1. 数值分析 _绪论

合集下载

数值分析第一张,引言

数值分析第一张,引言

模型(móxíng)设计
算法设计
上机计算
问题的解
共四十七页
结束(jiéshù)
其中算法设计是数值(shùzí)分析课程的主要内容.
数值分析课程(kèchéng)研究常见的基本数学问题的数值解法.包含了
数值代数(线性方程组的解法、非线性方程的解法、矩阵求逆、 矩阵特征值计算等)、数值逼近、数值微分与数值积分、常微分方程 及偏微分方程的数值解法等.它的基本理论和研究方法建立在数学 理论基础之上,研究对象是数学问题,因此它是数学的分支之 一.
3! 5! 7!
(2n 1)!
( 1.1)
这是一个无穷级数,我们只能(zhī nénɡ)在适当的地方“截断 ”,使计算量不太大,而精度又能满足要求.
如计算 sin 0.5,取n=3 sin 0.5 0.5 0.53 0.55 0.57 0.479625
3! 5! 7!
共四十七页
结束
据泰勒余项公式(gōngshì),它的误差应 为
• 1998年7月30-31日,美国DOE/FNS 共同联合组织召开了 关于“先进科学计算”的全国会议,会议强调科学模拟的重
要性,希望应用科学模拟来攻克复杂的科学与工程难题。
共四十七页
数值分析是计算数学的一个主要部分,方法解决科学研究或 工程技术问题,一般按如下途径进行:
实际 (shíjì)问

程序设计
R (1)9 9
9!
0,
4
R ( / 4)9 3.13 10 7
362880
( 1.2)
可见结果(jiē guǒ)是相当精确的.实际上结果(jiē guǒ)的六位数字都是 正确的.
2 算法常表现(biǎoxiàn)为一个连续过程的离 散化

数值分析基础

数值分析基础

数值分析基础整理:朱华伟参考文献:张卫国讲义一、绪论1.1数值分析理论1、课程介绍数值分析:是指用计算机求解各类数学问题的方法与理论。

数值分析中需要考虑的问题:a、理论可靠性:指由数值分析算法得出的结果值不值得信赖;b、计算复杂性包括时间复杂性和空间复杂性。

时间复杂性是指算法运行时间的长短;空间复杂性是指数据占据空间的大小,这里理解为数据占据计算机存储空间的大小。

c、结构要好:指实现算法的程序可移植性要好,可修改性要好等等。

早期主要考虑计算复杂性,现在主要考虑结构性要好,计算复杂度适中即可,也就是,在保证结构性要好的同时,计算复杂度要尽可能的小。

2、主要内容主要的数学模型:a、方程求根模型,如,一元二次方程。

可以用迭代法求解,迭即是重复,代即是代入。

b、线性方程组模型,可以用迭代法,直接法求解。

c、特征值的特征向量模型。

d、插值方法与数值微分模型。

e、数值逼近与数值拟合模型。

f 、 数值积分模型。

g 、 微分方程组的解的模型。

1.2误差及有效数字 1、误差的来源解决一个实际问题的过程: 分析问题假设、简化、抽象数学模型构造算法 编程求解误差有四种:a 、模型误差:由数学模型与实际问题的差别所造成。

b 、方法(算法)误差:有些问题需要截断进行处理,这样就会产生余项误差。

c 、舍入误差:计算机存储时出现的误差。

d 、观测(测量)误差:在进行实际数据的测量时产生的误差。

在数值分析中我们只关心舍入误差和观测误差。

2、误差的度量 有三种方式:a 、绝对误差与绝对误差界, 是绝对误差的界, 为准确值,x 为 的一个近似值。

,n 的取值取决于具体的b 、相对误差与相对误差界, 是相对误差的界。

通常c、有效数字有两种方法表示:1、如果舍去部分不超过所取值的最后一位的一半,则有效数字取到所取值的最后一位;如果舍去部分超过所取值的最后一位的一半,则有效数字取到所取值的最后一位的前一位。

2、规格法设,k>0且取整,取1~9,取0~9,若=,则x有n位有效数字,的取值取决于方法1,然后经过换算即可求出n。

数值分析绪论

数值分析绪论

数值分析或数值计算方法主要是研究如 何运用计算机去获得数学问题的数值解 的理论和方法. 对那些在经典数学中,用解析方法在理论 上已作出解的存在,但要求出他的解析解 又十分困难,甚至是不可能的这类数学问 题,数值解法就显得不可缺少,同时有十分 有效.
计算机解决科学计算问题时经历的几个 过程
实际问题——〉数学模型——〉数值计算方 法——〉程序设计——〉上机运行求出解 实际问题——〉数学模型:由实际问题应用 科学知识和数学理论建立数学模型的过程, 是应用数学的任务。
两个数相乘,如果有大因子,积的误差 可能严重扩大 两个数相除,如果除数很小,商的误差 可能会严重扩大
e( x1 * + x2 *) x1 * er ( x1*) x2 * er ( x2 *) er ( x1 * + x2 *) = = + x1 * + x2 * x1 * + x2 * x1 * + x2 *
则 e(π ) = 3.1416 − 3.14159265...
*
1 −5 = 0.0000734...... ≤ × 10 2
称π = 3.1416具有五位有效数字的近似数。
*
若x * 准确到小数点后第n位,
x* = ± a1a2 L am .b1b2 L bn (a1 ≠ 0), 则
| e( x*) |≤ 0.5 ×10 ,
* * 1 2 r * 1 * * 1 2 r * 2 2 * 2 * 2 * 1 * 1 * 2 2 * 2
两个数相乘,积的误差等于第一个数乘 以第二个数的相对误差加上第二个数乘 以第一个数的相对误差。(误差什么情 况下会严重扩大?) 两个数相除,商的误差等于分母乘以分 子的误差减去分子乘以分母的误差,然 后除以分母的平方。(误差什么情况下 会严重扩大?)

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx -=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*1 1.1021x =是五位有效数字;*20.031x =是二位有效数字;*3385.6x =是四位有效数字;*456.430x =是五位有效数字;*57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯ ***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π= 则何种函数的条件数为 23'4343p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =,27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯ 100Y ∴的误差限为31102-⨯。

数值分析第一章

数值分析第一章

截断误差:
Rn(x)
f (n1)()xn1
(n1)!
舍入误差:机器字长有限
R 3 .14 0 1 .05 09 0 .数0 制转0 换、2 机器6 数.
二、误差、有效数字
定义1 绝对误差,简称误差: e*x* x,其x* 中 为准 x的 确 近 .值 似
误差限:*|e*|的一个上 . 界
数值分析
第1章 绪论
§1 数值分析的研究对象与特点
一、什么是数值分析
数值分析是计算数学的一个主要部分,计算数学是数 学科学的一个分支,它研究用计算机求解各种数学问题 的数值计算方法及其理论与软件实现.
实际问题→数学模型→数值计算方法 →程序设计→上机计算求出结果
先看两个例子。 例1 求方程 x2=2sinx,在区间(1,2)内的根。 理论上可知显然找不出根的解析式,即无法求出
而 按 (2.相 1 ), m 对 3 ,误 n3 差绝 .2限对 相误 同 2 *差 : 1 21限 05. r*0.005 /90..80000/00.0050.980
定理1设近似x*数 表示为
x*10m(a1a2101al 10(l1)) (2.)1
一般 Cp10认为是病 . 态 其他计算问题条 也件 要 ,考 数 考虑虑是否 . 病态
二、算法的数值稳定性
考虑初始数据误差在计算中的传播问题.
例 5计In算 e 10 1xnexdx,n0,1 , ,并估.计误
In 1 n n 1 I ,n 1 ,2 , , I01e1. (A) II0 n 1 0.6nI3n ,1 2,n11,2, . (B)II9n** 10.01n(168,In*4),n9,8, ( ,1I9. 1 2(110e110)0.06)8 定义一3个算法若输 误入 差 ,而数 在据 计有 算过 误差不,则 增称 长此算法是 的,否 数则 值是 稳不 定. 稳

数值分析--绪论

数值分析--绪论
8
有效数字
定义:设数 a 是数 x 的近似值,如果 定义: 的近似值, (1)a 的绝对误差限是它的某一位的半个单位, ) 的绝对误差限是它的某一位的半个单位, a (2)从该位到它的第一位非零数字共有 位。 )从该位到它的第一位非零数字共有n 位有效数字。 则称用 a 近似 x 时有 n 位有效数字。 注:凡是由四舍五入得来的近似值,从最末位到第一位非零数字都是 凡是由四舍五入得来的近似值, 有效数字。 有效数字。
算法 算法——规定了怎样从输入数据计算出数值问 规定了怎样从输入数据计算出数值问 题解的一个有限的基本运算序列 衡量算法优劣的标准: 衡量算法优劣的标准:
1 可靠的理论基础,正确性,收敛性,数值稳定性以 可靠的理论基础,正确性,收敛性, 及可作误差分析。 及可作误差分析。 2.良好的计算复杂性,包括时间复杂性,空间复杂性 良好的计算复杂性,包括时间复杂性, 良好的计算复杂性
17
§1.3 向量范数与矩阵范数 1.3.1 向量范数 定义:Rn空间的实值函数 || || ,对任意 x, y ∈ Rn满足下列条件 对任意
(1)非负性 非负性
|| x || ≥ 0; || x || = 0 x = 0 (2)齐次性 || k x || =| k | || x || 对任意 k∈R 齐次性
13
设计算法时遵循的原则
1.减少运算次数. 1.减少运算次数. 减少运算次数
例 计算多项式的值
Pn ( x ) = a0 + a1 x + a2 x 2 + L + an x n .
乘法计算次数 1+2+…+n
算法一 算法一:
s0 = a0 sk = ak x k , k = 1, 2,L , n P ( x) = s + s + L + s 0 1 n n

数值分析

数值分析
误差:e( x1 x2 ) x1 e( x2 *) x2 e( x1 ) x1 x2 x1 x2 x1 e( x2 *) x2 e( x1 ) e( x1 )e( x2 *) 误差限: ( x x ) x ( x2 *) x2 ( x )
* * 1 2 * 1 * * 1 * * * * * * * * * * *
到x *的第一位非零数字共有 n位,就说x * 有n位有效数字.

x* 10m (a1 a2 101 an 10( n1) ) 1 x x * 10mn1 2
(2.1)
其中a1 0 . 并且 (2.2)
例1
• 按四舍五入写出下述各数具有5位有效数字的近似 数: 187.9325 0.037 855 51 8.000 033 2.718 281 8
加法和减法结果的误差
(x
* 1
x2 ) ( x1 x2 )
* 1
*
(x
x1 ) ( x2 x2 )
*
*
e( x ) e( x2 )
* 1
误差限: (x x ) (x ) (x )
* 1 * 2 * 1 * 2
乘法的结果误差
x x x1 x2 x x ( x x1 x )(x2 x2 x2 ) x1 x2 ( x1 e( x1 ))(x2 e( x2 )) x x x x x e( x2 ) x2 e( x ) e( x )e( x2 ) x e ( x2 ) x2 e ( x ) e ( x ) e ( x 2 )
例2 重力加速度
若以m/s2为单位, g≈9.80m/s2, 1 m n 1 1 * 10 g 9.80 102 , 2 2 * 1 按(2.1), m 0, n 3. 绝对误差限 1 102. 2 若以km/s2为单位, g≈0.00980m/s2, 1 g 0.00980 105 , 2 * 1 按(2.1), m 3, n 3. 绝对误差限 2 105. 2 而相对误差限相同:

数值分析--第1章 绪论

数值分析--第1章 绪论

数值分析--第1章绪论第一章绪论上世纪中叶诞生的计算机给科学、工程技术和人类的社会生活带来一场新的革命。

它使科学计算平行于理论分析和实验研究,成为人类探索未知科学领域和进行大型工程设计的第三种方法和手段。

在独创性工作的先行性研究中,科学计算更有突出的作用。

在今天,熟练地运用电子计算机进行科学计算,已成为科学工作者的一项基本技能。

然而,科学计算并不是计算机本身的自然产物,而是数学与计算机结合的结果,它的核心内容是以现代化的计算机及数学软件为工具,以数学模型为基础进行模拟研究。

近年来,它同时也成为数学科学本身发展的源泉和途径之一。

1 数值分析的研究对象与特点数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。

一般地说,用计算机解决科学计算问题,首先需要针对实际问题提炼出相应的数学模型,然后为解决数学模型设计出数值计算方法,经过程序设计之后上机计算,求出数值结果,再由实验来检验。

概括为实际问题数学模型计算方法程序设计计算结果由实际问题的提出到上机求得问题的解答的整个过程都可看作是应用数学的任务。

如果细分的话,由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的任务,而根据数学模型提出求解的数值计算方法直到编出程序上机计算出结果,这一过程则是计算数学的任务,即数值分析研究的对象。

因此,数值分析是寻求数学问题近似解的方法、过程及其理论的一个数学分支。

它以纯数学作为基础,但却不完全像纯数学那样只研究数学本身的理论,而是着重研究数学问题求解的数值方法及与此有关的理论,包括方法的收敛性,稳定性及误差分析;还要根据计算机的特点研究计算时间最省(或计算费用最省)的计算方法。

有的方法在理论上虽然还不够完善与严密,但通过对比分析,实际计算和实践检验等手段,被证明是行之有效的方法也可采用。

因此数值分析既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与使用计算机密切结合的实用性很强的数学课程。

数值分析第一章绪论习题答案

数值分析第一章绪论习题答案

第一章绪论e In X* =In X * -Inx :丄e*X*进而有;(In X *):2. 设X 的相对误差为2% ,求X n 的相对误差。

解:设f(χZ ,则函数的条件数为Cp=l fX+n _1X nχ I Xn n又;r ((X*) n) C P 7(X *)且 e r (χ*)为 2.7((χ*)n) 0.02 n3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指* * * * *出它们是几位有效数字: X 1 =1.1021, χ2 =0.031, χ3 =385.6, χ4 = 56.430,x 5 = 7".0.. *解:X I -1.1021是五位有效数字;X 2 = 0.031是二位有效数字;X 3 =385.6是四位有效数字;X 4 =56.430是五位有效数字;X 5 =7 1.0.是二位有效数字。

4. 利用公式(2.3)求下列各近似值的误差限: (1) X 1 X 2 X 4,(2) X 1 X 2X 3 ,(3) X 2 /X 4 .其中χl ,x 2,x 3,X 4均为第3题所给的数。

1设X 0, x 的相对误差为 解:近似值X*的相对误差为 、:,求InX 的误差。

e* X* -X而InX 的误差为 又 f '(χ) =nx n 」 C P解:* 1 4;(x 1) 102* 1 3 ;(x 2) 10 2* 1 1;(x 3) 10* 1 3;(x 4) 102* 1 1;(x 5) 102(1) ;(x ; x ; x *)* * *=;(%) ;(x 2) *x 4)1 A 12 1 j310 10 102 2 2 -1.05 10J 3* * *(2) S(X I X 2X 3)* * * * * * ** * =X1X 2 £(X 3)+ X 2X 3 ^(X J + X 1X 3 E (X 2):0.215 ⑶;(x 2/x ;)* Il * * I * X 2 E(X 4) + X 4 &(X 2)全 Γ"2X 41-3 1 30.031 10 56.430 10= ______________________ 256.430X56.430-10 54 3解:球体体积为V R3则何种函数的条件数为1.1021 0.031 11θ' 2 + 0.031X385.6 x 1><10* 2 +∣ 1.1021 X 385.6卜-×1^35计算球体积要使相对误差限为 1 ,问度量半径R 时允许的相对误差限是多少?C P 愕': C P “(R*) 9(R*)又γ(V*) -11故度量半径R 时允许的相对误差限为 ;r (R*) 1 : 0.3331 ____6.设 Y 0 =28,按递推公式 Yn =Ynd- ------- : 783 (n=1,2,…)100计算到Y oo 。

第1章数值分析-绪论

第1章数值分析-绪论

实际运算 Er (a) (x a) / a
r / a
例5 a=3.14是π的近似值。
E(a) 3.14 0.002
Er
(a)
0.002
0.002 3.14
6.36942104
三、有效数字 例如 3.14159265...
取3位,a=3.14,δ≤0.002 取5位,a=3.1416,δ≤0.000008
a 10m 0.a1a2...an
a1是1到9中的一个整数, a2,…,an为0到9中的任
意整数。m为整数,

E(a) x a 1 10mn 2
成立,
ห้องสมุดไป่ตู้
则称a近似 x 有n位有效数字。
【注】 近似数的有效数字不但给出了近似值的大小, 而且还指出了它的绝对误差限。
数值分析——绪论
例6 设 x 0.002567, a 0.00256 102 0.256 则 x a 0.00005 1 104
2
因为m=-2,所以n=2, 即a有2位有效数字。
若 a 0.00257 102 0.257

x a 0.000003 0.000005 1 105 2
因为m=-2,所以n=3, 即a有3位有效数字。
例7 设x =8.00001,则a=8.0000具有5位有效数字。
例如,用毫米刻度的米尺测量一长度 x , 读出和该长度接近的刻度 a, a 是 x
的近似值,它的误差限是0.5mm.如读出的长度 是765mm,则
x 765 0.5 764.5 x 765.5
数值分析——绪论
对于一般情形 x a 即
a x a ,有时记为 x=a
例4 绝对误差的局限性例子。

数值分析第1章绪论

数值分析第1章绪论

THANKS
感谢您的观看
算法创新
在数值分析中,创新算法的提出是推 动学科发展的重要动力。新的算法可 以解决传统算法难以处理的问题,提 高计算效率和精度。
Part
05
Байду номын сангаас
数值分析的展望与启示
数值分析与其他学科的交叉研究
数值分析与物理学的交叉
数值分析在解决物理问题中扮演着重要角色,如流体动力学、电磁学和量子力学等领域。 通过数值模拟和计算,可以更深入地理解物理现象和预测新现象。
Part
04
数值分析的挑战与未来发展
数值稳定性的挑战
数值稳定性问题
在数值分析中,算法的数值稳定性是一个重要的问题。不稳定的算法可能会导致计算结果的误差累积,从而影响 结果的精度。
解决方法
为了提高数值稳定性,可以采用多种方法,如改进算法、增加迭代次数、使用稳定的数据类型等。
高性能计算的需求
高性能计算的重要性
或最小化线性目标函数问 题,如单纯形法等。
微分法
数值微分
利用已知函数值估计函数在某点 的导数值。
偏微分方程数值解
通过有限差分法、有限元法等求 解偏微分方程的数值解。
数值积分
利用已知函数值计算函数在某个 区间的积分值。
常微分方程数值解
通过离散化方法求解常微分方程 的数值解,如欧拉法、龙格-库塔 法等。
逼近法
最佳平方逼近
利用已知的离散数据点构造一个多项式,使得该 多项式在最小二乘意义下逼近目标函数。
傅里叶逼近
利用傅里叶级数的性质进行逼近,适用于周期函 数的逼近。
ABCD
切比雪夫逼近
利用切比雪夫多项式的性质进行逼近,具有最佳 逼近和一致逼近的特点。

数值分析 第1章

数值分析   第1章
13 14
3.计算复杂性尽可能小 从实际需要出发,我们还需要考虑计算量的大小, 即所谓计算复杂性问题。它由以下两个因素决定的: 使用中央处理器 CPU)的时间,主要由四则运算 使用中央处理器( 的时间 主要由四则运算 的次数决定; 占用内存储器的空间,主要由使用的数据量来决 定。
4.要有数值化结果 数值计算的许多方法是建立在离散化的基础上进 行的, 其解决问题的最终结果不是解析解而是数值近似 解。对于给定的数学模型,采用不同的离散手段可以导 致不同的数值方法,应该通过计算机进行数值试验,进 行分析、比较来选定算法。 对新提出的算法,有的在理论上虽然还未证明其 收敛性,但可以从具体试验中发现其规律,为理论证明 提供线索。
x2 =
−b − b 2 − 4ac 2c = 2a −b + b 2 − 4ac
9
来严重影响 应尽量避免 来严重影响,应尽量避免。 例3

在 4 位浮点十进制数下,用消去法解线性方程
⎧0.00003 x1 − 3 x 2 = 0.6 ⎨ x1 + 2 x 2 = 1 . ⎩

2 ×10 =1 . 109 + 109
§1.1
预备知识
一、集合
把一些确定的彼此不相同的事物汇集在一起成为一 个整体,称为集合。 表示方法:描述法;列举法。 分类:有限集;无限集(可列集,不可列集) 。
9
10
可列集(可数集) : 设 A 是无限集,若 A 中的一切元素可以用自然数 编号(即 A 与自然数集 N 一一对应) ,使 A 写成 A={ A { a1 , a2 , a3 ,L an ,L },则称 A 为可列集 (或可数集) 。 否则,称为不可列集。 如:有理数集是可列集,数列构成的集合是可列 集;无理数集、[0,1]中的全体实数构成的集合是不 可列集。

数值分析-1绪论

数值分析-1绪论

数值分析刘立新西安电子科技大学推荐教材及参考资料•李庆扬,王能超,易大义编,《数值分析》(第四版武汉华中科技大学出版社年四版),武汉:华中科技大学出版社,2006•沈剑华主编,《数值计算基础》(第二版),同济大学出版社,2004年济大学出版社其值教材•其他数值分析教材2课程要求先修课程和后续课程:修先修课程:高等数学,线性代数,计算机语言等。

后继课程:数值代数,数值逼近,最优化方法等。

课程评分方法:•平时成绩(20%)考•考试(80%)3建立各种数学问题的数值计算算法的方法和理论通俗地本课程的任务•建立各种数学问题的数值计算算法的方法和理论。

通俗地讲,就是为各种实际问题提供有效的数值近似解方法。

提供在的理论的计算•计算机上实际可行的、理论可靠的、计算复杂性好的各种常用算法。

学习的目的、要求•会套用、修改、创建公式•编制程序完成计算4课程内容•第一章绪论第章•第二章插值与逼近•第四章数值积分与数值微分•第五章常微分方程数值解法•第六章方程求根•第七章线性方程组的解法51第1 章绪论6本章内容111.1 光波的特性1.1 数值分析的对象与特点1.2 光波在介质界面上的反射和折射1.2 误差来源与误差分析的重要性1.3 误差的基本概念1.3 光波在金属表面上的反射和折射1.4数值运算中误差分析的方法与原则7本章要求•主要内容:算法的基本概念,误差的基本概念。

主容•基本要求–(1) 了解数值计算的研究对象与基本特点以及科学计算的重要性;的要性;–(2) 理解绝对误差、相对误差和有效数字的概念;(3)了解数值计算中应注意的些问题。

–了解数值计算中应注意的一些问题•重点、难点–重点:数值计算方法的含义;重点数值计算方法的含义–难点:误差的理解。

81.1 数值分析的对象与特点11什么是数值分析?什么是数值分析•“数值分析”就是研究在计算机上解决数学问题的数值方法及其理论;数值算构计算公式算步•数值算法的构造:计算公式和算法步骤;算法的理论分析误差分析、收敛性、稳定性等•算法的理论分析:误差分析、收敛性、稳定性等。

《数值分析》第1章

《数值分析》第1章
T (h) = I + c1 h2 + c2 h4 + L,
b
上两式作用得到:
4T ( h) − T ( 2h) = 3 I + O (h4 )
忽略高阶项得, I ≈ T (h) + (T (h) − T (2h)) . 公式的精度为 O (h4 ) .
1 3

其中 c1 , c2 ,L与 h 无关,则有,
19
20
§3 误差来源与误差分析的重要性
误差来源(或分类)
(1) 模型误差:建立数学模型时忽略一些次要 因素而引起的与真实情况的误差.
(2) 测量误差:数学模型中的一些已知参数, 由于受到测量工具或其它主观因素的影 响所带来的误差.
21
(3) 截断误差:数学模型常难以求解,往往要 用近似、易于求解的问题代替,这种简化 引起的误差.
P ( x ) = a0 x n + L + an −1 x + an 已知,对输入
的x,要计算P(x)的值,采取方法
u0 = 0 ⎧ t 1 = 1, ⎪ ⎨ t k = xt k − 1 , k = 2 , L , n ⎪u = u k = 1, L , n k −1 + a n− k tk , ⎩ k
29 30
例 15. 为使 20 的相对误差小于 0.1% ,要取几 位有效数字.
例 16. 用 3. 1416 表示π 的近似值,求其相对误 差?
解:因为 a1 = 3, n = 5 ,所以
er ( x ) ≤
1 1 × 10−5 + 1 = × 10−4 2× 3 6
解: 由 er ≤ 只需
1 × 10− n + 1 且 a1 = 4 , 为使 er ≤ 0.1% , 2a1

数值分析第一章 绪论

数值分析第一章  绪论

1 (e1 1 ) 0.0684 2 10 10
,递推可得:
I9 0.0684 I7 0.1121 I5 0.1455 I3 0.2073 I1 0.3679
I8 0.1035 I6 0.1268 I4 0.1709 I2 0.2642 I0 0.6321
可见,I0已精确到小数点后四位。
y
er (x)

y x y
er ( y)
可见,当x与y很接近时,z的相对误差有可能很大。
在数值计算中,如果遇到两个相近的数相减运算,可
考虑改变一下算法以避免两数相减。例如:
当x1

x2时,有 log
x1
log
x2
log
x1 x2
当x 0时,有1cosx 2sin 2 x 2
当x 1时,有
ln
2

1

1 2

1 3

1 41 5ln2
1

1 2

1 3

1 4

1 5
这里产生误差(记作R5)
R5


1 6

1 7

1 8

1 9

1 10
...
4.舍入误差 由于计算机只能对有限位数进行运算,
在运算中象 e、
2
、1 等都要按舍入原则保留有限位,这 3
时产生的误差称为舍入误差或计算误差。

e x

x* x
x
r =/|x|称为近似值x的相对误差限。|er|≤r.
例1 设x=1.24是由精确值x*经过四舍五入得到的近似 值,求x的绝对误差限和相对误差限。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Axb
线性方程组的求解!
2、天体力学中的Kepler方程
x sin x t 0,0 1
x是行星运动的轨道,它是时间t 的 函数.
非线性方程求根!
3、全球定位系统(Global Positioning System, GPS)
全球定位系统: 在地球的任何一 个位置,至少可 以同时收到4颗 以上卫星发射的
8
f1 ( x1 , x2 , xn ) 0 f ( x , x , x ) 0 2 1 2 n f n ( x1 , x2 , xn ) 0
F ( x) 0
记为 T n n 其中, F : D R R , x ( x1 , x2 ,, xn )
L
48
0
1 ( f ( x)) dx
' 2
48
0
1 (cos x) 2 dx
上述积分称为第二类椭圆积分,它不能用普 通方法来计算.
数值积分!
现代科学计算在工程计算中的应用
天气预报: 计算能力的发展将把海洋、大气和生态系 统的综合知识融合成一个气象变化模型。 计算机辅助设计:波音777应用三维立 体建模,数字化设计与有限元计算的 第一架喷气客机。 医学与生物工程:CT、核磁共振与 Radon 变换;至病基因与药物设计;人 造生物材料的彷真响应;传染病动力学 模型。
( x x1 )2 ( y y1 )2 ( z z1 )2 (t1 -t) c 0 ( x x2 )2 ( y y2 )2 ( z z2 )2 (t 2 -t) c 0 ( x x3 )2 ( y y3 )2 ( z z3 )2 (t 3 -t) c 0 ( x x4 )2 ( y y4 )2 ( z z4 )2 (t 4 -t) c 0 ( x x5 )2 ( y y5 )2 ( z z5 )2 (t 5 -t) c 0 ( x x6 )2 ( y y6 )2 ( z z6 )2 (t 6 -t) c 0
相对误差也可正可负,常常是无限位的 相对误差限——相对误差的绝对值的上界 /* relative accuracy */

r
e x x r x x
Def 1.3 (有效数字/*Significant Digits*/ )
若近似值 x 与准确值的误差绝对值不超过某一位的 半个单位,该位到 x 的第一位非零数字共有 n位,则 称 x 有 n位有效数字
§1
Introduction
数值分析 能够做什么?
应用问题举例
1、一个两千年前的例子
今有上禾三秉,中禾二秉,下禾一秉, 实三十九斗; 上禾二秉,中禾三秉,下禾一秉, 实三十四斗; 上禾一秉,中禾二秉,下禾三秉, 实二十六斗。 问上、中、下禾实一秉各几何? 答曰:上禾一秉九斗四分斗之一。中禾 一秉四斗四分斗之一。下禾一秉二斗四 分斗之三。-------《九章算术》
输出 x1, x2 结 束
输出无解信息
二、算法优劣的判别
计算量的大小 例:用行列式解法求解线性方程组: n阶方程组,要计算n + 1个n阶行列式的值, 总共需要做n! (n - 1) (n + 1) 次乘法运算。
n=20 需要运 算多少次? n=100?
存贮量 逻辑结构
§3
误 差
/* Error */
如: 3.1415926
3.141592


3.14

1 5 e 10 6位 2
1 2 e 10 3位 2

三、数值算法及稳定性 /* Numerical
Algorithm and Stability */
n
例3 计算下列多项式的值 p( x) a0 x a n 1 x a n a0 , a1 , an , x 为已知数据
输入数据为 a0 , , an , x ,输出数据为 p ( x) ,若直接由 分析: 2 n ,再乘相应的系数 a n 1 , a n 2 ,, a0并 相加,则要做次 n(n 1) 乘法和 n 次加法,占用个 2n 1 2 存储单元。
现代计算方法:
融进了机器学习计算、仿生计算、网络计算、以数据为核 心的计算和各种普适计算、非线性科学计算等内容。
§2 算 法
一、算法的概念
定义:由基本运算及运算顺序的规定所构成的完整的 解题步骤,称为算法。 描述算法可以有不同的方式。例如,可以用日常语言 和数学语言加以叙述,也可以借助形式语言(算法语言) 给出精确的说明,也可以用框图直观地显示算法的全貌。
建筑上用的一种铝制波纹瓦是用一种机 器将一块平整的铝板压制而成的.
假若要求波纹瓦长4英尺,每个波纹的高度(从 中心线)为1英寸,且每个波纹以近似2π英寸 为一个周期. 求制做一块波纹瓦所需铝板的 长度L.
这个问题就是要求由函数f(x)=sin x 给定的曲 线从x=0到x=48英寸间的弧长L. 由微积分学我们知道,所求的弧长可表示为:
例:求解二元一次联立方程组
a11x1 a12 x2 b1 a21x1 a22 x2 b2
用行列式解法:首先判别
D a11a22 a21a12
是否为零,存在两种可能:
(1)如果
D 0 ,则令计算机计算 x1 b1a22 b2 a12 D , x2 b2 a11 b1a21 D
一、 误差的来源与分类 /* Source & Classification */
1、从实际问题中抽象出数学模型 —— 模型误差 /* Modeling Error */
2、通过观测得到模型中某些参数(或物理量)的值 —— 观测误差 /* Measurement Error */
3、数学模型与数值算法之间的误差 —— 方法误差 (截断误差 /* Truncation Error */ ) 4、由于机器字长有限,原始数据和计算过程会产生新的误差 —— 舍入误差 /* Roundoff Error */



e x x 如: 3.14159
1 105 ( 3.1415926) 2 绝对误差还不能完全表示近似值的好坏

Def 1.2 (相对误差/* relative error */ )
近似值
x 的误差 e 与准确值 x 的比值:

电子系统自动化设计: 大规模集成电路的设计与逻辑检测。 材料设计: 性能设计的大规模计算与模拟:设计用 于生产新的高热值、高压材料中的化学 蒸发沉淀反应器。
车辆与道路工程设计与模拟: 车辆与道路相互作用综合系统设计。
信息与通信工程:GPS卫星导航 燃烧与爆炸工程: 燃烧对环境的影响;计算流体力学 与爆炸工程。 存储与物流系统:
--会用计算机进行科学计算
数值问题的来源:
实际 问题
建立数学模型
数值 问题
重点讨论
数值 问题
求解
设计高效、可 靠的数值方法
近似结果
输出
上机 计算
程序 设计
“什么是数值计算方法?”
数值计算方法是计算数学的一个主要组成部分, 它主要研究使用计算机求解各种科学与工程计算 问题的数值方法(近似方法);对求得的解的精 度进行评估以及在计算机上实现求解等。 数值计算方法已经成为计算机处理实际问题的 一个重要手段,从宏观天体运动学到微观分子细 胞学,从工程系统到社会经济系统,无一能离开 数值计算方法。因此,数值计算与计算机模拟被 称为“第三种科学研究方法”。
科学方法论的巨大变革: 如果说伽利略 和牛顿在科学发展史上奠定了实验和理论这 两大科学方法的支柱,那么由冯.诺依曼研制 的现代电子计算机把计算推上了人类科学活 动的前沿,使计算成为第三种方法。
21世纪信息社会的两个主要特征: “计算机无处不在”
“数学无处不在”
21世纪信息社会对科技人才的要求: --会用数学解决实际问题
输出计算的结果x1,x2。
(2)如果D= 0,则或是无解,或有无穷多组解。

D a11a22 a21a12
通过求解过程,可以总结出算法步骤如下:
a11, a12 , a21, a22 , b1, b2 S2 计算 D a11a22 a21a12
S1 输入
S3 如果
D0
则输出原方程无解或有无穷多组解的信息;
工农业发展使得产品的存储、交流和时效 性极大提高;废物和垃圾问题成为城市生 活的重大问题。规划计算和系统分析成为 常用计算方法。
网络设计与计算:搜索引擎的设计
航空航天工程:神州飞船系列
诺贝尔奖得主,计算物理学家 Wilson提出
现代科学研究的三大支柱
理 论 研 究
科 学 实 验
科 学 计 算
计算数学
y 1t 3 2t 2 3t 4
s (t 1979 ) / 30
数据拟合!
1950
1960
55196
66207
1970
1980
82992
98705
1990
2000
114333
126743
y 1s3 2 s 2 3s 4
6、铝制波纹瓦的长度问题
科学计算 可视化是 目前研究 的热门问 题,下面 的艺术图 形是基于 科学计算 的数据表 示的例子
分形图
混沌图
传统的数值计Biblioteka 的主要研究内容1、数值逼近 插值与拟合、FFT、数值积分与微分 2、数值代数 代数基础、线性代数方程组的解法、非线性代数方 程(组)的解法、特征值与特征向量 3、微分方程数值解 ODE、PDE和有限元法 4、最优化方法* 无约束优化与约束优化方法
相关文档
最新文档