Fourier transform infrared photoacoustic
图像处理1--傅里叶变换(FourierTransform)
图像处理1--傅⾥叶变换(FourierTransform)楼下⼀个男⼈病得要死,那间壁的⼀家唱着留声机;对⾯是弄孩⼦。
楼上有两⼈狂笑;还有打牌声。
河中的船上有⼥⼈哭着她死去的母亲。
⼈类的悲欢并不相通,我只觉得他们吵闹。
OpenCV是⼀个基于BSD许可(开源)发⾏的跨平台计算机视觉库,可以运⾏在Linux、Windows、Android和Mac OS操作系统上。
它轻量级⽽且⾼效——由⼀系列 C 函数和少量 C++ 类,同时提供了Python、Ruby、MATLAB等语⾔的接⼝,实现了和计算机视觉⽅⾯的很多通⽤算法。
OpenCV⽤C++语⾔编写,它的主要接⼝也是C++语⾔,但是依然保留了⼤量的C语⾔。
该库也有⼤量的Python、Java andMATLAB/OCTAVE(版本2.5)的接⼝。
这些语⾔的API接⼝函数可以通过在线获得。
如今也提供对于C#、Ch、Ruby,GO的⽀持。
所有新的开发和算法都是⽤C++接⼝。
⼀个使⽤CUDA的GPU接⼝也于2010年9⽉开始实现。
图像的空间域滤波:空间域滤波,空间域滤波就是⽤各种模板直接与图像进⾏卷积运算,实现对图像的处理,这种⽅法直接对图像空间操作,操作简单,所以也是空间域滤波。
频域滤波说到底最终可能是和空间域滤波实现相同的功能,⽐如实现图像的轮廓提取,在空间域滤波中我们使⽤⼀个拉普拉斯模板就可以提取,⽽在频域内,我们使⽤⼀个⾼通滤波模板(因为轮廓在频域内属于⾼频信号),可以实现轮廓的提取,后⾯也会把拉普拉斯模板频域化,会发现拉普拉斯其实在频域来讲就是⼀个⾼通滤波器。
既然是频域滤波就涉及到把图像⾸先变到频域内,那么把图像变到频域内的⽅法就是傅⾥叶变换。
关于傅⾥叶变换,感觉真是个伟⼤的发明,尤其是其在信号领域的应⽤。
⾼通滤波器,⼜称低截⽌滤波器、低阻滤波器,允许⾼于某⼀截频的频率通过,⽽⼤⼤衰减较低频率的⼀种滤波器。
它去掉了信号中不必要的低频成分或者说去掉了低频⼲扰。
Fourier Transforms傅里叶变换 16页PPT
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell
Fourier transform
Ordinary frequency
M a c in to s h P IC T im a g e fo rm a t
Fourier Transforms
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell
Fourier series
To go from f( ) to f(t) substitute M a c in to s h P IC T im a g e fo rm a t is n o t s u p p o rte d M a c in to s h P IC T im a g e fo r m a t is n o t s u p p o r te d
1990, Chapter 2.
University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell
END
Let’s not use just discrete frequencies, n0 ,
we’ll allow them to vary continuously too
We’ll get there by setting t0=-T/2 and taking limits as T and n approach
where
M a c in to s h P IC T im a g e fo r m a t
傅里叶变换轮廓法结合空间相位展开
傅里叶变换轮廓法结合空间相位展开在光学和电子学领域,傅里叶变换轮廓法(Fourier Transform Profilometry,FTP)结合空间相位展开(Spatial Phase Unwrapping)是一种重要的三维形貌测量和表面重建方法。
这种方法通过光学成像或摄像机采集被测物体的表面信息,并利用傅里叶变换以及相位展开的技术,实现了对物体表面的高精度重建和测量。
本文将为你详细解释傅里叶变换轮廓法结合空间相位展开的原理和应用,并共享一些个人观点与理解。
1. 傅里叶变换轮廓法傅里叶变换轮廓法是一种利用照明和成像系统获取被测物体表面形貌信息的方法。
在该方法中,被测物体首先被照明,然后成像系统拍摄被测物体在不同光照条件下的图像。
利用这些图像,可以获取物体表面在不同位置的相位信息。
利用傅里叶变换的原理,可以将这些相位信息转换到频域进行处理,最终得到被测物体的三维形貌信息。
2. 空间相位展开在三维形貌重建过程中,相位信息往往会受到二维相位不连续性的影响,导致相位信息无法直接用于表面重建。
空间相位展开技术被引入到傅里叶变换轮廓法中,用于解决相位不连续性的问题。
空间相位展开通过一系列的算法和数学方法,将相位信息从二维空间展开到三维空间,实现了对相位信息的连续性重建,从而得到了被测物体表面的精确形貌信息。
3. 应用与展望傅里叶变换轮廓法结合空间相位展开在工业制造、医学影像、文物保护等领域有着广泛的应用前景。
在工业制造领域,该方法可以用于零件表面质量的在线检测和三维形貌的快速重建;在医学影像领域,该方法可以用于患者骨骼和组织的三维重建和量化分析;在文物保护领域,该方法可以用于文物表面的三维数字化重建和保护。
随着光学成像和图像处理技术的不断发展,傅里叶变换轮廓法结合空间相位展开将会有着更加广阔的应用前景。
在个人看来,傅里叶变换轮廓法结合空间相位展开是一种非常有前景和潜力的三维形貌测量和表面重建方法。
它不仅在科学研究中有着重要的应用,也在工业生产和文化遗产保护等领域有着广泛的应用前景。
Fourier Transform - 国立清华大学傅立叶变换国立清华大学共21页文档
壓縮數據比較
500
468
450
400
350
300
250
200 49.3
150
11.2
100
42.5 36.6
50
12.9
9.48
111 97.3 26.5
0 CameraMan Plusplus
257 28.1 219 164
62
lena
188 24.3 137 116 46.6
boats
Original Project zip rar jpg
更多精品资源请访问
docin/sanshengshiyuan doc88/sanshenglu
• Y=dct2(X-128,[8,8]);
• fprintf(fout,'DCT coefficients\n');
• for i=1:8
• for j=1:8 fprintf(fout,'%6.1f',Y(i,j)); end; fprintf(fout,'\n');
• end
• Y=Y./Q; % Y=fix(Y+0.5*(Y>0));
2-D Discrete Fourier Transform
Example of 2-D FFT Matlab Code
• % Script file: fourier.m - 2D Fourier Transform
•%
Pictures on P.113 of Gonzalez, Woods, Eddins
• Q=xlsread('Qtable.xls','A2:H9');
Fourier Transform Infrared Spectroscopy
Fourier Transform Infrared SpectroscopyC.C.Homes∗Condensed Matter Physics&Materials Science DepartmentBrookhaven National LaboratoryUpton,NY11973May18,2011∗These notes are adapted from a set of informal lectures developed by my thesis advisor,Prof.J.E.Eldridge,Department of Physics&Astronomy,University of British Columbia,Vancouver,B.C., Canada.1Contents1Fourier Transform Spectroscopy31.1Polychromatic source (4)1.1.1Percentage modulation (5)1.2Fourier transform (6)1.3Double-sided interferogram (6)1.3.1Complex Fourier transform (7)1.4Finite integration limits (9)1.4.1The convolution theorem (9)1.4.2Resolution (11)1.5Apodisation (12)1.5.1Resolution revisited (13)1.6Sampling interval (15)1.6.1The Shah function (15)1.7Felgett advantage(“Multiplex”) (18)1.8Relating(S/N)in the interferogram to(S/N)in the spectrum (20)2Instrumentation212.1Self-supporting dielectric beam splitters (21)2.1.1Efficiency of a dielectric beamsplitter with frequency (21)2.1.2Relatingδto¯ν (23)2.2Polarization in Mylar beam splitters (25)A Optical Conductivity2821Fourier Transform SpectroscopySince its inception,most interferometer designs have incorporated some element of a basic Michelson interferometer,shown schematically in Figure1.Both beams have been transmitted once and reflected once as they are divided at the beamsplitter,then reflected at either the movable(M1)orfixed(M2)mirror,andfinally recombined at the beam splitter to proceed to the sample area and the detector.Consider an incoming monochromatic plane wave with an average electricfield am-plitude E m,frequencyωand wave number¯ν(which as units of cm−1):¯ν=1λ=ω2πc(1)(whereλis in cm),incident on the beam splitter(where c is the speed of light)E= Emcos(ωt−2π¯νy).(2) The beam from the mirror M2after leaving the beam splitter in the direction of the condensing unit may be written asE2=rtc Emcos[ωt−2π¯νy1](3)where r is the reflectance(amplitude)of the beam splitter,t is the transmittance,and c is a constant depending on the polarization.Similarly from the other mirror M1,at the same point then we haveE2=rtc Emcos[ωt−2π¯ν(y1+x)](4)where x is the path difference.By superimposing(or superposition),the resultant E is given byER= E1+ E2=2rtc E m cos(ωt−2πy1)cos(π¯νx).(5) The intensity(I)detected is the time average of E2.More strictly E× H(the Poynting vector),but because| E|∝| H|this quantity can be described simply by just| E|,ne-glecting some constant of proportionality(which is not important).The intensity may be written as:I∝4r2t2c2E2m cos2(ωt−2πy1¯ν)cos2(π¯νx)(6) where the time average of thefirst cosine term is just1/2.ThusI∝2I(¯ν)cos2(π¯νx),(7) where I(¯ν)is a constant that depends only upon¯ν.This expression may be simplified toI(x)=I(¯ν)[1+cos(2π¯νx)](8) where I(x)is the interferogram form a monochromatic source.The interferogram for a monochromatic source is shown in Fig.2.3Figure 1:A schematic view of a simple Michelson interferometer.The beam from the source (typically a Hg arc lamp)is collimated and the wavefront is divided at the beam splitter.One arm of the interferometer consists of a fixed mirror,while the other arm contains a moveable mirror.The beams are recombined at the beam splitter after having been reflected once and transmitted once,and then proceed to the sample area and detector.1.1Polychromatic sourceOne of the advantages of the Fourier transform instrument is that many different wave numbers may be looked at simultaneously —all the information is gathered at the same time,and we sort it all out using a Fourier transform later.This decreases the measurement time.As well,we can have much more “thruput”,i.e.higher intensities and larger solid angles.An interferogram for a polychromatic source which consists of frequencies from 0→¯νm is thus:I (x )=¯νm 0I (¯ν)[1+cos(2π¯νx )]d ¯ν= ¯νm 0I (¯ν)d ¯ν+ ¯νm 0I (¯ν)cos(2πx )dx.(9)When x =0thenI (0)=2 ¯νm 0I (¯ν)d ¯ν⇒I (x )=12I (0)+ ¯νm 0I (¯ν)cos(2π¯νx )d ¯ν.(10)4Figure2:The interference pattern for a monochromatic source(such as a laser)as a function of mirror displacement.With many different wave lengths present,the interferogram resembles the diagram in Fig.3,which is symmetrical about x=0for an ideal interferogram.When x=0the interference between all of the frequencies is constructive,resulting in a central maxima.However,for x=∞the frequencies add both constructively and destructively,so that the net contribution due to the integral in Eq.10is simply zero.Thus,I(∞)=12I(0)(11)or more simply,I(0)=2I(∞).This relationship is an important check of the instrument alignment.1.1.1Percentage modulationThe percentage of modulation is defined as[I(0)−I(∞)]I(∞)×100(12)In a well-aligned instrument,the modulation is>85%,and this value should be>95% in the low frequency region.5Figure3:The interference pattern for a polychromatic source about the zero path dif-ference.This curve was generated simply by taking the normalized sum of a number of cosine functions with various frequencies.Note that I(0)=2I(∞).1.2Fourier transformWe have I(x)and now want I(¯ν),i.e.:I(x)−I(∞)= ¯νmI(¯ν)cos(2π¯νx)d¯ν(13)letting¯νm→∞,we can writeI(¯ν)=∞[I(x)−I(∞)]cos(2π¯νx)dx.(14)This procedure involves sampling each position,which can take a long time if the signal is small and the number of frequencies being sampled is large.1.3Double-sided interferogramIf F(x)=I(x)−I(∞),thenF(x)= ¯νmI(¯ν)cos(2π¯νx)d¯ν(15)is symmetric about x=0since cosine is an even function.However,what if the inter-ferogram behaves differently for−x and+x;i.e.you have not sampled at the true zero path difference.6Loss of symmetry can be represented by an additional phase factor:F(x)= ¯νmI(¯ν)cos[2π¯νx−φ]d¯ν(16)= ¯νmI(¯ν)cosφcos(2π¯νx)d¯ν+¯νmI(¯ν)sinφsin(2π¯νx)d¯ν.(17)What we would like to do is tofind a method to be able to deal with the problem of not being at the true zero path difference.For this,we use the complex Fourier transform.1.3.1Complex Fourier transformThe complex Fourier transform is defined in the following way:g(¯ν)=∞−∞f(x)e2πi¯νx dx=∞−∞f(x)cos(2π¯νx)dx+i∞−∞f(x)sin(2π¯νx)dx.(18)The inverse transform is given byf(x)=∞−∞g(¯ν)e−2πi¯νx d¯ν=∞−∞g(¯ν)cos(2π¯νx)d¯ν−i∞−∞g(¯ν)sin(2π¯νx)d¯ν.(19)If f(x)is even,[f(x)=f(−x)]theng(¯ν)=∞−∞f(x)cos(2π¯νx)dx=2∞f(x)cos(2π¯νx)dx.(20) This is referred to as a cosine transform.Likewise,if f(x)is odd,theng(¯ν)=i∞−∞f(x)sin(2π¯νx)dx=2i∞f(x)sin(2π¯νx)dx,(21)7is a sine transform.Thus,we writeg(¯ν)=C(¯ν)+iS(¯ν).(22) Returning to the problem of the interferogram,let F(x)≡f(x),[which is I(x)−I(∞)].thenC(¯ν1)= ¯νmI(¯ν)cosφ∞−∞cos(2π¯νx)cos(2π¯ν1x)dxd¯ν+¯νmI(¯ν)sinφ∞−∞sin(2π¯νx)sin(2π¯ν1x)dxd¯ν.(23)Now,∞−∞cos(2π¯νx)cos(2π¯ν1)x)dx=12∞−∞e2πi(¯ν+¯ν1)x+e2πi(¯ν−¯ν1)xdx=12[δ(¯ν+¯ν1)+δ(¯ν−¯ν1)].(24)whereδis the Diracδfunction.Note that the sine terms go to zero in the integral when the limits are from−∞→∞.This is of the formδ(¯ν+L)=∞−∞e2πi(¯ν+L)x dx(25)In the expression for C(¯ν1)we have the product of a sine and a cosine in the interior of the second integral.However,as the sine is a odd function,then its value over the range−∞→∞will be zero.Thus,we can write C(¯ν1)asC(¯ν1)=12¯νmI(¯ν)cosφ[δ(¯ν+¯ν1)+δ(¯ν−¯ν1)]d¯ν⇒C(¯ν1)=I(¯ν12cosφ;I(−¯ν1)=0.(26) since I(¯ν)=0for all¯ν>¯νm and for all¯ν<0.Similarly,S(¯ν1)=I(¯ν1)2sinφ.(27)Thus|g(¯ν1)|=C2(¯ν1)+S2(¯ν1)1/2=12I(¯ν1)(sin2φ+cos2φ)1/2=I(¯ν1) 28so that finallyI (¯ν1)=2|g (¯ν1)|=2 C 2(¯ν1)+S 2(¯ν1) 1/2(28)Thus,the phase error introduced by not sampling symmetrically and the asymmetry in the interferometer is eliminated by taking the the two-sided interferogram and performing a complex fast Fourier transform.Disadvantages:a factor of two in the data collection time,because the interferogram must be two sided.1.4Finite integration limitsIn practice the interferogram is from −x max to +x max ,not −∞to ∞.To examine the effect,consider the monochromatic wave in an ideal interferometer.From Eqs.6or 13(neglecting the constant offset)we getF (x )=I (¯ν1)cos(2π¯ν1x )(29)where F (x )is just the structure.We can do the finite transform over the finite range,which may be written as:∞−∞I (¯ν1)cos(2π¯ν1x )e 2πi ¯νx rect(x )dx (30)which is to say that instead of putting limits on the integral,we use the rectangular function defined by:rect(x )= 1|x |<x max 0|x |>x max1.4.1The convolution theoremThe Fourier transform of the product of two functions,i.e.f (x )and g (x )is the con-volution of their individual Fourier transforms F (y )and G (y ),where the convolution is defined by F ∗G =∞−∞G (u )F (y −u )du (31)9Figure4:The function sinc(θ)for the rectangular aperture function. The Fourier transform of rect(x)is then∞−∞rect(x)e2πi¯νx dx=xm−x me2πi¯νx dx=xm−x m[cos(2π¯νx)+i sin(2π¯νx)]dx=sin(2π¯νx)2π¯ν−i cos(2π¯νx)2π¯νxm−x m=2sin(2π¯νx m)2π¯ν=2x msin(2π¯νx m)2π¯νx m=2x m sinc(2π¯νx m).(32)This function is shown in Fig.4.The Fourier transform of the structure F(x)due to the monochromatic source is:∞−∞I(¯ν1)cos(2π¯ν1x)e2πi¯νx dx=12∞−∞I(¯ν1)e2πi¯νx+e−2πi¯ν1xe2πi¯ν1x dx=12∞−∞I(¯ν1)e2πi(¯ν+¯ν1)x+e2πi(¯ν−¯ν1)xdx=12I(¯ν1)[δ(¯ν+¯ν1)+δ(¯ν−¯ν1)](33)This function is simply two delta functions located at±¯ν1.We usually discard the the negative frequency as it is unphysical,thus we are simply left with the frequency¯ν1of the monochromatic source.10Figure5:The convolution of the delta function from a single monochromatic source at ±¯ν1and a rectangular aperture function.While the response from the negative side extends into the positive region,it is usually very small and it is ignored.Note that the Fourier transform of the rectangular aperture function is called the instrumental line shape(ILS).The convolution theorem of two transforms is then:∞−∞2x m sinc(2πux m)12I(¯ν)[δ(¯ν+¯ν1+u)+δ(¯ν−¯ν1+u)]du=I(¯ν1)x m{sinc[2π(¯ν+¯ν1)x m]+sinc[2π(¯ν−¯ν1)x m]}(34) which is shown in Figure5.The total from the negative side extends into the positive region,but is usually very small and ignored.Thus:I(¯ν)=I(¯ν1)x m sinc[2π(¯ν−¯ν1)x m].(35) The function2x m sinc(2π¯νx m)is called the instrumental line shape(ILS)or the spec-tral window.I(¯ν)=I(¯ν1)∗ILS.(36) 1.4.2ResolutionClearly,the ILS has a given width for a monochromatic line.Jacquinot defined the resolution as the distance between thefirst two zeros on either side of the peak,which is shown in Figure6for a sinc function.Thus,δ¯ν=1x m.(37)11Figure6:Thefirst two zeros of a sinc function,which occur at¯ν1±1/2x m.(Note that this delta function is not the Dirac delta function.)Thus,the resolution depends on the length of the scan,i.e.if the mirror scan is5cm(which is x m/2),then x m=10cm,⇒δ¯ν=0.1cm−1.1.5ApodisationThe“side lobes”or“feet”of the sinc function drop off22%below zero,which is clearly unacceptable.The problem is in choosing the aperture.The sharp edges produced by the rectangular function introduce this ringing in the spectrum.Thus,what we need is a gentler aperture function.The imposition of such a function is called apodisation.The most common apodisation function is the triangular aperture,which is defined as:tri(x)=0|x|≥x m1−|x|/x m|x|<x mHowever,there are still discontinuities in tri(x)at x=0and at x=±x m.The Fourier transform of tri(x)isF.T.[tri(x)]=∞−∞tri(x)e2πi¯νx dx=xm−x m1−|x|x me2πi¯νx dx=xm−x mcos(2π¯νx)dx+ixm−x msin(2π¯νx)dx−1x mxm−x m|x|cos(2π¯νx)dx−ix mxm−x m|x|sin(2π¯νx)dx(38)12since sin(2π¯νx)and|x|sin(2π¯νx)are odd functions,then the integrals are identically zero,and thus Eq.38reduces to two terms:=2sin(2π¯νx m)2π¯ν−2x mxmx cos(2π¯νx)dxFrom a general calculus theorem,recall thatba f(x)g(x)dx=f(x)xg(y)dyba−ba∂f(x)∂xxg(y)dydxthen Eq.38becomes=2sin(2π¯νx m)2π¯ν−2x mx sin(2π¯νx)2π¯νxm−xmsin(2π¯νx)2π¯νdx=2sin(2π¯νx m)2π¯ν−2x mx m sin(2π¯νx m)2π¯ν+cos(2π¯νx)(2π¯ν)2xm=−2x mcos(2π¯νx m)−1(2π¯ν)2=2x m2sin2(π¯νx m)(2π¯ν)2=x m sin2(π¯νx m) (π¯νx m)2=x m sinc2(π¯νx m)(39)The Fourier transform of tri(x)is shown in Fig.7.Notice the absence of negative side lobes,the small size of thefirst positive lobes and the increase in the line width.Once again,a monochromatic line¯νwould give a spectrum given byI(¯ν)=I(¯ν1)∗ILS=I(¯ν1)x m sinc2(π¯νx m).(40) 1.5.1Resolution revisitedIf we used the previous definition of resolution,the we would now haveδ¯ν=2 x mHowever,one normally adopts the Rayleigh criterion when attempting to resolve two close lines,which is obtained when when thefirst zero of one line falls upon the maximum of13Figure 7:A comparison of the Fourier transforms of the rectangular and triangular aperture functions,sinc(2θ)and sinc 2(θ)respectively.Note that the Fourier transform of the triangular aperture function has much smaller side lobes,but is broader than the Fourier transform of the rectangular aperture.the other line.When this condition is achieved,the dip between the two lines represents 22%of their maxima.(It should be noted that this assumes that the lines are of equal widths and strengths.)Thus,once again we have that the resolution is given byδ¯ν=1x m.There are many different kinds of apodisation functions,having a varying widths and side lobes.A function that has commonly been used is the Happ-Genzel functionW (x )=0.54+0.46cos πx x m.(41)The Fourier transform of the Happ-Genzel function isF .T .[W (x )]=sin(2π¯νx m )2π 1.08¯ν+0.46x m /w −¯ν−0.46x m /2+¯ν .(42)A comparison of the Triangular and Happ-Genzel apodisation functions is shown in Figure 8.While the full width at half maximum for the two functions is about the same,the side lobes are almost totally absent in the Happ-Genzel function.In general,we will be using either three or four-term Blackwood-Harris apodisation functions,which have slightly narrower line shapes and very small side lobes.14Figure 8:A comparison of the Fourier transforms of the Triangular and Happ-Genzel aperture functions.Note that the side lobes of the Happ-Genzel function are much smaller than those of the triangular apodisation function.1.6Sampling intervalThe data has to bee digitized for the Cooley-Tukey fast Fourier transform algorithm in equal increments of path difference Δx .In many early instruments,the data was collected by a “step and integrate”ter instruments,such as the Bruker IFS113,adopted a “rapid scan”technique where the infrared radiation is modulated (typically in the kHz frequency range),and many interferograms are taken and averaged.This technique is generally superior to the step-and-integrate method.The disadvantage of digitizing data in equal increments is the loss of symmetry in the interferogram if the zero-path difference is not sampled and the subsequent inability to detect spurious noise.1.6.1The Shah functionThe sampled interferogram F s (x )is related to the complete interferogram F c (x )=[I (x )−I (∞)]c by:F s (x )= x ΔxF c (x )(43)where (x )is a “combing”function,or Shah function defined by(x )=∞−∞δ(x −n )(44)where δ(x −n )is a Dirac delta function,and n is an integer.Thus,from Eq.44the Shah function allows only non-zero value for integers (both positive and negative).Thus,in15Eq.43the Shah function will allow non-zero value forx=0,±Δx,±2Δx,···,±nΔx,···Before proceeding,consider some of the properties of the Shah function.It is periodic (since the limits run from−∞to∞)(x+m)= (x).(45) We may also derive a scaling rule for the Shah function.Suppose one has(ax)=∞n=−∞δ(ax−n)(46)we would like to change the variable from ax−n to x−n/a.If we consider thefitting property of the delta function,then∞−∞δx−naf(x)dx=fna(47)and∞−∞δ(ax−n)f(x)dx=1|a|∞−∞δ(y)fy+nady=1|a|fna;y=ax−n.(48)Comparing Eqs.47and48one hasδ(ax−n)=1|a|δx−na(49)thus(ax)=1|a|∞n=−∞δx−na.(50)We need to know what the effect of the Fourier transform is upon the Shah function.F.T.[ (ax)]=1|a|∞n=−∞∞−∞δx−nae2πi¯νx dx(51)using the sifting property of theδfunction gives thatF.T.[ (ax)]=1|a|∞n=−∞e2πi¯νn/a(52)=1|a|∞−∞cos2π¯νan+i∞−∞sin2π¯νan.(53) 16In the cosine summation,whenever¯ν/a=an integer value,the cosines will add randomly to zero.However,when¯ν/a=an integer,then we get an infinite number of unities adding together.This is the definition of aδfunction.Therefore,F.T.[ (ax)]=1|a|∞n=−∞δ¯νa−n(54)andF.T.[ (ax)]=1|a|¯νa.(55)The Fourier transform of the Shah function is another Shah function that is reciprocal to thefirst.Returning to the spectrumI s(¯ν)=F.T.[F s(x)](56) andI c(¯ν)=F.T.[F c(x)](57)thenI s(¯ν)=F.T.xΔxF c(x)[from(48)](58)=F.T.xΔx∗I c(¯ν)(59)=Δx (¯νΔx)∗I c(¯ν)[from(61)](60)=Δx∞n=−∞δ(¯νΔx−n)∗I c(¯ν)[from(49)](61)=∞n=−∞δ¯ν−nΔx∗I c(¯ν)[from(55)](62)=∞n=−∞I c¯ν−nΔx(63)so that wefinally arrive atI s(¯ν)=∞n=−∞I c(¯ν−nΔ¯ν)(64)whereΔ¯ν=1Δx.(65)17Table1:The minimum sampling interval required to prevent aliasing for the wave number range from0→¯νmax in a Michelson interferometer.¯νmax(cm−1)Δx(μm)2000 2.51000550010250201254062.580Thus,when transforming the sampled interferogram,we get an infinite number of com-plete spectra,each starting at nΔ¯ν.The transformed spectra are actually the sum of the spectra for the positive frequencies and those of the negative frequencies from an adja-cent spectra.Incorrect choices of a sampling frequency can lead to large contributions to distortions of the spectra.This is called“aliasing”or“false energies”.In order to avoid this,one must makeΔ¯νlarge enough so that the maximum frequency contribution of the positive¯νspectrum does not overlap with the negative¯νspectrum.This may be accomplished by requiring thatΔ¯ν≥2¯νmax(66)orΔx≤12¯νmax.(67)In term of wave number regions,this results in the following conditions:Another way of seeing the condition thatΔx≤1/2¯νmax is thatΔx≤λmin/2,which means that one must sample at least every twice in every cycle of the smallest wave length of radiation in the interferogram(this is just the Nyquist frequency from information theory).Having chosen¯νmax,and found the appropriateΔx,one must make certain that there is no radiation with¯ν>¯νmax by the use of opticalfilters.The theory and results ere are the same as found in x-ray and electron diffraction in solids,where atoms are discrete, regularly spaced points.1.7Felgett advantage(“Multiplex”)Felgett submitted his dissertation to Cambridge in1951,and was thefirst person to transform interferograms numerically.Shortly after this,Jacquinot stated his throughput advantage.The Felgett advantage is realized in the following way—suppose one is18Figure 9:An arbitrary spectrum over an interval ¯ν1and ¯ν2(Δ¯ν)to be measured with resolution δ¯ν.interested in measuring a spectrum of width Δ¯νbetween ¯ν1and ¯ν2with resolution δ¯ν,as shown in Fig.9.The number of “elements”,M is then given by:M =Δ¯νδ¯ν.(68)If a grating or a prism instrument is being used,then each small band of width δ¯ν,or element,is observed individually and for a time T/M ,there T is the observed time for the entire spectrum.In the infrared region the noise is due mainly to thermal and current contributions;it is independent of signal level.This is not the case in the visible region,where the uncertainty comes primarily from photon noise (the noise from the random counting of photons,which is simply proportion to the square root of the number of photons).In the infrared region,the noise,N ,is then proportional to T/M in an element of width δ¯ν.It follows that: S N GRT ∝(T/M ) T/M= T/M (69)For an interferometer,however,the signal from all of the elements is received at the same time,thus the signal in an element is ∝T .Again,if the noise is random and independent of signal level then the noise ∝√T .Thus,the signal to noise in an interferometer is: S N INT ∝T √T=√T (70)The Felgett advantage of an interferometer over a grating instrument is then:(S/N )INT (S/N )GRT =√T T/M=√M.(71)19For instance,for Δ¯νfrom 200to 1000cm −1with a resolution of 1cm −1,a S/N advantage of √800∼28is realized;if a run takes 1hour with the interferometer,an equivalent runon a grating instrument would have taken 800hours!However,it should be noted that this advantage is lost in the visible region.1.8Relating (S/N)in the interferogram to (S/N)in the spec-trumAssume that the interferometer gives an interferogram that is composed of a noiseless interferogram plus random detector noise;the noise will be evident in the tails of the interferogram where the signal modulations are small.The RMS noise is given by:σN =N (x )2(72)which can be estimated by looking at the interferogram.The (S/N )IFG can be defined (and measured)as S N IFG =I (0)−I (∞)σN(73)How will this transform into (S/N )of the interferometer spectrum whereS N SPT ∝T 1/2(74)in an element of width δ¯ν.However,the interferogram contains all M elements simulta-neously,thus the signal is proportional to MT and the noise is proportional to √MT .Thus,the signal-to-noise in the interferogram isS N IFG ∝MT √MT=√MT (75)Thus,the (S/N)in the spectrum divided by the (S/N)in the interferogram isS N SPT / S N IFG =T 1/2(MT )1/2=1M 1/2= δ¯νΔ¯ν(76)with a low-pass filter,Δ¯ν=¯νmax ,thusδ¯νΔ¯ν= Resolution ¯νmax.(77)20If ¯νmax =1000cm −1with a resolution of δ¯ν=10cm −1,then S N SPT / S N IFG = 101000=110thus,1%noise in the interferogram yields 10%noise in the spectrum.For the measure-ment of a reasonably narrow vibration in the terahertz range,if ¯νmax =60cm −1with a resolution of δ¯ν=0.1cm −1,then S N SPT / S N IFG = 1600=125if 10%noise is acceptable in the spectrum,then we need a signal-to-noise of 250for the interferogram.2Instrumentation 2.1Self-supporting dielectric beam splittersMost beam splitters are mylar (polyethylene teraphalate)of various thicknesses;3μm (12G),6μm (25G),12μm (50G),up to 100μm (400G).Other beamsplitter materials,such as polycarbonate my also be used,in addition to wire-grid beam splitters.The transmitted radiation through the interferometer depends on the product of the reflected intensity R 0,and the transmitted intensity T 0.The intensity from each beam reaching the detector,neglecting the modulation from the optical path difference in the two arms of the interferometer is simply R 0T 0,yielding a total of 2R 0T 0.From R 0+T 0=1,then one can optimize the signal reaching the detector,and find a maximum efficiency when R 0=T 0=0.5(one half of the signal returns to the source).It should be noted that some instruments such as the lamellar grating interferometer return nothing and are 100%efficient.We will define the relative efficiency (RE)of our beam splitter as:R .E .=2R 0T 0(2R 0T 0)ideal =4R 0T 0(78)Unfortunately,the relative efficiency is often considerably less than unity due to R 0<0.5,R 0and T 0depend on the polarization,and the relative efficiency depends on frequency.2.1.1Efficiency of a dielectric beamsplitter with frequencyThe variation of efficiency with ¯νis known as “interference fringes”,“channeled spectra”,“dielectric resonances”,of “Fabry-Perot fringes”.Consider the plane waves incident on a non-absorbing,parallel-sided sheet of dielectric of thickness d ,with amplitude a .We define the following amplitude coefficients:21Figure10:The reflected and transmitted rays at the front and back surfaces of a thin non-absorbing dielectricfilm of thickness d and refractive index n in air.t transmission from air to dielectrict transmission from dielectric to airr reflection at the dielectric to air interfacer reflection at the air to dielectric interfaceThis is shown schematically in Fig.10.The transmitted amplitude will therefore be given by:Ae iθ=att +att r2e iδ+att r4e i2δ+···,(79) whereδis the change in the phase between two adjacent emerging rays.From the Stokes relationtt =1−r2(80) this expression can be rewritten asAe iθ=a(1−r2)(1+re iδ+r4e i2δ+···)(81)which sums toAe iθ=a(1−r2)1−r2e iδ.(82)The transmitted intensity is T0=A2=Ae iθAe−iθ.ThusT0=a2(1−r2)2(1−r2e iδ)(1−r2e−iδ)=a2(1−r2)21+r4−r2(e iδ+e−iδ)=(1−r2)21+[2r/(1−r2)]2sin2(δ/2)(83)22Figure11:Upper panel:the variation of R0(solid line)and T0(dotted line)with the phase differenceδfor r=0.41(R=0.16);note that R0+T0=1.Lower panel:the variation of R0T0withδ.Using the trigonometric identity cosδ=1−2sin2(δ/2)and R=rr∗,then T0and R0canbe written as:T0=(1−R)21+R2−2R cosδ(84)andR0=2R2(1−cosδ)1+R2−2R cosδ.(85)The variation of R0and T0withδis shown in Fig.13.This is the familiar Fabry-Perot fringe pattern,normally called channeled spectra when one encounters it due to afilter or a window,etc.,with parallel faces somewhere in the optical path.One chooses the thickness of the beamsplitter material so that the wavenumber region of interest is in thefirst lobe.2.1.2Relatingδto¯νFor an angle of incidenceθ=45◦,the optical path difference between emerging rays in a film of thickness d with refractive index n is2ny−z=2ny−2x cos(45◦);here x=d tanφ23。
傅里叶变换
DFT [ f (x, y)(1) xy ] F (u M / 2, v N / 2) (3.8)
DFT的原点,即F(0,0)被设置在u=M/2和v=N/2上。
(0,0)点的变换值为:
F(0,0)
1
M 1 N 1
f (x, y)
MN x0 y0
即 f (x,y) 的平均值。
(3.9)
如果是一幅图像,在原点的傅里叶变换F(0,0)等于图 像的平均灰度级,也称作频率谱的直流成分。
uX vY
二维信号的图形表示 图3.1 二维信号f (x, y)
二维信号的频谱图
(a)信号的频谱图
(b)图(a)的灰度图
图3.2 信号的频谱图
二、离散傅里叶变换(Discrete Fourier Transform)
同连续函数的傅里叶变换一样,离散函数的傅里 叶变换也可推广到二维的情形,其二维离散傅里叶变 换定义为:
1、一维傅立叶变换及其反变换
: F(u) f (x) e j2ux d x
1 :
f (x) F(u) ej2ux d u
这里 f x是实函数,它的傅里叶变换F u 通常是复函 数。F u 的实部、虚部、振幅、能量和相位分别表示如下:
实部
虚部
振幅
Ru
f
t
cos2ut
dt
I
u
j 2 x(uN / 2)
f (x)e N
1
N 1
(1) x
Fourier Transform Infrared Spectroscopy
干涉图样的采集 -加密过程
λ: 632 nm
W: 31,600 cm-1
Nyquist
x 1/ 2max
30
干涉图样的采集方式
单向采集数据:动镜前进时采集数据 单边采集:在零光程差的一侧采集数据进行 傅立叶变换,在另外一侧采集一些点用于相位 校正。 双边采集: 在零光程差的两侧采集数据进行 傅立叶变换。 双向采集数据:动镜前进,后退都采集数据 动镜按设定的速度前进,移动速度取决于检测 器的响应速度。
34
Nicolet 380 智能傅立叶红外光谱仪使用说明及注意事项
开机顺序 调室温。仪器工作温度为15℃-25℃。若仪器 经过暴冷后,须等至合适的温度后才使用。 仪器应开机十分钟后运行。 打开EZ-OMNIC软件,待软件右上角的“光学 台状态”呈“√”(绿色)时方可使用。若 “光学台状态”为“Х”(红色),表示仪器 还没有准备好。 对于样品台,要注意刻度和角度,手不可以 乱摸,以免影响偏振作用。
4
红外光谱研究历史回顾
1880年天文学家Langley在研究太阳和其他星球 发出的热辐射时发明一种检测装置。 1881年Abney和Festing第一次将红外线用于 分子结构的研究(0.7~1.2um)。 1889年Angstrem第一次记录分子的基本振动 (从基体到第一激发态)频率。首次证实CO和 CO2都是由碳原子和氧原子组成,但因为是不同的 气体分子而具有不同的红外光谱图。这个试验最根 本的意义在于它表明了红外吸收产生的根源是分子 而不是原子。 1889年Julius发表了20个有机液体的红外光谱 图,并且将3000cm-1的吸收带指认为甲基的特 征吸收峰。这是科学家们第一次将分子的结构特征 和光谱吸收峰的位置直接联系起来。
温度响应型酰腙可逆共价键水凝胶的制备及性能
Vol. 35 No. 1功 能 高 分 子 学 报2022 年 2 月Journal of Functional Polymers93文章编号: 1008-9357(2022)01-0093-08DOI: 10.14133/ki.1008-9357.20210322002温度响应型酰腙可逆共价键水凝胶的制备及性能何 元1, 罗媛媛2, 刘 通1, 张银山1, 郭赞如1, 章家立1(1. 华东交通大学材料科学与工程学院,高分子材料与工程系,南昌 330013;2. 重庆市计量质量检测研究院,重庆 401120)摘 要: 首先,通过可逆加成-断裂转移(RAFT)聚合制备了丙烯酰胺(AM)、双丙酮丙烯酰胺(DAAM)和N-异丙基丙烯酰胺(NIPAM)的共聚物(PAM-co-PDAAM-co-PNIPAM);然后,使PAM-co-PDAAM-co-PNIPAM与己二酸二酰肼(ADH)反应后,得到了具有温度和pH双重响应性的水凝胶。
通过核磁共振氢谱(1H-NMR)和凝胶渗透色谱(GPC)、流变仪、扫描电镜(SEM)以及傅里叶变换红外光谱(FT-IR)对共聚物和水凝胶的结构和组成,以及水凝胶的温度和pH双重响应行为进行了研究。
研究表明,该水凝胶具有温度调控的自愈合性,对药物阿霉素(Dox)表现出pH和温度双重响应的可控释放行为。
关键词: 智能水凝胶;酰腙可逆共价键;自愈合;温度响应中图分类号: O633 文献标志码: APreparation and Properties of Temperature-Responsive HydrogelsBased on Acylhydrazone Reversible Covalent BondsAll Rights Reserved.HE Yuan1, LUO Yuanyuan2, LIU Tong1, ZHANG Yinshan1, GUO Zanru1, ZHANG Jiali1(1. Department of Polymer Materials and Engineering, School of Materials Science and Engineering, East China JiaotongUniversity, Nanchang 330013, China; 2. Chongqing Academy of Metrology andQuality Inspection, Chongqing 401120, China)Abstract: A series of PAM-co-PDAAM-co-PNIPAM copolymers were synthesized by reversible addition fracture transfer(RAFT) polymerization from acrylamide (AM), diacetone acrylamide (DAAM) and N-isopropylacrylamide (NIPAM). Theirstructure and composition were characterized by Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography(GPC). Hydrogel with pH and temperature dual-response formed by the acyl hydrazone dynamic bonds between ketocarbonylin polymer and hydrazide in adipic dihydrazide (ADH). The dual-responsive behavior of hydrogels to temperature and pHwas researched by rheological measurement, Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FT-IR)spectroscopy. At the same time, the hydrogel demonstrated temperature controlled self-healing properties. Besides, thehydrogels showed pH-and temperature-responsive controlled release behaviors for doxorubicin(Dox).Key words: smart gel; acylhydrazone dynamic covalent bond; self-healing; temperature response收稿日期: 2021-03-22基金项目: 国家自然科学基金(21802041,51563009,21865009);江西省杰出青年基金(20202ACBL214001)作者简介: 何 元(1994—),男,硕士,主要研究方向为功能高分子材料。
CT成像资料
3
Spatial domain Fourier transform f(t)
Frequency domain F(S)
Working in the frequency domain gives many more opportunities for the image analyst. To convert an image between the spatial and the frequency domain we use the Fourier transform. This is practical because of the Fast Fourier Transform algorithm (FFT). Two principle areas of application are filtering and focus correction.
In a sense, the Fourier transform is like a second language for describing functions. Bilingual persons frequently find one language better than another for expressing certain ideas.
+
=
26
Time and Frequency
• example : g(t) = {
1, a/2 < t < a/2 0, elsewhere
1 = A sin(2 kt ) k 1 k
27
Time and Frequency
• If the shape of the function is far from regular wave its Fourier expansion will include infinite num of frequencies.
频率域图像增强处理PPT
∑ ∑ f (m, n)h( x m, y n)
1. 取函数h(m,n)关于原点的镜像,得到h(-m,-n) 2. 对某个(x,y),使h(-m,-n)移动相应的距离,得到h(x-m,y-n) 3. 对积函数f(m,n)h(x-m,y-n)在(m,n)的取值范围内求和 4. 位移是整数增量,对所有的(x,y)重复上面的过程,直到两个函数:f(m,n)和 h(x-m,y-n)不再有重叠的部分。 傅立叶变换是空域和频域的桥梁,关于两个域滤波的傅立叶变换对:
冲激(脉冲)函数及筛选属性:
冲激函数的傅立叶变换:
1 F (u , v) = MN
筛选属性:
∑∑ δ ( x, y)e j 2π (ux / M +vy / N ) =
x =0 y =0
M
N
1 MN
∑∑ f ( x, y) Aδ ( x x , y y ) = Af ( x , y )
x=0 y =0 M N 0 0 0 0
信息与物理工程学院 中南大学
2. Butterworth低通滤波器(BLPF)
通常在H(u, v)=0.5时的D(u, v)=D0规定为截止频率(见第一个公式)。当阶数为1 时没有“振铃”现象,为2时较轻微,大于2时较严重。
变化着的频率是最基本的感觉之一,我们四周无时不被变化着 色彩的光、变化着音调的声音等在周期变化的现象包围着。
f ( x, y ) h( x, y ) F (u , v) H (u , v); f ( x, y )h( x, y ) F (u , v) H (u , v)
变化着的频率是最基本的感觉之一,我们四周无时不被变化着 色彩的光、变化着音调的声音等在周期变化的现象包围着。
信息与物理工程学院 中南大学
Fourier Transform IR Spectroscopy傅里叶变换红外光谱精品文档
• 3. When the sample is introduced the spectrum now is a superposition of the absorption bands of the sample on an uneven background.
• 4. To obtain %T with wavenumber we ratio the single beam sample spectrum with the background spectrum.
Hence
can be expressed as
Energy transitions(contd.)
Therefore, diatomic molecules will only exhibit a vibrational absorption spectrum if there is a change in dipole moment with the vibrational motion
• 2. If the interferometer chamber is not evacuated or purged with dry gas some absorption from the atmospheric Co2 and H20 is observed. This is called the background spectrum.
(精心整理)图像的傅里叶变换 ppt课件
解决办法: 对数化
ppt课件
18
ppt课件
19
ppt课件
20
ppt课件
21
ppt课件
22
ppt课件
23
ppt课件
24
ppt课件
25
ppt课件
幅值
时域分析
ppt课件
频域分析
3
ppt课件
4
一维FT及其反变换
连续函数f(x)的傅立叶变换F(u):
F (u) f (x)e j2uxdx
傅立叶变换F(u)的反变换:
f (x) F (u)e j2uxdu
ppt课件
5
一维DFT及其反变换
离散函数f(x)(其中x,u=0,1,2,…,N-1)的傅立叶变换:
ppt课件
33
Fc=fftshift(F); %把频谱坐标原点由左上角移至屏幕中央 subplot(223) Fd=abs(Fc); imshow(Fd,[]) ratio=max(Fd(:))/min(Fd(:)) %ratio = 2.3306e+007,动态范围太大,显示器无法正常显 示 title('幅度谱(频谱坐标原点在屏幕中央)') S2=log(1+abs(Fc)); subplot(224) imshow(S2,[]) title('以对数方式显示频谱')
c1
f1
x, y
e
j
2
ux M
vy N
Fourier Transform IR Spectroscopy傅里叶变换红外光谱
• 1. If there is no sample present the spectrum is that of a black body radiator modified by any transmission characteristics of the interferometer components.
Mathematics (contd.)
• An infrared source is typically approximated as a black body
radiator and the summation can be replaced by an integral.
I()B()co2s( )d
Mathematics
I ( )
• Optical path difference is • Intensity of the detector I ( ) has maxima at
n ,n0 , 1 , 2 and minima at (n1/2)
Mathematics (contd.)
Fourier Transform IR Spectroscopy
Saptarshi Basu
Introduction
• Absorption peaks in an infrared absorption spectrum arise from molecular vibrations
• Absorbed energy causes molecular motions which create a net change in the dipole moment.
Fourier Transforms - University of Texas at Austin傅里叶变换-在奥斯汀的德克萨斯大学
Spring 2006 Don Fussell
Fourier transform
So we have (unitary form, angular frequency)
F(f (t))F()
1
f (t)eitdt
2
F- 1(F()) f (t)
1
F()eitd
2
Alternatives (Laplace form, angular frequency)
Convolution theorem
Theorem
F( f * g) F( f )F(g) F( fg) F( f )*F(g) F- 1(F *G) F- 1(F)F- 1(G) F- 1(FG) F- 1(F)*F- 1(G)
Proof (1)
F( f *g) f (t')g(t t') e itdtdt'
Fourier transform
Some sufficient conditions for application
Dirichlet conditions
f(t)dt
f(t) has finite maxima and minima within any finite interval
f(t) has finite number of discontinuities within any finite interval
2
T
t
0t
f(t) ancon s0t()bnsin n 0t()
n0
To deal with the first basis vector being of length 2 instead of , rewrite as
第4章 医学图像变换1
[ak cos kx cos nxdx bk sin kx cos nxdx ]
k 1
第4章 图像变换
an cos 2 nxdx an ,
1 a n f ( x ) cos nxdx
( 3) 求bn .
( n 1,2,3,)
反之,对于任一函数F(u),其傅 立叶逆变换f(x)也是惟一的。
第4章 图像变换
F (u , v)
f ( x, y )e j 2 (ux vy ) dxdy
f ( x, y) cos 2 (ux vy)dxdy
j
第4章 图像变换
图像变换
图像变换是一种为了达到某种目的(通常是为 了从图像中获取某种重要信息)而采用的数学技 巧。图像变换在图像增强、图像复原、图像编码 压缩以及特征抽取方面有着广泛的应用。 从实际操作来说,图像变换就是对原图像函数 寻找一个合适的变换核的数学问题。
第4章 图像变换
第4章 图像变换
A
1 0.75 0.5 0.25
幅频特性
2 3/2
相频特性
/2
1/2 1/ 3/2 2/
f
1/2 1/ 3/2 2/
f
第4章 图像变换
7.1 频域世界与频域变换
A
1
0.75 0.5
幅频特性
2 3/2
相频特性
0.25
1/2 1/ 3/2 2/
/2
f
1/2 1/ 3/2 2/
第4章 图像变换
a0 dx ak cos kxdx bk sin kxdx 2 k 1 k 1 1 a0 a0 f ( x )dx 2 , 2
电子工程词典
电子工程词典8-level Vestigial Side Band (8-VSB) 八级残余边带A-law A-律AAL 1 circuit emulation mode AAL1 电路仿真模式AC signaling 交流信令ACK cycle 确认周期ADSL transceiver unit (ATU) ADSL 收发器单元AFE analog front end 模拟前端AND 逻辑和AND gate 和门APD avalanche photodiode 雪崩光电二极管ASCII 美国国家信息交换标准代码ASCII asynchronous support package (AASP) ASCII 异步支持程序包ASIC cell 专用集成电路单元,专用集成电路组AT command set AT 命令集ATM adaptation layer (AAL) ATM 适配层ATM bearer service ATM 承载电路业务ATM cell ATM 信元ATM management objects A TM 管理对象ATM network integrated processing (NIP) ATM 网络综合处理ATM switch ATM 交换Accelerated Hub Architecture 加速中枢架构Advanced Research Project Agency (ARPA) [ 美国国防部]高级研究计划局Advanced Research Projects Agency Network (ARPAnet) ARPA 网Advanced SCSI Programming Interface (ASPI) 先进SCSI(小型电脑系统接口)编程接口Advanced Television Systems Committee (ATSC) 先进电视系统委员会Aerial Cable 架空电缆Aloha Aloba 多点同时传送[接入控制技术]American Electronics Association (AEA) 美国电子商联会American National Standards Institute (ANSI) 美国国家标准学会American Standard Code for Information Interchange (ASCII) 美国信息交换标准代码American Wire Gauge (AWG) 美式线计量标准AppleShare AppleShare 软件AppleTalk AppleTalk 局域网AppleTalk control protocol (ATCP) AppleTalk 控制协议AppleTalk filing protocol (AFP) AppleTalk 文件应用协议Applied Research Laboratories (ARL) 应用研究实验室Archie Archie 程序,阿奇程序Architecture, Open Cooperative Computing (OCCA) 合作开放式运算(体系)结构Architecture, Scalable Processor (SPARC) 可定标处理器(体系)结构Ardis Ardis 公共数据通信无线网Article Number Association(ANA) 英国商品编码协会Association of Radio Industry Business (ARIB) 无线电工商业协会Association, American Electronics (AEA) 美国电子商协会Association, Chinese Open Systems (COSA) 中文开放系统协会Association, Computer & the Business Equipment Manufacturers(CBEMA) 美国电脑及商业器材制造商协会Association, Computer and Communication Industries (CCIA) 电脑及通讯工业协会Association, Electronic Industries (EIA) 美国电子工业协会Association, Japanese Electronic Industry Development (JEIDA) 日本电子工业发展协会Association, Korea Foreign Trade (KFTA) 韩国对外贸易协会Association, National Cable Television (NCTA) 全国有线电视协会Association, Personal Computer Memory Card International (PCMCIA) 个人电脑存储器卡国际协会Association, Semiconductor Industry (SIA) 美国半导体业协会Association, Taipei Computer (TCA) 台北市电脑协会Association, Video Electronics Standards (VESA) 视频电子标准协会Automatic Customer 自动用户B-channel B 信道BASIC language 培基语言Barkhausen criterion 巴克好森准则Baudot code 博多码Bayesian network 贝叶斯网络Beaconing 信标Beam-former 波束形成器Beamwidth [ 波]束宽[度]Beginners All-Purpose Symbolic Instruction Code (BASIC) 培基语言Bell Labs 贝尔试验室Bell Northern Research (BNR) 贝尔北方研究[中心]Bell System 贝尔系统Bell operating company (BOC) 贝尔运营公司Bellcore 贝尔通信研究所Billing Administration and Roaming Group (BARG) 记帐管理与漫游群Bluetooth 蓝牙技术Bluetooth Special Interest Group 蓝牙特别兴趣小组BnZS code BnZS 码(一种双极线码)Bode diagram 波德图Bode plot 波德图Bohr atom 波尔原子Boltzmann's constant 波耳兹曼常数Bootstrap protocol Bootstrap 协议Borscht 用户线[一组]基本功能Bose Chaudhuri Hocquenghem (BCH) 博斯-乔赫里-霍克文黑姆[码]Boyle's law 波义耳定律British Electrotechnical Committee (BEC) 英国电气技术委员会British Standards Institution (BSI) 英国标准学会British thermal unit (BTU) 英国热力单位Bus Arbitration 总线仲裁Butterworth filter 巴特沃斯滤波器C network C网络C++ C++ 语言(面向对象的C语言)C-7 signaling C-7 信令C-message filter C信息滤波器CAD 计算机辅助设计CAM 计算机辅助制造CD-I 交互式CDCD-audio 音乐CD,CD唱盘CD-e 可擦可录CDCPU time 中央处理器时间CPU-intensive 中央处理器密集CTE mismatch (Cable Temination Equipment) 电缆终端设备失配CU-SeeMe videoconferencing CU-SeeMe 视频会议系统,可互见视频会议系统Caller Identification 自动用户Canadian Standards Association (CSA) 加拿大标准协会CeBIT fair CeBIT 计算机与办公自动化博览会也称Hannover博览会)Cello Cello 软件Cellular Telecommunications Industry Association (CTIA) 蜂窝电信工业协会Celsius 摄氏Celsius scale 摄氏温标Celsius thermometer 摄氏温度计Central Office Switches 局端交换机Centre European des Recherche Nucleaire (CERN) CERN 计算机网络Centre National d' Etudes de Telecommunication (CNET) centrex 市话交换分局,中央交换机Channel Isolation 信道隔离度Channel Uniformity 信道不一致性China Productivity Center 中国生产力中心Chinese Microcomputer Extended Foundation (CMEX) 中文微电脑推广基金会Chinese Open Systems Association (COSA) 中文开发系统协会Chinese binary 中式二进制数Chinese character generator (CCG) 中文字形产生器Chinese system interface (CSI) 中文系统接口Code, Taipei Computer Association (TCA Code) 台北电脑协会推荐码Colpitts oscillator 科尔皮兹振荡电路Commission, Federal Communications (FCC) 联邦通讯委员会Committee for Technical Activities (CAT) 技术活动委员会Committee, Advanced Television Systems (ATSC) 先进电视系统委员会Committee, British Electrotechnical (BEC) 英国电气技术委员会Committee, Japan Industrial Standards (JISC) 日本工业标准委员会Committee, System Performance Evaluation (SPEC) 系统性能评估委员会Computer and Communication Industries Association(CCIA) 电脑及通讯工业协会Computer and the Business Equipment Manufacturers Association(CBEMA) 美国电脑及商业器材制造商协会Consumer Electronics Association (CEA) 消费者电子协会Consumer Electronics Manufacturers Association (CEMA) 消费电子制造商协会,消费电子供应商协会Coordination Joint Committee on Inter-society, (JCIC) 团体合作联合委员会Council, Joint Electronic Device Engineering (JEDEC) 电子器件工程联合会Cross Point Switch 交叉点交换机Curie point 居里点Curie temperature 居里温度Customer Premise Equipment 用户预定设备D-channel D 信道,D通路D-connector D型连接器DC loop signaling (Dirrect Current) 直流环路信令DC-restore amplifiers 直流恢复放大器DNS security extensions DNS 安全扩展DSL access multiplexer (DSLAM) 数字用户线接入复用器,DSL接入复用器DSP cores DSP 内核Daemon 守护程序,无交互后台程序,UNIX端口监督程序;Internet中用于电子邮件收发的后台程序Damper Diode 阻尼二极管Daniel cell 丹聂耳电池Daniel hygrometer 丹聂耳湿度计Data Reorganization Interface 数据重组接口Defense Advanced Research Project Agency (DARPA) 美国国防部高级研究计划局Dellinger fade out 德林格尔衰落Department of Defense (DoD) [ 美国]国防部Diffie Hellman algorithm 迪菲·赫尔曼算法(一种密码交换算法)Digital Audiovisual Council (DA VIC) 数字视听委员会Digital Mockup 数字模型DirecPC DirecPC 卫星信息传递系统DirecTV DirecTV 卫星信息传递系统Direct Conversion 直接转换Doppler effect 多普勒效应E & M signaling E和M信令(交换局间和主干线上使用的标准信令)EMI filter 电磁干扰滤波器EPOC operating system EPOC 操作系统Electret Condenser Microphone 驻极体电容式传声器Electroluminescent Phosphors 电致发光Electronic Design Intermediate Format (EDIF) 电子设计中间格式Electronics Industries Association (EIA) 美国电子工业协会Electronics Industries Association of Korea (EIAK) 韩国电子工业协会Electronics Research and Service Organization (ERSO) 工研院电子工业研究所Emulsion 乳胶Erlang 爱尔兰尔朗(话务单位), 占线小时Erlang B (blocked calls cleared) 爱尔朗B(分区呼叫清除)Erlang C (blocked calls delayed) 爱尔朗C(分区呼叫延迟)Esaki diode 隧道二极管;江崎二极管EtherTalk EtherTalk 协议(在以太网上运行的AppleTalk协议)Ethernet card 以太网网卡Ethernet hub 以太网集线器Ethernet switch 以太网交换机Eudora Eudora程序(一种电子邮件软件,由Qualcomm公司出品)Euro-ISDN 欧洲综合业务数字网Eurocard 欧洲标准卡European Committee for Electrotechnical Normalization(CENELEC) 欧洲电工标准化委员会European Committee for Normalization (CEN) 欧洲标准化委员会European Communications Satellites (ECS) 欧洲通讯卫星European Computer Manufacturers Association (ECMA) 欧洲计算机制造商协会European Computer Manufacturers' Association (ECMA) 欧洲电脑生产商协会European Council of Associations of Telecommunications Users (ECTUA) 远程通讯用户协会欧洲议会European Free Trade Association (EFTA) 欧洲自由贸易协会European Telecommunication Satellites Organization(EUTELSAT) 欧洲远程通讯卫星组织European Telecommunications Norm (NET) 欧洲远程通讯标准European Telecommunications Standards Institute (ETSI) 欧洲远程通讯标准学会European Workshop for Open Systems (EWOS) 欧洲开放系统进修会European advanced communications technologies and services (ACTS) 欧洲先进通信技术和业务European radio messaging system (ERMES) 欧洲无线电信息系统,欧洲无线发报系统Excess Burst Rate 超额突发速率Exchange Carriers Standards Association (ECSA) 交换载波标准协会Extended Burst Transactions 增强式突发处理Extended Burst Transactions FloorplanningFASTBUS protocol FASTBUS 协定FDDI switch FDDI 交换FORTRAN language 福传语言Fabless Semiconductor Association 无晶圆公司半导体协会Fahrenheit 华氏Fahrenheit scale 华氏温标Fahrenheit thermometer 华氏温度计Faraday cell 法拉第电池Faraday constant 法拉第常数Faraday dark space 法拉第暗区Faraday effect 法拉第效应Faraday shield 法拉第屏蔽[罩]Federal Communications Commission (FCC) 联邦通讯委员会Fleming's left-hand rule 法朗明左手定律Flex 花线,皮线;挠曲,弯曲Floorplanning 底层规划,布局规划Flow Label field 流动标签域Foundation, Open Systems (OSF) 开放系统协会Fourier series 傅立叶序列Fourier transform 傅立叶变换Fourier transform infrared (FTIR) 红外线傅立叶变换Fourier transform infrared spectrophotometry (FTIR) 傅里叶变换红外分光光度测定法,傅里叶变换红外分光光度技术Fraunhofer pattern 弗琅荷费图案Freenet 免费网Frenkel defect 富兰克尔缺陷Fresnel counter 菲涅耳计数器Fresnel lens 菲涅耳镜Fresnel pattern 菲涅耳图形Fresnel reflection 菲涅耳反射Fresnel reflection loss 菲涅耳反射损失Fresnel region 菲涅耳区Fresnel zone 菲涅耳区Front Buffer 前置缓冲GSM phase 1 第一代GSMGSM phase 2 第二代GSMGSM phase 2 plus 增强第二代GSMGauge, American Wire (AWG) 美式线计量标准Gauss' law 高斯定律Gaussian distribution 高斯分布Gaussian filter 高斯滤波器Gaussian minimum shift keying (GMSK) 高斯最小移位键控Gaussian roll-off 高斯转降Globalstar 全球星[系统]Gopher Gopher 协议Gouraud shading 古诺描影法Grand Alliance Grand 联盟Gray code 格雷码Gray-code converter 格雷码转换器Group 3 fax standard (G3) 三类传真标准Group, Joint Photographic Experts (JPEG) 摄影专业人员联合组织Group, Joint Test Action (JTAG) 测试行动联合组织Group, Motion Picture Experts (MPEG) 活动影像专业人员组织Groupe Speciale Mobile (GSM) [ 欧洲]移动通信特别研究小组Gunn oscillator 体效应振荡器HBT 异质结双级传送HDSL version 2 (HDSL-2) HDSL 版本2Hall effect 霍尔效应Hall multiplier 霍尔乘法器Hall voltage 霍尔电压Hamming code 汉明码Hamming distance 汉明距Hartley oscillator 哈特利振荡器Hay bridge 海氏电桥Hayes AT command set 贺氏AT命令集(命令集中所有命令以AT作前缀)Head-end 头端(有线电视系统中的一种数据收发器)High V oltage Spokes 高压尖脉冲HiperLAN Hiper 局域网Home Phoneline Networking Alliance (HomePNA) 家庭电话线连网联盟Hotlist 热表Huffman coding 哈夫曼编码Huygens' principle 惠更斯原理I-frame I 帧IEEE 1394 home networks IEEE1394 家庭网络ILB window (Inner Lead Bonding) ILB窗口(内引线键合窗口)IP control protocol IP 控制协议IP domain (Internet Protocol) IP 域IP fragmentation IP 分片IP multicast IP 多播IP payload compression protocol (IPPCP) IP 有效载荷压缩协议IP router IP 路由器IP security (IPsec) IP 安全IP switching IP 交换IP telephony IP 电话[学]IP tracking IP 跟踪ISDN bearer services 综合业务数字网承载业务ISDN digital subscriber line (IDSL) 综合业务数字网数字用户线ISDN reference points 综合业务数字网参考点ISDN user part (ISUP) 综合业务数字网用户部分Independent Computing Architecture 独立计算结构Industrial Technology Research Institute (ITRI) 工业技术研究院Industrial, Scientific and Medical band (ISM) 工业、科学和医学波段,ISM频段Initiative, CAD Framework (CFI) 电脑辅助设计架构始创会Initiative, Joint European Silicon Submicron (JESSI) 欧洲联合硅次微米始创会Inmarsat-A A 类国际海事卫星业务Inmarsat-B B 类国际海事卫星业务Inmarsat-C C 类国际海事卫星业务Inmarsat-M M 类国际海事卫星业务Inmarsat-P P 类国际海事卫星业务Institute for Information Industry (III) 信息工业策进会Institute for Interconnecting and Packaging Electronic Circuits (IPC) 互连与封装协会Institute of Electrical and Electronics Engineers (IEEE) 电气及电子工程师学会Institute, American National Standards (ANSI) 美国国家标准学会Institute, Industrial Technology Research (ITRI) 工业技术研究院Instrumentation, Standard Commands for Programmable (SCPI) 可编程仪器标准命令Instrumentation, VMEbus Extensions for (VXI) 为仪器应用而设的VMEbus功能延伸Instruments, Standard Commands for Programmable (SCPI) 可编程仪器标准命令Intelligent Antenna Arrays 智能天线阵Intelligent Optical Networking 智能光学网路Intelligent Optical Transport 智能光学传送Interchange, American Standard Code for Information(ASCII) 美国信息交换标准代码Interconnection, Open System (OSI) 开放系统互连International Air Transport Association (IATA) 国际空运协会International Chamber of Commerce 国际商会International Chamber of Shipping 国际航运协会International Disk Drive Equipment and Materials Association (IDEMA) 国际磁盘机器材及原料协会International Electrotechnical Commission (IEC) 国际电工委员会International Maritime Satellite Organization(INMARSAT) 国际航海卫星组织International Standard (IS) 国际标准International Standards Organization (ISO) 国际标准化组织International Telecommunication Satellite Organization(INTELSAT) 国际远程通讯卫星组织International Telecommunication Union (ITU) 国际电信联盟Internet 因特网,国际互联网Internet Architecture Board (IAB) 因特网网络体系结构委员会Internet Corporation for Assigned Names and Numbers (ICANN) 因特网分配名称和编号的公司Internet Council of Registrar (CORE) 因特网注册委员会Internet Society (ISOC) 因特网协会Internet address 因特网地址,互联网地址Internet appliance 因特网设备,因特网工具Internet cache protocol (ICP) 因特网高速缓存协议Internet control message protocol (ICMP) 因特网控制报文协议Internet group management protocol (IGMP) 因特网小组管理协议Internet group multicast protocol (IGMP) 因特网小组多播协议Internet key exchange (IKE) 因特网密钥交换Internet mail service (IMS) 因特网邮件业务Internet phone Internet 电话,互联网电话Internet portal 因特网入口Internet printing protocol (IPP) 因特网打印协议Internet protocol security (IPsec) 因特网协议安全Internet protocol version 4 (IPv4) 网间协议版本4Internet protocol version 6 (IPv6) 网间协议版本6Internet routing table 因特网路由选择表Internet search engine 因特网搜索引擎Internet security association and key management protocol 因特网安全联盟和密钥管理协议Internet security system (ISS) 因特网保密系统Internet telephony 互联网电话[学]Internet telephony service provider 因特网电话业务提供者Internet2 第二代Internet,第二代因特网Iridium 铱J-lead J 引线Jacobaeus analysis 雅科比分析Japan Camera & Optical Instruments Inspection & Testing(JCII) 日本照相机及光学器材检测及测试学会Japan Electrical Testing Laboratory (JET) 日本电机测试实验室Japan External Trade Organization (JETRO) 日本对外贸易组织Japan Industrial Standards Committee (JISC) 日本工业标准委员会Japan Machinery and Metals Inspection Institute (JMI) 日本机械及金属检测学会Japanese Electronic Industry Development Association(JEIDA) 日本电子工业发展协会Java 2 platform (J2ME) 第二代Java平台Java Beans Java 组件Java Java 语言Java binding Java 联编Java card Java 卡Java database connectivity (JDBC) Java 数据库连通性Java developer kit (JDK) Java 开发工具包Java embedded server Java 嵌入式服务器Java object Java 对象Java programming language Java 编程语言Java runtime system (JRTS) Java 运行时间系统Java script Java 脚本语言Java system database (JSD) Java 系统数据库Java virtual machine Java 虚拟机Java/perl lingo Java/perl 隐语Jet Propulsion Laboratory (JPL) 喷气推进实验室Joint Committee on Inter-Society Coordination (JCIC) 团体合作联合委员会Joint Electronic Device Engineering Council (JEDEC) 电子器件工程联合会Joint European Silicon Submicron Initiative (JESSI) 欧洲联合硅次微米始创会Joint Photographic Experts Group (JPEG) 摄影专业人员联合组织Joint Test Action Group (JTAG) 测试行动联合组织Joule heating 焦耳发热K factor K 因数,K系数Ka band Ka 频段Karnaugh map 卡诺图Kelvin 绝对温度单位Kelvin bridge 开氏电桥Kelvin scale 开氏温标Kendall effect 肯德尔效应Kermit 克米特协议(一种调制解调器标准)Kirchhoff's laws 基尔霍夫定律Klystron 速调管Knowbot 知识机器人Korea Electronics Industries Association of, (EIAK)[Korea] 韩国电子工业协会Korea Foreign Trade Association (KFTA) 韩国对外贸易协会Ku-Band Ku波段L-C filter L-C滤波器,电感电容滤波器LAN Manager 局域网管理器LAN card 局域网网卡LAN emulation (LANE) 局域网仿真LAN hub 局域网集线器,局域网集中器LAN server 局域网服务器LAN switch 局域网交换LDMOS 横向双扩散MOSLTPS 低温多晶硅LU 6.2 protocol 逻辑单元6.2协议Laboratories Mechanical Industry Research, (MIRL) 工研院机械工业研究所Laplace transform 拉普拉斯变换Leaching 浸滤,浸析;沥取Lee flood router 李氏扩散式路由器Lenz's law 楞次定律Long Afterglow Phosphor 长余辉夜光材料Loran Loran 远程无线电导航系统,罗兰导航系统Low leakage current 低泄漏电流MAC address 媒体存取控制地址MIDI (musical instrument digital interface) [ 电子]乐器数字化接口MOS gate driver (MGD) MOS 门驱动器,金属氧化物半导体门驱动器MPEG Java subset (MPEG-J) MPEG Java 子集MPEG-2 layer 3 (MP3) 移动图像专家组标准2第3层,MP3MPEG-2 over ATM ATM 网传输的MPEG-2[数据]Malaysian Institute of Microelectronic Systems (MIMOS) 马来西亚电子系统学会Manchester encoding 曼彻斯特编码Marisat 航海卫星Market Segments 市场范围,市场区间Markov chain model 马尔可夫连锁模型Markovian model 马尔可夫模型Massachusetts Institute of Technology (MIT) 麻省理工学院Maxwell bridge 麦克斯韦电桥Mechanical Industry Research Laboratories (MIRL) 工研院机械工业研究所Microcom networking protocol (MNP) Microcom 网络协议Microcom networking protocol 1 (MNP-1) Microcom 网络协议1Microcom networking protocol 10 (MNP-10) Microcom 网络协议10 Microcom networking protocol 2 (MNP-2) Microcom 网络协议2Microcom networking protocol 4 (MNP-4) Microcom 网络协议4Microcom networking protocol 5 (MNP-5) Microcom 网络协议5Microcom networking protocol 6 (MNP-6) Microcom 网络协议6Microcom networking protocol 7 (MNP-7) Microcom 网络协议7Microcom networking protocol 8 (MNP-8) Microcom 网络协议8Microcom networking protocol 9 (MNP-9) Microcom 网络协议9Microsectioning 显微磨片,金相切片Miller effect 密勒效应,米勒效应Ministry of International Trade and Industry (MITI) 日本国际贸易及工业部Minitel 小型电传Mobitex [ 爱立信]基于包交换的陆上蜂窝无线电数据通信系统Modula-3 Modula-3 语言Modulation Diode 调制二极管Moire principle 莫尔法则Monte Carlo simulation 蒙特卡罗模拟法;统计验证法Monte Carlo techniques 蒙特卡罗技巧Morkov model for speech production 语音产品的Morkov模型Motion Picture Experts Group (MPEG) 活动影像专业人员组织Mu-law μ律Multi Vendor Integration Protocol ( interconnects proprietary telephony equipment ) MVIP 多制造商集成协议(电话设备互连)Multi-Computer 多处理器计算机Multi-carrier CDMA 多载波CDMAMulti-channel data acquisition 多路数据采集,多路数据获取Multi-level cell (MLC) 多级信元Multi-mode fiber 多模光纤Multimedia Consortium of Taiwan (MCT) 台湾多媒体联盟会Multiprotocol label switching (MPLS) 多协议标记交换Multiprotocol over ATM (MPOA) A TM 网多协议[交换]N-channel metal oxide semiconductor (NMOS) N 通道金属氧化半导体N-junction N 形接头,N形连接N-type semiconductor N 型半导体NAND 逻辑反和NAND gate 反和门NOR 逻辑或非NOT 逻辑非National Association of Broadcasters (NAB) 全国广播工作人员协会National Bureau of Standards (NBS) 国家标准局National Cable Television Association (NCTA) 全国有线电视协会National Electrical Code (NEC) 国家电码National Network Infrastructure (NNI) 国家网络基础设施National Television Systems Committee (NTSC) 美国国家电视系统委员会Netscape Nevigator 网景公司的网页浏览器Netware 网件Netware Novell 公司的)网络操作系统Netware directory service (NDS) Netware 目录服务Netware link services protocol (NLSP) Netware 链路服务协议Network Working Group (NWG) 网络工作组Newton (N) 牛顿Next Hop Resolution Protocol NHRP 下一跳解析协议Next hop routing protocol (NHRP) 下一跳选路协议NiCd battery 镍镉电池Nicam system 丽音系统Nippon Telegraph & Telephone (NTT) 日本电报电话公司Nordic mobile telephone system (NMT) 北欧移动电话系统North American Electric Reliability Council (NERC) 北美电气可靠性委员会North American numbering plan (NANP) 北美编号计划Norton's theorem 诺顿定理Nyquist criterion 奈奎斯特准则Nyquist filter 尼奎斯特滤波器Nyquist frequency 奈奎斯特频率Nyquist interval 尼奎斯特区间Nyquist rate 尼奎斯特速率Nyquist sampling theorem 奈奎斯特抽样定理O-Commerce 光商务OR 逻辑或OR gate 或门OR, wired- 线或Object Data Management Group (ODMG) 对象数据管理组Object database 对象数据库Object query language (OQL) 对象询问语言Object reference notation (ORN) 对象参考符号Off-axis illumination 离轴光照One Point Calibration 一点标定法Open Cooperative Computing Architecture (OCCA) 开放合作式运算结构Open Programmable Architecture Language (OPAL) 开放式可编程结构语言Open System Interconnection (OSI) 开放系统互连Open Systems Foundation (OSF) 开放系统协会Organization for Economics Cooperation and Development (OECD) 经济合作及发展组织Organization, Electronics Research and Service (ERSO) 工研院电子工业研究所Organization, International Standards (ISO) 国际标准化组织Owen bridge 欧文电桥P-channel P 型沟道P-channel metal oxide semiconductor (PMOS) P 通道金属氧化半导体P-type semiconductor P 型半导体PAD characters PAD 字符PC Card PC 卡PCB cleaning 印刷电路板清洗PCB edge 印刷电路板边缘PIN diode PIN 型二极管PNNI crankback PNNI 遇忙返回[再选]Palm operating system Palm 操作系统Parallel Reduced Instruction Set Multiprocessing (PRISM) 并行的精简指令集多处理方式Passive Backplane 无源背板Personal Computer Memory Card International Association (PCMCIA) 个人电脑存储器卡国际协会Phase-shifted Full Bridge 移相全桥Piconet 微型网Pierce oscillator 皮尔斯振荡器Pin-to-pin 管脚到管脚Planck's constant 普朗克常数Poisson arrival distribution 泊松到达分布Polaroid 偏振片Post Office Code Standardization Advisory Group (POCSAG) 邮局代码标准化顾问组Post Telegraph and Telephone (PTT) 邮政电报和电话[业务]Post regulation 邮政规则Poynting vector 能流密度向量Profile 协议子集Q video signal Q 视频信号Q-switch 光量开关;Q开关QuickTime [ 苹果公司的]QuickTime多媒体软件R 2 signaling system R 2 信令系统R reference point R 基准点R-interface R- 接口R2-MFC (R2-Microsoft Foundation Class)R2-微软基本类[库]RF front-end 射频前端RF shield 射频防护屏;射频屏蔽RSVP-to-ATM CoS mapping RSVP到ATM的服务级别映射Rail-to-Rail 轨至轨Ram mobile data 随机存取存储器可移动数据Rambus Rambus 总线结构Rayleigh distribution 瑞利分布Rayleigh fading 瑞利衰落Rayleigh model 瑞利模型ReFlex ReFlex 双向寻呼协议Reed Solomon coding 里德索罗门编码Reed Solomon error correction 里德索罗门纠错Reed-Solomon-Code 列德-索罗蒙编码Remote/CPE Routers 远程/中央处理元素路由器Ringing 振荡Ripple within Channel 信道内起伏S reference point S/T interface S/T 接口S参考点(ISDN用语)S-interface S- 接口SBD workflow language (SWL) SBD 流程语言,结构化方框图流程语言SDH management network (SMN) SDH 管理网,同步数字序列管理网SNA node 系统网络体系结构节点(IBM公司)SNA over asynch (SOA) 异步系统网络体系结构SNMP agent 简单网络管理协议代理SNMP manager 简单网络管理协议管理程序SNMP mobile MIB 简单网络管理协议移动管理信息库Satellite Asia Region (STAR) 亚洲区域卫星Scalable Processor Architecture (SPARC) 可定标处理器结构Scaled-Down Version 缩小版Schmitt trigger 史密特触发器Schottky barrier double rectifier 萧特基势垒双整流器Schottky barrier double rectifier diode 萧特基势垒双整流二极管Schottky diode 肖特基二极管Schottky rectifier 肖特基整流器Screw Terminal 螺栓型端子Seebeck effect 塞贝克效应Semiconductor Industry Association (SIA) 美国半导体业协会Serial Line Internet Protocol 串行线路IP协议Session Shadowing 会话重影Shannon / Hartley law 香农/哈特雷定律Shannon capacity 香农容量Smith chart 史密斯圆图Society for Worldwide Interbank Financial Telecommunications (SWIFT) 世界银行金融电信协会Society of Motion Picture and Television Engineers(SMPTE) 电影及电视工程师组织Solder trap 焊阱Special Mobile Group (SMG) 专用移动通信群Sputnik (苏)人造地球卫星Standard Commands for Programmable Instrumentation(SCPI) 可编程仪器标准命令Standard Commands for Programmable Instruments(SCPI) 可编程仪器标准命令Standard Generalized Markup Language (SGML) 标准通用详示语言Stanford Research Institute (SRI) 斯坦福研究学院Star Wars 星球大战Switched Fabric 交换结构Syncom 同步通讯System Performance Evaluation Committee (SPEC) 系统性能评估委员会T carrier t 载波T reference point T 参考点T- connector T 形连接器T-1 circuit t1 载波T-interface T 接口(ISDN用语)T1 北美PCM一次群系统传输线路(传输标准1.544Mb/s)TAB tape TAB 载带THIC 厚膜混合集成电路Taipei Computer Association (TCA) 台北市电脑协会Taipei Computer Association Code (TCA CODE) 台北电脑协会推荐码Task Offloading 工作负载转移Technical Recommendations Applications Committee(TRAC) 技术推介应用委员会Telecommunications Industries Association (TIA) 电信产业协会Telenet 远程网Telnet 远程登录软件,远程登录程序Testing In Reliability TIR 可靠性试验Time-Critical 时序要求严格的Tmap T 映射Toll Quality Voice 长话级话音Trade Electronic Data Interchange System (TEDIS) 贸易电子数据交换系统Transcoding 代码转换Traveling wave 行(进)波Triple-Level Metal TLM 三重金属,三层金属U reference point U 参考点U-interface U 接口(ISDN用语,采用2B1Q线路码)UMTS terrestrial radio access (UTRA) UMTS 陆地无线接入UNI management entity (UME) 用户网接口管理实体USB controller 通用串行总线控制器Undercut 下切Underwriters Laboratories (UL) [ 美国]保险商研究所Union, International Telecommunications (ITU) 国际电讯协会United Nations Trade Data Elements Directory (UNTDED) 联合国贸易数据元素总目Universal ADSL Working Group (UAWG) 通用ADSL工作组Universal Wireless Communications consortium (UWC) 通用无线通信协会Upconversion Phosphors And Infrared Laser Sensor Quantex 上转换发光材料与红外光检测板Usenet 用户网络VESA local bus (VL-bus) VESA 局域总线VHSIC hardware description language (VHDL) 超高规模集成电路硬件描述语言VMEbus Extensions for Instrumentation (VXI) 为仪器应用而设的VMEbus功能延伸VSB backplane VSB 底板Venn diagram 文氏图Verband Deutscher Elektrotechniker (VDE) 西德电机工程师协会Video Electronics Standards Association (VESA) 视频电子标准协会Vienna development method (VDM) 维也纳开发方法Visual Basic Visual Basic 计算机编程语言,可视Basic计算机编程语言Visual C++ Visual C++ 计算机编程语言,可视C++计算机编程语言Visual data 可视数据Visual information retrieval (VIR) 可视信息检索Visual inspection 目测,目检,外部检查Visual studio generation program (VSIP) 可视演播室节目生成程序Viterbi algorithm 维特比算法WHOIS WHOIS 服务(一种用户在数据库中查找所需信息的因特网服务)Wafer Mapping 晶圆映射Wake on LAN 唤醒局域网Walsh coding 沃尔什编码,Walsh编码Wavelengh Division Multiplexing (WDM) 波分多路复用Wavelength Temperature Stability 波长稳定度Web browser 万维网浏览器Web interface definition language (WIDL) 万维网接口定义语言Web object model 万维网对象模型Web phone 万维网电话Weston cell 韦斯顿电池Wheatstone bridge 惠斯登电桥Wien bridge 维恩电桥Wien bridge oscillator 维恩电桥振荡器Winchester hard-disk drive 温彻斯特硬式磁盘机Windows 2000 视窗2000(微软推出)Windows CE 视窗CE(微软为掌上电脑设计的操作系统)Windows media audio (WMA) 视窗媒体音频World Trade Organization (WTO) 世界贸易组织World Wide Web Consortium (W3C) 万维网联盟X Windows X 视窗X radiation X 幅射X windows X 窗口X-Y display X-Y 显示X-address X 地址X-axis amplifier X 轴放大器X-band X 频带X-ray tube X 射线管XENIX XENIX 系统XML linking language XML 链接语言XML pointer language XML 指针语言XNOR 逻辑同XOR 逻辑异XY switch XY 开关Xmodem Xmodem 文件传输协议Y connection Y 连接Y network Y 网络Y-T display Y-T 显示Y-address Y- 地址Y-axis amplifier Y 轴放大器Y-connected circuit 星形连接电路Y-datum line Y 基准线Yagi antenna 八木天线Yagi-Uda antenna 八木-宇田天线Ymodem Ymodem 文件传输协议Z modem Z modem (在调制解调器链路上传输文件的一种方法,可自动调整传输速率)Z-address Z 地址Z-axis amplifier Z 轴放大器Zeeman effect 塞曼效应Zener breakdown 齐纳击穿Zener diode 齐纳二极管Zener effect 齐纳效应Zener voltage 齐纳电压Zero-Insertion Force(ZIF)Package 零插入力(ZIF)组件Zobel filters 瑟贝尔滤波器aachen 亚琛abampere 绝对安培abandoned call 废弃单元abbreviated dialing 缩位拨号abbreviated digital verification color code (ADVCC) 简写数字验证颜色码aberration 像差aberration, chromatic 色像差aberration, spherical 球面像差ability, heuristic reasoning 启发式推论能力abnormal decay 反常衰变abnormal end 异常终结abort 中断abort sequence 中断序列above threshold 超临限值abrasion 剥蚀;磨损abrupt junction 突变结absent 不存在absent extension diversion 分机用户缺席转接absent, coprocessor 协同处理器不存在absolute accuracy 绝对准确度absolute address 绝对地址absolute addressing 绝对定址法absolute assembler 绝对组合程式absolute block 绝对区块absolute code 绝对代码absolute coordinate 绝对坐标absolute dimension 绝对尺寸absolute disintegration rate 绝对衰变率absolute encoder 绝对编码器absolute error 绝对错误absolute expansion 绝对膨胀absolute gain 绝对增益absolute humidity 绝对湿度absolute index of refraction 绝对折射率absolute instruction 绝对指令absolute intensity 绝对强度absolute loader 绝对装入器absolute machine code 绝对机器代码absolute maximum rating 绝对最大额定值absolute measuring system 绝对测量系统absolute permeability 绝对磁导率absolute pressure 绝对压力absolute temperature 绝对温度absolute temperature scale 绝对温标absolute value 绝对值absolute variable 绝对变数absolute velocity 绝对速度absolute volume 绝对体积absolute zero 绝对零度absolute-value circuit 绝对值电路absolute-value device 绝对值器件absorbability 吸收能力absorptance 吸收比absorption 吸收absorption band 吸收频带absorption loss 吸收损耗absorption modulation 吸收调制absorption spectrum 吸收光谱absorption, active acoustical 动态声音吸纳absorption, coefficient of 吸音系数absorptive attenuator 吸收衰减abstract data type 抽象数据种类abstract quantity 抽象程度abstract symbol 抽象符号abstract syntax notation one (ASN.1) 抽象语法表示法1 abstraction 抽象;抽除ac brownout 交流降压,交流节电ac converter 交流转换器ac electric-field strength 交流电场强度ac filter 交流滤波器ac line filter 交流线路滤波器ac power line 交流电源线accelerated graphics port (AGP) 加速图形端口accelerated life test 加速寿命测试accelerated stress test 加速应力测试accelerated test 加速测试accelerated thermal cycle (ATC) 加速热循环。
IRRAS
(Continued on page 4)Rapid-scan Polarization-modulated Fourier-transform Infra-red Reflection Absorption SpectroscopyInfra-red reflection absorption spectroscopy (IRRAS) is a technique for studying the IR absorption in very thin layers of molecules adsorbed on a specular reflective metal surface.1Dr. Robert Corn and his group at the Chemistry Department of the Univer-sity of Wisconsin have developed a technique for polarization-modulated Fourier-transform IRRAS (PM-FTIRRAS) using a rapid-scanning Fourier transform spectrometer. A photoelastic modulator (PEM) provides the polar-ization modulation. Demodulation is accomplished using a unique real-time sampling circuit. A significant advantage of this method is that measurement of a separate reference scan on the bare metal surface is not required.Traditional PM-IRRAS MethodsMost IRRAS experiments utilize a high angle of incidence of the light on the sample/reflector, as shown in Figure 1. For this geometry, s-polarized light (parallel to the reflective surface) is virtually unabsorbed. The p-polarized light (in the plane of incidence) is absorbed by the molecular layer, with the ab-sorption being significantly enhanced by the near-grazing angle of the incident light. Molecules not near the reflecting surface (e.g., gas molecules) absorb s and p polarized light equally. The parameter of interest is (Is - Ip)/(Is + Ip), pro-portional to the difference signal divided by the average signal. Photoelastic modulators (PEMs) have gained wide acceptance as the technique of polar-ization modulation (PM) in IRRAS measurements.Early PM-IRRAS setups used dispersive spectrometers. Recently, how-ever, the emphasis has switched to FT-IR spectrometers because of a number of advantages they offer over dispersive systems.1Figure 1 shows a traditional PM-FTIRRAS optical setup following the in-terferometer. A lock-in amplifier is used to demodulate the PM signal. For a continuous-scan interferometer, the requirement for a large separation be-tween the PM frequencies and the Fourier frequencies limits the scanning speed of the mirror. Requirements for the shortest possible lock-in time con-stant presently dictate the use of high-quality (and expensive) analog lock-in amplifiers.Rapid-Scan PM-FTIRRASDr. Robert Corn and his group have developed a technique for PM-FTIRRAS which uses a rapid scanning spectrometer (Mattson Cygnus 100)and a 37 kHz zinc selenide PEM (Model II/ZS37) manufactured by Hinds In-struments. The optical setup is similar to traditional PM-FTIRRAS setups (Figure 1).The key to this system is a unique demodulation circuit which samples each cycle of the modulated waveform to determine directly values of I p and I s .Robert Corn, Ph.D., is a profes-sor and chair of the analytical division of the chemistry department at the University of Wisconsin. He uses po-larization modulation FTIRspectroscopy in order to characterize the chemical structure of surfaces and thin films.His interest in chemistry devel-oped as an undergraduate at UC San Diego. “I participated in a couple of research projects with wonderful pro-fessors. That’s where I learned about scientific research and that I enjoyed doing it,” he says. “I still strongly en-courage and support undergraduate research for this reason.” Regarding his area of specialty he adds, “From the beginning, I always enjoyed the combination of spectroscopy andphysical chemistry. I think that it’s the right mixture of theory and experi-ment for my tastes.”Dr. Corn did his graduate work at UC Berkeley on the application of Fourier transform infrared spectros-copy to the study of motion inmolecular solids. He worked as a vis-iting scientist at the IBM Research Laboratory in San Jose where he ap-2HINDS INSTRUMENTS, INC.This signal is split, one branch going to a low-pass fil-ter whose output is an analog average signal. The other branch goes to the difference signal circuit. A detailed de-scription of the difference signal demodulation scheme is beyond the scope of this article, but a complete descrip-tion is given in Green, et. al.2 A simplified overview,however, will be given here.The difference signal is typically much smaller than the average signal, so the first step is to electronically “subtract out” the average signal so that the PM signal can be amplified. The resulting signal is split again, with one branch being used to sample the p-polarization mag-nitude and the second branch to sample the s-polariza-tion magnitude. For the computation of the difference sig-nal for each half-cycle, the s-polarization is evaluatedtwice, once at the beginning of each cycle and once at the end. Each of these signals is amplified/attenuated by the appropriate factor then sent to a sum-difference amplifier.The output is sampled and the result sent to a low-pass filter, whose output is an analog difference signal.The average signal and difference signal are then digitized and transformed using the system computer to give the IRRAS spectrum of the sample. An example of the IRRAS spectrum of a polyimide thin film on a poly-crystalline chromium substrate is shown in Figure 3.3AdvantagesThere are a number of advantages which this method has over a traditional experiment setup using a lock-in amplifer. The setup described above does not require ob-taining a reference scan with a bare mirror in place. This reduces the time required for the experiment. It also elimi-nates the potential difficulties arising from anycontamination on the “bare” mirror. The mirror can be scanned 2 to 3 times faster than with a traditional setup,which can reduce instabilities in some interferometers. Fi-nally, problems with overloading the lock-in amplifiers (which have plagued some investigators) are eliminated.The demodulation circuit uses high-quality video sample-and-hold amplifiers as described in Green, et. al.2 and Barner, et. al.3In Figure 1, the PEM is oriented at 45 degrees from the plane of incidence of the beam. The PEM is operated at half-wave retardation, and the polarizer is oriented so that s-polarized linear light is produced at the retardation maxima, while p-polarized linear light occurs at times of zero PEM retardation.4 These two states occur twice with each PEM oscillation cycle. The sampling frequency is,therefore, 74 kHz.A resulting interferogram is shown in Figure 2, show-ing the signal from the detector, with the PM modulation superimposed on the signal resulting from the interferom-eter operation. The envelope of the curve (s-polarization)corresponds to the average signal (I s + I p ) while the ampli-tude of the small negative spikes corresponds to the difference signal (I s - I p ).Figure 2. Portion of an experimental PM-FTIR interferogram signal prior to the real-time sampling electronics. (Reference 3, Figure 5)Figure 1. Optical layout for a double-modulation experimentusing a scanning FT-IR spectrometer and a PEM to modulate the polarization.(Reference 2, Figure 1b)SPRING 19963References:1.Baoliang Wang, “Infrared reflection-absorption spec-troscopy using the photoelastic modulator,” Hinds Instruments application note, March, 1996.2.Michael J. Green, Barbara J. Barner, and Robert M.Corn, “Real time sampling electronics for doublemodulation experiments with Fourier transform spec-trometers,” Rev. Sci. Instrum. 62 (6), June, 1991.3.Barbara J. Barner, Michael J. Green, Edna I. Saez,and Robert M. Corn, “Polarization modulation Fourier transform infrared reflectance measurements of thin films and monolayers at metal surfaces utilizing real-time sampling electronics,” Anal. Chem. 63, 55, 1991.4.“PEM-90TM Photoelastic Modulators,” Hinds Instru-ments brochure, Hillsboro, OR, 1995. (Figure 5b,page 7)Figure 3. IRRAS spectrum of a 15 nm polyimide thin film on a chromium substrate. (Reference 3, Figure 8c)more efficient modulation in the long wavelength IR re-gion. Furthermore, due to its reduced size, the II/ZS50offers price advantages.The specifications for this new model are summarized in the table at the right.Like all other Hinds PEMs, the II/ZS50 provides the unique benefits of a wide acceptance angle (>±20 de-grees), a good transmission wavelength range, and a high sensitivity (10-6 and more). These features make the PEM-90s especially well-suited to the basic characteris-tics of polarization modulation IR spectroscopy, including both FT- and dispersive-based vibrational circular dichro-ism , vibrational linear dichroism, and IRRAS.Finally, it is worth noting that the PEM-90 II/ZS37 of-fers a larger optical aperture than the II/ZS50 does. These two ZnSe models, complementing each other, provide the user more choices for setting up the instrument custom-ized according to their particular needs.PEM-90 II/ZS50 SpecificationsNominal 1f Frequency 50 kHz Spectral Range 1550 nm-18 µ1Range of λ/4 Retardation 550 nm-18 µ1Range of λ/2 Retardation 550 nm-10 µ2Useful Aperture14 mm 31Spectral limits defined by transmission less than 50 percent of maximum transmission. Contact Hinds Instruments for details of performance beyond these limits.2Contact Hinds Instruments if retardation greater than half-wave at 10µ is required.3In many FTIR-related polarization modulation experiments, a larger aperture may be used.BULK RATE US POSTAGE PAIDHillsboro, OR Permit No. 763175 NW Aloclek Drive Hillsboro, OR 97124 USAAddress correction requested.plied the techniques of plasmon-en-hanced Raman scattering andoptical second harmonic generation to electrochemical surfaces. Follow-ing IBM, he spent a year as visiting assistant professor in the area of physical chemistry at Swarthmore College in Pennsylvania. Since 1985he has been at the University of Wisconsin.“Science and scientific research are changing rapidly,” Dr. Corn says. “My first set of goals was to become a professor, to set up an ac-tive research program inspectroscopy at surfaces, and to help graduate students become sci-entists. Now that I’ve accomplished these, I find that scientists need to do more for the general public.“We need to convince people that ‘chemistry’ is not a bad word,and that understanding nature is something that enhances our worldand is worth spending time and money on. I feel that all scientists will spend more time educating and interacting with the general public,who, after all, are paying for this re-search and rightfully want to know what they’re getting.”Dr. Corn feels strongly about the practical applications of his own research: “A great number of the chemical processes and transforma-tions that control energy supply and storage, biological functioning, and environmental chemistry happen to occur at surfaces. We have ongoing projects in the study of electrochemi-cal surfaces for better batteries,liquid/liquid surfaces that mimic the behavior of biological membranes,semiconductor/liquid surfaces for the removal of PCBs and organic con-taminants from natural groundwaters, and oligonucleotide-coated surfaces for DNA computing.”Upcoming ConferencesSee us at the following conferences:•CLEO ’96, Anaheim, CA, June 2-7•SPIE Polarization Conference,Yokohama, Japan, June 12-14•AIRS II, Duke University,Durham, NC, June 17-19Additional InformationFor further information, contact:Hinds Instruments, Inc.3175 NW Aloclek Drive Hillsboro, OR 97124Phone (503) 690-2000Fax (503) 690-3000Toll-free 1 800 688-44634HINDS INSTRUMENTS, INC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Langmuir 1991, 7, 1394-1399
Fourier Transform Infrared Photoacoustic Spectroscopy Study of the Adsorption of Organophosphorus Compounds on Heat-Treated Magnesium Oxide
Yong-Xi Li, John R. Schlup, and Kenneth J. Klabunde'
Departments of Chemistry and Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 Received October 22,1990. In Final Form: January 17, 1991 A seriesof magnesium oxide samples of varying surface area were prepared and heat treated (thermally activated) at 500 or 700 "C. Dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and triethyl phosphate (TEP) were allowed to adsorb on the MgO samples both in a vacuum environment and in a helium stream. Analyses of the powdered samples were carried out by Fourier transform infrared photoacousticspectroscopy. These studies revealed that adsorption occurred on all samples in proportion to surface area. Physisorbed organophosphorus molecules were easily removed by evacuation or under helium flow. However, substantial amounts strongly chemisorbed through the oxygen atom of the P=O bond. Even at room temperature and up to 190 "C the chemisorbed compounds began to decompose,but decomposition products remained adsorbed. At 500 "C complete decomposition took place releasing mainly formic acid plus some methanol. The phosphorus moiety remained immobilized as a [CHsOPCHa] residue.
to prepare MgO in a wide range of surface areas and it possesses a simple basic crystal structure while still being capable of possessing a variety of surface defect sites for high adsorptive capacity8 and catalytic activities.12 The choice of spectroscopic tool for such studies is crucial. Templeton and Weinberg1*2 have used inelastic electron tunneling spectroscopy to examine the adsorption/ reaction of three phosphonate esters on A1203 crystals. White and co-worker~~?~ have examined the adsorption of DMMP on a-Fe203 and Rh(100)by using Auger emission spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption (TPD). Infrared spectroscopy is also being employed as a powerful tool for the study of adsorption and surface processes.wJsls Electron spin resonance (ESR) also can be useful for such studies.l3J7J8 And in more recent results, solid NMR has been used by M a ~ i e l l ~ * ~ co-workers ~ a n d and Lunsford and co-workers.21 Since these MgO samples are ultrafine powders of nanoscale crystallite dimension,1° we found it necessary to employ a specialized method for obtaining good spectra of powders. We have found Fourier transform infrared
(4) Hedge, R. I.; Geeenlief, C. M.; White, J. M. J. Phys. Chem. 1986, 89,2886. (5) Henderson, M. A.; Jin, T.; White, J. M. J. Phys. Chem. 1986,90, 4607. (6)Lin, S.-T.; Klabunde, K. J. Langmuir 1986, 1, 600. (7) Parfitt, R. L.; Russell, J. D. J. Soil. Sci. 1977,28, 297. (8) Lyklema, L. Enuiron. Sci. Technol. 1980, 14, 537. (9) Stu", W.; Furrer, G.; Kunz, B. Croat. Chem. Acta 1983,585. (10) Utampanya, S.; Klabunde, K. J.; Schlup,J. R. Chem.Mater. 1991, 3, 175. (11) Atteya, M.; Klabunde, K. J. Chem. Mater. 1991, 3, 182. (12) Nieves, I.; Klabunde, K. J. Mater. Chem. Phys. 1988, 18, 485. (13) Hoagland, J. J.; Hipps, K. W. Langmuir 1989,5, 849. (14) Kuiper, A. E. T.; Van Bokhoven, J. J. G. M.; and Medema, J. J. Catal. 1976,43, 154. (15) Tejedor-Tejedor, M. I.; Anderson, M. A. Langmuir 1990,6,602. (16) Bartecki, A.; Dembicka, D. Inorg. Chim. Acta 1969,3,59. (17) Klabunde, K. J.; Nieves, I. J. Phys. Chem. 1988, 92, 2521. (18) Klabunde, K. J.; Matauhashi, H. J. Am. Chem. SOC.1987, 109, 1111. (19) Baltisis, L.; Frye, J. S.; Maciel,G. E. J.Am. Chem. SOC. 1986,108, 7119. (2aciel,G. E. J.Am. Chem. SOC. 1987,109,
Introduction In order to understand adsorption processes that take place when organophosphorus compounds interact with metal oxide surfaces, several spectroscopic studies have been carried out.'* The value of such studies applies to air purification, soil fertility, eutrophication, and corrosion.'* As environmental concerns grow, the development of new adsorbenta for both airborne and waterborne toxins becomes increasingly important. New, more effective absorbents will depend on high surface areas and more reactive surface adsorption sites. Therefore, we believe that better synthetic procedures to ultrahigh surface area (nanoscale particles) materials and detailed studies of their surface chemistry are warranted.lOJ1 In this paper we report on spectroscopic studies of the adsorption of three organophosphorus compounds on a specific high surface area metal oxide. The compounds chosen are