证明线段成比例的方法与技巧
线段成比例的定义
线段成比例的定义线段成比例的定义在数学中,线段成比例是一个重要的概念,其具有广泛的应用。
本文将介绍线段成比例的定义,性质以及使用方法。
一、线段成比例的定义两个线段a,b和两个正实数m、n,若放在同一直线上,使得$\frac {a}{b}=\frac{m}{n}$,那么线段a和线段b就成比例关系,且m和n为这个比例关系的比例因子。
也可以表示成$\frac {a}{b}:\frac {m}{n}$或$\frac {a}{m}=\frac {b}{n}$。
例如,若线段AB=4、BC=3,且CD=6,则线段AB、BC、CD成比例,其中AB与BC的比例因子为4:3,BC与CD的比例因子为3:6。
二、线段成比例的性质1.线段成比例必须在同一直线上。
2.对于线段成比例中的比例因子m、n,它们必须是正实数。
3.如果线段AB、BC、CD成比例,那么线段AC和线段BD的比例与线段AB、BC、CD的比例相同,即$\frac {AC}{BD}=\frac {AB}{BC}=\frac {BC}{CD}$。
4.如果线段AB、BC、CD成比例,那么线段AC和线段BD的比例因子为$\frac {AB}{BC}*\frac {CD}{BC}=\frac {AD}{BC}$。
三、线段成比例的使用方法1.判断是否成比例:通常先判断三个线段是否都在同一直线上,如果在同一直线上,再判断比例因子是否为正实数,如果都满足,则三个线段成比例。
2.求比例因子:如果知道三个线段成比例,可以通过求得其中两个线段的比例关系来求出第三个线段的长度。
3.求比例部分长度:可以利用线段成比例的性质来求解,即$\frac {AC}{BD}=\frac {AB}{BC}=\frac{BC}{CD}$。
四、线段成比例的应用线段成比例的应用非常广泛,包括测量和求解各种几何问题等。
1.测量:在线段成比例的情况下,可以通过已知线段的长度来计算未知线段的长度。
2.几何问题:在线段成比例的情况下,可以求解各种几何问题,比如求解直角三角形的斜边长、求解两个垂直平分线的交点等。
证明线段比例式或等积式的方法
证明线段比例式或等积式的方法(一)比例的性质定理:(二)平行线中的比例线段:①平行线分线段成比例定理:三条平行线截两条直线所得对应线段成比例(图1、2)。
②平行于三角形的一边的直线截其他两边(或两边的延长线)所得的对应线段成比例(图3、4)。
③平行于三角形的一边,且与其他两边(或两边的延长线)相交的直线所截得的三角形的三边与原三角形的三边对应成比例(图3、4)。
(三)三角形中比例线段:①相似三角形中一切对应线段(对应边、对应高、对应中线、对应角平分线、对应周长…)的比都相等,等于相似比。
②相似三角形中一切对应面积的比都相等,等于相似比的平方。
③勾股定理:直角三角形斜边的平方等于两直角边的平方和(图5)。
④射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项(图5)。
直角三角形上任一直角边是它在斜边上的射影与斜边的比例中项(图5)。
⑤正弦定理:三角形中,每一边与对角的正弦的比相等(图6)。
即/sinA=b/sinB=c/sinC⑥余弦定理:三角形中,任一边的平方等于另两边的平方和减去这两边及其夹角余弦乘积的二倍(图6)。
如a2 = b2+c2 - 2 b·c·cosA(四)圆中的比例线段:圆幂定理:①相交弦定理圆内的两条相交弦,被交点分成的两条线段的积相等(图7)。
(推论:若弦与直径垂直相交,则弦的一半为它分直径所成两线段的比例中项。
图8)②切割线定理从圆外一点引圆的切线和割线,切线长为这点到割线与圆交点的两线段长的比例中项(图9)。
③割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两线段长的积相等(图10)。
(五)比例线段的运算:①借助等比或等线段代换。
②运用比例的性质定理推导。
③用代数或三角方法进行计算。
例说证明线段比例式或等积式的方法与技巧
例说证明线段比例式或等积式的方法与技巧何美兰证明线段比例式或等积式的常用方法之一是利用相似三角形,而相似三角形是初中数学中的一个非常重要的知识点,它也是历年中考的热点内容,通常考查以下三个部分:(1)考查相似三角形的判定;(2)考查利用相似三角形的性质解题;(3)考查与相似三角形有关的综合内容。
以上试题的考查既能体现开放探究性,又能加深知识之间的综合性。
但不少学生证题却是不会寻找相似三角形,特别是对比较复杂的图形,感到眼花缭乱,无从下手。
为了帮助学生们扩大解题思路,迅速而正确地解题。
下面以一些例题来说明解答策略及规律。
一三点定形法利用两个三角形相似去解决比例式或等积式证明的方法。
解决问题的基本思想是:先找出与结论中的线段有关的两个三角形,然后根据原题所给条件,对照图形分析,寻找这两个三角形的相似条件,再证明这两个三角形相似,利用“相似三角形对应边成比例”推出结论。
寻找并证明两个三角形相似是解题的关键,寻找相似三角形的基本方法是“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。
具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。
例1:如图1,ABCD是⊙O的内接四边形,过C作DB的平行线,交AB的延长线于E。
求证BE·AD=BC·CD。
分析:要证BE·AD=BC·CD,即=。
横定:这个比例式的前项中的线段BE、CD共有四个不同的端点,不能确定一个三角形;竖定:这个比例式的比中的线段BE、BC它们有三个不同的端点,可以确定一个△BEC,另一个比中的线段CD、AD的三个不同的端点也可以确定一个△ACD,于是只要证明△BEC∽△DCA,这样,证明所需添加的辅助线AC也就显示在眼前了。
分线段成比例定理
分线段成比例定理分线段成比例定理定义分线段成比例定理是指一条直线上的两个点A、B以及另外一点C,如果AC/BC等于一个常数k,则称A、B、C三点在这条直线上成比例,k为这个比例的常数。
定理表述在一条直线上,如果有两个点A、B以及另外一点C,使得AC/BC=k,则称A、B、C三点在这条直线上成比例。
其中k为常数。
证明假设有一条直线AB和一个点C,且AC/BC=k。
根据相似三角形的性质,可以得到:∆ABC ~ ∆ABD因此,AC / AB = AB / AD解得:AD = AB² / AC同理,BD = AB² / BC因此,AD / BD = (AB² / AC) / (AB² / BC) = BC / AC = k因此,A、B、C三点在这条直线上成比例。
应用举例1. 证明中位线定理:在一个三角形中,连接一个顶点与对边中点的那条边被称为中位线。
如果连接三角形的任意两个顶点并将它们延长至交于第四个点,则第四个点到第三个顶点所在边的距离等于第四个点到第二个顶点所在边的距离。
这个定理可以通过分线段成比例定理证明。
2. 证明角平分线定理:在一个三角形ABC中,假设有一条从顶点A到边BC上的点D的直线,使得∠BAD和∠DAC相等。
则AD被称为角ABC的平分线。
这个定理可以通过分线段成比例定理证明。
3. 证明圆周角定理:如果一个角的顶点位于圆心上,则这个角是圆周角,它所对应的弧长是该圆周上与该角相应的弧长的一半。
这个定理可以通过分线段成比例定理和同弧度量定理证明。
总结分线段成比例定理是几何学中非常重要的一个基本概念。
它在许多几何问题中都有广泛应用,例如中位线、角平分线、圆周角等问题。
因此,深入掌握这个概念对于学好几何学非常重要。
理解成比例线段的概念
室内设计
在室内设计中,家具、装饰品和 空间布局等也常常需要遵循一定 的成比例关系,以达到视觉上的
舒适和平衡感。
03 成比例线段的性质和判定 方法
成比例线段的性质
1 2
对应线段长度成比例
如果四条线段a、b、c和d成比例,则它们的长 度之间存在一定的比例关系,即a/b = c/d。
对应角相等
如果四条线段成比例,则它们所构成的三角形中, 对应的角相等。
黄金分割在艺术和设计中广泛应用,如建筑设计、绘画和摄影等,而成比例线 段是实现黄金分割的关键。
与等比数列的关联
等比数列
在数学中,等比数列是一种特殊的数列,其中任何项都与它 前面的项成相同的比例。这与成比例线段的定义相呼应。
数学分析
通过成比例线段,可以进一步研究等比数列的性质,如公比 、项数等,以及它们在数学分析和实际生活中的应用。
3
相似图形
如果四条线段成比例,则由它们构成的两组相似 多边形也是相似的。
成比例线段的判定方法
定义法
如果四条线段满足a/b = c/d,则 它们成比例。
平行线法
如果两条线段平行且被一条横截线 所截,截得的对应线段成比例,则 原线段也成比例。
三角形法
如果两个三角形相似,则它们的对 应边成比例。
判定成比例线段的注意事项
分形几何
分形几何中的许多图形都是由成比例 线段构成的。例如,科赫雪花就是通 过不断将线段按照一定比例进行分割 和拼接而形成的。
建筑中的成比例线段
建筑设计
建筑设计中,成比例线段的运用 可以增强建筑的和谐感和美感。 例如,古希腊的帕台农神庙和罗 马的万神庙都是运用了成比例线
段的经典建筑。
建筑结构
建筑物的各个部分之间也存在成 比例关系,如梁和柱的尺寸、窗 户和门的高度等。合理的比例关 系可以使建筑物更加坚固和美观。
初中数学知识归纳线段比例与面积比例的计算方法
初中数学知识归纳线段比例与面积比例的计算方法初中数学知识归纳:线段比例与面积比例的计算方法数学是一门重要而实用的学科,而在初中阶段,学生们需学习掌握许多基础的数学知识。
本文旨在归纳和介绍初中数学中关于线段比例与面积比例的计算方法,帮助学生更好地理解和应用这些知识。
一、线段比例的计算方法在线段比例的计算中,我们常常遇到要求求解一个线段的分点坐标,或者给定两线段的比例,求解另一线段的长度或坐标的情况。
以下是一些常见的线段比例计算方法:1. 一分点坐标的计算当我们已知某个线段AB上一分点M,且已知A、B两点的坐标时,可以通过计算求出M点的坐标。
设A坐标为(x₁, y₁),B坐标为(x₂,y₂),M坐标为(x, y),则根据分点公式可得:x = (x₁ + x₂) / 2y = (y₁ + y₂) / 2通过这个计算方法,我们即可求得M点的坐标。
2. 两线段比例的计算当我们已知两个线段AB和CD的比例,要求求解线段CD的长度时,可以利用线段的长度比例与坐标的比例相同的性质。
设已知AB与CD的比例为m:n,即AB/CD = m/n,如果两线段的起点坐标已知,可以按照下面的计算方法求解:设A坐标为(x₁, y₁),B坐标为(x₂, y₂),C坐标为(x₃, y₃),D坐标为(x₄, y₄)。
首先计算线段AB的长度为L₁,可以使用勾股定理计算:L₁ = √[(x₂ - x₁)² + (y₂ - y₁)²]根据线段长度比例与坐标的比例相同的性质,可以得到CD的长度L₂为:L₂ = L₁ × (n / m)通过这个计算方法,我们可以方便地求解出CD的长度。
二、面积比例的计算方法在计算面积比例时,常常遇到的问题包括已知两个图形的面积比例,求另一图形的面积,或是已知图形的某一边的比例,求另一图形对应边的比例等。
以下是一些常见的面积比例计算方法:1. 面积比例的计算当我们已知两个图形的面积比例为m:n时,可以利用面积与边长平方成比例的性质计算。
比例线段的技巧
比例线段的技巧
1. 保持比例:在画比例线段时,需要按照相应的比例来划分线段长度,保持比例的准确性。
2. 等分法:将线段分成若干等分,可以较为精确地画出比例线段,特别是当比例为分数时,这一方法尤为有用。
3. 平行法:对于长度已知的线段,可以通过平移或镜像的方式来画出比例线段,这一方法尤其适用于比例为整数的情况,且易于精确计算。
4. 相似三角形法:在相似三角形中,相对边长的比例相等,可以通过构造相似三角形来画出比例线段。
5. 利用垂线:将线段延长,再画一条垂线将其分成两个线段,可得到两个相似三角形,从而得出比例线段。
6. 利用等角:在两条相交的直线上,如果两个角度相等,则两个相交线段的比例相等,可以利用这一特性来画出比例线段。
证明线段成比例的方法与技巧
证明线段成比例的方法与技巧安徽李师证明线段成比例的问题,思路灵活,涉及的定理较多,辅助线的添加方法亦很巧妙,常用的方法有以下几种.1.三点定形法:利用分析的方法,由欲证的比例式或等积式转化为比例式.寻找相似三角形,这是证明线段成比例问题最基本的方法之一,一般是找到以四条成比例线段为边的两个三角形,再证明这两个三角形相似.[例1]已知:如图1,∠ABC=∠ADE.求证:AB·AE=AC·AD等式左边的三点A、B、C构成△ABC,等式右边的三点A、D、E构成△ADE.因此,只要证明△ABC∽△ADE,本题即可获证.由已知∠ABC=∠ADE,∠A是公共角,易证△ABC∽△ADE.证明:略.号两边的分母,三个字母A、D、E构成△ADE.2.等量代换法:当需要证明的成比例的四条线段不能构成相似三角形时,往往需要进行等量代换,包括“线段的代换”或利用“中间比”进行代换.[例2]已知:如图2,在Rt△ABC中有正方形H EFG,点H、G分别在AB、AC上,EF在斜边BC上.求证:EF2=BE·FC.上,无论如何不能构成相似三角形,因此不能直接应用三点定形法.此时应联想到正方形H EFG的四条边都相等的隐含条件,用H E代换等式左边的△H BE∽△FCG使本题获证.证明:略.这是利用线段进行等量代换的典型例题,不难看出,这种代换方法往往需要含有等腰三角形、平行四边形、正三角形、正方形、线段中点等已知条件或隐含条件.[例3]已知:如图3,AC是ABCD的对角线,G是AD延长线上的一点,BG交AC于F,交CD于E.分析:由B、E、F、G四点共线可知,本题既不能直接应用平行截线定理或三点定形法,又找不到与比例式中线段相等的线段进行等量代换.代换是解决本题的关键.证明:略.这是利用中间比进行代换的典型例题,这种代换往往出现于平行截线定理以及相似三角形的综合应用.3.辅助平行线法:利用辅助平行线来转移比例是证明线段成比例的有效方法,这种方法经常通过平行线分线段成比例定理和它的推论来实现.[例4]已知:如图4,在△ABC中,D是AC上一点,延长CB到E,使BE=AD,ED交AB于F.分析:观察比例式的右边三点A、B、C可构成△ABC,而左边的三点D、E、F不能构成三角形,因此不能直接利用相似三角形获证.证明:略.。
证明线段的比例式或等积式的方法
证明线段的比例式或等积式的方法要证明线段的比例式或等积式,有多种方法可以使用。
下面我们将介绍几个常用的方法。
方法一:向量法利用向量的性质可以很方便地证明线段的比例式或等积式。
假设有线段AB和CD,要证明它们的比例式或等积式,可以先求出向量AB和向量CD,然后判断它们是否平行或共线,再比较它们的模长大小。
如果向量AB和向量CD平行或共线,我们可以根据向量的定义得知它们的比例式:AB:CD=,AB,:,CD如果向量AB和向量CD不平行或不共线,但线段AB与线段CD的比例式或等积式成立,我们也可以利用向量的性质推导出它们的比例关系。
具体的推导过程需要根据具体的题目条件来确定。
方法二:相似三角形法利用相似三角形的性质也可以方便地证明线段的比例式或等积式。
相似三角形是指两个或多个三角形的对应角相等且对应边成比例。
如果有线段AB和CD,我们可以通过构造相似三角形来证明它们的比例式。
假设我们可以找到一个三角形ABC与三角形CDE相似,那么根据相似三角形的性质有:AB:CD=AC:CE这样我们就证明了线段AB和CD的比例式。
方法三:重心法利用重心的性质也可以证明线段的比例式或等积式。
重心是指一个几何图形的平衡点,即重心到图形上各点的距离乘以图形上各点的质量(或面积)之和为零。
对于线段AB和CD,我们可以找到它们的重心O,并将线段AO和BO 延长到与CD相交于点E和F。
那么根据重心的性质,线段AO与线段OD 以及线段BO与线段OC的比例关系可以推导出:AO:OC=BO:OD进一步地,根据线段分线段外部点定理,我们可以得出:AO:OD=AB:CD这样我们就证明了线段AB和CD的比例式。
方法四:三角形面积法利用三角形面积的性质也可以证明线段的比例式或等积式。
假设有线段AB和CD,我们可以构造三角形AOB与三角形COD,其中O为点A和C 的连接线与BC的交点。
根据三角形面积的性质,有:三角形AOB的面积:三角形COD的面积=AB:CD这样我们就证明了线段AB和CD的比例式。
证明线段成比例问题的常用方法
证明线段成比例问题的常用方法(1)方法一、三点定形法利用分析的方法,由欲证的比例式或等积式转化为比例式.寻找相似三角形,这是证明线段成比例问题最基本的方法之一,一般是找到以四条成比例线段为边的两个三角形,再证明这两个三角形相似.每一个三角形都是由三个不同的点所组成的,并且用三个不同的字母表示。
反过来想,由三个不同的字母必定可以确定一个三角形,如果四条成比例线段出自于一对相似三角形,我们必能从其比例式中看出是哪两个三角形相似。
【例1】如图,CD 、BE 是△ABC 的两条高,求证: ①AC AE AB AD ⋅=⋅ ②∠AED =∠ABC ③FE FB FC FD ⋅=⋅分析:①欲证AC AE AB AD ⋅=⋅即证ABACAE AD =I .横看法:II .竖找法:F ⑩DE ABC~AEB ∆⇒∆ADC ⇒∆AEBADC⇒∆ADE ⇒∆∆ACB ~ADE⇒∆⇒∆ADE试验:(射影定理)如图Rt △ABC 中,CD 是斜边AB 上的高, 求证: ①AB AD AC ⋅=2②BA BD BC ⋅=2③DB DA CD ⋅=2请用“三点定形法”尝试下面问题的可行性,看有何发现? 1、已知:如图,△ABC 中,EF ∥BC ,AD 交EF 于G.求证: CDFGBD EG =;2、R t △ABC 中,∠C =90°,四边形DENM 为正方形, 求证:NB AM MN ⋅=2DCBAGABCF EDBCDEMNDCBADCBA证明线段成比例问题的常用方法(2)方法二、等量代换法当需要证明的比例式不能构成相似三角形时,往往需要进行等量代换,包括: 1.等比代换; 2.等线段代换; 3.等积代换.【例1】]已知:如图,AC 是□ABCD 的对角线,G 是AD 延长线上的一点,BG 交AC 于F ,交CD 于E .求证:BFFEFG BF =。
归纳:这是利用中间比进行代换的典型例题,这种代换往往出现于平行截比定理以及相似三角形的综合应用.【例2】R t △ABC 中,∠C =90°,四边形DENM 为正方形, 求证:NB AM MN ⋅=2归纳:这是利用线段进行等量代换的典型例题,不难看出,这种代换方法往往需要含有等ABCDEMN腰三角形、平行四边形、正三角形、正方形、线段中点等已知条件或隐含条件.【例3】R t △ABC 中,∠BAC =90°, D 为AC 上一点,AE ⊥BD ①若DCB DEC ∠=∠,求证:D 为AC 的中点;②若AF ⊥BC 于F ,连EF ,求证:△BEF ∽△BCD归纳:此例为等积代换的典型例题,这种代换方法往往需要含有射影定理和另外一对相似三角形同时出现.【练习】△ABC 中,AD ⊥BC ,AB =AC ,E 为DA 上任意一点,CM ∥AB 交BE 于M ,BM 交AC 于F . 求证:EM EF BE ⋅=2ABCDEFABCDEABCEFM证明线段成比例问题的常用方法(3)方法三、辅助平行线法利用辅助平行线来转移比例是证明线段成比例的有效方法,这种方法经常通过平行线截比定理和平行相似定理来实现.【例1】如图,在△ABC 中,D 是AC 上一点,延长CB 到E ,使BE =AD ,ED 交AB 于F .求证:ACBCEF DF.【例2】已知在△ABC 中,点D 为边BC 上一点,点E 为边AC 上的中点,AD 与BE 交于P . (1)如图1,当BD =CD 时,PBPE= ;(2)如图2,当CD =2BD 时,求证:PE =PB .DFABCEABC PE图1D图2ABC D PEFE DCB AFEDCB A【例3】如图,已知等腰Rt △ABC ,∠ACB =90°,AC =BC ,D 为BC 边上一动点,BC =nDC ,CE ⊥AD 于点E ,延长BE 交AC 于点F . (1)若n =3,则=DE CE ,=DEAE(2)若n =2,求证:AF =2FC ;(3)当n = ,F 为AC 的中点(直接填出结果,不要求证明)【练习】△ABC 中,D 是BC 中点,E 是AC 上一点,AD 、BE 交于F 。
平行线分线段成比例常见应用的六种技巧
∵点D为AB的中点A,D 1.
DB
∴AD=DB,即
∵CDEFFE∥BAEA,CE
AD DB
1.
∴
∴DE=EF.
类型 3 证两个比的值的和为1
技巧6 同分母的中间比代换法
6.
如图,已知AC∥FE∥BD,求证:
AE AD
BE BC
1.
∵AC∥EF,
证明:∴
BE BF
①.
BC BA
又∵FE∥BD,
证明:(1)∵△ABC与△DCE都是等边三角形, ∴AC=BC,CE=CD, ∠ACB=∠DCE=60°. ∴∠ACB+∠ACD=∠DCE+∠ACD, 即∠ACE=∠BCD. ∴△ACE≌△BCD(SAS).
(2)∵△ACE≌△BCD, ∴∠BDC=∠AEC. 又∵∠GCD=180°-∠ACB-∠DCE=60° =∠FCE,CD=CE, ∴△GCD≌△FCE(ASA). ∴CG=CF. ∴△CAFGG为A等F边. 三角形.
∴PD·PC=PE·PBP. F
PD .
PC PA
∵DF∥AC,∴
∴PD·PC=PF·PA.
PE PA . PF PB
∴PE·PB=PF·PA. ∴
技巧3 等比代换法证比例式 3. 如图,在△ABC中,DE∥BC,EF∥CD.
AD AF .
证明:∵求E证F:∥CADB, AD
∴ AF AE .
第四章 图形的相似
平行线分线段成比例
第2课时
利用平行线证比例式或等积式的方法: 当比例式或等积式中线段不在平行线上,若平行
线为一组(两条以上)时,可直接利用平行线分线段成 比例的基本事实证明;若平行线只有两条时,则利用 平行线分线段成比例的基本事实的推论证明;当比例 式或等积式中的线段不是对应线段时,则利用转化思 想,用等线段、等比例、等积替换进行论证.
九年级线段成比例知识点
九年级线段成比例知识点一、什么是线段成比例?线段成比例是指两个线段之间的比值相等。
即如果两个线段的长度之比等于另外两个线段的长度之比,那么这四个线段就成比例。
二、线段成比例的判定方法1. 基于长度的判定方法:设有四个线段AB、CD、EF和GH,我们可以使用以下方法判定它们是否成比例。
(1)如果AB/CD = EF/GH,即两个比值相等,那么线段AB 和CD与线段EF和GH成比例。
(2)如果AB/CD = EF/GH = k(常数),即三个比值相等,那么线段AB和CD与线段EF和GH成比例。
2. 基于相似三角形的判定方法:我们也可以利用相似三角形的性质来判定线段成比例。
(1)如果三角形ABC与三角形DEF相似,那么线段AB和CD与线段AC和DF成比例。
(2)如果三角形ABC与三角形DEF相似,并且线段AB与线段DE相等,那么线段AB和CD与线段AC和DF成比例。
三、线段成比例的性质1. 线段成比例的交叉乘积性质:设AB/CD = EF/GH,那么有以下等式成立:AB × GH = CD × EF这条性质可以用来解决一些与线段成比例相关的问题。
2. 平行线段上的线段成比例性质:如果线段AB与线段CD平行,并且线段AD与线段BC相交于点O,那么有以下等式成立:AO/OD = BO/OC这个性质可以帮助我们在平行线段上找到线段成比例的关系。
四、线段成比例的应用线段成比例广泛应用于几何学和代数学中。
在几何学中,我们可以使用线段成比例来证明两个三角形相似或者证明平行线段之间的关系。
在代数学中,线段成比例可以用来求解未知长度和方程的解等问题。
简单来说,线段成比例在数学中是一个重要的概念,它帮助我们理解和解决与线段长度和比值有关的问题。
在学习几何学和代数学的过程中,我们需要掌握线段成比例的判定方法、性质和应用,以便能够灵活运用这一概念解决各种数学问题。
以上就是九年级线段成比例的相关知识点,希望能够帮助你更好地理解和掌握这一概念。
有关线段问题的证明
有关线段问题的证明1.证明线段成比例的方法(1)平行线分线段成比例定理(如果没有平行线,可作辅助平行线得到比例线段).(2)利用相似三角形的性质定理.①相似三角形的对应边成比例.②相似三角形对应中线、对应高与对应角平分线之比等于相似比.③相似三角形周长之比等于相似比.④相似三角形面积的比等于相似比的平方.(3)利用相似三角形,依据待证的比例式,找出相应的两个三角形,证明它们相似.(4)不能证得比例线段时,应考虑通过第三个比(中间比)作媒介进行论证.(5)利用面积关系证明线段成比例.(6)用比例定义证明两组线段比相等.(7)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.(8)三角形内(外)角平分线性质定理三角形内角(或外角)的平分线内分(或外分)对边所成的两线段和两邻边成比例.2.证明线段成等积式的方法把等积式化为比例式,找出相应的两个三角形,再证明它们相似.3.证明线段相等的方法除了前两章中证明的方法外,另补充如下方法(借助于比例线段).(1)若ab=cd,且a=c(或b=d,或a=b),则b=d(或a=c,或c=d).(2)若ab=ba,则a=b.(3)若ab=cd,ab''=cd'',a=a′,b=b′,c=c′,则d=d′.4.证明角相等的方法除前面所述之外,利用相似三角形对应角相等来证明两角相等.5.证明两直线平行的方法利用平行线分线段成比例定理推论的逆定理,把线段的比例关系转化成平行关系,利用这条定理可以证明三角形内两条线段平行.6.与相似形有关的辅助线的作法在相似三角形里,主要是掌握根据线段的比例式作平行线为辅助线的方法.这种平行辅助线不仅可以获得成比例线段而且还可以得到所需的相似三角形.。
证明线段成比例的几种常用方法
证明线段成比例的几种常用方法
1.视觉比较法:
通过视觉比较法验证线段成比例,也就是直观地看出两条直线在视觉上比例相符,即可判定线段成比例。
这是最简单的验证线段成比例的方法,但是也是最受误解、错误使用的方法。
这种方法仅能够对相对可见的图形进行简单的比例检查,但它不能精确地验证成比例。
2.直接测量法:
直接测量是比较常用的线段成比例验证方法,也是最准确的方法。
通过采用不同的长度等的标尺测量线段的比例,可以使用三角计量法、勾股定理法等计算,测量完毕,再将各个线段的长度数据进行算术运算,就能验证线段的比例了。
3.几何构图法:
几何构图法是采用精确的几何构图原理,利用锥形等几何图形关系来分析验证线段成比例的方法。
比如几何中三角形、长方形、正方形都有规律的比例,可以通过三角计量法等,从而实现对线段比例的精确验证。
4.角度比较法:
角度比较法是通过测量两条线段所成角度的比值,来判断直线间是否成比例。
这是一种很容易被忽视但是又能够节省时间的验证线段成比
例的方法。
如果两条线段所成的角度比值为1:1,就说明他们成比例了。
5.面积比较法:
面积比较法是最常用的线段成比例的验证方法,通过测定线段组成的
面积、计算面积比值,最终判断两条线段是否成比例,如果面积的比
值等于1:1,那就说明两条线段成比例了。
面积比较法也比较容易,可
以节省大量的时间,也是现在学校教学中验证比例关系最常使用的方
法之一。
探究证明线段成比例的基本方法[1]
E
G
F
B
D
C
方法:若不属于2,观察
设法等比代换。
ac =
bd
两端的比是否等于另外的比,若是,
练习4.已知,ABCD是正方GF∥BE, 求证:EF·AE=BE·EC.
例4:如图, E是ABC中AC边上的中点 . 求证:AD • BF = CF • DB
A
D E
B
C
F
例5.已知:如图,在△ABC中,点D在AC上, 点E在CB的延长线上,且AD=BE, 求证: EF AC
A
D
E G
B
C
F
过C点作CG AB交FD于G点
法2:
A
D E
G
B
C
F
过C点作CG FD交AB于G点
法3:G
A
D
E
法4: A
D
E
B
C
F
B
C
F
G
过A点作AG FB交FD的延长线于G点
过A点作AG FD交BF的延长线于G点
方法:根据思想发展的需要,自然添加辅助线。如:添加平行线。
证明线段成比例,基本思考方法:
BE交AD于点O,某学生在研究这一问题,发现了如下事实:
(3)当
AE AC
=
1 4
时,则
AO AD
=
2
____5___
(4)当
AE AC
=
1 1+ n
时,参照上述研究结论,则
AO AD
=
2
__2_+_n___(n为正整数).
A
E O
A E
O
C
D
图3
平行线分线段成比例的推论证明
平行线分线段成比例的推论证明平行线分线段成比例的推论,这听起来可能有点儿学术,但其实挺有趣的,咱们就来轻松聊聊。
想象一下,平行线就像一对形影不离的好朋友,它们永远保持着相同的距离,不管你把它们拖到哪里。
就像咱们有时候跟朋友一起出去玩,无论去哪儿,心里都知道,那个人一直陪在身边。
而这平行线的特性,正是我们今天要探讨的重点。
先说说线段,咱们就把线段想象成一根好吃的糖葫芦。
每当我们把这根糖葫芦切成几段,每一段都有自己的味道,长度也不一样。
这里就有个小秘密:如果有两条平行线把这根糖葫芦分成了三段,那这些段的长度之间就有一种神奇的比例关系。
就像你和你的朋友一起分享糖葫芦,不管你们怎么分,最后每个人都有自己满意的那一口。
咱们就来细聊这个比例是怎么来的。
假设有一根线段被平行线切成了三段,第一段、第二段、第三段分别是 a、b、c 的长度。
这里可得注意了,平行线可不是无缘无故就把线段切成这么好看的比例的。
这是因为,平行线之间的关系就像家里的兄弟姐妹,个个都有自己的性格。
线段的分割也是在这种和谐关系中自然形成的,就像家里兄弟姐妹分享零食一样,大家都觉得分得公道,才会心情愉悦。
这时候,我们要用一个小道理来说明一下,假如有另一根线段被相同的平行线分割成了两段,那这两段的长度也会与前面那根线段的三段成比例关系。
也就是说,咱们只要把这两根线段各自的段长度用比例计算一番,就会发现它们之间有种难以言喻的联系。
这就好比你和朋友一起吃饭,点了相同的菜,最后结账的时候,大家都觉得分得合理,没一个人觉得亏。
咱们不能只停留在这种好玩的比喻上,真正的数学美感就在于它的准确性。
就像你在做数学题时,如果每一步都遵循了规则,最后的结果就会让你感到无比满足。
这就是平行线分线段成比例的推论所带来的美妙体验,规律的背后总是有让人惊叹的逻辑。
其实在生活中,这种比例关系随处可见。
想想我们身边的事物,像一排排的书架,每一本书之间都保持着相对的距离,而这些距离就像平行线一样,给人一种整齐划一的感觉。
初中二年级几何学习技巧如何解决线段比例与面积比例的问题
初中二年级几何学习技巧如何解决线段比例与面积比例的问题在初中二年级的几何学习中,线段比例与面积比例是一个重要的知识点。
正确理解和应用线段比例与面积比例的技巧,对于解决相关问题非常关键。
本文将介绍一些有效的技巧,帮助同学们更好地掌握解决线段比例与面积比例的问题。
一、线段比例解决技巧1. 比例的定义和性质首先,我们需要理解比例的定义和性质。
比例是两个具有相同单位的量之间的对应关系。
在线段比例问题中,我们需要比较两个线段的长度,并确认它们是否成比例。
具体公式为:如果线段AB与线段CD 成比例,则有AB/CD = AC/BD。
掌握了比例的定义和性质后,我们就可以更好地解决线段比例的问题了。
2. 图形的放缩和相似线段比例与图形的放缩和相似有密切关系。
当两个图形相似时,它们的相应线段也成比例。
因此,我们可以利用图形的放缩和相似的特性,解决线段比例问题。
具体方法是通过计算两个图形的对应线段长度比例,来确定线段是否成比例。
3. 利用比例关系求解在实际问题中,有时候我们无法直接测量线段的长度,但可以根据线段的比例关系来求解。
例如,如果我们知道两个线段的比例为2:3,其中一个线段的长度为6cm,那么我们可以通过比例的性质计算出另一个线段的长度为9cm。
因此,利用比例关系可以方便地求解线段比例的问题。
二、面积比例解决技巧1. 面积比例的概念对于面积比例的问题,我们需要理解面积比例的概念。
面积比例是指两个图形的面积之间的对应关系。
具体公式为:如果图形A的面积为S1,图形B的面积为S2,那么它们的面积比例为S1:S2。
掌握了面积比例的概念后,我们就可以更好地解决面积比例的问题了。
2. 利用相似图形的性质与线段比例一样,面积比例与相似图形也有紧密的联系。
当两个图形相似时,它们的面积比例等于两个图形边长的比例的平方。
因此,我们可以利用相似图形的性质来解决面积比例的问题。
具体方法是通过计算图形边长的比例,然后将该比例的平方作为面积比例。
4 怎样证明线段成比例剖析
怎样证明线段成比例【知识要点】本章节中,所要介绍的线段成比例的证明方法,主要有以下几种:(1)利用相似三角形的对应边成比例法证。
思路是:把待证的四条线段视为两个三角形的边,从而把问题转化为证两个三角形相似。
(2)用等线代换法证:若所要证的比例式中的线段不是两个三角形的边,可把比例式中的线段换成与它相等的线段,这四条线段都在两个三角形中,证这两个三角形相似。
(3)用等比代换法去证:若d c b a , , , 是四条线段,欲证d c b a =,可先证得feb a =(f e , 是两条线段)然后证d c fe =,这里把fe叫做中间比。
【典型例题】例1 如图,在ABC ∆中,D 是BC 的中点,E 是AC 上一点,连DE 并延长交BA 延长线于F ,且ED=FE,AD ∥FD 交BC 于G ,DH ∥BA 交AC 于H ,求证:GD:CD=DH:FB。
例2 如图,已知ABC Rt ∆中,AB CD ACB ⊥︒=∠, 90于D ,E 是BC 的中点,连结ED 并延长交CA 的延长线于F ,求证:CFBCDF AC =。
BCDGE F3例3 已知,如图,在ABC ∆中,AB=AC,AD 是中线,P 是AD 上一点,过C 作CF ∥AB ,延长BP 交AC 于E ,交CF 于F 。
求证:PF PE BP ⋅=2。
例4 如图,ABC ∆中,DAC BDE BD AD ∠=∠=, ,求证:DCBDEB AE =。
【经典练习】1.如图,已知AD 为ABC ∆的角平分线,E 为DC 上的一点,EF ∥AD 交AC 于F ,交BA 延长线于G ,求证:BE:CE=GB:FC。
2.如图,AD 为ABC ∆的角平分线,由D 向ACB ∠的外角平分线作垂线与AC 的延长线交于F 点,由D 作ABC ∠的平分线的垂线与AB 交于E ,垂足分别为N ,M 。
求证:AE AD ⋅=2BCDBDCCDED3.如图,在ABC Rt ∆中,︒=∠90ACB ,M 是AB 的中点,过M 作AB 的垂线交AC 于D ,交BC 的延长线于E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明线段成比例的方法与技巧
证明线段成比例的问题,思路灵活,涉及的定理较多,辅助线的添加方法亦很巧妙,常用的方法有以下几种.
三点定形法:利用分析的方法,由欲证的比例式或等积式转化为比例式.寻找相似三角形,这是证明线段成比例问题最基本的方法之一,一般是找到以四条成比例线段为边的两个三角形,再证明这两个三角形相似.
1、已知:如图1,∠ABC=∠ADE.求证:AB·AE=AC·AD
等量代换法:当需要证明的成比例的四条线段不能构成相似三角形时,往往需要进行等量代换,包括“线段的代换”或利用“中间比”进行代换.
2、已知:如图2,在Rt△ABC中有正方形H EFG,
点H、G分别在AB、AC上,EF在斜边BC上.求证:EF2=BE·FC.
3、已知:如图3,AC是ABCD的对角线,G是AD延长线上的一点,BG交AC于F,交CD于E.求证:BF2=EF·FG
辅助平行线法:利用辅助平行线来转移比例是证明线段成比例的有效方法,这种方法经常通过平行线分线段成比例定理和它的推论来实现.
4、已知:如图4,在△ABC中,D是AC上一点,延长CB到E,使BE=AD,ED交AB于F.求证:DF·AC=BC·EF
课堂演练
1、已知:等边三角形ABC中,P为BC上任一点,AP的垂直平分线交AB、AC于M、N两点。
求证:BP•PC=BM•CN
2、已知;AD平分∠BAC,EF垂直平分AD与BC的延长线交于F。
求证:DF2=BF•CF
3、如图,在矩形ABCD中,E是CD的中点,BE⊥AC且交AC于F,过F作FG∥AB,交AE于G.
求证:AG2=AF FC.
4、已知:梯形ABCD中,AD//BC,AC与BD相交于O点,作BE//CD,交CA的延长线于点E.
求证:OC2=OA.OE
5、已知:BD、CE是△ABC的两个高,DG⊥BC,与CE交于F,GD的延长线与BA的延长线交于H。
求证:GD2=GF•GH。