数学北师大版七年级下册平方差与完全平方公式运用练习题

合集下载

(完整版)平方差、完全平方公式专项练习题(精品)

(完整版)平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

2.已知6,4a b a b +=-=求ab 与22a b +的值。

3.已知224,4a b a b +=+=求22a b 与2()a b -的值。

4.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab ++的值。

6.已知 2()16,4,a b ab +==求223a b+与2()a b -的值。

7.已知16x x -=,求221x x+的值 8.0132=++x x ,求(1)221x x +(2)441x x +9.已知m 2+n 2-6m+10n+34=0,求m+n 的值10.已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

11.已知222450x y x y +--+=,求21(1)2x xy --的值。

12.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

13、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法一、填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________.6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 2 16.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等1.下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)2.下列计算正确的是( )A.(2x+3)(2x -3)=2x 2-9B.(x+4)(x -4)=x 2-4C.(5+x)(x -6)=x 2-30 D.(-1+4b)(-1-4b)=1-16b 23.下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b)(-b+a)B.(xy+z)(xy -z)C.(-2a -b)(2a+b)D.(0.5x -y)(-y -0.5x)4.(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y)2D.(4x+5y)25.a 4+(1-a)(1+a)(1+a 2)的计算结果是( )A.-1B.1C.2a 4-1D.1-2a 46.下列各式运算结果是x 2-25y 2的是( )A.(x+5y)(-x+5y)B.(-x -5y)(-x+5y)C.(x -y)(x+25y)D.(x -5y)(5y -x)三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值. 1.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2.已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。

七年级数学平方差公式和完全平方公式(北师版)(含答案)

七年级数学平方差公式和完全平方公式(北师版)(含答案)
即 为公式当中的“ ”、 为公式当中的“ ”,然后用完全平方公式求解.
故选B.
试题难度:三颗星知识点:完全平方公式
6.计算 的结果为( )
A. B.
C. D.
答案:D
解题思路:
观察式子特征, 与 符号相反, 与 符号也相反,
所以不能用平方差公式,应该先处理符号,
利用完全平方公式求解.
故选D.
试题难度:三颗星知识点:完全平方公式
11.下列计算,与 的值一定相等的是( )
A. B.
C. D.
答案:B
解题思路:
观察式子特征,a与a符号相同,b与-b符号相反,-3与3符号相反,
∴a是公式当中的“a”,(b-3)是公式当中的“b”,可用平方差公式解决问题,
计算如下,

注意:添括号时,括号前面是减号,添加括号后,括号里的各项符号都改变.
然后和等式右边的式子对比确定字母m的值.
所以 .
故选A.
试题难度:三颗星知识点:完全平方公式
17.若 ,则 的值为( )
A.2 B.-2
C.-4 D.±2
答案:B
解题思路:
观察式子特征,先把等式左边用完全平方公式展开,
然后和等式右边的式子对比确定字母k的值.
所以 ,所以 .
故选B.
试题难度:三颗星知识点:完全平方公式
7.计算 的结果为( )
A. B.
C. D.
答案:C
解题思路:
观察式子特征, 与 符号相反, 与 符号也相反,所以不能用平方差公式,应该先处理符号,利用完全平方公式求解.
故选C.
试题难度:三颗星知识点:完全平方公式
8.计算 的结果是( )
A. B.

平方差与完全平方公式运用练习题

平方差与完全平方公式运用练习题
1、 。
2、已知
5
教学效果
上课情况:。
课后需要巩固的内容:。
3、完全平方公式的特点:
左边是二项式的完全平方,右边是一个二次三项式,其中的两项是左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍,其符号取决于左边二项式中间的符号。
4、完全平方公式中字母的含义:公式中字母a、b可以是具体的数,也可是任意一个单项式或多项式。
5、完全平方公式
还可以逆用:
拓展应用: ,

6、例题讲解:
例题1:用完全平方公式进行计算:
(1) (2)
(3) (4)
3
例题2:计算
(1) (2)
(3) (4)
例题3:用完全平方公式进行计算:
(1) (2)
(3)
例题4:
(1)已知
(2)已知
4
例题5:多项式 加上一个单项式后能成为一个整式的完全平方式,那么这个单项式是多少。(该题一共有5个答案)
5、例题讲解:
例题1:(1) (2)
(3) (4)
1
例题2:计算
例题3:用平方差公式进行计算:
(1)102 98 (2)10.3 9.7
(3)
例题4:先化简,再求值:
(1) 。
(2) 。
2
二、完全平方公式:
1、完全平方公式 。
即两个数的和的平方和加上它们乘积的2倍。
2ቤተ መጻሕፍቲ ባይዱ完全平方公式 。
即两个数的差的平方和减去它们乘积的2倍。
例题6:某加工车间要在边长为(a+3)cm的正方形的钢板上,从中间挖去一个边长为(a-1)cm的小正方形,求剩余部分的面积是多少?
【课后练习】
一、填空题:

专题01 平方差公式和完全平方公式(原卷版)【2022春北师大版七下数学压轴题突破专练】

专题01 平方差公式和完全平方公式(原卷版)【2022春北师大版七下数学压轴题突破专练】

【2022春北师大版七下数学压轴题突破专练】专题01 平方差公式和完全平方公式一、选择题1.()下列运算中,结果正确的是()A.(a+b)(a-b)=a2-b2B.(a-b)(b-a)=a2-b2C.(a-b)2=a2-b2D.(a-b)2=a2+2ab-b22.(2022七下·)如图所示,长方形ABCD的周长为16,以长方形四条边为边长向外作四个正方形,若四个正方形面积之和为68,则长方形ABCD的面积为()A.12 B.15 C.18 D.20 3.(2022七下·)如图,两个正方形的边长分别为a和b,如果a-b=2,ab=26,那么阴影部分的面积是()A.30 B.34 C.40 D.44 4.(2022七下·)计算(x+3y)2-(3x+y)2的结果是()A.8x2-8y2B.8y2-8x2C.8(x+y)2D.8(x-y)25.(2020七下·西湖期末)已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A.﹣16 B.﹣14 C.﹣12 D.﹣10 6.(2020七下·秦淮期末)如图,有A,B,C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是()A .4B .5C .6D .77.(2020七下·郑州期末)如图,有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙。

若图甲和图乙中阴影部分的面积分别为3和30,则正方形A 、B 的面积之和为( )A .33B .30C .27D .248.(2019七下·西湖期末)如图,大正方形的边长为 m ,小正方形的边长为 n ,x , y 表示四个相同长方形的两边长( x y > ).则①x y n -= ;②224m n xy -=;③22x y mn -= ;④22222m n x y -+= ,中正确的是( )A .①②③B .①②④C .①③④D .①②③④9.(2019七下·兰州月考)观察下列各式及其展开式:( )()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++ ()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++……你猜想 ()10a b + 的展开式第三项的系数是( ) A .66 B .55C .45D .36二、填空题10.(2022七下·)如图所示,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a>b ),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a ,b 的等式为: .11.(2022七下·)x 2+y 2=(x+y )2- =(x-y )2+ . 12.(2022七下·)如果(a+b+1)(a+b-1)=3,那么a+b 的值为 . 13.(2022七下·)计算: (b+12)( )=b 2-144. ( )(-13x+0.5y )=19x 2-14y 2. 14.若a+b =2,a 2﹣b 2=6,则a ﹣b = .15.(2021七下·丽水期末)数学活动课上,小明同学尝试将正方形纸片剪去一个小正方形,剩余部分沿虚线剪开,拼成新的图形。

第一章第6讲 平方差公式和完全平方公式(10类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第一章第6讲 平方差公式和完全平方公式(10类热点题型讲练)(原卷版)--初中数学北师大版7年级下册

第06讲平方差公式和完全平方公式(10类热点题型讲练)1.理解并掌握平方差公式和完全平方公式的推导和应用;2.理解平方差公式和完全平方公式的结构特征,并能运用公式进行简单的运算;3.会用几何图形说明公式的意义,体会数形结合的思想方法.知识点01平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.即(a+b)(a-b)=a²-b²公式的几种变化:①位置变化:(b+a)(-b+a)=(a+b)(a-b)=a²-b²;(-a-b)(a-b)=(-b-a)(-b+a)=(-b+a)(-b-a)=(-b)²-a²=b²-a²②系数变化:(2a+3b)(2a-3b)=(2a)²-(3b)²=4a²-9b²a b-③指数变化:(a²+b²)(a²-b²)=(a²)²-(b²)²=44④增项变化:(a-b-c)(a-b+c)=(a-b)²-c²a b-⑤连用公式变化:(a+b)(a-b)(a²+b²)=(a²-b²)(a²+b²)=(a²)²-(b²)²=44⑥公式逆运算:a²-b²=(a+b)(a-b)知识点02完全平方公式完全平方公式:两数和(差)的平方,等于它们的平方和,加(减)它们积的2倍.即完全平方和(a +b )²=a ²+2ab +b ²完全平方差(a -b )²=a ²-2ab +b ²(1)公式的特征:前平方,后平方,中间是乘积的2倍(2)公式的变化:①a ²+b ²=(a +b )²-2ab ;②a ²+b ²=(a -b )²+2ab ;③(a +b )²=(a -b )²+4ab ;④(a -b )²=(a +b )²-4ab ⑤(a +b )²-(a -b )²=4ab知识点03平方差和完全平方差区别平方差公式:(a +b )(a -b )=a ²-b ²完全平方差公式:(a -b )²=a ²-2ab +b ²平方差公式和完全平方差公式易混淆,切记完全平方差中间有乘积的2倍题型01判断是否可用平方差公式运算.【例题】下列各式中不能用平方差公式计算的是()1.下列能使用平方差公式的是()A .()()33x x ++B .()()x y x y -+-C .()()55m n m n +--D .()()33m n m n +-2.下列各式中,不能用平方差公式计算的是()A .()()22x y x y -+B .()()x y x y -+-C .()()b a b a -+D .()()x y y x ---题型02运用平方差公式进行运算.【变式训练】题型03利用平方差公式进行简便运算.【例题】(2023上·吉林长春·八年级校考阶段练习)用简便方法计算:(1)498502⨯(2)2202220232021-⨯【变式训练】题型04平方差公式与几何图形.【例题】(2023上·江苏泰州·七年级靖江市靖城中学校联考期中)图1、图2分别由两个长方形拼成.(1)图1中图形的面积为22a b -,图2中图形的面积为(2)由(1)可以得到等式:.(3)根据你得到的等式解决下列问题:①计算:2268.531.5-.②若42m n +=,求()()()222212121m m n n --+++-【变式训练】(2)请写出图①、图②、图③验证的乘法公式为:______;【应用探究】(3)利用(2)中验证的公式简便计算:4995011⨯+;(4)计算:22222111111111123420232024⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.(1)上述操作能验证的公式是______(请选择正确的一个).A .()2a ab a a b +=+B .()()22a b a b a b -=-+C .()2222a ab b a b -+=-(2)请应用上面的公式完成下列各题:①已知22424a b -=,26a b +=,则2a b -=______;②计算:222222229897.1.....43009921-+-++-+-;③计算:()()()()()2222222221212.....4321223n n n n n -+-+-+----+≥题型05运用完全平方公式进行运算【例题】(2023上·河南信阳·八年级校考阶段练习)用乘法公式计算(1)2()x y z ++(2)()()2323x y x y -+-+【变式训练】1.(2023上·八年级课时练习)计算:(1)()27x y +;(2)()245a b -+;(3)()22m n --;(4)()()2323x y x y +--.2.(2023上·八年级课时练习)计算:(1)()()22x y z x y z +--+;(2)()2523a b c +-;(3)()()532536a b c a b c +--+.题型06利用完全平方公式进行简便运算【变式训练】1.用简便算法计算(1)2201720162018-⨯(2)2220220219698⨯++题型07通过对完全平方公式变形求值【例题】(2023上·四川宜宾·八年级校考阶段练习)已知:3a b +=-,2ab =,求下列各式的值:(1)22a b +;(2)2()a b -.【变式训练】1.已知4m n -=-,2mn =,求下列代数式的值.(1)22m n +(2)()()11m n +-题型08求完全平方式中的字母系数题型09完全平方式在几何图形中的应用【例题】(2023上·江苏·九年级专题练习)我们已经学习了乘法公式()2222a b a ab b ±=±+的多种运用,可以运用所学知识解答:求代数式245x x ++的最小值.解答如下:解:()2224544121x x x x x ++=+++=++,()220x +≥,∴当2x =-时,()22x +的值最小,最小值是0,∴()2211x ++≥,∴当()220x +=时,()221x ++的值最小,最小值是1,∴245x x ++的最小值是1.请你根据上述方法,解答下列各题.(1)知识再现:当x =______时,代数式2415x x -+的最小值是______;(2)知识运用:若2615y x x =-+-,当x =______时,y 有最______值(填“大”或“小”),这个值是______;(3)知识拓展:若25100x x y -+++=,求y x +的最小值.【变式训练】1.例:求代数式245x x +-的最小值.解: ()22245444529x x x x x +-=++--=+-,()220x +≥,∴()2299x +-≥-,∴当2x =-时,代数式245x x +-有最小值9-,(1)代数式241-+有最(填大或小)值,这个值x x(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为计一个尽可能大的花圃,如图设长方形一边长度为①用含x的式子表示花圃的面积;题型10完全平方公式在几何图形中的应用【例题】现有长与宽分别为a、b的小长方形若干个,用两个这样的小长方形,拼成如图1的图形,用四个相同的小长方形拼成图2的图形,请认真观察图形,解答下列问题:【变式训练】2.如图①,正方形ABCD是由两个长为一、单选题A .12B .11C .10D .9二、填空题9.(2023上·黑龙江牡丹江·八年级统考阶段练习)设四个推断:①**a b b a =;②()222**a b a b =;③(-的序号是.10.(2023上·甘肃兰州·七年级兰州市第五十五中学校考开学考试)对于任意的代数式定一种新运算:a a c db b dc =-.根据这一规定,计算三、解答题11.(2023上·江苏南通·八年级校联考期中)计算:(1)()243x y -;(2)()()11x y x y +++-;(3)()()()22322x y x y x y +-+-;(4)()()325x y xy -⋅.12.(2023上·河南南阳·八年级校考阶段练习)利用乘法公式计算下列各题(1)()()22m n m n ---(2)()23x y -+(3)2210397+16.(2023上·安徽阜阳·八年级统考阶段练习)如图,图1为边长为a 的大正方形中有一个边长为b 的小正方形,图2是由图1中的阴影部分拼成的一个长方形.(1)设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ,则1S =______,2S =______(请用含a ,b 的代数式表示,只需表示,不必化简).(2)以上结果可以验证哪个乘法公式?这个乘法公式是______(3)运用(2)中得到的公式,计算:()()()()24821212121+⨯+⨯+⨯+.17.(2023上·甘肃武威·八年级校考期末)数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b 、宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)观察图2,请你写出下列三个代数式:2()a b +,22a b +,ab 之间的等量关系;(2)若要拼出一个面积为()()2a b a b ++的矩形,则需要A 号卡片多少张,B 号卡片多少张,C 号卡片多少张.(3)根据(1)题中的等量关系,解决如下问题:①已知:5a b +=,2211a b +=,求ab 的值;②已知22(2021)(2023)20x x -+-=,求2022x -的值.18.(2023上·河南周口·八年级校考期中)若x 满足()()604020x x --=,求()()226040x x +--的值.解:设60x a -=,40x b -=,则20ab =,604020a b x x +=-+-=.∴()()226040x x +--22a b =+。

(完整版)实用版平方差、完全平方公式专项练习题(精品)

(完整版)实用版平方差、完全平方公式专项练习题(精品)

其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(

(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
2.利用平方差公式计算: (1)2009 ×2007- 20082.
2007
20072

2008 2006
20072

2008 2006 1
502 49 2 48 2 47 2
2 2 12ຫໍສະໝຸດ 3.解方程: x (x+2) +(2x+1 )( 2x- 1) =5( x2+3).
三、实际应用题
4.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短
4a2
b2 (
)( 2)
1 x
1
1 x1
2
2
1 x2 1 ( ) 2
( 3) 3x y 3x y 9x 2 y 2 ( )( 4) 2x y 2x y 4x 2 y 2 ( )
( 5) a 2 a 3 a2 6 ( ) ( 6) x 3 y 3 xy 9 ( )

第8讲 平方差和完全平方公式-2023-2024学年北师大版数学七年级下册

第8讲 平方差和完全平方公式-2023-2024学年北师大版数学七年级下册

例2.如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿 着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形, (1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2,请直接用含a、b的代数 式表示S1和S2; (2)请写出上述过程所揭示的乘法公式。
2
完全平方公式
完全平方公式
a b2 a2 2ab b2
文字语音:两数的和的平方,等于这两个数 的平方和加上这两个数积的2倍
a b2 a2 2ab b2
文字语音:两数的差的平方,等于这两个数 的平方和减去这两个数积的2倍
例2.计算.
(1) 3a 12 (2) 2x 3y2
(3) 3x y2
完全平方公式的应用 应用完全平方公式的步骤: ①确定两数,即确定谁相当于公式中的 a,谁相当于公式中的b; ②再看好是两数和,还是两数差; ③选用公式写出结果。
练习3.某校生物兴趣小组有一块正方形种植 基地,现要对它进行扩建,若把边长增加2 米,则所得的新正方形种植基地面积比原 来增加了32平方米,求:原来正方形种植 基地的边长是多少?
练习4.先化简,再求值:
3x 23x 2 5xx 1 2x 12 ,
其中 x 1 . 3

课堂小结
平方差公式及其应用
完全平方公式及其应 用
课堂训练
Thank you 感谢聆听
例1.下列各式能用平方差公式计算的是( )
A. 3a b 3a b
B. 3a ba b
C. 3a b 3a b
D. 3a b3a b
如图所示,阴影部分的面积为 a ba b,
a
b
a-b
而图中阴影部分的面积还等于两个边长分
别为a与b的正方形的面积之差,即 a2 b2,

2024年北师大版数学七(下)重难点培优训练2 平方差公式和完全平方公式(学生版)

2024年北师大版数学七(下)重难点培优训练2 平方差公式和完全平方公式(学生版)

2024年北师大版数学七(下)重难点培优训练2 平方差公式和完全平方公式一、选择题1.(2024八上·黔西南期末)若4y2+my+9是完全平方式,则m的值是()A.−12B.12C.−12或11D.−12或12 2.(2023七下·石家庄期中)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”() A.56B.66C.76D.863.(2023七下·大渡口期中)若a+b=5,ab=−1,则(a−b)2等于()A.25B.1C.21D.294.(2023七下·济南高新技术产业开发期末)如图分割的正方形,拼接成长方形的方案中,可以验证()A.(a+b)(a−b)=a2−b2B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.(a−b)2=a2−2ab−b25.下列各式中,不能用平方差公式计算的是()A.(x-2y)(2y+x)B.(x-2y)(-x-2y)C.(x+2y)(-x-2y)D.(2y-x)(-x-2y)6.(2023七下·江阴期中)一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62-32,63=82-12,故27,63都是“创新数”,下列各数中,不是“创新数”的是()A.31B.41C.16D.547.(2023七下·沭阳期中)计算(a−b)(a+b)(a2+b2)(a4+b4)的结果是()A.a8−b8B.a8−2a4b4+b8C.a8+2a4b4+b8D.a8+b88.下列运算中,错误的运算有().①(2x+y)2=4x2+y2②(a-3b)2=a2-9b2③(-x-y)2=x2-2xy+y2④(x-12)2=x2-2x+14A.1个B.2个C.3个D.4个9.(2023七下·南山期中)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”,根据“杨辉三角”计算(a+b)9的展开式中第三项的系数为()A.28B.36C.45D.5610.(2023七下·通州期中)下列运算:①(a+b)2=a2+b2;②(x+2)2=x+2x+4;③(x−3)(x+ 3)=x2−3;④(x+5)(x−1)=x2+4x−5,其中正确的是()A.①B.②C.③D.④二、填空题11.(2023七下·通州期中)计算:2023×2021−20222=.12.(2023七下·云岩期中)如图,长为a,宽为b的长方形的周长为16,面积为12,则a2+b2的值为.13.(2023七下·石阡期中)若(x−2023)(x−2021)=2,则(x−2023)2+(x−2021)2的值为.14.(2023七下·石家庄期中)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.当S1+S2=40时,则图3中阴影部分的面积S3=.15.(2023七下·顺义期中)观察下列各式的规律:1×3=22−1;3×5=42−1;5×7=62−1;7×9=82−1…请将发现的规律用含n的式子表示为.16.(2023七下·石家庄期中)已知N=(2+1)(22+1)(24+1)(28+1)(216+1),则N的个位数字是.三、计算题17.(2023七下·金溪期中)运用乘法公式计算:(1)(2m −3n)(−2m −3n)−(2m −3n)2(2)1002−992+982−972+⋯+22−12.18.(2023七下·即墨期中)计算:(1)(12)−2−π0+(−3)2. (2)2m 3⋅3m −(2m 2)2+m 6÷m 2.(3)(2a −b)2−4(a −b)(a +2b).(4)20212−2020×2022.(用简便方法计算)四、综合题19.(2023七下·凤翔期中)聪聪和同学们用2张A 型卡片、2张B 型卡片和1张C 型卡片拼成了如图所示的长方形.其中A 型卡片是边长为a 的正方形;B 型卡片是长方形;C 型卡片是边长为b 的正方形.(1)请用含a 、b 的代数式分别表示出B 型卡片的长和宽;(2)如果a =10,b =6,请求出他们用5张卡片拼出的这个长方形的面积.20.(2022七下·义乌期中)你会求(a -1)(a 2012+a 2011+a 2010+‥‥a 2+a +1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(a -1)(a +1)=a 2-1(a -1)(a 2+a +1)=a 3-1;(a -1)(a 3+a 2+a +1)=a 4-1;(1)由上面的规律我们可以大胆猜想,得到(a -1)(a 2012+a 2011+a 2010+……a 2+a +1)= .(2)利用上面的结论,求22013+22012+22011+……22+2+1的值是 .(3)求52013+52012+52011+……52+5+1的值.21.(2023七下·深圳期中)在数学中,有许多关系都是在不经意间被发现的,请认真观察图形,解答下列问题:(1)如图1,用两种不同的方法表示阴影图形的面积,得到一个等量关系:.(2)如图1中,a,b满足a+b=9,ab=15,求a2+b2的值.(3)如图2,点C在线段AB上,以AC,BC为边向两边作正方形,AC+BC=14,两正方形的面积分别为S1,S2,且S1+S2=40,求图中阴影部分面积.22.(2023七下·宝安期中)【项目学习】配方法是数学中重要的一种思想方法,它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,并结合非负数的意义来解决一些问题.例如,把二次三项式x2−2x+3进行配方解:x2−2x+3=x2−2x+1+2=(x2−2x+1)+2=(x−1)2+2我们定义:一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”例如,5是“完美数”,理由:因为5=22+12,再如,M=x2+2xy+2y2=(x+y)2+y2,(x,y是整数)所以M也是“完美数”(1)【问题解决】下列各数中,“完美数”有.(填序号)①10 ②45 ③28 ④29(2)若二次三项式x2−6x+13(x是整数)是“完美数”,可配方成(x−m)2+n(m,n为常数),则mn的值为;(3)【问题探究】已知S=x2+9y2+8x−12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的k的值.(4)【问题拓展】已知实数x,y满足−x2+7x+y−10=0,求x+y的最小值.23.(2023七下·石阡期中)如图1,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.(1)请直接用含a和b的代数式表示S1=,S2=;写出利用图形的面积关系所得到的公式:(用式子表示).(2)依据这个公式,康康展示了“计算:(2+1)×(22+1)×(24+1)×(28+1)”的解题过程.解:原式=(2−1)×(2+1)×(22+1)×(24+1)×(28+1)=(22−1)×(22+1)×(24+1)×(28+1)=(24−1)×(24+1)×(28+1)=(28−1)×(28+1)=216−1.请仿照康康的解题过程计算:2×(3+1)×(32+1)×(34+1)×(38+1)+1.(3)对数学知识要会举一反三,请用(1)中的公式证明:任意两个相邻奇数的平方差必是8的倍数.24.(2023七下·英德期中)对于一个图形,通过两种不同的方法计算它们的面积,可以得到一个数学等式.例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)如图2,需要张边长为a的正方形,张边长为b的正方形,张边长为a、b的长方形.(2)类似图1的数学等式,写出图2表示的数学等式:.(3)用多项式乘多项式的法则验证(2)中得到的等式.25.(2023七下·龙岗期中)如图(a)所示,边长为a的大正方形中有一个边长为b的小正方形,把图(a)中的阴影部分拼成一个如图(b)所示的长方形.(1)通过观察比较图(b)与图(a)中的阴影部分面积,可以得到乘法公式(用含a,b的等式表示)(2)(应用)请应用这个公式完成下列各题:①若a+2b=3,2b-a=2,则a2-4b2的值为②若4m2=12+n,2m+n=4,则2m-n的值为(3)(拓展)计算:1002-992+982-972+……+42-32+22-12.26.(2022七下·咸阳期中)阅读材料:若满足(8-x)(x-6)=-3,求(8-x)2+(x-6)2的值.解:设8-x=a,x-6=b,则(8-x)(x-6)=ab=-3,a+b=8-x+x-6=2所以(8-x)2+(x-6)2=a2+b2=(a+b)2-2ab=22-2×(-3)=10请仿照上例解决下面的问题:(1)问题发现:若x满足(3-x)(x-2)=-10,求(3-x)2+(x-2)2的值;(2)若(6-x)2+(x-4)2=8求(6-x)(x-4)的值;(3)类比探究:若x满足(2022-x)2+(2021-x)2=2020;求(2022-x)(2021-x)的值;27.(2021七下·娄底期中)阅读材料并回答问题:我们知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如(2a+b)(a+b)=2a2+3ab+b2就可以用图①或图②中图形的面积表示.(1)请写出图③所表示的代数恒等式;(2)试画一个几何图形,使它的面积可用(a+b)(a+3b)=a2+4ab+3b2表示;(3)请依照上述方法另写一个含有a,b的代数恒等式,并画出它对应的几何图形.28.(2022七下·连云港期中)(1)【知识情境】通常情况下,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是;(2)【拓展探究】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.如图3是边长为a+b的正方体,被如图所示的分割线分成8块.用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:;(3)已知a+b=4,ab=2,利用上面的恒等式求a3+b3的值.29.(2022七下·定远期中)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.(1)【理解应用】观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;(2)【拓展升华】利用(1)中的等式解决下列问题①已知a2+b2=20,a+b=6,求ab的值;②已知(2021−c)(c−2019)=1,求(2021−c)2+(c−2019)2的值.答案解析部分1.【答案】D【知识点】完全平方式【解析】【解答】∵4y2+my+9是完全平方式,∴4y2+my+9=(2y±3)2=4y2±12y+9,∴m=±12,故答案为:D.【分析】根据完全平方式的特点将4y2+my+9写成某一个多项式的平方的形式,从而求解. 2.【答案】C【知识点】平方差公式及应用【解析】【解答】∵76=202-182,∴76是神秘数;故答案为:C。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:a+ba-b=a 2-b 2 a+b 2=a 2+2ab+b 2 a-b 2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值;解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值;解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式;解:19992-2000×1998 =19992-1999+1×1999-1=19992-19992-12=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和a-b 2的值;〖解析〗此题可用完全平方公式的变形得解;解:a 2+b 2=a+b 2-2ab=4-2=2a-b 2=a+b 2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14;求x 2-z 2的值;〖解析〗此题若想根据现有条件求出x 、y 、z 的值,比较麻烦,考虑到x 2-z 2是由x+z 和x-z 的积得来的,所以只要求出x-z 的值即可;解:因为x-y=2,y-z=2,将两式相加得x-z=4,所以x 2-z 2=x+zx-z=14×4=56; 例6:判断2+122+124+1……22048+1+1的个位数字是几〖解析〗此题直接计算是不可能计算出一个数字的答案,故有一定的规律可循;观察到1=2-1和上式可构成循环平方差;解:2+122+124+1……22048+1+1=2-122+124+1……22048+1+1=24096=161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6;例7.运用公式简便计算11032 21982解:1103210032 10022100332 100006009 106092198220022 20022200222 400008004 39204例8.计算1a 4b 3ca 4b 3c 23xy 23xy 2解:1原式a 3c 4ba 3c 4ba 3c 24b 2a 26ac 9c 216b 22原式3xy 23xy 29x 2 y 24y 49x 2y 24y 4例9.解下列各式1已知a 2b 213,ab 6,求ab 2,ab 2的值;2已知ab 27,ab 24,求a 2b 2,ab 的值;3已知aa 1a 2b 2,求222a b ab +-的值; 4已知13x x -=,求441x x +的值; 分析:在公式ab 2a 2b 22ab 中,如果把ab ,a 2b 2和ab 分别看作是一个整体,则公式中有三个未知数,知道了两个就可以求出第三个;解:1∵a 2b 213,ab 6ab 2a 2b 22ab 132625 ab 2a 2b 22ab 132612∵ab 27,ab 24a 22abb 27 ① a 22abb 24 ②①②得 2a 2b 211,即22112a b +=①②得 4ab 3,即34ab =3由aa 1a 2b 2 得ab 24由13x x -=,得19x x 2⎛⎫-= ⎪⎝⎭ 即22129x x +-= 22111x x ∴+= 221121x x 2⎛⎫∴+= ⎪⎝⎭ 即4412121x x ++= 441119x x += 例10.四个连续自然数的乘积加上1,一定是平方数吗为什么分析:由于1234125522345112111234561361192…… 得猜想:任意四个连续自然数的乘积加上1,都是平方数; 解:设n ,n 1,n 2,n 3是四个连续自然数则nn 1n 2n 31 nn 3n 1n 21 n 23n 22n 23n 1n 23nn 23n 21 n 23n 12∵n 是整数, n 2,3n 都是整数 n 23n 1一定是整数n 23n 1是一个平方数 四个连续整数的积与1的和必是一个完全平方数;二、乘法公式的用法一、套用:这是最初的公式运用阶段,在这个环节中,应弄清乘法公式的来龙去脉,准确地掌握其特征,为辨认和运用公式打下基础,同时能提高学生的观察能力;例1. 计算:()()53532222x y x y +-解:原式()()=-=-53259222244x y x y二、连用:连续使用同一公式或连用两个以上公式解题;例2. 计算:()()()()111124-+++a a a a解:原式()()()=-++111224a a a例3. 计算:()()32513251x y z x y z +-+-+--解:原式()()[]()()[]=-++--+25312531y z x y z x三、逆用:学习公式不能只会正向运用,有时还需要将公式左、右两边交换位置,得出公式的逆向形式,并运用其解决问题;例4. 计算:()()57857822a b c a b c +---+解:原式()()[]()()[]=+-+-++---+578578578578a b c a b c a b c a b c四、变用: 题目变形后运用公式解题;例5. 计算:()()x y z x y z +-++26解:原式()[]()[]=++-+++x y z z x y z z 2424五、活用: 把公式本身适当变形后再用于解题;这里以完全平方公式为例,经过变形或重新组合,可得如下几个比较有用的派生公式:灵活运用这些公式,往往可以处理一些特殊的计算问题,培养综合运用知识的能力; 例6. 已知a b ab -==45,,求a b 22+的值;解:()a b a b ab 2222242526+=-+=+⨯=例7. 计算:()()a b c d b c d a ++-+++-22解:原式()()[]()()[]=++-++--b c a d b c a d 22三、学习乘法公式应注意的问题一、注意掌握公式的特征,认清公式中的“两数”.例1 计算-2x 2-52x 2-5分析:本题两个因式中“-5”相同,“2x 2”符号相反,因而“-5”是公式a +ba -b =a 2-b 2中的a ,而“2x 2”则是公式中的b .解:原式=-5-2x 2-5+2x 2=-52-2x 22=25-4x 4.例2 计算-a 2+4b 2分析:运用公式a +b 2=a 2+2ab +b 2时,“-a 2”就是公式中的a ,“4b ”就是公式中的b ;若将题目变形为4b -a 22时,则“4b ”是公式中的a ,而“a 2”就是公式中的b .解略二、注意为使用公式创造条件例3 计算2x +y -z +52x -y +z +5.分析:粗看不能运用公式计算,但注意观察,两个因式中的“2x ”、“5”两项同号,“y ”、“z ”两项异号,因而,可运用添括号的技巧使原式变形为符合平方差公式的形式.解:原式=〔2x +5+y -z 〕〔2x +5-y -z 〕=2x +52-y -z 2=4x 2+20x +25-y +2yz -z 2.例5 计算2+122+124+128+1.分析:此题乍看无公式可用,“硬乘”太繁,但若添上一项2-1,则可运用公式,使问题化繁为简.解:原式=2-12+122+124+128+1 =22-122+124+128+1=24-124+128+1=28-128+1=216-1三、注意公式的推广计算多项式的平方,由a +b 2=a 2+2ab +b 2,可推广得到:a +b +c 2=a 2+b 2+c 2+2ab +2ac +2bc .可叙述为:多项式的平方,等于各项的平方和,加上每两项乘积的2倍.例6 计算2x +y -32解:原式=2x 2+y 2+-32+2·2x ·y +2·2x -3+2·y -3=4x 2+y 2+9+4xy -12x -6y .四、注意公式的变换,灵活运用变形公式例7 2已知:x +2y =7,xy =6,求x -2y 2的值.分析:粗看似乎无从下手,但注意到乘法公式的下列变形:x 2+y 2=x +y 2-2xy ,x 3+y 3=x +y 3-3xyx +y ,x +y 2-x -y 2=4xy ,问题则十分简单.解:2x -2y 2=x +2y 2-8xy =72-8×6=1.例8 计算a +b +c 2+a +b -c 2+a -b +c +b -a +c 2.分析:直接展开,运算较繁,但注意到由和及差的完全平方公式可变换出a +b 2+a -b 2=2a 2+b 2,因而问题容易解决.解:原式=a +b +c 2+a +b -c 2+c +a -b 2+c -a -b 2=2a +b 2+c 2+2c 2+a -b 2=2a +b 2+a -b 2+4c 2=4a 2+4b 2+4c 2五、注意乘法公式的逆运用例9 计算a -2b +3c 2-a +2b -3c 2.分析:若按完全平方公式展开,再相减,运算繁杂,但逆用平方差公式,则能使运算简便得多. 解:原式=a -2b +3c +a +2b -3ca -2b +3c -a +2b -3c =2a -4b +6c =-8ab +12ac .例10 计算2a +3b 2-22a +3b 5b -4a +4a -5b 2分析:此题可以利用乘法公式和多项式的乘法展开后计算,但逆用完全平方公式,则运算更为简便.解:原式=2a +3b 2+22a +3b 4a -5b +4a -5b 2=2a +3b +4a -5b 2=6a -2b 2=36a 2-24ab +4b 2. 四、怎样熟练运用公式:一、明确公式的结构特征这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.二、理解字母的广泛含义乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算x +2y -3z 2,若视x +2y 为公式中的a ,3z 为b ,则就可用a -b 2=a 2-2ab +b 2来解了;三、熟悉常见的几种变化有些题目往往与公式的标准形式不相一致或不能直接用公式计算,此时要根据公式特征,合理调整变化,使其满足公式特点.常见的几种变化是:1、位置变化 如3x +5y 5y -3x 交换3x 和5y 的位置后即可用平方差公式计算了.2、符号变化 如-2m -7n 2m -7n 变为-2m +7n 2m -7n 后就可用平方差公式求解了思考:不变或不这样变,可以吗3、数字变化 如98×102,992,912等分别变为100-2100+2,100-12,90+12后就能够用乘法公式加以解答了.4、系数变化 如4m +2n 2m -4n 变为22m +4n 2m -4n 后即可用平方差公式进行计算了. 5、项数变化 如x +3y +2zx -3y +6z 变为x +3y +4z -2zx -3y +4z +2z 后再适当分组就可以用乘法公式来解了四、注意公式的灵活运用有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.如计算a 2+12·a 2-12,若分别展开后再相乘,则比较繁琐,若逆用积的乘方法则后再进一步计算,则非常简便.即原式=a 2+1a 2-12=a 4-12=a 8-2a 4+1.对数学公式只会顺向从左到右运用是远远不够的,还要注意逆向从右到左运用.如计算1-2211-2311-241…1-2911-2101,若分别算出各因式的值后再行相乘,不仅计算繁难,而且容易出错.若注意到各因式均为平方差的形式而逆用平方差公式,则可巧解本题. 即原式=1-211+211-311+31×…×1-1011+101=21×23×32×34×…×109×1011 =21×1011=2011. 有时有些问题不能直接用乘法公式解决,而要用到乘法公式的变式,乘法公式的变式主要有:a 2+b 2=a +b 2-2ab ,a 2+b 2=a -b 2+2ab 等.用这些变式解有关问题常能收到事半功倍之效.如已知m +n =7,mn =-18,求m 2+n 2,m 2-mn + n 2的值.面对这样的问题就可用上述变式来解,即m 2+n 2=m +n 2-2mn =72-2×-18=49+36=85,m 2-mn + n 2= m +n 2-3mn =72-3×-18=103.下列各题,难不倒你吧1、若a +a1=5,求1a 2+21a ,2a -a 12的值. 2、求2+122+124+128+1216+1232+1264+1+1的末位数字.答案:1.123;221.2. 6五、乘法公式应用的五个层次乘法公式:a +ba -b=a 2-b 2,a ±b=a 2±2ab +b 2,a ±ba 2±ab +b 2=a 3±b 3.第一层次──正用即根据所求式的特征,模仿公式进行直接、简单的套用.例1计算 2-2x -y2x -y .2原式=-y -2x -y +2x=y 2-4x 2.第二层次──逆用,即将这些公式反过来进行逆向使用.例2计算119982-1998·3994+19972;解1原式=19982-2·1998·1997+19972 =1998-19972=1 第三层次──活用 :根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式.例3化简:2+122+124+128+1+1.分析直接计算繁琐易错,注意到这四个因式很有规律,如果再增添一个因式“2-1”便可连续应用平方差公式,从而问题迎刃而解.解原式=2-12+122+124+128+1+1=22-122+124+128+1+1=216.例4计算:2x-3y-1-2x-3y+5分析仔细观察,易见两个因式的字母部分与平方差公式相近,但常数不符.于是可创造条件─“拆”数:-1=2-3,5=2+3,使用公式巧解.解原式=2x-3y-3+2-2x-3y+3+2=2-3y+2x-32-3y-2x-3=2-3y2-2x-32=9y2-4x2+12x-12y-5.第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=a+b2-2ab,a3+b3=a+b3-3aba+b等,则求解十分简单、明快.例5已知a+b=9,ab=14,求2a2+2b2和a3+b3的值.解:∵a+b=9,ab=14,∴2a2+2b2=2a+b2-2ab=292-2·14=106,a3+b3=a+b3-3aba+b=93-3·14·9=351第五层次──综合后用:将a+b2=a2+2ab+b2和a-b2=a2-2ab+b2综合,可得 a+b2+a-b2=2a2+b2;a+b2-a-b2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷.例6计算:2x+y-z+52x-y+z+5.解:原式=142x+y-z+5+2x-y+z+52-142x+y-z+5-2x-y+z+52=2x+52-y-z2=4x2+20x+25-y2+2yz-z2六、正确认识和使用乘法公式1、数形结合的数学思想认识乘法公式:对于学习的两种三个乘法公式:平方差公式:a+ba-b=a2-b2、完全平方公式:a+b2=a2+2ab+b2;a-b2=a2-2ab+b2,可以运用数形结合的数学思想方法来区分它们;假设a、b都是正数,那么可以用以下图形所示意的面积来认识乘法公式;如图1,两个矩形的面积之和即阴影部分的面积为a+ba-b,通过左右两图的对照,即可得到平方差公式a+ba-b=a2-b2;图2中的两个图阴影部分面积分别为a+b2与a-b2,通过面积的计算方法,即可得到两个完全平方公式:a+b2=a2+2ab+b2与a-b2=a2-2ab+b2;2、乘法公式的使用技巧:①提出负号:对于含负号较多的因式,通常先提出负号,以避免负号多带来的麻烦;例1、运用乘法公式计算:1-1+3x-1-3x; 2-2m-12解:1-1+3x-1-3x=-1-3x-1+3x=1-3x1+3x=12-3x2=1-9x2.2 -2m-12=-2m+12=2m+12= 4m 2+4m+1.②改变顺序:运用交换律、结合律,调整因式或因式中各项的排列顺序,可以使公式的特征更加明显.例2、 运用乘法公式计算:1错误!错误!; 2x-1/2x 2+1/4x+1/2解:1错误!错误!=错误!错误!=错误!错误!=错误!= 错误!2 x-1/2x 2+1/4x+1/2= x-1/2 x+1/2x 2+1/4=x 2-1/4 x 2+1/4= x 2-1/16.③逆用公式将幂的公式或者乘法公式加以逆用,比如逆用平方差公式,得a 2-b 2 = a+ba-b,逆用积的乘方公式,得a n b n =ab n ,等等,在解题时常会收到事半功倍的效果;例3、 计算:1x/2+52-x/2-52 ; 2a-1/22a 2+1/4 2a+1/22解:1x/2+52-x/2-52 =x/2+5+x/2-5 x/2+5-x/2-5=x/2+5+x/2-5 x/2+5-x/2+5=x ·10=10x.2a-1/22a 2+1/4 2a+1/22=a-1/2a 2+1/4 a+1/2 2 =a-1/2 a+1/2 a 2+1/4 2=a 2-1/4 a 2+1/4 2 =a 4-1/16 2 =a 8-a 4/8+1/256.④合理分组:对于只有符号不同的两个三项式相乘,一般先将完全相同的项调到各因式的前面,视为一组;符号相反的项放在后面,视为另一组;再依次用平方差公式与完全平方公式进行计算;计算:1x+y+11-x-y; 22x+y-z+52x-y+z+5.解:1 x+y+11-x-y=1+x+y1-x-y= 1+x+y1-x+y=12-x+y 2=1-x 2+2xy+y 2= 1-x 2-2xy-y 2.22x+y-z+52x-y+z+5=2x+5+y-z2x+5-y+z= 2x+5+y-z2x+5-y-z= 2x+52-y-z 2 =4x 2+20x+25-y 2-2yz+z 2= 4x 2+20x+25-y 2+2yz-z 2 = 4x 2-y 2-z 2+2yz +20x+25 .七、巧用公式做整式乘法整式乘法是初中数学的重要内容,是今后学习的基础,应用极为广泛;尤其多项式乘多项式,运算过程复杂,在解答中,要仔细观察,认真分析题目中各多项式的结构特征,将其适当变化,找出规律,用乘法公式将其展开,运算就显得简便易行;一. 先分组,再用公式例1. 计算:()()a b c d a b c d -+-----简析:本题若以多项式乘多项式的方法展开,则显得非常繁杂;通过观察,将整式()a b c d -+-运用加法交换律和结合律变形为()()--++b d a c ;将另一个整式()----a b c d 变形为()()---+b d a c ,则从其中找出了特点,从而利用平方差公式即可将其展开;解:原式[]()()[]=--++---+()()b d a c b d a c 二. 先提公因式,再用公式例2. 计算:8244x y x y +⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪简析:通过观察、比较,不难发现,两个多项式中的x 的系数成倍数,y 的系数也成倍数,而且存在相同的倍数关系,若将第一个多项式中各项提公因数2出来,变为244x y +⎛⎝ ⎫⎭⎪,则可利用乘法公式; 解:原式=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪24444x y x y 三. 先分项,再用公式例3. 计算:()()232236x y x y ++-+简析:两个多项中似乎没多大联系,但先从相同未知数的系数着手观察,不难发现,x 的系数相同,y 的系数互为相反数,符合乘法公式;进而分析如何将常数进行变化;若将2分解成4与-2的和,将6分解成4与2的和,再分组,则可应用公式展开; 解:原式=[]()()[]()()24232423x y x y +--++- 四. 先整体展开,再用公式例4. 计算:()()a b a b +-+221简析:乍看两个多项式无联系,但把第二个整式分成两部分,即[]()a b -+21,再将第一个整式与之相乘,利用平方差公式即可展开;解:原式[]=+-+()()a b a b 221五. 先补项,再用公式例5. 计算:331313131842+++++()()()()简析:由观察整式()31+,不难发现,若先补上一项()31-,则可满足平方差公式;多次利用平方差公式逐步展开,使运算变得简便易行;解:原式=+++++-331313131312842()()()()() 六. 先用公式,再展开例6. 计算:11211311411102222-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪… 简析:第一个整式1122-⎛⎝ ⎫⎭⎪可表示为11222-⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥,由简单的变化,可看出整式符合平方差公式,其它因式类似变化,进一步变换成分数的积,化简即可;解:原式=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪11211211311311411411101110… 七. 乘法公式交替用例7. 计算:()()()()x z x xz z x z x xz z +-+-++222222简析:利用乘法交换律,把第一个整式和第四个整式结合在一起,把第二个整式与第三个整式结合,则可利用乘法公式展开;解:原式[][]=+++-+-()()()()x z x xz z x xz z x z 222222 八、中考与乘法公式1. 结论开放例1. 02年济南中考请你观察图1中的图形,依据图形面积的关系,不需要添加辅助线,便可得到一个你非常熟悉的公式,这个公式是______________;分析:利用面积公式即可列出()()x y x y x y +-=-22或()()x y x y x y 22-=+-或()x y x xy y -=-+2222在上述公式中任意选一个即可;例2. 03年陕西中考如图2,在长为a 的正方形中挖掉一个边长为b 的小正方形a b >,把余下的部分剪成一个矩形,如图3,通过计算两个图形的面积,验证了一个等式,则这个等式是______________;分析:利用面积公式即可列出()()a b a b a b +-=-22或()()a b a b a b 22-=+-2. 条件开放例3. 03年四川中考多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________填上你认为正确的一个即可,不必考虑所有的可能情况;分析:解答时,可能习惯于按课本上的完全平方公式,得出 ()9163122x x x ++=+ 或()9163122x x x +-=-只要再动点脑筋,还会得出 9191222x x +-= 故所加的单项式可以是±6x ,或8144x ,或-1,或-92x 等; 3. 找规律例4. 01年武汉中考 观察下列各式:由猜想到的规律可得()()x x x x x n n n -+++++=--1112…____________;分析:由已知等式观察可知 ()()x x x x x x n n n n -+++++=---+111121…4. 推导新公式例5. 在公式()a a a +=++12122中,当a 分别取1,2,3,……,n 时,可得下列n 个等式 将这n 个等式的左右两边分别相加,可推导出求和公式:123++++=…n __________用含n 的代数式表示 分析:观察已知等式可知,后一个等式的右边第一项等于前一个等式的左边,将已知等式左右两边分别相加,得:()n n n +=+⨯+⨯++⨯+112122222… 移项,整理得:例6. 04年临汾中考阅读材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些等式也可以用这种形式表示,例如:()()22322a b a b a ab b ++=++ 就可以用图4或图5等图表示;1请写出图6中所表示的代数恒等式____________;2试画出一个几何图形,使它的面积能表示:3请仿照上述方法另写一个含有a,b 的代数恒等式,并画出与之对应的几何图形; 解:1()()2222522a b b a a b ab ++=++2如图7。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案Company number:【0089WT-8898YT-W8CCB-BUUT-202108】乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例22解:∵(∴+)(b a ∵+b a 例3解:例4解:a 2+b (例5x-z 的积得来例61=(2-1)和解:( =( =24096 =161024因为当一个数的个位数字是6的时候,这个数的任意正整数幂的个位数字都是6,所以上式的个位数字必为6。

例7.运用公式简便计算 (1)1032 (2)1982 解:(1)1032=(100+3)2 =1002+2⨯100⨯3+32 =10000+600+9 =10609(2)1982=(200-2)2 =2002-2⨯200⨯2+22 =40000-800+4 =39204 例8.计算(1)(a +4b -3c )(a -4b -3c ) (2)(3x +y -2)(3x -y +2) 解:(1)原式=[(a -3c )+4b ][(a -3c )-4b ]=(a -3c )2-(4b )2=a 2-6ac +9c 2-16b 2 (2)原式=[3x +(y -2)][3x -(y -2)]=9x 2-( y 2-4y +4)=9x 2-y 2+4y -4 例9.解下列各式(1)已知a 2+b 2=13,ab =6,求(a +b )2,(a -b )2的值。

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案

平方差公式与完全平方公式试题含答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,xyyxx 2y 2 ② 符号变化,xyxyx 2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a 2b 2⑤ 换式变化,xyzmxyzmxy 2zm 2 x 2y 2z 22zm +m 2x 2y 2z 22zmm 2⑥ 增项变化,xyzxyzxy 2z 2 x 22xy y 2z 2⑦ 连用公式变化,xyxyx 2y 2x 2y 2x 2y 2x 4y 4⑧ 逆用公式变化,xyz 2xyz 2xyzxyzxyzxyz2x 2y 2z 4xy 4xz例1.已知2=+b a ,1=ab ,求22b a +的值。

解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。

解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。

解:19992-2000×1998 =19992-(1999+1)×(1999-1)=19992-(19992-12)=+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。

平方差公式与完全平方公式专项练习题

平方差公式与完全平方公式专项练习题

一、选择题1.下列运算正确的是()A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a22.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b)C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是() A.5 B.6 C.-6 D.-5 二、填空题5.(-2x+y)(-2x-y)=______ .6.(-3x2+2y2)()=9x4-4y4.7.(a+b-1)(a-b+1)=()2-()2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.三、计算题10、2023×2113. 12、(3+1)(32+1)(34+1)…(32008+1)(n是正整数);13、2009×2007-20082.(1)一变:22007200720082006-⨯.(2)二变:22007200820061⨯+.14、解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).15、广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?16、完全平方公式应用一、填空:1、(a-b+1)(a+b-1)= 2.已知x 2+4x+y 2-2y+5=0,则x+y= .3.已知0)13(132=+++-x y x ,则x 2+y 2= .4.若x+y=3,x-y=1,则x 2+y 2= xy= .5.x 2-px+16是完全平方式,则p= .6.(a+b)2= (a-b)2+________.7.若x+2y=3,xy=2,则x 2+4y 2=______. 8.已知(x+y)2=9,(x-y)2=5,则xy=二.选择题9.(-x 2-y )2的运算结果正确的是 ( )A.—x 2-2xy+y 2B.-x 4-2x 2y+y 2C.x 4+2x 2y+y 2D.x 4-2x 2y+y 210.下列各式计算结果是2mn-m 2-n 2的是( )A.(m-n )2B.-(m-n )2C.-(m+n )2D.(m+n)211.下列等式:①(a-b )2=(b-a )2②(a+b )2=(-a-b )2③(a-b )2=(a+b )2④a 2-b 2=(b-a)(-b-a)⑤(a+b)(a-b)=(b+a)(b-a).其中一定成立的是( )A.1个B.2个C.3个D.4个12.计算(-x-2y )2的结果是( )A.x 2-4xy+4y 2B.-x 2-4xy-4y 2C.x 2+4xy+4y 2D.-x 2+4xy-4y 2三、解答题1、①已知a 2-8a+k 是完全平方式,试问k 的值.②已知x 2+mx+9是完全平方式,求m 的值.2、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

平方差公式与完全平方公式练习题

平方差公式与完全平方公式练习题

平方差公式1.计算以下多项式的积.(1)(x+1)(x-1 )(2)(m+2)(m-2)(3)(2x+1)(2x-1 )(4)(x+5y)(x-5y )2.以下哪些多项式相乘能够用平方差公式?(1)(2a 3b)(2a 3b) (2)( 2a 3b)( 2a 3b)(3) ( 2a 3b)( 2a 3b) (4) ( 2a 3b)( 2a 3b)(5) (a b c)(a b c) (6)(a b c)(a b c)3.计算:(1)(3x+2)(3x-2 )(2)(b+2a)(2a-b)(3)(-x+2y )(-x-2y )4.简易计算:(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)5.计算:(1)( x 2 y)( 2y x) (2)(2x 5)(5 2x)(3)(0.5 x)( x 0.5)( x2 0.25) () ( x 6) 2 (x 6) 24(5)100.5 ×(6)99×101×100016.证明:两个连续奇数的积加上 1 必定是一个偶数的平方7.求证: (m 5)2 (m 7) 2必定是24的倍数完整平方公式(一)1.应用完整平方公式计算:(1)(4m+n)2 (2)(y- 1)22(3)(-a-b )2 (4)(b-a )2 2. 简易计算:(1)1022 (2)992(3)50.01 2 (4) 49.9 23. 计算:(1)(4x y)2 () (3a 2b 4ab2 c) 22(3)(5x )2= 10xy 2 y4 (4) (3a b)( 3a b) (5) (x 1 )2x(6)( x 1 ) 2x4.在以下多项式中,哪些是由完整平方公式得来的?(1) x2 4x 4(2) 1 16 a2 () x 2 13(4)x2 xy y2 (5)9x2 3xy 1 y24完整平方公式(二)1.运用法例:( 1)a+b-c=a+()(2)a-b+c=a-()(3)a-b-c=a- ()(4)a+b+c=a-()2.判断以下运算能否正确.(1)2a-b- c=2a- (b-c)(2)m-3n+2a-b=m+(3n+2a-b)2 2(3)2x-3y+2=- (2x+3y-2 )(4)a-2b-4c+5=(a-2b)-(4c+5)3.计算:(1)(x+2y-3 )(x-2y+3 )(2)(a+b+c)2(3)(x+3)2-x 2(4)(x+5)2-(x-2)(x-3)4.计算:(1)(a b 2c)2(2)(a b c) 2( a b c)25.假如 kx 2 36 x 81 是一个完整平方公式,则k的值是多少?6. 假如4x2kx 36 是一个完整平方公式,则k 的值是多少?7. 假如x2y 24,那么 ( x y) 2 ( x y) 2的结果是多少?8. 已知a b 5 ab 1.5 ,求a2 b 2和 (a b) 2的值已知x 1 3 ,求x211)2的值x 和 ( xx2 x9. 已知a b -7 ab 12,求a2b2 - ab 和( a b) 2的值10. 证明(2n1) 225 能被4整除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学设计
授课教师杨调萍
上课时间
科目数学
教材版本
北师大版
年级
七年级下册
教学题目
平方差公式、完全平方公式
教学目标(1)理解平方差公式的含义,并能运用平方差公式进行计算;(2)理解完全平方公式的含义,并能运用完全平方公式进行计算。

教学重难

能够灵活运用平方差公式、完全平方公式去进行计算和化简。

教学过程一、平方差公式:
1、平方差公式:2
2
)
)(
(b
a
b
a
b
a-
=
-
+。

即两个数的和与两个数的差的乘积,等于这两个数的平方差。

2、平方差公式的特点:
左边是两个二项式相乘,其中一项完全相同,另一项互为相反数;
右边是相同项的平方减去相反项的平方。

3、平方差公式中字母的含义:公式中字母a、b可以是具体的数,也可是任意一个单项式或多项式。

4、平方差公式可以逆用:)
)(
(
2
2b
a
b
a
b
a-
+
=
-。

5、例题讲解:
例题1:(1))
5
4(
5
4y
x
y
x-
+)
( (2))7
3
(
7
3-
-
-
-a
a)

(3))
2
1
2
(
2
1
22
2-
-
+
-x
x)
((4))
3(
3a
b
b
a-
-
-)

1
例题2:计算
)1)(1(12
++-n
n n )(
例题3:用平方差公式进行计算:
(1)102⨯98 (2)10.3⨯9.7
(3)6
52
613⨯
例题4:先化简,再求值:
(1)2),2()2(2-=--+-a a a a a 其中)(。

(2)3)35)(35()16(2-=-+-+-x x x x x ,其中)(。

2
二、完全平方公式:
1、完全平方公式2222)(b ab a b a ++=+。

即两个数的和的平方和加上它们乘积的2倍。

2、完全平方公式2222)(b ab a b a +-=-。

即两个数的差的平方和减去它们乘积的2倍。

3、完全平方公式的特点:
左边是二项式的完全平方,右边是一个二次三项式,其中的两项是左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍,其符号取决于左边二项式中间的符号。

4、完全平方公式中字母的含义:公式中字母a 、b 可以是具体的数,也可是任意一个单项式或多项式。

5、完全平方公式 还可以逆用:
拓展应用:ab b a b a 2)(222-+=+ ,ab b a b a 2)(222+-=+ ab b a b a 4)()(22+-=+ ,ab b a b a 4)()(22-+=-
6、例题讲解:
例题1:用完全平方公式进行计算: (1))
(b a 322
+- (2)
)(n m --2
(3))
(y x 32
+- (4))(c b c b --+)(
3
例题2:计算
(1)
)32(32++-+y x y x )( (2))32()32(2
2y x y x +-
(3)

(c b a ++2
(4)

(c b a 322
+-
例题3:用完全平方公式进行计算: (1)301
2
(2)
5.92
(3))(60
1602
例题4:
(1)已知的值。

求y x xy y x 2
2
.8,7+-==+
(2)已知
的值。

及求ab b a b a b a 2
2
2
2
,4,20)()
(+==-+
4
例题5:多项式19
2
+x
加上一个单项式后能成为一个整式的完全平方式,
那么这个单项式是多少。

(该题一共有5个答案)
例题6:某加工车间要在边长为(a+3)cm 的正方形的钢板上,从中间挖去一个边长为(a-1)cm 的小正方形,求剩余部分的面积是多少?
【课后练习】
一、填空题: 1、若
=+=-=-n m n m n m
则且,3,62
2。

2、已知
=+==+-n m n m n m 2
2
2
2
,2,8)(则)
( ,mn= 。

3、已知a 、b 满足a+b=3,ab=2,则=+b a
2
2。

4、已知
=+
-=--m
m m
m m 2
2
2
1
52,015则 。

5、若代数式b x x
+-62
可以化成12
--)
(a x ,则b-a= 。

6、化简:
=-+-)2(2
a b a b a )
( 。

二、化简:
1、2
1,31
),2(5)2)(2(322
-==+--+-+y x x y y y x y x y x 其中)(。

2、已知的值。

)求()
(1)12(1,14512
2
+---=-+x x x x x
5
教学效果上课情况:。

课后需要巩固的内容:。

相关文档
最新文档