高中数学人教A版选修2-1 第一章 常用逻辑用语 1.1.2、1.1.3

合集下载

人教版高中数学选修2-1第一章常用逻辑用语 1.1_1.2命题与充要条件

人教版高中数学选修2-1第一章常用逻辑用语 1.1_1.2命题与充要条件

命题与充要条件____________________________________________________________________________________________________________________________________________________________________1理解四种命题及其相互关系,会判断四种命题的真假。

2理解简单的逻辑联结词“或”“且”“非”的含义,能用“或”“且”“非”表述相关的数学内容。

3会用“全称量词与存在量词”对命题进行否定。

4理解充分条件、必要条件、充要条件等概念。

5能够判断给定的两个命题的充要关系,充分条件与必要条件的判断。

1.命题能判断真假的语句叫做命题.四种命题表述形式原命题:若p,则q逆命题:若q,则p否命题:若非p,则非q逆否命题:若非q,则非p2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,在逻辑中通常叫做全称量词.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示形如“对M中所有x,p(x)”的命题,可用符号简记为“x∈M,p(x)”.3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词。

(2)存在性命题:含有全称量词的命题.(3)存在性命题的符号表示形如“存在集合M中的元素x,q(x)”的命题,用符号简记为x∈M,q(x)。

4.基本逻辑联结词常用的基本逻辑联结词有“且”、“或”、“非”.5.命题p∧q,p∨q,非p的真假判断67(1)“若p,则q”形式的命题为真时,记作pq,称p是q的充分条件,q是p的必要条件.(2)如果既有pq,又有qp,记作pq,则p是q的充要条件,q也是p的充要条件.p是q的充要条件又常说成q当且仅当p,或p与q等价.8.命题的四种形式及真假关系互为逆否的两个命题等价(同真或同假);互逆或互否的两个命题不等价.【特别提醒】等价命题和等价转化(1)逆命题与否命题互为逆否命题;(2)互为逆否命题的两个命题同真假;(3)当判断原命题的真假比较困难时,可以转化为判断它的逆否命题的真假.类型一命题的四种形式及其关系例1:已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题【解析】命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.【答案】 D练习1:给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有()A.0个B.2个C.3个D.4个【解析】 在四种命题中原命题和逆否命题同真假,故只需判断原命题和逆命题的真假即可.原命题为真.所以逆否命题为真.逆命题为“已知a 、b 、c 、d 是实数,若a+c=b+d,则a=b,c=d ”,显然错误.所以否命题也错误.故真命题个数为2.【答案】 B练习2:命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数 C .若x +y 不是偶数,则x 与y 不都是偶数 D .若x +y 不是偶数,则x 与y 都不是偶数【解析】 若命题为“若p 则q ”,命题的逆否命题为“若非q ,则非p ”,所以原命题的逆否命题是“若x+y 不是偶数,则x 与y 不都是偶数”。

高考数学二轮复习章节概述(人教版选修2-1)第一章

高考数学二轮复习章节概述(人教版选修2-1)第一章

数学·选修2-1(人教A版)
常用逻辑用语
本章知识概述
课程导航
正确地使用逻辑用语是现代社会公民应该具备的基本素质.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想.在本章中,同学们在义务教育阶段的基础上,将学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流.
学习内容
1.命题及其关系.
(1)了解命题的逆命题、否命题与逆否命题.
(2)理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系.
2.简单的逻辑联结词.
通过数学实例,了解逻辑联结词“或”“且”“非”的含义.
3.全称量词与存在量词.
(1)通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.
(2)能正确地对含有一个量词的命题进行否定.
在本章学习中,应特别注意以下几个问题:
(1)命题是指明确地给出条件和结论的语句,对“命题的逆命题、否命题与逆否命题”只要求做一般性了解,重点关注四种命题的相互关系和命题的必要条件、充分条件、充要条件.
(2)对逻辑联结词“或”“且”“非”的含义,只要求通过数学实例加以了解,能正确地表述相关的数学内容.
(3)对于量词,重在理解它们的含义,不要追求它们的形式化定义.
(4)在使用常用逻辑用语的过程中,掌握常用逻辑用语的用法,纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简洁性.避免对逻辑用语的机械记忆和抽象解释.
网络构建。

高中数学_选修2-1_第一章_常用逻辑用语教案_人教A版

高中数学_选修2-1_第一章_常用逻辑用语教案_人教A版

织金二中高二年级数学组集体备课教案执笔人:李武松 田海斌参加人:陈元凤 方健 吕招贵 周越 余平 李承华 朱枝涛 程佳 班银 教学内容:选修2-1 第一章 常用逻辑用语 课时安排:8课时 课时内容:1.1命题及其关系 第1课时 1.1.1 命题一、教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p ,则q ”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假三、教学过程<一>复习引入 1.回顾初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线b a //,则直线a 与直线b 没有公共点 . (2)2+4=7.(3)垂直于同一条直线的两个平面平行. (4)若12=x ,则1=x .(5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

<二>探讨新知4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.例题解析(P例1)2判断下列语句是否为命题?(解略)(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(-=-2.(6)15x.>让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

高中数学 第一章 常用逻辑用语 1.1 命题及其关系 逆否命题素材 新人教A版选修2-1

逆否命题原命题为:若a,则b。

逆否命题为:若非b,则非a如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.名称定义命题:可以判断真假的语句叫做命题。

原命题为:若a,则b逆命题为:若b,则a否命题为:若非a,则非b逆否命题为:若非b,则非a互为逆否命题:如果两个命题中一个命题的条件和结论分别是另一个命题的结论和条件的否定,则这两个命题称互为逆否命题。

命题的否定只否结论。

性质一个命题为原命题,则和它互为逆否命题的命题为原命题的逆否命题。

原命题和逆否命题为等价命题.如果原命题成立,逆否命题成立.逆命题和否命题为等价命题,如果逆命题成立,否命题成立.逻辑学认为命题与逆否命题是等价的,也就是命题真,则逆否命题也真。

命题同它的逆否命题等价是作为公理存在的,你既不能证明它正确也不能证明它错误。

其实这个东西可以认为是公理。

它和公理“排中律”是等价的。

我们数学的体系就是建立在这些公理之上。

2逆否命题的滥用现实生活中存在许多对逆否逻辑的滥用,使用时须注意以下几点:1、逆否命题、逆命题、否命题概念适用的前提是原命题为复合命题,而非简单命题。

复合命题是由简单命题通过逻辑连接词互相连接而组成的。

简单命题难以区分前提和结论,其真假只能通过生活经验和客观事实加以判断。

例如:“我爱你”。

这个句子不能算作命题。

因为是否“爱”的真假没有一个明确的判断标准。

如果“我爱你”是命题,那么它是一个简单命题。

我们可以把它等价转换为“若p,则q”的形式。

再谈论其逆否命题。

(”我爱你“不具有排他性)等价转换为:若我存在,则至少存在一个爱你的人(或”若我存在,则存在我爱你“)。

逆否命题为:若不存在一个爱你的人,则我不存在(如果所有人都不爱你了,那么我也不存在了)。

人教版高二数学选修2-1全套精美课件

人教版高二数学选修2-1全套精美课件
人教版高二数学选修2-1全套精美 课件
复习参考题
人教版高二数学选修2-1全套精美 课件
第二章 圆锥曲线与方程
人教版高二数学选修2-1全套精美 课件
第一章 常用逻辑用语
人教版高二数学选修2-1全套精美 课件
1.1 命题及其关系
人教版高二数学选修2-1全套精美 课件
1.2 充分条件与必要条件
人教版高二数学选修2-1全套精 美课件目录
0002页 0115页 0173页 0208页 0231页 0303页 0345页 0388页 0456页 0574页 0658页 0660页 0694页
第一章 常用逻辑用语 1.2 充分条件与必要条件 1.4 全称量词与存在量词 复习参考题 2.1 曲线与方程 探究与发现 为什么截口曲线是椭圆 2.3 双曲线 2.4 抛物线 阅读与思考 复习参考题 3.1 空间向量及其运算 3.2 立体几何中的向量方法 复习参考题
人教版高二数学选修2-1全套精美 课件
1.3 简单的逻辑联结词
人教版 全称量词与存在量词
人教版高二数学选修2-1全套精美 课件
小结

人教版A版高中数学选修2-1课后习题解答

人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。

成才之路高二数学人教A版选修21课件第一章常用逻辑用语

成才之路高二数学人教A版选修21课件第一章常用逻辑用语
第一章 章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
(3)集合法 写出集合 A={x|p(x)}以及集合 B={x|q(x)},利用集合之 间的包含关系进行判断. ①若 A⊆B,则 p 是 q 的充分条件;若 A B,则 p 是 q 的 充分不必要条件. ②若 B⊆A,则 p 是 q 的必要条件;若 B A,则 p 是 q 的 必要不充分条件. ③若 A=B,则 p、q 互为充要条件. ④若 A B,且 B A,则 p 是 q 的既不充分也不必要件.
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
1.四种命题之间的相互关系 (1)四种命题间的相互关系 一般地,原命题、逆命题、否命题与逆否命题这四种命题 之间的相互关系如下图所示.
第一章 章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
从上图可以发现:原命题、逆命题、否命题与逆否命题中, 有两对互逆命题,两对互否命题,两对互为逆否命题.
第一章 章末归纳总结
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
三、充要条件 1.若“p⇒q”,则 p 是 q 的充分条件,q 是 p 的必要条 件,即:有了 p 成立,则一定有 q 成立,即使 p 不成立,q 也 可能成立;q 不成立,则 p 一定不成立. 2.区分“p 是 q 的充要条件”,“p 的充要条件是 q”说 法的差异.
1.命题是数学中最基本的判断语句,命题的基本要素就 是“条件”与“结论”,一个命题为“真”或“假”是唯一确 定的,不存在亦真亦假的命题.
2.有关充要条件的证明问题,要分清哪个是条件,哪个 是结论,谁是谁的什么条件,由“条件⇒结论”是证明命题的 充分性,由“结论⇒条件”是证明命题的必要性.证明要分两 个环节:一是证充分性;二是证必要性.要搞清它的叙述格式, 避免在论证时将充分性错当必要性证,或将必要性错当充分性 证.

高中数学第一章常用逻辑用语1.2充分条件与必要条件优化练习新人教A版选修2-1(2021年整理)

高中数学第一章常用逻辑用语1.2充分条件与必要条件优化练习新人教A版选修2-1(2021年整理)

2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1的全部内容。

1.2 充分条件与必要条件[课时作业][A组基础巩固]1.设a,b∈R,那么“错误!>1”是“a>b〉0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉1得,错误!-1=错误!〉0,即b(a-b)〉0,得错误!或错误!,即a>b>0或a<b<0,所以“ab〉1"是“a〉b>0”的必要不充分条件,选B.答案:B2.“θ≠错误!"是“cos θ≠错误!”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为“θ≠π3”是“cos θ≠错误!”的逆否命题:“cos θ=错误!”是“θ=错误!”的必要不充分条件,选B.答案:B3.命题p:错误!〉0;命题q:y=a x是R上的增函数,则p是q成立的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉0得a〉1或a〈0;由y=a x是R上的增函数得a>1。

因此,p是q成立的必要不充分条件,选A。

选修2-1 第1章 1.1 1.1.1 1.1.2 充分条件和必要条件-2020-2021学年江苏省高二数学上册课件

选修2-1 第1章 1.1 1.1.1 1.1.2 充分条件和必要条件-2020-2021学年江苏省高二数学上册课件
栏目导航
16
2.判断充分条件和必要条件常用的方法 (1)定义法:分清条件和结论,再根据定义进行判断; (2)等价法:将不易判断的命题转化为它的等价命题判断. (3)和数集有关的充分条件和必要条件的判断可转化为先判断两集合 之间的包含关系,再确定充分、必要条件.记条件 p 涉及的数集为集合 A; 记条件 q 涉及的数集为集合 B.①若 A 是 B 的真子集,则 p 是 q 的充分不 必要条件;②若 B 是 A 的真子集,则 p 是 q 的必要不充分条件;③若 A =B,则 p 是 q 的充要条件;④若 A,B 之间没有包含关系,则 p 是 q 的 既不充分也不必要条件.
栏目导航
18
[解析] ①是正确的,因为 Δ=b2-4ac≥0⇔方程 ax2+bx+c= 0(a≠0)有实根⇔f(x)=ax2+bx+c 有零点;
②是正确的,因为 Δ=b2-4ac=0⇒方程 ax2+bx+c=0(a≠0) 有实根,因此函数 f(x)=ax2+bx+c(a≠0)有零点,但是 f(x)=ax2+ bx+c(a≠0)有零点时,有可能 Δ>0;
栏目导航
23
当 n≥2 时,an=Sn-Sn-1=pn-pn-1=pn-1(p-1), ∴an=(p-1)pn-1(p≠0,p≠1), aan-n 1=pp--11ppnn--12=p 为常数, ∴q=-1 时,数列{an}为等比数列.即数列{an}是等比数列的充 要条件为 q=-1.
栏目导航
24
栏目导航
38
[解] 设条件p的解集为集合A,则A={x|-1≤x≤2},设条件q 的解集为集合B,则B={x|-2m-1<x<m+1},
若p是q的充分不必要条件,则A是B的真子集,
m+1≥2, 所以 -2m-1≤-1,

2020版高中数学新人教版A版选修2-1课件第1章1.3简单的逻辑联结词第1课时“且”与“或”

2020版高中数学新人教版A版选修2-1课件第1章1.3简单的逻辑联结词第1课时“且”与“或”
新课标导学
数学
选修2-1 ·人教A版
第一章 常用逻辑用语
1.3 简单的逻辑联结词
第1课时 “且”与“或”
1
自主预习学案
2
互动探究学案
3
课时作业学案
自主预习学案
• 要在某居民楼一楼与二楼的楼梯间安一盏灯,一楼和二 楼各有一个开关,使得任意一个开关都能独立控制这盏灯,你 能运用“或”“且”的方法解决吗?
• A.p:4+4=9,q:7>4
(B )
• B.p:a∈{a,b,c},q:{a} {a,b,c}
• C.p:15是质数,q:8是12的约数
• D.p:2是偶数,q:2不是质数
• [解析] “p或q”“p且q”都为真,则p真q真,故选B.
• 5.给出下列条件: • (1)“p成立,q不成立”; • (2)“p不成立,q成立”; • (3)“p与q都成立”; • (4)“p与q都不成立”. • 其中能使“p或q”成立的条件是______(1_)_(2_)(_3_) ____(填序 号).
• 〔跟踪练习1〕
• 指出下列命题的形式及构成它的简单命题:
• (1)有两个内角是45°的三角形是等腰直角三角形;
• (2)±1是方程x3+x2-x-1=0的根.
• [思路分析] 要根据语句所表过的含义及逻辑联结词的 意义来进行分析和判断. • [解析] (1)这个命题是“p且q”形式的命题,其中p:有两 个内角是45°的三角形是等腰三角形,q:有两个内角是45°的 三角形是直角三角形. • (2)这个命题是“p或q”形式的命题,其中p:1是方程x3+ x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.
• (2)这个命题是“p或q”的形式,其中,p:1是合数;q:1是质 数.

人教版高中数学选修21知识点小结

人教版高中数学选修21知识点小结

选修2-1知识点选修2-1第一章 常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”:p 称为命题的条件,q 称为命题的结论.3、若原命题为“若p ,则q ”,则它的逆命题为“若q ,则p ”.4、若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、p 是q 的充要条件:p q ⇔p 是q 的充分不必要条件:q p ⇒,p q ≠> p 是q 的必要不充分条件:p q q p ⇒≠>,p 是q 的既不充分不必要条件:,q p ≠>p q ≠>8、逻辑联结词:(1)用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.全真则真,有假则假。

(2)用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.全假则假,有真则真。

(2)对一个命题p 全盘否定,得到一个新命题,记作p ⌝.真假性相反 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”. 10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第二章 圆锥曲线与方程1、椭圆定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y x a b a b+=>> 范围 a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>渐近线方程 b y x a =±a y x b=± 5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 8、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.9、抛物线的几何性质:标准方程22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤解题注意点:1、“回归定义” 是一种重要的解题策略。

高中数学第一章常用逻辑用语1命题及其关系23四种命题四种命题间的关系2课件新人教A版选修2

高中数学第一章常用逻辑用语1命题及其关系23四种命题四种命题间的关系2课件新人教A版选修2

1.若q,则p 若綈p,则綈q 若綈q,则綈p
自 2.(1)逆命题 我 (2)否命题 校 (3)逆否命题 对 3.(1)相同
(2)没有关系
自测自评
1.命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减 函数,则loga2<0”的逆否命题是( )
A.若loga2≥0,则函数f(x)=logax(a>0,a≠1)在其定义域 内不是减函数
-a>-b>0, 若a<b<0,则1b<1a<0,
-a>-b>0, 则-1b>-1a>0,
故ab>ba.
故这是一个假命题.
【答案】 ②⑤
规律技巧 在判断原命题及其逆命题、否命题、逆否命题 真假时,要灵活应用“原命题与逆否命题”同真假,否命题与 逆命题同真假.
二 等价命题的应用 【例3】 证明:若p2+q2=2,则p+q≤2. 【分析】 将“若p2+q2=2,则p+q≤2”视为原命题,
中,真命题的个数可以是( )
A.1或2或Βιβλιοθήκη 或4 B.1或3C.0或4
D.0或2或4
答案 D
3.若命题p的逆命题是q,q的逆否命题是r,则命题r是命
题p的( )
A.逆命题
B.否命题
C.逆否命题 D.等价命题
答案 B
4.命题:“设a,b,c∈R,若ac2>bc2,则a>b”及其逆
命题、否命题、逆否命题中真命题共有( )
A.3个
B.2个
C.1个
D.0个
答案 B
名师讲解
1.四种命题之间的真假关系. 一般地,一个命题的真假与其他三个命题的真假有如下三 种关系: (1)原命题为真,它的逆命题不一定为真. (2)原命题为真,它的否命题不一定为真. (3)原命题为真,它的逆否命题一定为真.

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

高中数学第一章常用逻辑用语132“非”课件新人教A版选修2

高中数学第一章常用逻辑用语132“非”课件新人教A版选修2

跟踪练习4
• 已知命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+ 4(m+2)x+1=0无实数根.若“p∨q”为真命题,则实数m的取值范围是
(-_∞_,__-_1_)________.
[解析] “p 或 q”为真命题,则 p 为真命题或 q 为真命题.当 p 为真命题时,
预习自测
1.已知命题 p:若 α=π2,则 sinα=1;命题 q:若 sinα=1,则 α=π2.下面四
个结论中正确的是( B )
A.p∧q 是真命题
B.p∨q 是真命题
C.¬p 是真命题
D.¬q 是假命题
• 2.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列
命题中为真命题的是( D )
• 含有逻辑联结词的命题的真假判断如表:
pq 真真
p或q __真___
p且q __真___
真假 假真
__真___ __真___
__假___ __假___
假假
__假___
__假___
¬p __假___ __假___
__真___ __真___
• 3.含“且”“或”命题的否定
• 根据“且”“或”的含义,“p∧q”的否定为 “___(_¬p_)_∨_(_¬q_)____”“p∨q”的否定为 “____(¬_p_)∧__(¬_q_)___”.
则¬B”,条件不变,否定结论;其否命题为“若¬A,则 ¬B”,即要否定条件,又要否定结论.
• [规范解答] 命题的否定为:(1)若x,y都是奇数,则x+y 不是偶数.为假命题.
• (2)若xy=0,则x≠0且y≠0.为假命题.
• (3)若一个数是质数,则这个数不一定是奇数.为真命题.

人教A版选修2-1高中数学《第一章常用逻辑用语复习课》ppt课件

人教A版选修2-1高中数学《第一章常用逻辑用语复习课》ppt课件

【自主解答】(1)选C.由题意p与q均为假命题,故p∧q为假. (2)若p为真命题,则-2-a<1<a,解得a>1. 若q为真命题,则-2-a<2<a,解得a>2. 依题意得p与q一真一假,若p真q假,则 若p假q真,则
a 1 , a 2, , a 1 即1<a≤2. a 2,
即x2+mx+1>0恒成立有Δ=m2-4<0,所以-2<m<2.
所以当r(x)为真,s(x)为假时,m<- 2 ,
同时m≤-2或m≥2,即m≤-2. 当r(x)为假,s(x)为真时,m≥- 2 且-2<m<2,即综上,实数m的取值范围是m≤-2或2≤m<2. 2 ≤m<2.
【强化训练】 1.命题“若A⊆B,则A=B”与其逆命题、否命题、逆否命题这四 个命题中,真命题的个数是( A.0 B.2 C.3 D.4 )
q是p的“必要不充分条件”; ②若“p⇔q”,则p是q的“充要条件”,同时q是p的“充要条件”; ③若p q,则p是q的“既不充分也不必要条件”,同时q是p的
“既不充分也不必要条件”.
(2)等价命题法 利用互为逆否的两个命题间的等价关系判断. (3)用集合法判断充分条件、必要条件 若p以集合A的形式出现,q以集合B的形式出现,即 A={x|p(x)},B={x|q(x)},则: ①若A=B,则p是q的充要条件; ②若A ③若B B,则p是q的充分不必要条件; A,则p是q的必要不充分条件;
【解析】选B.原命题为假命题,而逆命题“若A=B,则A⊆B”是 真命题,所以在四种命题中真命题有两个.
2.(2013·北京高考)“φ=π”是“曲线y=sin(2x+φ)过坐标 原点”的( ) B.必要不充分条件 D.既不充分也不必要条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是增函数【解析】命题“若p,则q”的逆否命题为“若綈q,则綈p”.“f(x)在其定义域内是减函数”的否定是“f(x)在其定义域内不是减函数”,不能误认为是“f(x)在其定义域内是增函数”.【答案】 A2.(2016·济宁高二检测)命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题与逆否命题中,假命题的个数是()A.0B.1C.2D.3【解析】逆命题“已知a,b都是实数,若a,b不全为0,则a +b>0”为假命题,其否命题与逆命题等价,所以否命题为假命题.逆否命题“已知a,b都是实数,若a,b全为0,则a+b≤0”为真命题,故选C.【答案】 C3.(2016·南宁高二检测)已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是()A.原命题为真命题,否命题:“若ab>0,则a>0或b>0”B.原命题为真命题,否命题:“若ab>0,则a>0且b>0”C.原命题为假命题,否命题:“若ab>0,则a>0或b>0”D.原命题为假命题,否命题:“若ab>0,则a>0且b>0”【解析】逆否命题“若a>0且b>0,则ab>0”,显然为真命题,又原命题与逆否命题等价,故原命题为真命题.否命题为“若ab >0,则a>0且b>0”,故选B.【答案】 B4.(2016·潍坊高二期末)命题“若x=3,则x2-2x-3=0”的逆否命题是()A.若x≠3,则x2-2x-3≠0B.若x=3,则x2-2x-3≠0C.若x2-2x-3≠0,则x≠3D.若x2-2x-3≠0,则x=3【解析】其逆否命题为“若x2-2x-3≠0,则x≠3”.故选C.【答案】 C5.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3【答案】 A二、填空题6.(2016·三门峡高二期中)命题“若x>2,则x2>4”的逆命题是____________. 【导学号:18490009】【解析】原命题的逆命题为“若x2>4,则x>2”.【答案】若x2>4,则x>27.命题“若a>b,则2a>2b-1”的否命题是________.【解析】否定条件与结论,得否命题“若a≤b,则2a≤2b-1”.【答案】若a≤b,则2a≤2b-18.在空间中,给出下列两个命题:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.其中逆命题为真命题的是________.【解析】①的逆命题:若空间四点中任何三点都不共线,则这四点不共面,是假命题;②的逆命题:若两条直线是异面直线,则这两条直线没有公共点,是真命题.【答案】②三、解答题9.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.【解】逆命题:已知a,b∈R,若a>b,则a2>b2;否命题:已知a,b∈R,若a2≤b2,则a≤b;逆否命题:已知a,b∈R,若a≤b,则a2≤b2.原命题是假命题.逆否命题也是假命题.逆命题是假命题.否命题也是假命题.10.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为“若ac<0,则二次方程ax2+bx+c =0有实根”.(2)命题p的否命题是真命题.证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.[能力提升]1.与命题“若a·b=0,则a⊥b”等价的命题是()A.若a·b≠0,则a不垂直于bB.若a⊥b,则a·b=0C.若a不垂直于b,则a·b≠0D.若a·b≠0,则a⊥b【解析】原命题与其逆否命题为等价命题.【答案】 C2.(2016·福州期末)命题“若x+y是偶数,则x,y都是偶数”的逆否命题是()A.若x,y都不是偶数,则x+y不是偶数B.若x,y不都是偶数,则x+y是偶数C.若x,y不都是偶数,则x+y不是偶数D.若x,y都不是偶数,则x+y是偶数【解析】“x,y都是偶数”的否定为“x,y不都是偶数”,“x +y是偶数”的否定是“x+y不是偶数”.故选C.【答案】 C3.下列命题中________为真命题(填上所有正确命题的序号).①若A∩B=A,则A B;②“若x=y=0,则x2+y2=0”的逆命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【解析】①错误,若A∩B=A,则A⊆B;②正确,它的逆命题为“若x2+y2=0,则x=y=0”为真命题;③错误,它的逆命题为“相似三角形是全等三角形”为假命题;④正确,因为原命题为真命题,故逆否命题也为真命题.【答案】②④4.写出下列命题的逆命题、否命题、逆否命题,然后判断真假. 【导学号:18490010】(1)等高的两个三角形是全等三角形;(2)弦的垂直平分线平分弦所对的弧.【解】(1)逆命题:若两个三角形全等,则这两个三角形等高,是真命题;否命题:若两个三角形不等高,则这两个三角形不全等,是真命题;逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(2)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题;否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题;逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

在中学阶段,至关重要!!以学生作为学习的主体,学生自己做主,不受别人支配,不受外界干扰通过阅读、听讲、研究、观察、实践等手段使个体可以得到持续变化(知识与技能,方法与过程,情感与价值的改善和升华)的行为方式。

如何培养中学生的自主学习能力?01学习内容的自主性1、以一个成绩比自己好的同学作为目标,努力超过他。

2、有一个关于以后的人生设想。

3、每学期开学时,都根据自己的学习情况设立一个学期目标。

4、如果没有达到自己的目标,会分析原因,再加把劲。

5、学习目标设定之后,会自己思考或让别人帮助分析是否符合自己的情况。

6、会针对自己的弱项设定学习目标。

7、常常看一些有意义的课外书或自己找(课外题)习题做。

8、自习课上,不必老师要求,自己知道该学什么。

9、总是能很快选择好对自己有用的学习资料。

10、自己不感兴趣的学科也好好学。

11、课堂上很在意老师提出的重点、难点问题。

12、会花很多时间专攻自己的学习弱项。

02时间管理13、常常为自己制定学习计划。

14、为准备考试,会制定一个详细的计划。

15、会给假期作业制定一个完成计划,而不会临近开学才做。

16、常自己寻找没有干扰的地方学习。

17、课堂上会把精力集中到老师讲的重点内容上面。

18、做作业时,先选重要的和难一点的来完成。

19、作业总是在自己规定的时间内完成。

20、作业少时,会多自学一些课本上的知识。

03 学习策略21、预习时,先从头到尾大致浏览一遍抓住要点。

22、根据课后习题来预习,以求抓住重点。

23、预习时,发现前面知识没有掌握的,回过头去补上来。

24、常常归纳学习内容的要点并想办法记住。

25、阅读时,常做标注,并多问几个为什么。

26、读完一篇文章,会想一想它主要讲了哪几个问题。

27、常寻找同一道题的几种解法。

28、采用一些巧妙的记忆方法,帮助自己记住学习内容。

29、阅读时遇到不懂的问题,常常标记下来以便问老师。

30、常对学过的知识进行分类、比较。

31、常回忆当天学过的东西。

32、有时和同学一起“一问一答”式地复习。

33、原来的学习方法不管用时,马上改变方法。

34、注意学习别人的解题方法。

35、一门课的成绩下降了,考虑自己的学习方法是否合适。

36、留意别人好的学习方法,学来用用。

37、抓住一天学习的重点内容做题或思考。

38、不断试用学习方法,然后找出最适合自己的。

04学习过程的自主性39、解题遇到困难时,仍能保持心平气和。

40、在学习时很少烦躁不安。

41、做作业时,恰好有自己喜欢的电视节目,仍会坚持做作业。

42、学习时有朋友约我外出,会想办法拒绝。

43、写作文或解题时,会时刻注意不跑题。

44、解决问题时,要检验每一步的合理性。

45、时时调整学习进度,以保证自己在既定时间内完成任务。

05学习结果的评价与强化46、做完作业后,自己认真检查一遍。

47、常让同学提问自己学过的知识。

48、经常反省自己一段时间的学习进步与否。

49、常常对一天的学习内容进行回顾。

50、考试或作业出现错误时,仔细分析错误原因。

51、每当取得好成绩时,总要找一找进步的原因。

52、如果没有按时完成作业,心里就过意不去。

53、如果因贪玩而导致成绩下降,就心里责怪自己。

54、考试成绩不好的时候,鼓励自己加倍努力。

06学习环境的控制55、总给自己树立一个学习的榜样。

56、常和别人一起讨论问题。

57、遇到问题自己先想一想,想不出来就问老师或同学。

58、自己到书店选择适合自己的参考书。

59、常到图书馆借阅与学习有关的书籍。

60、经常查阅书籍或上网查找有关课外学习的资料。

相关文档
最新文档