所求点, 则点G 坐标为(2,6),点F 坐标为(2,-6),则:DF=DG=EC ,DB+CE=BD+DG=BD+DF=BF ,即:BD+CE 最小,而:DE 、BC 长度为常数,故:在图示位置时,四边形BDEC 的周长取最小值, 把点B 、F 点坐标代入一次函数表达式:y=nx+b′, 解得:BF 所在的直线表达式为:y=-4x+2, 令:y=0,则x=12, 则点D 和E 的坐标分别为(12,0)、(52,0), 【点睛】此题为一次函数综合题,其中(3)的核心是确定点D 的位置,考查了学生综合运用所学知识的能力.24.青甘杨作为杨树的一种是我国东北和西北防护林以及用材林的主要树种之一,具有生长快、适应性强、分布广等特点.青甘杨树苗的高度与其生长年数之间的关系如下表所示:(树苗原高是90cm )(2)请用含n 的代数式表示高度h .(3)根据(2)中的结论,请计算生长了11年后的青甘杨可能达到的高度. 解析:(1)265;(2)3590h n =+;(3)生长满11年的青甘杨可能达到的高度为475cm .【分析】(1)根据题意和表格中的数据,可以得到第5年树苗可能达到的高度; (2)根据题意,可以用含n 的代数式表示高度h ;(3)将n=11代入(2)中的关系式,即可得到生长了11年后的青甘杨可能达到的高度. 【详解】解:(1)由表格中的数据可得, 树苗每年长高160-125=35(cm ),∴第5年树苗可能达到的高度为230+35=265(cm ), 故答案为:265; (2)由题意可得, h=90+35n ,即用含n 的代数式表示高度h 是h=35n+90; (3)当n=11时,h=35×11+90=475(cm ),答:生长了11年后的青甘杨可能达到的高度是475cm . 【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值. 25.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同。

第20章 专题01 数形结合之一次函数图像与性质(学生版

第20章 专题01 数形结合之一次函数图像与性质(学生版

编者小k 君小注:本专辑专为2022年初中沪教版数学第二学期研发,供中等及以上学生使用。

思路设计:重在培优训练,分选择、填空、解答三种类型题,知识难度层层递进,由中等到压轴,基础差的学生选做每种类型题的前4题;基础中等的学生必做前4题、选做5-8题;尖子生全部题型必做,冲刺压轴题。

专题01 数形结合之一次函数图像与性质(学生版)错误率:___________易错题号:___________一、单选题1.若关于x 的不等式组20210x x a ->⎧⎨-+<⎩有解,则一次函数()32y a x =-+的图象一定不经过的象限是( ) A .第一象限 B .第二象限C .第三象限D .第四象限 2.在平面直角坐标系中,将直线1:32=--l y x 沿坐标轴方向平移后,得到直线2l 与1l 关于坐标原点中心对称,则下列平移作法正确的是( )A .将1l 向右平移4个单位长度B .将1l 向左平移6个单位长度C .将1l 向上平移6个单位长度D .将1l 向上平移4个单位长度3.已知点()12,y -,()20,y ,()34,y 是直线5y x b =-+上的三个点,则1y ,2y ,3y 的大小关系是( ). A .123y y y >> B .123y y y << C .132y y y >> D .132y y y <<4.已知一次函数y kx b =+(k ,b 是常数,0k ≠)若||||k b <,则它的图象可能是( )A .B .C .D .5.在平面直角坐标系xOy 中,直线y=2x+2和直线y=-2x+4分别交x 轴于点A 和点B ,则下列直线中,与x 轴的交点在线段AB 上的是( )A .y=x+2B .2y =+C .y=4x -12D .3y =-6.(2021·上海普陀·二模)如图,在平面直角坐标系中,△ABC 的顶点A 、B 均在y 轴上,点C 在x 轴上,将△ABC 绕着顶点B 旋转后,点C 的对应点C ′落在y 轴上,点A 的对应点A ′落在反比例函数y =6x在第一象限的图象上.如果点B 、C 的坐标分别是(0,﹣4)、(﹣2,0),那么点A ′的坐标是( )A .(3,2)B .(32,4)C .(2,3)D .(4,32) 7.(2021·上海青浦·八年级期末)如果一次函数y kx b =+的图像经过第一、三、四象限,那么k 、b 应满足的条件是( )A .0k >,且0b >;B .0k >,且0b <;C .0k <,且0b >;D .0k <,且0b <.8.(2021·上海普陀·八年级期中)一次函数y =(k +3)x +1中,y 随x 的增大而减小,则k 的取值范围是( ) A .k >0 B .k <0 C .k <﹣3 D .k >﹣39.(2021·上海同济大学附属存志学校八年级期中)已知反比例函数y =3x,下列结论正确的是( ) A .y 随x 的增大而减小B .图像的两支分别在第二、四象限C .图像与y =3x 的图像有两个交点D .A (﹣1,3)在函数的图像上10.如图,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰Rt△ABC ,使△BAC=90°,设点B 的横坐标为x ,设点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .二、填空题11.(2021·上海·八年级期中)如图,直角三角形的斜边AB 在y 轴的正半轴上,点A 与原点重合,点B 的坐标是()0,4,且30BAC ∠=︒,若将ABC 绕着点O 旋转后30°,点B 和C 点分别落在点E 和点F 处,那么直线EF 的解析式是__________.12.一次函数y kx b =+的图像与y 轴交点的纵坐标为-3,且当1x =时,y =-1,则该一次函数的解析式是__________.13.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____. 14.(2021·上海浦东新·七年级期末)正比例函数的图象和反比例函数的图象相交于A ,B 两点,点A 在第二象限,点A 的横坐标为﹣1,作AD△x 轴,垂足为D ,O 为坐标原点,S △AOD =1.若x 轴上有点C ,且S △ABC =4,则C 点坐标为_____.15.(2021·上海闵行·八年级期末)如图,点M 的坐标为(3,2),点P 从原点O 出发,以每秒1个单位的速度沿y 轴向上移动,同时过点P 的直线关于直线l 也随之上下平移,且直线l 与直线y x =-平行,如果点M 关于直线l 的对称点落在坐标轴上,如果点P 的移动时间为t 秒,那么t 的值为_____.16.(2021·上海市民办华育中学八年级期中)一次函数334y x =-+的图像分别于x 轴,y 轴交于A 、B ,将线段AB 绕点A 顺时针旋转90度得到线段AC ,则B 、C 两点的直线解析式为__________17.(2021·上海闵行·八年级期中)一次函数()0y kx b b =+≠图象与坐标轴围成的三角形称为该一次函数的坐标三角形.已知一次函数y x m =+的坐标三角形的面积为3,则该一次函数的解析式为___________. 18.(2021·上海同济大学附属存志学校八年级期中)如图,正比例函数y =kx 与反比例函数y =m x的图象交于A 、C 两点,AB △x 轴于点B ,CD △x 轴于点D ,若S 四边形ABCD =6,则m 的值是 ___.19.(2021·上海杨浦·八年级期中)在平面直角坐标系中,点A (﹣4,1)为直线y =kx (k ≠0)和双曲线y =m x(m ≠0)的一个交点,点B (﹣5,0),如果在直线y =kx 上有一点P ,使得S △ABP =2S △ABO ,那么点P 的坐标是 ___.20.将正比例函数y =kx (k 是常数,k ≠0)的图象,沿着y 轴的一个方向平移|k |个单位后与x 轴、y 轴围成一个三角形,我们称这个三角形为正比例函数y =kx 的坐标轴三角形,如果一个正比例函数的图象经过第一、三象限,且它的坐标轴三角形的面积为5,那么这个正比例函数的解析式是__.三、解答题21.(2021·上海长宁·二模)某商店销售一种商品.经过市场调查发现:该产品的销售单价需定在50元到110元之间较为合理,每月销售量y (万件)与销售单价x (元/件)存在如图所示的一次函数关系.根据图象提供的信息,解答下列问题:(1)求这种商品的每月销售量y (万件)关于销售单价x (元/件)(50≤x ≤110)的函数解析式;(2)已知六月份、八月份这种商品的销售单价分别为95元/件和84元/件,且每月销售量的增长率是相同的,求这个增长率.22.(2021·上海静安·八年级期末)如图,在直角坐标平面中,点A(2,m)和点B(6,2)同在一个反比例函数的图像上.(1)求直线AB的表达式;(2)求△AOB的面积及点A到OB的距离AH.23.(2021·上海黄浦·八年级期末)已知:如图,平面直角坐标系中有一个等腰梯形ABCD,且//,AD BC AB CD=,点A在y轴正半轴上,点B C、在x轴上(点B在点C的左侧),点D在第一象限,3,11AD BC==,梯形的高为2.双曲线myx=经过点D,直线y kx b=+经过A B、两点.(1)求双曲线myx=和直线y kx b=+的解析式;(2)点M在双曲线上,点N在y轴上,如果四边形A B M N、、、是平行四边形,请直接写出点N的坐标.24.(2021·上海市第四中学八年级月考)如图,已知一次函数=y x轴、y轴分别相交于A、B两点,点C、D分别在线段OA、AB上,CD CA=.(1)求A 、B 两点的坐标;(2)如果CDO 面积是ABO 面积的14,求点C 的坐标. 25.(2021·上海松江·八年级期中)已知正比例函数2y x =的图像上有一点()22,4B m m +-,且点B 在第一象限.(1)求点B 的坐标;(2)过点B 作BC x ⊥轴,点P 为此函数图像上异于点B 的点,若12BPC OBC S S =,求此时点P 的坐标. 26.(2021·上海市金山初级中学八年级期中)已知如图,在平面直角坐标系中,点A (3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B (1,0)和点C 都在x 轴上,当△ABC 的面积是17.5时,求点C 的坐标.(3)在(2)的条件下,将点A 左右平移m 个单位,得到点D ,使得△AOC 的面积是△ACD 的面积的两倍,写出点D 的坐标.(直接写出答案,不用解题过程)27.(2017·上海·八年级期末)如图,在平面直角坐标系xOy 中,直线+4y x 交y 轴于点A ,交x 轴于点B ,以线段AB 为边作菱形ABCD (点C 、D 在第一象限),且点D 的纵坐标为9.(1)求点A 、点B 的坐标;(2)求直线DC 的解析式;(3)除点C 外,在平面直角坐标系xOy 中是否还存在点P ,使点A 、B 、D 、P 组成的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.28.(2018·上海普陀·八年级期中)如图,已知一次函数24y x =+的图像与x 轴、y 轴分别交于点A 、B ,且BC△AO ,梯形AOBC 的面积为10.(1)求点A 、B 、C 的坐标;(2)求直线AC 的表达式.29.(2018·上海崇明·八年级期中)已知:如图,在直角坐标平面中,点A 在x 轴的负半轴上,直线y kx =经过点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =于点C ,如果60MAO ∠=︒.(1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.30.(2021·上海徐汇·八年级期末)已知,如图,在平面直角坐标系中,一次函数24y x =--与x 轴交于点C ,与y 轴交于点B ,点A 为y 轴正半轴上的一点,将△ABC 绕着顶点B 旋转后,点C 的对应点C ’落在y轴上,点A 的对应点A ’恰好落在反比例函数(0)k y k x=≠ 的图像上. (1)求BOC ∆的面积;(2)如果k 的值为6 (即反比例函数为6y x=),求点'A 的坐标; (3)如果四边形ACBA '是梯形,求k 的值.。

一次函数测试

一次函数测试

一次函数单元测试01一、选择题(每小题2分,共20分)1.已知油箱中有油25升,每小时耗油5升,则剩油量P (升)与耗油时间t (小时)之间的函数关系式为( )A.P =25+5tB.P =25-5tC.P =t525D.P =5t -252.函数y =xx 3-的自变量的取值范围是( ) A.x ≥3B.x >3C.x ≠0且x ≠3D.x ≠0 3.函数y =3x +1的图象一定通过( ) A.(3,5) B.(-2,3) C.(2,7)D.(4,10)4.下列函数中,图象经过原点的有( ) ①y =2x -2 ②y =5x 2-4x ③y =-x 2 ④y =x6A.1个B.2个C.3个D.4个5.某市自来水公司年度利润表如图,观察该图表可知,下列四个说法中错误的是( )A.1996年的利润比1995年的利润增长-2173.33万元B.1997年的利润比1996年的利润增长5679.03万元C.1998年的利润比1997年的利润增长315.51万元D.1999年的利润比1998年的利润增长-7706.77万元 6.下列函数中是一次函数的是( ) A.y =2x 2-1 B.y =-x1 C.y =31+xD.y =3x +2x 2-17.已知函数y =(m 2+2m )x 12-+m m +(2m -3)是x 的一次函数,则常数m 的值为( )A.-2B.1C.-2或-1D.2或-18.如图所示的图象是直线ax +by +c =0的图象,则下列条件中正确的为( )A.a =b ,c =0B.a =-b ,c =0C.a =b ,c =1D.a =-b ,c =19.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )A.-3B.-23 C.9 D.-49 10.函数y =2x +1与y =-21x +6的图象的交点坐标是( )A.(-1,-1)B.(2,5)C.(1,6)D.(-2,5)二、填空题(每小题3分,共24分)11.已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 12.在函数y =11x 中,自变量x 的取值范围是______. 13.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图所示的y 随x 的变化的图象,找出通话5分钟需付电话费______元.14.已知直线经过原点和P (-3,2),那么它的解析式为______.15.已知一次函数y =-(k -1)x +5随着x 的增大,y 的值也随着增大,那么k 的取值范围是______.16.一次函数y =1-5x 经过点(0,______)与点(______,0),y 随x 的增大而______.17.一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =______.18.假定甲乙两人在一次赛跑中,路程S 与时间t 的关系如图所示,那么可以知道:这是一次______米赛跑;甲、乙两人中先到达终点的是______;乙在这次赛跑中的速度为______米/秒.三、解答题(每小题7分,共56分)19.北京到天津的低速公路约240千米,骑自行车以每小时20千米匀速从北京出发,t 小时后离天津S 千米.(1)写出S 与t 之间的函数关系式; (2)画出这个函数的图象;(3)回答:①8小时后距天津多远?②出发后几小时,到两地距离相等?20.已知正比例函数的图象上有一点P ,它的纵坐标与横坐标的比值是-65. (1)求这个函数的解析式;(2)点P 1(10,-12)、P 2(-3,36)在这个函数图象上吗?为什么?21.作出函数y =34x -4的图象,并回答下面的问题: (1)求它的图象与x 轴、y 轴所围成图形的面积; (2)求原点到此图象的距离. 24.附加题已知一次函数y =kx +b 的图象经过点M (-1,1)及点N (0,2),设该图象与x 轴交于点A ,与y 轴交于点B ,问:在x 轴上是否存在点P ,使ABP 为等腰三角形?若存在,把符合条件的点P 的坐标都求出来;若不存在,请说明理由。

专题01 一次函数的概念与图像(真题测试)(解析版)

专题01 一次函数的概念与图像(真题测试)(解析版)

专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。

专题01 反比例与一次函数综合题(解析版)

专题01 反比例与一次函数综合题(解析版)

专题01 反比例与一次函数综合题1.(2019年常德中考)如图,一次函数3y x =-+的图象与反比例函数(0)ky k x=≠在第一象限的图象交于(1,)A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且APC ∆的面积为5,求点P 的坐标.2.(2019年广东中考)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ).(1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.3.(2019年甘肃中考)如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象相交于A (–1,n )、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.4.(2019年兰州中考)如图,在平面直角坐标系xOy中,反比例函数y=kx(k≠0)的图象经过等边三角形BOC的顶点B,OC=2,点A在反比例函数图象上,连接AC,O A.(1)求反比例函数y=kx(k≠0)的表达式;(2)若四边形ACBO的面积是A的坐标.5.(2019年吉林中考)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.6.(2019年苏州中考)如图,A 为反比例函数ky x=(x >0)图象上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB ,且OA AB == (1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数k y x=(x >0)的图象于点C ,连接OC 交AB 于点D ,求AD DB 的值.7.(2019年攀枝花中考)如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图像与反比例函数my x=的图像在第二象限交于点B ,与x 轴交于点C ,点A 在y 轴上,满足条件:CA CB ⊥,且CA CB =,点C的坐标为(3,0)-,cos ACO ∠=(1)求反比例函数的表达式; (2)直接写出当0x <时,mkx b x+<的解集. 最新模拟试题8.(2020年湖北省枣阳市太平一中中考数学模拟题)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB 的面积.(3)根据图象写出反比例函数y ≥n 的x 取值范围.9.(2020年江西中考数学四模试题)如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与y 轴交于点C ,与反比例函数y =mx的图象交于A ,B 两点,过点B 作BE ⊥x 轴于点E ,已知A 点坐标是(2,4),BE =2.(1)求一次函数与反比例函数的表达式; (2)连接OA 、OB ,求△AOB 的面积.10.(安徽省首年地区2019-2020学中考第一次模拟预测数学试题)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0ny n x=≠的图象经过点M ,求反比例函数的解析式;(3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.11.(广东省佛山市南海外国语学校2019-2020学年九年级下学期第一次月考数学试题)如图,一次函数y kx b =+与反比例函数4y x=的图象交于点A ( 4m ,)、(2)B n ,两点,与坐标轴分别交于M 、N 两点.(1)求一次函数的解析式; (2)根据图象直接写出40kx b x+->中x 的取值范围是____________; (3)求△AOB 的面积.12.(河北省邯郸市复兴区2019-2020学年九年级下学期第一次联考数学试题)如图所示,一次函数y =kx +b 与反比例函数y =mx的图象交于A (2,4),B (﹣4,n )两点. (1)分别求出一次函数与反比例函数的表达式;(2)过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.专题01 反比例与一次函数综合题1.(2019年常德中考)如图,一次函数3y x =-+的图象与反比例函数(0)ky k x=≠在第一象限的图象交于(1,)A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)若点P 在x 轴上,且APC ∆的面积为5,求点P 的坐标.【答案】(1)2y x= (2)P 坐标为(2,0)-或(8,0) 【解析】 【分析】(1)利用点A 在3y x =-+上求a ,进而代入反比例函数()0ky k x=≠求k 即可; (2)设(),0P x ,求得C 点的坐标,则3PC x =-,然后根据三角形面积公式列出方程,解方程即可. 【详解】(1)把点()1,A a 代入3y x =-+,得2a =, ∴()1,2A把()1,2A 代入反比例函数k y x=, ∴122k =⨯=;∴反比例函数的表达式为2y x=; (2)∵一次函数3y x =-+的图象与x 轴交于点C , ∴()3,0C , 设(),0P x , ∴3PC x =-, ∴13252APC S x ∆=-⨯=, ∴2x =-或8x =,∴P 的坐标为()2,0-或()8,0.【点睛】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.的2.(2019年广东中考)如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标.【答案】(1)由图象可得:k 1x +b >2k x的x 的取值范围是x <–1或0<x <4; (2)直线解析式y =–x +3,反比例函数的解析式为y =–4x;(3)P (23,73).【解析】(1)∵点A 的坐标为(–1,4),点B 的坐标为(4,n ).由图象可得:k 1x +b >2k x 的x 的取值范围是x <–1或0<x <4; (2)∵反比例函数y =2kx的图象过点A (–1,4),B (4,n ),∴k 2=–1×4=–4,k 2=4n ,∴n =–1,∴B (4,–1), ∵一次函数y =k 1x +b 的图象过点A ,点B , ∴11441k b k b -+=+=-⎧⎨⎩,解得k =–1,b =3,∴直线解析式y =–x +3,反比例函数的解析式为y =–4x; (3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152,∵S△AOP:S△BOP=1:2,∴S△AOP=152×13=52,∴S△COP=52–32=1,∴12×3x P=1,∴x P=23,∵点P在线段AB上,∴y=–23+3=73,∴P(23,73).【名师点睛】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键.3.(2019年甘肃中考)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)∵直线y=–x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,–1),∵B(2,–1),∴BD∥x轴,∴S △ABD =12×2×3=3. (3)∵M (x 1,y 1)、N (x 2,y 2)是反比例函数y =–2x上的两点,且x 1<x 2<0,s ∴y 1<y 2. 【名师点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法解决问题,学会利用函数的增减性,比较函数值的大小.4.(2019年兰州中考)如图,在平面直角坐标系xOy 中,反比例函数y =kx(k ≠0)的图象经过等边三角形BOC 的顶点B ,OC =2,点A 在反比例函数图象上,连接AC ,O A .(1)求反比例函数y =kx(k ≠0)的表达式;(2)若四边形ACBO 的面积是A 的坐标.【答案】(1)反比例函数的表达式为y =x;(2)点A 的坐标为(12,).【解析】(1)如图,过点B 作BD ⊥OC 于D ,∵△BOC 是等边三角形, ∴OB =OC =2,OD =12OC =1,∴BD ,∴S △OBD =12OD ×BD又∵S △OBD =12|k |,∴|k ∵反比例函数y =k x (k ≠0)的图象在第一、三象限,∴k ,∴反比例函数的表达式为y(2)∵S △OBC =12OC •BD =12×∴S △AOC∵S △AOC =12OC •y A y A把y y =x,求得x =12,∴点A 的坐标为(12, 【名师点睛】本题考查了待定系数法求反比例函数的解析式,反比例系数k 的几何意义,反比例函数图象上点的坐标特征,此题的突破点是先由三角形的面积求出反比例函数的解析式.5.(2019年吉林中考)已知y 是x 的反比例函数,并且当x =2时,y =6.(1)求y 关于x 的函数解析式;(2)当x =4时,求y 的值.【答案】(1)y =12x.(2)y =3. 【解析】(1)因为y 是x 的反例函数,所以设y =k x(k ≠0), 当x =2时,y =6.所以k =xy =12,所以y =12x. (2)当x =4时,y =3.【名师点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.6.(2019年苏州中考)如图,A 为反比例函数k y x =(x >0)图象上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB ,且OA AB ==(1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数k y x=(x >0)的图象于点C ,连接OC 交AB 于点D ,求AD DB 的值.【答案】(1)k =12;(2)32. 【解析】【分析】 (1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M ,易知OH 长度,在直角三角形OH A 中得到AH 长度,从而得到A 点坐标,进而算出k 值;(2)先求出D 点坐标,得到BC 长度,从而得到AM 长度,由平行线得到ADM BDC ∴△∽△,所以32AD AM BD BC == 【详解】解:(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M .4OA AB OB ===2OH ∴=6AH ∴=()2,6A ∴12k ∴= (2)124x y x==将代入()4,3D 得3BC ∴=1322MH BC == 92AM ∴=AH x BC x ⊥⊥轴,轴AH BC ∴∥ ADM BDC ∴△∽△32AD AM BD BC ∴==【点睛】本题主要考查反比例函数与相似三角形的综合问题,难度不大,解题关键在于求出k7.(2019年攀枝花中考)如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图像与反比例函数my x=的图像在第二象限交于点B ,与x 轴交于点C ,点A 在y 轴上,满足条件:CA CB ⊥,且CA CB =,点C的坐标为(3,0)-,cos ACO ∠=(1)求反比例函数的表达式;(2)直接写出当0x <时,m kx b x +<的解集. 【答案】(1)27y x=-;(2)90x -<< 【解析】【分析】(1)过点B 作BH ⊥x 轴于点H ,证明BHC ∆≌COA ∆得到BH 与CH 的长度,便可求得B 点的坐标,进而求得反比例函数解析式;(2)观察函数图象,当一次函数图象在反比例函数图象下方时的自变量x 的取值范围便是结果.【详解】解:(1)如图作BH x ⊥轴于点H则90BHC BCA COA ∠=∠=∠=︒∴BCH CAO ∠=∠∵点C 的坐标为(3,0)-∴3OC =∵cos 5ACO ∠=∴AC =,6AO =在BHC ∆和COA ∆中有90BC AC BHC COA BCH CAO =⎧⎪∠=∠=︒⎨⎪∠=∠⎩∴BHC ∆≌COA ∆∴3BH CO ==,6CH AO ==∴9OH =,即(9,3)B -∴9327m =-⨯=- ∴反比例函数解析式为27y x=- (2)因为在第二象限中,B 点右侧一次函数的图像在反比例函数图像的下方,所以当0x <时,m kx b x+<的解集为90x -<<. 最新模拟试题 8.(2020年湖北省枣阳市太平一中中考数学模拟题)如图,一次函数y kx b =+的图象与反比例函数my x =的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB 的面积.(3)根据图象写出反比例函数y ≥n 的x 取值范围.【答案】(1)反比例函数的解析式为2y x =-;一次函数的解析式为y =-x -1; (2)32; (3)x <0或x ≥1【解析】【分析】(1)将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式,然后将点B 的坐标代入反比例函数的解析式中即可求出n 的值,最后将A 、B 的坐标代入一次函数解析式中即可求出一次函数的解析式;(2)设直线AB 与y 轴交点为点C ,过点A 作AE ⊥y 轴于E ,过点B 作BF ⊥y 轴于F ,求出点C 的坐标,然后根据S △AOB =S △AOC +S △BOC 即可求出结论;(3)根据图象即可得出结论.【详解】解:(1)将点A 坐标代入反比例函数m y x=中,得 12m =- 解得:m =-2∴反比例函数的解析式为2y x =-将点B 的坐标代入2y x =-中,得221n =-=-∴点B 的坐标为(1,-2)将(21)(12)A B --,,,代入一次函数y kx b =+中,得122k bk b =-+⎧⎨-=+⎩解得:12k b =-⎧⎨=-⎩∴一次函数的解析式为y =-x -1;(2)设直线AB 与y 轴交点为点C ,过点A 作AE ⊥y 轴于E ,过点B 作BF ⊥y 轴于F将x =0代入y =-x -1中,可得y =-1∴点C 的坐标为(0,-1)∴OC =1∵(21)(12)A B --,,,∴AE =2,BF =1∴S △AOB =S △AOC +S △BOC =1122AE OC BF OC •+• =11211122⨯⨯+⨯⨯ =32(3)∵点B 的纵坐标为n∴反比例函数y ≥n ,应取点B 的上方(含点B )由图象可知:当x<0或x≥1时,反比例函数y≥n∴反比例函数y≥n时,x<0或x≥1.【点睛】此题考查的是反比例函数和一次函数的综合大题,掌握利用待定系数法求反比例函数和一次函数的解析式、利用点的坐标求三角形的面积和利用函数图象求不等式的解集是解决此题的关键.9.(2020年江西中考数学四模试题)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与y轴交于点C,与反比例函数y=mx的图象交于A,B两点,过点B作BE⊥x轴于点E,已知A点坐标是(2,4),BE=2.(1)求一次函数与反比例函数的表达式;(2)连接OA、OB,求△AOB的面积.【答案】(1)y=x+2,y=8x;(2)6.【解析】【分析】(1)根据点A坐标将反比例函数表达式求出,再利用反比例函数求出点B的坐标,最后根据点A和点B 坐标用待定系数法求出一次函数表达式;(2)求出点C坐标,再根据S△AOB=S△BOC+S△AOC可得结果.【详解】解:(1)∵点A(2,4)在反比例函数y=mx的图象上,∴将A(2,4)代入y=mx中,可得4=2m,解得m=8,即反比例函数表达式为y=8x.∵BE⊥x轴于点E,且BE=2,即点B纵坐标为-2,而点B在反比例函数y=8x的图象上,∴将y =-2代入y =8x , 得-2=8x,解得x =-4. 即点B 坐标为(-4,-2),∵点A (2,4),B (-4,-2)在一次函数y =kx +b 的图象上,∴将A (2,4),B (-4,-2)代入y =kx +b 中,得2442k b k b +=⎧⎨-+=-⎩解得12k b =⎧⎨=⎩∴一次函数表达式为y =x +2,反比例函数表达式为y =8x ; (2)∵点C 为一次函数y =x +2的图象与y 轴的交点,∴令x =0,得y =2,即C (0,2).S △AOB =S △BOC +S △AOC =12·OC ·|x B |+12·OC ·|x A | =12·OC ·|x A -x B | =12×2×6 =6.【点睛】本题考查了反比例函数和一次函数交点问题,用待定系数法求函数表达式,以及坐标系中三角形的面积,本题难度一般,是一道很不错的试题.10.(安徽省首年地区2019-2020学中考第一次模拟预测数学试题)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0n y n x=≠的图象经过点M ,求反比例函数的解析式;(3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.【答案】(1)2k =,()1,0A -;(2)4y x =;t 的取值范围是:02t <≤. 【解析】【分析】(1)把()0,2代入得出k 的值,进而得出A 点坐标;(2)当4t =时,将4y =代入22y x =+,进而得出x 的值,求出M 点坐标得出反比例函数的解析式; (3)可得2CD =,当y t =向下运动但是不超过x 轴时,符合要求,进而得出t 的取值范围.【详解】解:(1)∵直线l :y kx k =+ 经过点()0,2B ,∴2k =,∴22y x =+,∴()1,0A -;(2)当4t =时,将4y =代入22y x =+,得,1x =,∴()1,4M 代入n y x =得,4n =, ∴4y x=; (3)当2t =时,()0,2B 即()0,2C ,而()2,2D ,如图,2CD =,当y t =向下运动但是不超过x 轴时,符合要求,∴t 的取值范围是:02t <≤.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.11.(广东省佛山市南海外国语学校2019-2020学年九年级下学期第一次月考数学试题)如图,一次函数y kx b =+与反比例函数4y x=的图象交于点A ( 4m ,)、(2)B n ,两点,与坐标轴分别交于M 、N 两点. (1)求一次函数的解析式; (2)根据图象直接写出40kx b x +->中x 的取值范围是____________; (3)求△AOB 的面积.【答案】(1)26y x =-+;(2)0x <或12x <<;(3)3.【解析】【分析】(1)把A ,B 坐标代入反比例函数解析式,求出m ,n 的值,再把A ,B 坐标代入一次函数解析式中,求出解析式即可;(2)根据图像直接写出范围即可;(3)BON AON AOB S S S △△△-=【详解】(1)∵点A 在反比例函数4y x =上, ∴44m=,解得1m =,∴点A 的坐标(1,4) 又∵点B 也在反比例函数4y x=上, ∴ 42n = 解得2n =, ∴点B 的坐标为(2,2),又∵点A 、B 在y kx b =+的图象上,∴422k b k b +=⎧⎨+=⎩, 解得:=26k b -⎧⎨=⎩,∴一次函数的解析式为:26y x =-+;(2)根据图象得:当40kx b x +->时,即4kx b x+>,x 的取值范围为0x <或12x <<; (3)∵直线26y x =-+与x 轴的交点为N ,把y =0代入26y x =-+中得x =3,∴可求得点N 的坐标为(3,0),BON AON AOB S S S △△△-=∴33-62321-4321==⨯⨯⨯⨯=12.(河北省邯郸市复兴区2019-2020学年九年级下学期第一次联考数学试题)如图所示,一次函数y =kx +b 与反比例函数y =m x的图象交于A (2,4),B (﹣4,n )两点. (1)分别求出一次函数与反比例函数的表达式;(2)过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.【答案】(1)反比例函数解析式为y =8x ,一次函数解析式为y =x +2;(2)△ACB 的面积为6. 【解析】【分析】(1)将点A 坐标代入y =m x可得反比例函数解析式,据此求得点B 坐标,根据A 、B 两点坐标可得直线解析式; (2)根据点B 坐标可得底边BC =2,由A 、B 两点的横坐标可得BC 边上的高,据此可得.【详解】解:(1)将点A (2,4)代入y =m x,得:m =8,则反比例函数解析式为y =8x , 当x =﹣4时,y =﹣2,则点B (﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:2442k bk b+=⎧⎨-+=-⎩,解得:12kb=⎧⎨=⎩,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=12×2×6=6.【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.。

一次函数练习题20道

一次函数练习题20道

一次函数练习题20道一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为y=8x y=2x+6y=8x+6y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过一象限二象限三象限四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是 164.若甲、乙两弹簧的长度y与所挂物体质量x 之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为y1>y y1=y2y1 5.设b>a,将一次函数y=bx+a与y=ax+b的图象画在同一平面直角坐标系内,?则有一组a,b的取值,使得下列4个图中的一个为正确的是6.若直线y=kx+b经过一、二、四象限,则直线y=bx+k 不经过第象限.一二三四7.一次函数y=kx+2经过点,那么这个一次函数y随x的增大而增大y随x的增大而减小图像经过原点图像不经过第二象限8.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第一象限第二象限第三象限第四象限9.要得到y=-33x-4的图像,可把直线y=-x.2 向左平移4个单位向右平移4个单位向上平移4个单位向下平移4个单位10.若函数y=x+x2中的y与x成正比例,则m的值为m>-11 m>m=- m=4411.若直线y=3x-1与y=x-k的交点在第四象限,则k 的取值范围是.k1 k>1或k 12.过点P直线,使它与两坐标轴围成的三角形面积为5,?这样的直线可以作4条条条 1条13.已知abc≠0,而且a?bb?cc?a=p,那么直线y=px+p 一定通过 ??cab第一、二象限第二、三象限第三、四象限第一、四象限14.当-1≤x≤2时,函数y=ax+6满足y -4 -4 15.在直角坐标系中,已知A,在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有1个个个个16.一次函数y=ax+b的图象过点,交x轴于,交y轴于,若p为质数,q为正整数,那么满足条件的一次函数的个数为01 无数17.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数.当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个18.在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k的交点为整点时,k的值可以取2个个个个19.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,;乙上山的速度是1a米/分,下山的速度是2b米/分.如2 果甲、乙二人同时从点A出发,时间为t,离开点A的路程为S,?那么下面图象中,大致表示甲、乙二人从点A出发后的时间t与离开点A的路程S?之间的函数关系的是220.若k、b是一元二次方程x+px-│q│=0的两个实根,在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过第1、2、4象限第1、2、3象限第2、3、4象限第1、3、4象限一次函数测试题1. 函数y=中,自变量x的取值范围是 x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1. 已知正比例函数y=-2x,当x=-1时,函数y的值是A. B.- C.-0. D.0.5. 一次函数y=-2x-3的图像不经过A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y与所用时间x 之间的函数关系,则以下判断错误的是A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟D.步行的速度是6千米/小时。

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章 一次函数数学八年级上册-单元测试卷-沪科版(含答案)

第12章一次函数数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、函数y=中,自变量x的取值范围是()A.x≥2B.x≠2C.x>2D.x≤22、已知一次函数y1=2x+m与y2=2x+n(m≠n)的图象如图所示,则关于x与y的二元一次方程组的解的个数为()A.0个B.1个C.2个D.无数个3、已知y=kx+k的图象与y=x的图象平行,则y=kx+k的大致图象为()A. B. C. D.4、在平面直角坐标系中,将直线 y=3x 的图像向左平移 m 个单位,使其与直线 y=-x+6 的交点在第二象限,则 m 的取值范围是()A.m>2B.-6<m<2C.m>6D.m<65、下列图象中,不表示y是x的函数的是()A. B. C. D.6、如图,直线与x轴交于点,与y轴交于点,则关于x的不等式的解集为()A. B. C. D.7、一个长方体木箱的长为4㎝,宽为,高为宽的2倍,则这个长方体的表面积S与的关系及长方体的体积V与的关系分别是()A. ,B. ,C. ,D. ,8、表示皮球从高处d落下时,弹跳高度b与下落高度d的关系如下表所示:则d与b之间的关系式为()下落高度d …80 100 150 …弹跳高度b …40 50 75 …A.d=b 2B.d=2bC.d=b+40D.d= b9、若把函数y=2x-3图象向上平移3个单位长度,得到图象对应的函数解析式为( )A.y=2xB.y=2x-6C.y=4x-3D.y=-x-310、点在函数的图像上,则代数式的值等于()A.5B.3&nbsp;C.-3D.-111、如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数y= 的图象一定在()。

A.第一,二象限B.第三,四象限C.第一,三象限D.第二,四象限12、在平面直角坐标系中,直线y=x﹣1经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限13、已知(-1,y1),(1.8,y2),(- , y3)是直线 y = -3x + m (m 为常数)上的三个点,则 y1, y2, y3的大小关系是( )A.y3>y1>y2B.y1>y3>y2C.y1>y2>y3D.y3>y2>y114、函数y= 中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≤﹣315、张老师驾车从家出发到植物园赏花,匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后加速行驶,到达植物园,参观结束后,张老师驾车一路匀速返回,其中x表示汽车从家出发后所用时间,y表示车离家的距离,下面能反映y与x的函数关系式的大致图象是()A. B. C. D.二、填空题(共10题,共计30分)16、把直线向下平移________个单位得到直线.17、周末小明和爸爸从家里出发到野外郊游,小明骑自行车出发0.3小时后爸爸开始骑摩托车追赶,爸爸在追上小明前停留了0.1小时与碰到的朋友聊天,聊天完毕后以原来的速度继续追赶.在整个过程中,他们离家的路程y(千米)与爸爸出发的时间x(小时)之间的关系如图所示,则爸爸出发________小时后与小明相遇.18、某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5kgA原料、1.5kgB原料;乙产品每袋含2kgA原料、1kgB原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为________元.19、甲、乙两车从A地开往B地,全程800km;所行的路程与时间的函数图像如图所示,下列问题:①乙车比甲车早出发2h;②甲车追上乙车时行驶了300km;③乙车的速度小于甲车速度;④甲车跑完全程比乙车跑完全程少用3h;以上正确序号是________.20、函数中,自变量x的取值范围是________。

八年级数学上册一次函数复习

八年级数学上册一次函数复习

一次函数的解析方法
待定系数法
通过已知的两点坐标,可以解出一次函数的斜率 和截距。
图像法
通过绘制函数图像,观察其斜率和截距。
表格法
通过已知的自变量和因变量的对应值,可以确定 一次函数的解析式。
一次函数的参数意义
斜率 $k$
表示函数图像的倾斜程度,当 $k > 0$ 时,函数图像为增函数;当 $k < 0$ 时,函数图像为减函数 。
总结词
答案解析
考察一次函数的基本概念和性质
将点(2,3)和(-1,-3)分别代入函数 得方程组,解得k = 2, b = -1。
提高题
题目1
已知一次函数y = kx + b的图 象经过第一、二、四象限,求 k的取值范围。
题目2
已知直线y = kx + b与坐标轴 围成的三角形面积为4,且过 点(2,3),求k和b的值。
02
一次函数的应用
一次函数在实际问题中的应用
匀速运动问题
一次函数可以用来描述匀速运动 中的距离、速度和时间之间的关 系。例如,汽车以恒定速度行驶, 距离和时间的关系可以用一次函
数表示。
商品销售问题
在商品销售中,一次函数可以用 来表示商品数量和销售收入之间 的关系。例如,某商品的单价和 销售量之间的关系可以用一次函
八年级数学上册一次 函数复习
目录
CONTENTS
• 一次函数概述 • 一次函数的应用 • 一次函数的解析式 • 一次函数的图像与性质 • 一次函数与其他知识的联系 • 复习题及答案解析
01
一次函数概述
一次函数的定义
一次函数定义
一次函数是函数的一种,其解析 式为$y=kx+b$,其中$k$、$b$

一次函数与一元一次不等式练习题

一次函数与一元一次不等式练习题

一次函数与一元一次不等式练习题一、选择题1.直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0•的解集是() A.x>-2 B.x≥-2 C.x<-2 D.x≤-23.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是() A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)二、填空题4.当自变量x的值满足____________时,直线y=-x+2上的点在x轴下方.5.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2•的解集是________.6.直线y=-3x-3与x轴的交点坐标是________,则不等式-3x+9>12•的解集是________.7.已知关于x的不等式kx-2>0(k≠0)的解集是x>-3,则直线y=-kx+2与x•轴的交点是__________.8.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.三、解答题9.某单位需要用车,•准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y元,付给出租车公司的月租费是y元,y,y分别与x之间的函数关系图象是如图11-3-4所示的两条直线,•观察图象,回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,•那么这个单位租哪家的车合算?10.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y212.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)(1)求k、b的值,在同一坐标系中画出两个函数的图象.(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0答案:1.A 2.C 3.D 4.x>2 5.x≥2 6.(-1,0);x<-17.(-3,0) 8.(2,3)9.①当0<x<1500时,租国有出租车公司的出租车合算;②1500km;③租个体车主的车合算10.①P(1,0);②当x<1时y1>y2,当x>1时y1<y211.(1)k=、b=5,∴y=x-2、y=-3x+5 图象略;(2)从图象可以看出:①当x<2时y1<y2;②当x≥2时y1≥y2;(3)∵直线y1=12x-2与x轴的交点为B(4,0),直线y2=-3x+5与x轴的交点为C(53,0),∴从图象上可以看出:①当x<4时y1<0,当x>53时y2<0,所以当53<x<4时,y1<0且y2<0.②当x>4时,y1>0;当x>53时y2<0,∴当x>4时y1>0且y2<0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数试题01
一、选一选
1.一次函数y=2x-3的图象不经过的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2若点A (2, 4)在函数y =k x -2的图象上,则下列各点在此函数图象上的是( ) A 、(0,-2) B 、(1.5,0) C 、(8, 20) D 、(0.5,0.5)。

3已知直线y=(k –2)x+k 不经过第三象限,则k 的取值范围是( ) A .k ≠2 B .k>2 C .0<k<2 D .0≤k<2 4.若正比例函数的图像经过点(-1,2),则这个正比例函数的解析式是( ) A .x y 2
1-=
B .x y 2-=
C .x y 2
1= D .x y 2=
5若函数y=kx +b 的图象如图所示,那么当y>0时,x 的取值范围是:( ) A 、 x>1 B 、 x>2 C 、 x<1 D 、 x<2 6若把一次函数y=2x -3,向下平移3个单位长度,得到图象解析式是( ) (A)y=2x (B) y=2x -6 (C ) y=2x -3 (D )y=2x+6
7.已知点(-4,y 1),(2,y 2)都在直线y=- 1
2
x+2上,则y 1 y 2大小关系是( )
(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较
8 若点P(a ,b)在第二象限内,则直线y =ax +b 不经过第______象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 9某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出. 那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是 ( )
A.
B.
C. D
10
.函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )
A.
B. C. D
二、填一填
11.若函数(1)3y m x =++图象经过点(1,2),则m = . 12.已知函数y=(m-1)x+m 2-1是正比例函数,则m =_____________. .13.当x=________时,函数y=2x-4与y=3x-3的函数值相同. 14已知一次函数y =(1-k )x -5,y 随x 的增大而减小,则 k 的取值范围 .
15.如果一次函数y=kx+b 的图象如图所示,那么 k______0,b______0.
第5题
16.已知点A(a ,–2) , B(b ,–4)在直线y=–x+6上,则a 、b 的大小关系是a____b.
17.一长方形的长比宽多2厘米,则这长方形的面积S (厘米2)与长x (厘米)的函数关系式是 。

18已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是
________.
19 弹簧的长度y cm 与所挂物体的质量x(kg)的关系是一次函数,图象
如右图所示,则弹簧不挂物体时的长度是.________. 三、灵活运用(46分)
20.已知一次函数y=kx+b 的图像如图所示,求其函数关系式。

21已知,函数()1321y k x k =-+-,试回答 k 为何值时,图象经过一,二,四象限?
22一次函数y=kx+4的图象经过点(-3,-2). (1)求这个函数表达式;
(2)判断(-5,3)是否在此函数的图象上;
23.小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y (米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:
(1)小文走了多远才返回家拿书? (2)求线段AB 所在直线的函数解析式; (3)当8x =分钟时,求小文与家的距离。

24、某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:
3500
(1)经过对上表中数据的探究,发现这种读物的投入成本y (元)是印数x (册)的一次函数,求这个一次函数的解析式(不要求写出x 的取值范围);
(2)如果出版社投入成本48000元,那么能印该读物多少册?。

相关文档
最新文档