第11课_函数及其图像

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

函数及其图象PPT课件

函数及其图象PPT课件

s
s
s
s
t
t
O
O
A
B
O
t
C
t
O D
3、(09湖州市)如图,一只蚂蚁从 O 点出发,沿着扇形 OAB 的边缘匀速
爬行一周,设蚂蚁的运动时间为 t ,蚂蚁到 O 点的距离为 S ,则 S 关于 t 的函数图象大致为( C )
A
S
S
S
S
O
O
tO
tO
tO
t
第(3)题
B
A.
B.
C.
D.
4、(09内江市)打开某洗衣机开关(洗衣机内无水),在洗涤衣服时,洗衣机 经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗
(2)(09大连)函数y x 2 中,自变量x的取值范围是 ( D )
A.x < 2 B.x ≤2 C.x > 2 D.x≥2
x x 2
(3)(09哈尔滨)函数y=
的自变量 的取值范围是_____________.
x2
x (4)(09齐齐哈尔)函数 y x 的自变量 的取值范围是_x_≥_0_且__x_≠1 ___. x 1
5000
4000 3000 2000


A
1000
O
5
10 15
20 x(分)
(3)解: x 15 时,甲的路程是: 25015 5000 1250 米,
乙的路程是2000米, 两人相距:2000 — 1250 = 750米
在15<x<20的时段内, 乙速:2000÷(20 — 15)= 400 米/分 两人速度之差: 400 — 250 = 150米/分
热身练习:

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件

中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
中的函数表达式为
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。

y= x

,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标

1


2

直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加

11.第十一次课:反比例函数的概念及其图像性质+答案

11.第十一次课:反比例函数的概念及其图像性质+答案

【大展身手】
# 1.下列函数中,是反比例函数的是( D )
A .x y 5
1-
= B .23
+=
x
y C .21x
y =
D .x
y 22=
# 2.下列各组x 、y 的对应值,不满足反比例函数x
y 6
=的是( D )
A .x=1,y=6
B .x=-1,y=-6
C .x=2,y=3
D .x=-3,y=2
# 3.若023
1
=-xy ,则y 是x 的(B )
A .正比例函数
B .反比例函数
C .一次函数
D .不能确定
# 4.已知在反比例函数)0(≠=k x k
y 中,当x=3时,y=-5,则k 的值为(D )
A .
3
5 B .3
5-
C .15
D .-15
# 5.已知函数1
+=m x y 是反比例函数,则m 的值为( D )
A .1
B .-1
C .2
D .-2
2)在这个函数图像的某一支上取点A(a,b),B(a’,b’),如果a>a’,那么b b’
例5.若点A(-2,a)、B(-1,b)、C(3,c)在反比例函数
x
k
y=(k<0)图象上,则a、b、c 的大小关系怎样?
例6.如图,过反比例函数
x
y
1
=(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设△AOC和△BOD的面积分别是S1、S2,比较它们的大小关系
课后小

上课情况:
课后需再巩固的内容:。

11.第11课时 一次函数的图像及性质(PPT课件)

11.第11课时  一次函数的图像及性质(PPT课件)
第三章
函数
第11课时
一次函数的图象及性质
考点精讲
一 次 函 数 一次函数的图象及性质 的 图 象 及 性 一次函数解析式的确定 质 正比例函数的图象及性质
一次函数与一次方程(组)、一元一次不 等式的关系
定义:形如y=kx(k是常数,k≠0)的函数
k的符号
图象
k>0
k<0
图 象 及 性 质
经过象 限 增减性
练习2 直线y=2x+2沿y轴向下平移6个单位后与x 轴的交点坐标是( D ) A. (-4,0) C. (0,2) B. (-1,0) D. (2,0)
【解析】直线y=2x+2沿y轴向下平移6个单位 后,解析式为y=2x+2-6=2x-4,当y=0时 ,x=2,因此与x轴的交点坐标是(2,0).
b>0
b<0
经过象限 一、二、 一、三、 一、二 二、三、四 三 四 、四 增减性 y随x的增大而③ 增大. y随x的增大而④ 减小.
一次函数图象的平移:一次函数y=kx+b的图象可以看作是直线 y=kx向上(下)平移⑤ b 个单位长度而得到的。当b>0时,将直 线向上平移|b|个单位长度;当⑥b<0 时,将直线向下平移|b|个 单位长度
一次函数与一 与二元一次方程组的关系:两个一次函数图象 次方程(组)、 的交点坐标就是相应的二元一次方程组的解, 一元一次不等 反过来,以二元一次方程组的解为坐标的点, 式的关系 一定是相应的两个一次函数图象的交点
y=kx+b的函数值y大于0时,自变量x的取值范 围就是不等式⑦ y=kx+b>0 的解集,即 函数图象在x轴⑧ 上方 所对应的x的取值 范围 y=kx +b的函数值y小于0时,自变量x的取值 范围就是不等式⑨ y=kx+b<0 的解集, 即函数图象在x轴⑩ 下方 所对应的x的取 值范围

高考数学对数与对数函数复习课件

高考数学对数与对数函数复习课件
B
(3)log3×log49+lg +2lg 2= .
课堂考点探究
[解析] log3×log49+lg +2lg 2=-×+lg +lg 4=-1+lg=-1+1=0.
0
例2 (1)若0<a<1,则函数g(x)=loga(|x|-1)的图像可能是( )
课堂考点探究
探究点二 对数函数的图像及应用
1
3. [教材改编] 设a=,b=log9,c=log8,则a,b,c的大小关系是 .
[解析] a==log9=log9<log8=c,a=log9>log9=b,所以c>a>b.
题组二 常错题
索引:忽略真数大于零致错;不能充分运用对数函数的性质致错;忽略对底数的讨论致错.4.已知lg x+lg y=2lg(x-2y),则= .
课堂考点探究
[思路点拨]先求函数的定义域,利用奇偶性的定义确定奇偶性,再分析某一区间上函数的单调性,从而对选项进行判断;
A B C D
图2-11-1
[思路点拨] 根据函数的定义域和函数的奇偶性,结合图像变换和对数函数的单调性,即可求解;
D
课堂考点探究
[解析] 函数g(x)=loga(|x|-1)满足|x|-1>0,解得x<-1或x>1,即函数g(x)=loga(|x|-1)的定义域为(-∞,-1)∪(1,+∞),排除A,B;因为g(-x)=loga(|-x|-1)=loga(|x|-1)=g(x),所以函数g(x)为偶函数,所以函数g(x)的图像关于y轴对称,当x>1时,函数g(x)= loga(|x|-1)的图像是由函数y=logax的图像向右平移一个单位长度得到的,又0<a<1,所以g(x)在(1,+∞)上单调递减.故选D.

ax的图像教案

ax的图像教案

函数及其图像第11课时:二次函数y=ax2的图象(二)教学目标:1、使学生会用描点法画出函数y=ax2的图象;2、使学生理解二次函数和抛物线的有关概念.3、进一步培养学生动手画较复杂图形的能力;4、培养学生观察图形,分析问题和解决问题的能力;教学重点:画二次函数y=ax2的图象.因为图象是研究函数有关问题的基础.教学难点:画二次函数y=ax2的图象.因为它画起来比较复杂.教学过程:一、新课引入:上节课我们已经学习了二次函数的意义,并且画出了最简单的二次函数y=x2的图象,这节我们将继续研究二次函数y=ax2的图象.(板书)二、新课讲解:提问:1.在下列函数中,哪些是二次函数?通过这个问题,主要是复习了二次函数的意义,使学生进一步明确判断一个函数是否是二次函数的方法.这个问题在上一个问题的基础上更深入一步,而且是个逆向思维的过程,对培养学生思维的灵活性和发散性、深刻性都有一定的好处.因为这道题对学生来说有一定的难度,所以先由学生讨论解决,然后口答答案,可多找几名同学回答,尽量使学生说出各种不同的答案,再由学生解释得出上述答案的思路,再由学生进行讨论、选择,最后得出正确的思路,不要急于给出正确答案.(2)由此(二次函数)能得出什么结论?(m2-2=2)(3)这样就可求出m的值是多少?(m=±2)(4)是不是 m=±2都是上述问题的答案呢?(5)为什么m=-2不是要求的结果?(m+2=0即a=0)通过问题1和问题2这两种类型题的练习,就可使学生对二次函数的意义有了更深入地理解,而且能从正、反两方面对二次函数的意义加以应用.3.上节课我们画出了函数y=x2的图象,它是什么样的?它的开口方向,对称轴,顶点坐标又是什么?4.我们是取了哪些点来画出这个函数的图象的?可用事先准备好的小黑板给出上节课所列的表.下面,我们来看一下,如何画出下面两个二次函数的图象?(列表)(2)我们应怎样列表画出这两个函数的图象呢?可先仿照上节课画y=x2的图象的选取方式列表如下:把这些数值直接填在练习4中所准备的表格中.在描点之前先观察表中的值,我们看到需要在同一坐标系中描出(-3,18)和(3,18)这样的点,而同时又要描出(-1,0.5)和(1,0.5)这样的点,这是很不方便画图的,因此,我们考虑能否找出更好的取值方式呢?方式可不变,而使y=2x2的取值方式变化,即把x的取值间距缩小,从间距为1缩小成间距为0.5,列出如书上所示的两个表.(板书)通过这样的比较过程,可以使学生明确合理选值列表,对画出适当的函数图象有很重要的作用,从而促使学生在以后的练习中养成习惯,逐步摸索如何合理选值.列完表之后,让学生在练习本上完成这两个函数图象,找一个同学板演,事先准备好上面画有y=x2图象的小黑板,让板演的同学就把这两个函数图象画在同一坐标系内,便于以后的观察.学生在画图时,教师可巡回指导,待黑板上的同学画完之后,再集中加以总结、纠正.让学生观察所画出的函数图象,提问:答:开口大小不同.2.它们的开口大小有怎样的变化趋势?3.你认为是什么决定了开口大小的不同?由学生观察,讨论回答,然后老师加以总结,板书:当a>0时,a的值越小,则抛物线开口越大;而a的值越大,则抛物线的开口越小.这个结论也可以由函数解析式直接得到,看学生的层次加以讲解,但不必太深.4.它们的开口方向,对称轴,顶点坐标各是什么?都是向上的,是不是每个二次函数的图象开口都是向上的呢?下面,我们再来看一个例题:例2 画出函数y=-x2的图象.这个图象可由学生独立完成.画完之后,可把函数y=-x2与函数y=x2的图象加以对照,提问:(1)从解析式上看,它们有什么异同?(2)从图象上看,它们有什么异同?你认为如果函数y=x2与函数y=-x2的图象在同一坐标系内,它们有什么关系?这个问题可由学生讨论回答:它们关于x轴对称.根据上面的学习,我们发现有的二次函数的图象开口向上,而有的二次函数的图象开口向下,你能说清,什么是决定开口方向的因素吗?由学生讨论得到,教师板书:一般地,抛物线y=ax2的对称轴是y轴,顶点是原点(即顶点坐标为(0,0)),当a>0时,抛物线y=ax2的开口向上,当a<0时,抛物线y=ax2的开口向下.练习:1.教材P.121中1由学生填,画在书上;本节课的教学重点和教学难点都是画二次函数y=ax2的图象,根据上节课的学习,学生已知道了它们的图象都是一条抛物线,也清楚了连结各点的走势.因此,这节课教师把教学的重点部分放在如何选取列表上,经过试验,对比,使学生初步掌握选点的技巧,为以后画一般的二次函数的图象打好基础.另外,这节课还从这几个图象之间的关系上总结出了a的取值的作用及y=ax2的对称轴和顶点,整个过程完全由教师引导学生自主完成.三、课堂小结:填空:(1)抛物线y=ax2的对称轴是______,顶点是______,顶点坐标是______;(2)当a>0时,抛物线y=ax2的开口______;(3)当a<0时,抛物线y=ax2的开口______.四、布置作业1.在同一直角坐标系内画出下列函数的图象:y=5x2,y=-5x2.2.已知点A(-4,m)在抛物线y=x2上,(1)求m的值;(2)点 B(4,m)在抛物线y=x2上吗?3.已知点C(n,q)在抛物线y=x2上,(1)求n的值;(2)点D(-n,q)在抛物线y=x2上吗?4.选做:教材P.122中B1、2.。

函数的图像

函数的图像

函数的图像以下是关于函数的图像,希望内容对您有帮助,感谢您得阅读。

函数的图像教学目标(一)知道函数图象的意义;(二)能画出简单函数的图象,会列表、描点、连线;(三)能从图像上由自变量的值求出对应的函数的近似值.教学重点和难点重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象.难点:对已知图象能读图、识图,从图象解释函数变化关系.教学过程设计(一)复习1.什么叫函数?2.什么叫平面直角坐标系?3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?4.如果点A的横坐标为3,纵坐标为5,请用记号表示点A(答:A(3,5)).·5.请在坐标平面内画出A点.6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)(二)新课我们在前几节课已经知道,函数关系可以用解析式表示.像y=2x+1就表示以x为自变量时,y是x的函数.这个函数关系中,y与x的对应关系,我们还可以用在坐标平面内画出图象的方法表示.具体做法是第一步:列表.(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值.(这种用表格表示函数关系的方法叫做列表法)第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点.也就是由表中给出的有序实数时,在直角坐标中描出相应的点.第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象.例1 在同一直角坐标系中画出下列函数式的图像:(1) y=-3x; (2)y=-3x+2; (3) y=-3x-3.·分析:按照列表、描点、连线三步操作.解:它们的图象分别是图13-25中的(1),(2),(3).例2 某化我厂1月到12日生产某种产品的统计资料如下:(1) 在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画出对应的点.把12个点画在同一直角坐标系中.(2) 按照月份由小到大的顺序,把每两个点用线段连接起来.(3) 解读图像:从图说出几月到几月产量是上升的、下降的或不升不降的.(4) 如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?解:(1),(2)见图13-26.(3) 产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升.产量下降:8月到9月,9月到10月.产量不升不降:2月到3月;6月到7月,7月到8月.(4)过x轴上的4.5处作y轴的平行线,与图象交于·点A,则点A的纵坐标约4.5,所以4月15日的产量约为4.5吨.(三)课堂练习已知函数式y=-2x.用列表(x取-2,-1,0,1,2),描点,连线的程序,画出它的图象.(四)小结到现在,我们已经学过了表示函数关系的方法有三种:1.解析式法——用数学式子表示函数关系.2.列表法——通过列表给出函数y与自变量x的对应关系.3.图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系描出对应的点.所有这些点的集合,叫做这个函数的图像.用图象来表示函数y与自变量x对应关系.这三种表示函数的方法各有优缺点.1.用解析法表示函数关系优点:简间明了.能从解析式清楚看到两个变量之间的全部相依关系,并且适合于进行理论分析和推导计算.缺点:在求对应值时,有进要做较复杂的计算.2.用列表法表示函数关系·优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便.缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律.3.用图象法表示函数关系优点:形象直观.可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化.缺点:从自变量的值常常难以找到对应的函数的准确值.函数的三种基本表示方法,各有各的优点和缺点.因此,要根据不同问题与需要,灵活地采用不同的方法.在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图像.(五)作业1.在图13-27中,不能表示函数关系的图形有( ).(A) (a),(b),(c) (B)(b),(c),(d) (C) (b),(c)(e)(D)(b),(d),(e)2.函数的图象是图13-28中的( ).3.矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2).(1) 以x为自变量,y为x的函数,写出函数关系式,并·在关系式后面注明x的取值范围;(2) 列表、描点、连线画出此函数的图象.4.(1) 画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);(2) 判断下列各有序实数地是不是函数.y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相庆坐标的点是否在你所画的函数图像上:5.画出下列函数的图象:(1) y=4x-1; (2)y=4x+1.6.图13-29是北京春季某一天的气温随时间变化的图象.根据图象回答,在这一天:(1)8时,12时,20时的气温各是多少;(2)最高气温与最低气温各是多少;(3)什么时间气温高,什么时间气温最低.7.画出函数y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点);8.画出函数的图象(先填下表,再描点,然后用平滑曲线顺序连结各点):作业的答案或提示·1.选(C).因为对应于x的一个值的y值不是唯一的.2.选(D).当x<0时,|x|=-x,所以 ,当x>0时,|x|=x,所以3.(1) y=x(6-x)其中0<x<6,(图13-30).(2)4.5.见图13-32.6.(1) 8时约5℃,12时约11℃,20时约10℃.(2) 最高气温为12℃,最低气温为2℃.(2) (2) 14时气温最高,4时气温最低.7.课堂教学设计说明1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函·数关系与动点轨迹一一对应.把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法.2.本课的目标是使学生会画函图象,并会解读图象,即会从图象了解到抽象的数量关系.为此,先在复习旧课时,着重提问会标平面上的点与有序实数对一一对应.接着在新课开始时介绍了画函数图象的三个步骤.3.教学设计中的例3,即训练学生从已有数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力.对函数图象功能有一个完整的认识.4.在小结中,介绍了函数关系的三种不示方法,并说明它们各自的优缺点.有利于对函数概念的透彻理解.5.作业中的第1~3题,对训练函数概念及函数图象很有帮助.第1题,目的要说明,对于x的一个值,必须是唯一的值与之对应.而(b),(c),(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数.本题还训练解读形的能力.第2题,训练学生分类讨论的数学思想,在去掉绝对值符号对,必须分x≥0与x<0讨论.第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力.·这些都是学习函数问题时应具备的基本功.·。

北师大版中职数学拓展模块一上册第11课 y=Asinx函数的图像与性质7教案

北师大版中职数学拓展模块一上册第11课 y=Asinx函数的图像与性质7教案

第二单元2.3《正弦型函数》教案授课题目sin y A x =的图像和性质授课课时 1课 型 讲授教学 目标一、知识与技能1. 理解函数y =Asinx(A >0)与函数y =sinx 的图像之间的关系,知道A 在图像纵向、横向伸缩变换中的作用;2.能借助“五点法”作出sin y A x =的图像,并能归纳其图像的特征,总结其性质。

二、过程与方法通过对图像的合作探究,体会数学知识内的内在联系,体会数形结合的思想,培养分析问题、解决问题的能力。

三、情感与价值在渗透数形结合的数学思想过程中,培养学生类比和转化的思维习惯。

教学 重难点一、教学重点用“五点法”作y =Asinx 的图像 二、教学难点y =Asinx(A >0)的图像变换规律及性质第1课时 教学过程教学活动学生活动 设计思路 一、创设情境如图所示,小明在荡秋千时,他认为老师可以请同学们回答问题结合生活情境实例,吸引学生的注意力当摆动的角度不变时,摆线越长,离开平衡位置的距离就越大。

教师借助GGB软件演示。

问题1.用“五点法”作y=sinx的图像,大家还记得哪五点吗?问题2.如何通过y=sinx的图像变换得到y=Asinx?二、自主探究请同学采用“五点法”在同一平面直角坐标系中作出函数y=2sinx,y=1sinx和y=sinx在[0,2π]内的简图。

2问题3.请同学们结合所画的图像,思sinx与y=sinx的关考y=2sinx,y=12系。

教师借助GGB软件,进一步演示y= Asinx的图像。

(详见课件y=Asinx)。

第11讲二次函数y=a(x-h)^2 k的图像及性质-人教版暑假班九年级数学上册教学案(教育机构专用)

第11讲二次函数y=a(x-h)^2 k的图像及性质-人教版暑假班九年级数学上册教学案(教育机构专用)

圆梦堂文化培训学校精品班教案第 11 讲要点1二次函数y=ax2+k的图象和性质1. 二次函数y=ax2+k(a≠0)的图象是一条,其对称轴是轴,顶点坐标为 .2. 抛物线y=ax2+k,当a>0时,开口向,顶点是它的最点,在对称轴左侧,y随x的增大而;在对称轴右侧,y随x的增大而;当a<0时,开口向,顶点是它的最点,在对称轴左侧,y随x的增大而;在对称轴右侧,y随x的增大而.要点2二次函数y=ax2+k与y=ax2的图象之间的平移当k>0时,y=ax2+k是将y=ax2的图象向上平移个单位得到的;当k<0时,y=ax2+k是将y =ax2的图象向平移|k|个单位得到的.要点3二次函数y=a(x-h)2的图象和性质1. 二次函数y=a(x-h)2(a≠0)的图象是一条,其对称轴是,顶点坐标为.2. 抛物线y =a (x -h )2,当a >0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 ;当a <0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 要点4 二次函数y =a (x -h )2与y =ax 2图象之间的平移当h >0时,y =a (x -h )2是将y =ax 2的图象向右平移 个单位得到的;当h <0时,y =a (x -h )2是将y =ax 2的图象向 平移|h |个单位得到的. 要点5 二次函数y =a (x -h )2+k 的图象和性质1. 二次函数y =a (x -h )2+k(a ≠0)的图象是一条 ,其对称轴是 ,顶点坐标为 .2. 抛物线y =a (x -h )2+k ,当a >0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 ;当a <0时,开口向 ,顶点是它的最 点,在对称轴左侧,y 随x 的增大而 ;在对称轴右侧,y 随x 的增大而 . 要点6 二次函数y =a (x -h )2+k 与y =ax 2图象之间的平移y =a (x -h )2+k 是将y =ax 2的图象向右(左)平移 个单位再向上(下)平移 个单位得到的;左加右减自变量;上加下减函数值。

七年级数学下册 11-4《函数与图像》ppt课件 青岛版

七年级数学下册 11-4《函数与图像》ppt课件 青岛版
曲线是怎样刻画这种 变化的? (6)你从图上还能 得到哪些信息?
(2)怎样确定这天某一时刻t的气温T?
用图像表示变量之间函数 关系的方法叫做图像法
例1:小亮步行从家去书店,用一段时间选择自己需要的书籍,然后回家.
小亮和家的距离与他离开家之后的时间之间的函数关系如图所示,根据图像回 答下列问题:
(20分钟)小亮家距书店多远? (900米) (1)小亮用多少时间走到书店?
下图是某气象站记录的某一天昼夜气温变化的曲线,请根 据此图回答下列问题:
(1)这天6时、8时和20时的气温T各是多少?
新 (3)这条曲线反映的是哪两个变量之间的关系? 知 (4)请你找出曲线上位置最高和最低的点,你能分别说出这 探 两点的坐标吗?你能解释这两个点坐标的实际意义吗? (5)从4时到14时气 究 温发生了怎样的变化?
2.下列各点哪些在函数y=2x-1的图像上? A(1,- 2) B(-2.5,-6) C(0,-1) D(101,199)E(-100,-103)F(1.5,2)
通过这节课的学习,你有哪些收获?
1.观察函数图像,可以获得相关信息,并能 利用这些信息解决问题. 2.根据函数解析式,可以画出函数的图像. x-1的图像. (1)给定自变量的x的一些值,求出对应y的值,并填表;
(2)以x与y的对应职位点的坐标描出这些点; (3)按照自变量由小到大的顺序把描出的点顺次连接起来. 如图,可得函数y=x-1的图像. y=x-1
用描点法画函数图像的步骤: ①列表 ②描点 ③连线
想一想,下列各点哪些在函数y=x-1
(1)乙工程队比甲工程队晚开工几天?早完工几天?
(2)甲工程队在施工中间休息了几天? (3)甲工程队在在哪一时间段内施工进度最快?

课件11: 1.4.1 正弦函数、余弦函数的图像

课件11: 1.4.1 正弦函数、余弦函数的图像
错因分析:此解法犯了“死搬教条”的错误,总以为有-1≤sin x≤1,其实-1≤sin x≤1 成立 的 x 是有范围的.本题的 x∈π6,π,并不能保证-1≤sin x≤1.
正解:因为 x∈6π,π,所以借助函数 y=sin x 的图象可知,此时 0≤sin x≤1. 于是由 sin x=2m-1,得 0≤2m-1≤1,解得 m 的取值范围12≤m≤1. 纠错心得:三角函数的取值范围与定义域有关,因此,在求解有关范围问题时, 一定要先看清定义域,再由定义域推得三角函数的取值范围,最后求出正确答案.
1.4.1 正弦函数、余弦函数的图像
基础初探
1.在函数 y=sin x,x∈[0,2π]的图象上,起关键作用的五点是:
(0,__0__),(π2,__1__),(__π__,0),(__32_π_,-1),(2π,__0__).
2.用“五点法”画余弦函数 y=cos x,x∈[0,2π]时,应先在直角坐标系中
跟踪训练
3.(1)cos21x+π3>
3 2.
【解析】令 ωx+φ=t,利用正弦、余弦、正切曲线求解.
(1)令12x+π3=t,则 cos t> 23,观察一个周期[-π,π]得-π6<t<6π.又因为余弦函数周期
为 2π,所以 2kπ-6π<t<2kπ+π6(k∈Z),
即 2kπ-6π<12x+3π<2kπ+6π(k∈Z),
课堂小结
1.用“五点法”作正弦曲线和余弦曲线,这五个点中有两个点是函数图象 的最高点和最低点,另外三个点是函数图象与 x 轴的交点. 2.利用正弦曲线和余弦曲线,不仅可以求函数的定义域或不等式的解集, 而且也可以确定方程的解的个数.

画出的五点是:__(0_,_1_)_,___π2_,__0_ _,(π_,__-__1_,) _3_2π_,__0_,(2_π_,__1_)_. 3.y=sin x 的图象可以由 y=cos x 的图象向__右__平移π2个单位长度而得到.

函数及其图像(课堂PPT)

函数及其图像(课堂PPT)
aM, aM, A {a1 , a2 , , an } 有限集(列举表示) M { x x所具有的特征} 无限集(命题式表示)
集合:A,B,C…表示;元素:a,b,c…表示
函数与极限
4
2.实数与数轴
实数R有理数Q分 整数 数(Z12负非, 整 负86 ,数 整)( 数(1,自2然,数集nN,:0),1,2, )
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故定义域是[-3, -1].
函数与极限
28
例3 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2. 函数中根式,要求负数不能开偶次方
3. 函数中有对数式,要求真数必须大于零
4. 函数中有对数式和反三角函数式,要求符合它们定义域
5. 若函数式是上述各式的混合式,则应取各部分定义域
的交集
函数与极限
20
例1 求下列函数的定义域
(1()1(y)1y)y44411x1x22x2 xxx222; ;
((22()2)y)yylglgxlxg11;x; 1 ; x x22x 2
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U 0
(t )
E
0
2
即U 2E (t )
函数与极限
29
当 t (,) 时, U 0.
U
( , E)
2

八年级秋季班-第11讲:反比例函数

八年级秋季班-第11讲:反比例函数

反比例函数是八年级数学上学期第十八章第二节内容,主要对反比例函数的图像及性质进行讲解,重点是反比例函数的性质的理解,难点是反比例函数表达式的归纳总结.通过这节课的学习为我们后期学习反比例函数的应用提供依据.一、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,我们就说这两个变量成反比例.用数学式子表示两个变量x 、y 成反比例,就是xy k =,或表示为ky x =,其中k是不等于0的常数.2、解析式形如ky x=(k 是常数,0k ≠)的函数叫做反比例函数,其中k 叫做比例系数.3、反比例函数ky x=的定义域是不等于零的一切实数.反比例函数知识结构模块一:反比例函数的概念知识精讲内容分析【例1】下列变化过程中的两个变量成反比例的是()A .圆的面积和半径B .矩形的面积一定,它的长与宽C .完成一项工程的工效与完成工期的时间D .人的身高及体重【难度】★【答案】【解析】【例2】(1)已知:y 与x 成反比例,且1x =-时,2y =,则它的函数解析式是_________;(2)已知y 与2x 成反比例,且当2x =-时,14y =-,则当13x =时,y =_________.【难度】★【答案】【解析】【例3】下列函数(其中x 是自变量)中,哪些是反比例函数?哪些不是,为什么?(1)3x y =;(2)12y x -=;(3)1(0)y k kx =≠;(4)2xy =-;(5)21y x=+.【难度】★【答案】【解析】【例4】(1)如果21(1)kk y k x --=-是反比例函数,则k 的值是_________;(2)已知函数210(3)my m x -=-是反比例函数,则m =_________.【难度】★★【答案】【解析】例题解析【例5】下列说法中正确的有()个.(1)当10k y kx≠=时,是反比例函数;(2)如果2213y y x x=,那么与成反比例;(3)如果211m y m x-=+-是反比例函数,则1m =±;(4)如果x 、y 成正比例,y 与z 成反比例,则x 与z 成反比例.A .1B .2C .3D .4【难度】★★【答案】【解析】【例6】已知某反比例函数,且当1x =时,2y =-,当3x y m =-=时,求m 的值.【难度】★★【答案】【解析】【例7】已知21y x +-与成反比例,且当13x y =-=-时,当3x =时,y 的值.【难度】★★【答案】【解析】【例8】已知一梯形的面积是30,上底长是下底长的12,设下底长为x ,高为y ,求y 关于x 的函数关系式并写出这个函数的定义域.【难度】★★【答案】【解析】【例9】已知反比例函数ky x=的图像上有一点A ,它的横坐标x 和纵坐标y 是方程2280x x --=的两个根,求:(1)k 的值;(2)点A 到y 轴的距离.【难度】★★【答案】【解析】【例10】设1212k ky y x x==和,当2x =时,121213y y y y +=-=,,求12k k 、的值.【难度】★★★【答案】【解析】【例11】已知122y y y =-,若1y 与x 成反比例,2y 与3x +成正比例,且当1x =时10y =,当1x =-时2y =;(1)求y 与x 间的函数关系式;(2)求当12y =时,x 的值.【难度】★★★【答案】【解析】师生总结1.反比例函数的定义域有限制吗?请说明二、反比例函数的图像1、反比例函数ky x=(k 是常数,0k ≠)的图像叫做双曲线,它有两支.三、反比例函数的性质1、当0k >时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐减小.2、当0k <时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大.3、图像的两支都无限接近于x 轴和y 轴,但不会与x 轴和y 轴相交.【例12】(1)已知反比例函数2a y x-=图像在第二、四象限,则a 的取值范围是_______;(2)已知(0)ky k x=≠图像上有一点P (3,2),那么这个反比例函数的解析式为_________.【难度】★【答案】【解析】【例13】已知反比例函数(0)ky k x=≠的图像经过经过点(1,2-),则这个函数解析式是______________;当x <0时,y 的值随着x 的增大而________.【难度】★【答案】【解析】知识精讲例题解析模块二:反比例函数的图像及性质【例14】当m =_______时函数231(2)mm y m x --=-是反比例函数,且当0x >时,y 值随x的值增大而减小.【难度】★【答案】【解析】【例15】已知(3,4)是反比例函数221m m y x+-=图像上的一点,则函数图像必过点().A .(2,6-)B .(6-,2)C .(3,4-)D .(3-,4-)【难度】★【答案】【解析】【例16】(1)已知函数1y x -=是反比例函数,则k 的取值范围是________;(2)已知反比例函数1k y x+=,点1122()()x y x y ,、,为其图像上的两点,若当12120x x y y <<>时,,则k 的取值范围是___________.【难度】★★【答案】【解析】【例17】下列函数1135y x y x y y x x=-===-,,,中,每个象限内y 的值随x 的增大而减小的有()个A .0个B .1个C .2个D .3个【难度】★★【答案】【解析】【例18】下列函数21()a y a x--=是常数的图像上有三点A 13y (-,)、B 21y (-,)、C 32y (,),则1y 、2y 、3y 的大小关系是()A .231y y y <<B .321y y y <<C .123y y y <<D .312y y y <<【难度】★★【答案】【解析】【例19】(1)已知P (1,2+1m )在双曲线ky x=上,则双曲线的图像在第_______象限内,当x <0时,y 的值随x 的减小而________;(2)设反比例函数15510y x x -=-≤≤,当时,函数的最大值是______________.【难度】★★【答案】【解析】【例20】(1)平面直角坐标系中,点A (725)m m --,在第二象限,且m 为整数,求过点A 的反比例函数解析式;(2)若反比例函数3k y x -=的图像位于第二、四象限内,正比例函数2(1)3y k x =-过一、三象限,求整数k 的值.【难度】★★【答案】【解析】【例21】函数122(4)m y m m x=+可能是正比例函数或者是反比例函数吗?为什么?【难度】★★★【答案】【解析】【例22】已知反比例函数(0)ky k x=≠,当自变量x 的取值范围为84x ≤≤--时,相应的函数取值范围是12y ≤≤--1,求这个反比例函数解析式.【难度】★★★【答案】【解析】师生总结2.反正比例函数的性质是什么?反比例函数和几何图形的综合【例23】已知反比例函数图像上有一点P ,过P 作y 轴的垂线,垂足为H ,如果△POH的面积为6,则反比例函数的解析式为_____________.【难度】★【答案】【解析】【例24】如图,x 轴上一点C 的坐标是(-3,0).点P 从原点出发,沿y 轴向上运动,过点P 作x 轴的平行线,分别与反比例函数42y y x x =-=和的图像交于点A 、B ,在点P 从下向上移动过程中,三角形ABC 的面积()A .逐渐增大B .逐渐减小C .保持不变D .先增大,到一定程度后减小【难度】★★【答案】【解析】知识精讲例题解析ABC OPxy模块三:反比例函数的综合【例25】如图,矩形ABCD 的边CD 在x 轴上,顶点A 在双曲线1y x=上,顶点B 在双曲线3y x=上,求矩形ABCD 的面积.【难度】★★【答案】【解析】【例26】过原点作直线交双曲线(0)ky k x=>于点A 、C ,过A 、C 两点分别作两坐标轴的平行线,围成矩形ABCD ,如图所示.(1)已知矩形ABCD 的面积等于8,求双曲线的解析式;(2)若已知矩形ABCD 的周长为8,能否由此确定双曲线的解析式?如果能,请予求出;如果不能,说明理由.【难度】★★【答案】【解析】A B CDE OxyyABCDOx【例27】正方形OAPB 、ADFE 的顶点A 、D 、B 在坐标轴上,点E 在AP 上,点P 、F 在函数(0)ky k x =>的图像上,已知正方形OAPB 的面积是16.(1)求k 的值和直线OP 的函数解析式;(2)求正方形ADEF 的边长.【难度】★★★【答案】【解析】【例28】如图,已知正方形OABC 的面积是9,点O 为坐原点,A 在x 轴上,C 在y 轴上,B 在函数(00)k y k x x =>>,的图像上,点P (m ,n )在(00)ky k x x =>>,的图像上异于B 的任意一点,过点P 分别作x 轴,y 轴的垂线,垂足分别是E 、F .设矩形OEPF 和正方形OABC 不重合部分的面积是S .(1)求点B 的坐标;(2)当92S =时,求点P 的坐标;(3)写出S 关于m 的函数解析式.【难度】★★★【答案】【解析】A BC PE FyOxyABPFOxE【习题1】下列函数(其中x 是自变量)中,哪些是反比例函数?哪些不是?为什么?(1)13y x =-;(2)4xy =;(3)15y x=-;(4)2(0)ay a a x =≠为常数,;(5)1y xπ=;(6)21y x =.【难度】★【答案】【解析】【习题2】已知1y x -与成反比例,当x =1时,y =3;当x =8时,y =________.【难度】★【答案】【解析】【习题3】(1)反比例函数22(2)my m x -=-的图像在第二、四象限,则m =________;(2)若反比例函数230k y x x-+=<,当时,y 随x 的增大而增大,则k 的取值范围是____________.【难度】★【答案】【解析】随堂检测【习题4】在函数(0)ky k x=>图像上有三点112233()()()A x y B x y C x y ,,,,,,如果1230x x x <<<,试比较123y y y ,,大小关系___________.【难度】★★【答案】【解析】【习题5】反比例函数2121k y k x+=+-的图像经过第二、四象限,求这个函数的解析式.【难度】★★【答案】【解析】【习题6】作出反比例函数12y x=的图像,并根据图像解答下列问题:(1)当4x =时,求y 的值;(2)当2y =-时,求x 的值;(3)当2y >时,求x 的范围.【难度】★★【答案】【解析】【习题7】点P 在反比例函数1y x=(x >0)的图像上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点'P .求在第一象限内,经过点'P 的反比例函数图像的解析式.【难度】★★【答案】【解析】【习题8】已知函数12y y y =+,1y 与x 成反比例,2y 与(2)x -成正比例,当1x =时,1y =-;当3x =时,5y =,求当6x =时,y 的值.【难度】★★【答案】【解析】【习题9】(1)若P 是反比例函数3ky x=图像上的一点,PQ ⊥y 轴,垂足为点Q ,若2POQ s ∆=,求k 的值;(2)已知反比例函数ky x=的图像上有一点A ,过A 点向x 轴,y 轴分别做垂线,垂足分别为点B C ,,且四边形ABOC 的面积为15,求这个反比例函数解析式.【难度】★★【答案】【解析】【习题10】如图,点A 、B 在反比例函数(0)ky k x=>的图像上,且A 、B 横坐标分别是a 、2a (0)a >.AC ⊥x 轴,垂足为C ,三角形AOC 的面积为2.(1)求反比例函数的解析式;(2)若点12(2)a y a y (-,)、-,也在反比例函数的图像上,试比较12y y ,的大小.【难度】★★★【答案】【解析】A BG D EFCOxy【习题11】如图,在平面直角坐标系中,正比例函数3y x =与反比例函数图像交于第一象限内的点A ,AB ⊥x 轴于点B ,AB =6.(1)求反比例函数的解析式;(2)在直线AB 上是否存在点P ,使点P 到正比例函数直线OA 的距离等于点P 到点B 的距离?若存在,求点P 坐标,若不存在,请说明理由.【难度】★★★【答案】【解析】【习题12】已知反比例函数4y x=与正比例函数相交与点A ,点A 的坐标是(1,m ).(1)求此正比例函数解析式;(2)若正比例函数14y x =与反比例函数4y x=的图像在第一象限内相交与点B ,过点A 和点B 分别做x 轴的垂线,分别交x 轴与点C 和点D ,AC 和OB 相交与点P ,求梯形PCDB 的面积;(3)联结AB ,求AOB ∆面积.【难度】★★★【答案】【解析】ABOxy【习题13】如图,在反比例函数2(0)y x x=>的图像上,有点1234P P P P ,,,,他们的横坐标为1,2,3,4.分别过这些点往x 轴和y 轴上作垂线,图中所构成的阴影部分的面积从左向右依次是123123S S S S S S ++,,,求的值.【难度】★★★【答案】【解析】【作业1】判断下列问题中两个变量是不是反比例函数关系?为什么?(1)三角形的面积S 一定时,它的一条边长a 和这条边长上的高h ;(2)存煤量Q 一定时,平均每天的用煤量m 与可用天数t ;(3)货物的总价A 一定时,货物的单价a 与货物的数量x ;(4)车辆所行使的路程S 一定时,车轮的直径d 和车轮的旋转周数n .【难度】★【答案】【解析】【作业2】已知反比例函数(0)ky k x=<,当0x <时,它的图像在第______象限.【难度】★【答案】【解析】课后作业1234xyO 1P 2P 3P 4P 3S 2S 1S【作业3】(1)已知函数63k y x-=,如果在每个象限内y 随x 的增大而减小,那么k 的取值范围是______________;(2)如果双曲线2m y x +=位于第一,三象限,那么m 的取值范围是______________.【难度】★【答案】【解析】【作业4】已知点11()x y ,,22()x y ,在反比例函数2k y x-=图像上,当120x x >>时,12y y <,求k 的取值范围.【难度】★【答案】【解析】【作业5】作出反比例函数xy 4-=的图像,结合图像回答:(1)当2x =时,y 的值;(2)当14x <≤时,y 的取值范围;(3)当14y ≤<时,y 的取值范围.【难度】★★【答案】【解析】【作业6】已知反比例函数ky x=的图像上有一点A ,过A 点向x 轴做垂线,垂足分别为点B ,且AOB ∆的面积为15,求这个反比例函数解析式.【难度】★★【答案】【解析】【作业7】已知函数12y y y =-,且1y 为x 的反比例函数,2y 为x 的正比例函数,且312x x =-=,时,y 的值都是1.求y 关于x 的函数关系式.【难度】★★【答案】【解析】【作业8】在反比例函数ky x=的图像上有一点A ,它的横坐标x 和纵坐标y 是方程290x -=的两个根.求:(1)k 的值;(2)点A 到y 轴的距离;(3)点1(27)3P -,是否在该反比例函数图像上?【难度】★★【答案】【解析】【作业9】等腰直角POA 的直角顶点P 在反比例函数4y x=(0)x >的图像上,A 点在x 轴正半轴上,求A 点坐标.【难度】★★【答案】【解析】【作业10】已知,如图点P 是双曲线24y x=上的一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA 、PB 分别交双曲线11y x=于点D 、C .求△PCD 的面积.【难度】★★★【答案】【解析】【作业11】如图已知在平面直角坐标系中,正方形ABCD 顶点A 、B 的坐标分别为(1,0)和(0,2).双曲线(0)ky x x=>经过点D .(1)求双曲线的函数解析式;(2)将正方形ABCD 沿x 轴向左平移多少个单位长度,可以使点C 正好落在双曲线上.【难度】★★★【答案】【解析】A BCDOP yxyABCDEF Ox。

第11节 一次函数的图象和性质

第11节   一次函数的图象和性质
解:因为 a,b,c 均不为 0,直线方程可化为:y=﹣ x﹣ ,则直线的斜率为﹣
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:


由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;

第11课时反比例函数的图像与性质

第11课时反比例函数的图像与性质

第11课时反比例函数的图像与性质【复习目标】1. 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的解析式。

2.能画出反比例函数的图象,根据图象和解析式y=kx(k≠0)探索并理解k>0和k<0时,图象的变化情况.3.理解反比例函数的性质,能利用性质解题.4.会用待定系数法求反比例函数的解析式;能综合利用一次函数与反比例函数的性质解题.【知识梳理】1.反比例函数的定义:一般地,形如y=kx(k为常数,k_______0)的函数叫做反比例函数.2.反比例函数的性质:反比例函数y=kx(k≠0)的图象是_______.当k>0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______;当k<0时,两分支分别位于第_______象限内,且在每个象限内,y随x的增大而_______.3.反比例函数的图象是中心对称图形,其对称中心为_______;反比例函数还是_______图形,它有两条_______,分别是_______.4.在双曲线y=kx上任取一点P向两坐标轴作垂线,与两坐标轴围成的矩形的面积等于_______.5.因为在反比例函数的关系式y=kx(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数的关系式,因而一般只要给出一组x、y的值或图象上任意一点的坐标,然后代入y=kx中即可求出_______的值,进而确定出反比例函数的关系式.【考点例析】考点一判断点是否在反比例函数的图象上例1下列各点中,在反比例函数y=6x的图象上的是( )A.(-2,-3) B.(-3,2)C.(3,-2) D.(6,-1)考点二反比例函数的图象与性质例2已知反比例函数y=1mx的图象如图所示,则实数m的取值范围是( )A.m>1 B.m>0 C.m<1 D.m<0例3反比例函数y=2x的图象上的两点为(x1,y1),(x2,y2),且x1<x2,则下列关系成立的是( )A.y1>y2B.y1<y2C.y1=y2D.不能确定考点三求反比例函数的解析式及函数图象的交点例4已知反比例函数y=kx的图象经过点(1,-2),则k的值为( )A.2 B.-12C.1 D.-2例5已知直线y=ax(a≠0)与双曲线y=kx(k≠0)的一个交点坐标为(2,6),则它们的另一个交点坐标是( )A.(-2,6)B.(-6,-2)C.(-2,-6)D.(6,2)考点四反比例函数y=kx(k≠0)中k的几何意义例6如图,点A在双曲线y=1x上,点B在双曲线y=3x上,且AB∥x轴,点C和点D在x轴上,若四边形ABCD为矩形,则矩形ABCD的面积为_______.考点五反比例函数图象中的几何图形的面积例7如图,两个反比例函数y=1x和y=-2x的图象分别是l1和l2.设点P在l1上.PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为( )A.3 B.4 C.92D.5考点六反比例函数与一次函数的综合运用例8一次函数y=x+m(m≠0)与反比例函数y=mx的图象在同一平面直角坐标系中可能是( )例9如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(-1,-2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式;(2)连接OA,求△AOC的面积.【反馈练习】1.若反比例函数y=1kx-的图象经过点(-1,-2),则k的值是( )A.2 B.-2 C.-3 D.32.已知A(-1,y1)、B(2,y2)两点都在双曲线y=32mx+上,且y1>y2,则m的取值范围是( )A.m<0 B.m>0 C.m>-32D.m<-323.如图,正方形ABOC的边长为2,反比例函数y=kx的图象经过点A,则k的值是( )A.2 B.-2 C.4 D.-44.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是()5.已知反比例函数的图象经过点(m,2)和(-2,3),则m的值为_______.6.如图,双曲线y=kx(k≠0)上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的解析式为_______.7.如图,一次函数y=kx+b的图象与坐标轴分别交于A.B两点,与反比例函数y=mx的图象在第二象限的交点为C,CD⊥x轴,垂足为D.若OB=2,OD=4,△AOB的面积为1.(1)求一次函数与反比例函数的解析式;(2)直接写出当x<0时,kx+b-mx>0的解集.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∵-1≤x<3, ∴-1≤
∴-2≤4-y<6,
∴-2-4≤-y<6-4,-6≤-y<2, ∴-2<y≤6. 探究提高 结合不等式的性质,由自变量的取值范围,可确定2010· 上海)已知函数f(x)=
1 x2+1
1 ,那么f(-1)=_____. 2
解析:当x=-1时,f(-1)=
的对应值一般只是近似的,且只反映出变量间关系的一部分而不
是全体. 函数的三种表示法各有优缺点,我们常常各取其长,综合运
用这三种方法来研究有关函数问题,并且函数三种表示法可以相
互联系与转化.
基础自测
1.(2011·武汉)函数y= x-2中自变量x的取值范围是( C ) A.x≥0 B.x≥-2
C.x≥2 D.x≤-2
知能迁移1 (2011·乐山)下列函数中,自变量x的取值范围为x<1 的是 ( D )
1 A. y= 1-x C. y= 1-x
1 B. y=1- x D. y= 1 1-x
解析:由1-x>0,得x<1.
题型二 【例 2】
由自变量取值,求函数值 已知y=-2x+4,且-1≤x<3,求函数值y的取值范
(标明x的范围),并在图中画出函
数y1的图象; (2)甲、乙两人在途中有几次相遇?
分别是出发后的多长时间相遇?
解:(1)设y1=k1x,则有9=30k,k1= 3 ,y1= 3 x(0≤x≤30);
2 在0≤x≤5时,y2= x; 5
在5<x≤13时,y2=2; 在13<x≤27时,y2= 1 x- 9 .
1.理解并掌握平面中确定点的位置的方法
在平面内,确定一个点的位置,一般需要两个数据.利用纵横
交错法确定点的位置,要知道横向、纵向的格数;利用“方位角+ 距离”来确定点的位置,需知道该点相对于参考点的方位角和距
离.确定位置的方法,除了上面所述的两种,还有区域法等.
用坐标描述点的位置,关键在于建立适当的坐标系,并确定单 位长度.直角坐标系是刻画点的位置的一种工具,它把几何中研究 的基本对象“点”与代数中研究的基本对象“数”联系起来,从而 将“数”与“形”相结合,这样就使得我们可以用代数的方法来研 究几何图形.
120=2.5k+b, k=-48, 得 0=5k+b, b=240,
y=-48x+240.(2.5≤x≤5) (3)当x=4时,y=-48×4+240=48. 答:这辆汽车从甲地出发4 h时与甲地的距离是48 km.
易错警示
7.自变量取值范围不可忽视 试题 矩形的周长是8(cm),设一边长为x(cm),另一边长为 y(cm). (1)求y关于x的函数关系式; (2)在图中作出函数的图象. 学生答案展示 解:(1)由题意得2(x+y)=8,则y=4-x.
2
探究提高 本题利用了几何中的公式,用自变量表示因变量.
知能迁移3
(2010·漳州)某零件制造车间有工人20名,已知每名工
人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零 件可获利150元,每制造一个乙种零件可获利260元.在这20名工 人中,设该车间每天安排x名工人制造甲种零件,其余工人制造 乙种零件. (1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式; (2)若只考虑利润问题,要使每天所获利润不低于24000元,你认 为至多要派多少名工人制造甲种零件才合适? 解:(1)y=6x· 150+5(20-x)· 260=900x+26000-1300x
(2)若解析式是分式,则必须使得分母不为0;
(3)若解析式是二次根式,则必须使得被开方数不小于0; (4)对于实际意义的函数,自变量取值范围还应使实际问题有
10
3
3
探究提高 要学会阅读图象,正确理解图象中点的坐标的实际意 义,由图象分析变量的变化趋势,从而确定实际情况.分 析变量之间的关系、加深对图象表示函数的理解,进一步 提高从图象中获取信息的能力,运用数形结合的思想观察 图象求解.
知能迁移4
在一次运输任务中,一辆汽车将一批货物从甲地运往
乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车 与甲地的距离为y(km),y与x的函数关系如图所示.
关系的方法.列表法对于表中已有的自变量的每一个值,可以直
接找到对应的函数值,它适用于计算函数值很麻烦或很难找到函 数关系式的情况.缺点是不能把自变量与函数的全部对应值列出
来,而且从表格中也不易看出自变量与函数之间的对应规律.
图象法是指用图象来表示一个变量与另一个变量之间函数关 系的方法.在给定的函数中,把自变量x的一个值和函数y的对应 值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点, 所有这些点的集合,叫做这个函数的图象.函数的变化情况和某 些性质在图象上能够很直观地显示出来,以后我们通常借助函数 的图象来探索函数的性质.其缺点在于从图象上找自变量与函数
根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由; (2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4 h时与甲地的距离.
解:(1)120÷2=60;120÷(5-2.5)=120÷2.5=48.
∵60≠48,
∴往、返速度不相同.
(2)设返程中y与x之间的函数关系式为y=kx+b.
解析:x-2≥0,x≥2.
2.(2011·株洲)根据生物学研究结果,青春期男女生身高增长速 度呈现如下图规律,由图可以判断,下列说法错误的是( D ) A.男生在13岁时身高增长速度最快 B.女生在10岁以后身高增长速度放慢 C.11岁时男女生身高增长速度基本相同 D.女生身高增长的速度总比男生慢
探究提高
代数式有意义的条件问题:
(1)若解析式是整式,则自变量取全体实数; (2)若解析式是分式,则自变量取使分母不为0的全体实数;
(3)若解析式是偶次根式,则自变量只取使被开方数为非负数的
全体实数; (4)若解析式含有零指数或负整数指数幂,则自变量应是使底数
不等于0的全体实数;
(5)若解析式是由多个条件限制,必须首先求出式子中各部分自 变量的取值范围,然后再取其公共部分,此类问题要特别注意, 只能就已知的解析式进行求解,而不能进行化简变形,特别是不 能轻易地乘或除以含自变量的因式.
第三章 函数及其图像
第11课 函数及其图像
要点梳理
1. 常量、变量: 在某一过程中,保持一定数值不变的量叫做 常量 ;可以取不 同数值的量叫做 变量 . 2.函数: 一般地,设在一个变化过程中有两个变量x与y,如果对于x的 每一个值,y都有唯一的值与它对应,那么就说x是 自变量 ,y是x 的 函数 . 3.函数自变量取值范围: 由解析式给出的函数,自变量取值范围应使解析式有意义;对 于实际意义的函数,自变量取值范围还应使实际问题有意义.
2.了解函数三种表示方法的特点 解析法是用等式来表示一个变量与另一个变量之间函数关系 的方法,这个等式称为函数的解析式,如s=80t,A=πr2等.解析 法简单明了,能使我们从解析式了解整个变化过程中函数与自变 量之间的全部相依关系,适合于作理论分析和计算、推导.许多 定律、法则都用解析式(即公式)来表示.但在求对应值时,需要 逐个计算,有时是很麻烦的,且有不少函数很难或者无法用解析 式表示出来. 列表法指用表格形式来表示一个变量与另一个变量之间函数
正解
(1)由题意,得2(x+y)=8,则y=4-x,其中0<x<4. (2)图象如图所示.
批阅笔记
作实际问题的函数图象时,若不注意自变量的取值范
围,往往作出错误的图象.确定实际问题的函数的自变量取值 范围,一要考虑使代数式有意义,二要考虑实际问题的背景.
思想方法 感悟提高
方法与技巧
1. 自变量x取值范围常见类型: (1)若解析式是整式,则x可取全体实数;
A.y=5x2-3x
C.y=2
B.y=x2-1
D.y=-3x+7
x
解析:当x=0时,y=5×02-3×0=0,图象过原点(0,0).
5.(2011·烟台)在全民健身环城越野赛中,甲、乙两选手的行程
y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:
①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千 米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的
围.
解题示范——规范步骤,该得的分,一分不丢!
解法1:∵-1≤x<3,
∴2≥-2x>-6, ∴2+4≥-2x+4>-6+4, [2分]
即6≥-2x+4>-2.
∵y=-2x+4, ∴6≥y>-2,即-2<y≤6. [4分]
解法2:∵y=-2x+4, ∴x=
4-y .[1分] 2 4-y<3. 2
[2分]
解析:女生在7岁到11岁时, 身高增长的速度比男生快, 故选D.
3.(2011·福州)甲、乙两个工程队完成某项工程,首先是甲单独 做了10天,然后乙队加入合做,完成剩下的全部工程.设工程 总量为单位1,工程进度满足如图所示的函数关系,那么实际 完成这项工程所用的时间比由甲 单独完成这项工程所需时间少( D ) A.12天 B.14天 C.16天 D.18天
4.函数的图象和函数表示方法: (1)函数的图象:一般地,对于一个函数,如果把自变量x与函 数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描
出这些点,用光滑曲线连接这些点所组成的图形,就是这个函数
的图象. (2)函数的表示法:① 解析法 ;② 列表法 ;③ 图象法 .
[ 难点正本 疑点清源 ]
=-400x+26000.
(2)∵y≥24000, ∴-400x+26000≥24000,-400x≥-2000,x≤5.
答:至多要派5名工人制造甲种零件才合适.
题型四 【例 4】
相关文档
最新文档