0-30V可调线性电压源

合集下载

1叠加定理实验

1叠加定理实验

GDOU-B-11-112广东海洋大学学生实验报告书(学生用表)实验名称叠加定理实验课程名称课程号学院(系)专业班级学生姓名学号19 实验地点科技楼实验日期一、实验目的验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

四、实验内容实验线路如图7-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。

1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。

2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。

用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表7-1。

3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表7-1。

4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表7-1。

5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表7-1。

表7-1五、实验注意事项1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。

2. 注意仪表量程的及时更换。

六、预习思考题1. 在叠加原理实验中,要令U1、U2分别单独作用,应如何操作可否直接将不作用的电源(U1或U2)短接置零答:①要令Ul单独作用,应该把K2往左拨,要U2单独作用应该把K1往右拨。

②不可以直接将不作用的电源(Ul或U2)短接置零,因为电压源内阻很小,如果直接短接会烧毁电源2.实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗为什么答:①实验电路中,若有一个电阻器改为二极管,叠加原理的迭加性与齐次性不成立,因为叠加原理的迭加性与齐次性只适用于线性电路,二极管是非线性元件,使实验电路为非线性电路,所以不成立。

受控源实验指导书

受控源实验指导书

实验八 受控源研究一.实验目的1.加深对受控源的理解。

2.熟悉由运算放大器组成受控源电路的分析方法,了解运算放大器的应用。

3.掌握受控源特性的测量方法。

二.实验原理1.受控源受控源向外电路提供的电压或电流是受其它支路的电压或电流控制,因而受控源是双口元件:一个为控制端口,或称输入端口,输入控制量(电压或电流),另一个为受控端口或称输出端口,向外电路提供电压或电流。

受控端口的电压或电流,受控制端口的电压或电流的控制。

根据控制变量与受控变量的不同组合,受控源可分为四类:(1)电压控制电压源(VCVS ),如图8-1(a )所示,其特性为:12u u μ= 其中:12u u =μ称为转移电压比(即电压放大倍数)。

(2)电压控制电流源(VCCS ), 如图8-1(b )所示,其特性为:12u g i = 其中:12m u i g =称为转移电导。

(3)电流控制电压源(CCVS ),如图8-1(c )所示,其特性为:12i r u = 其中:12i u r =称为转移电阻。

(4)电流控制电流源(CCCS ),如图8-1(d )所示,其特性为:12i i β= 其中:12i i =β称为转移电流比(即电流放大倍数)。

2.用运算放大器组成的受控源运算放大器的电路符号如图8-2所示,具有两个输入端:同相输入端u+和反相输入端u-,一个输出端uo,放大倍数为A ,则uo=A (u+-u-)。

对于理想运算放大器,放大倍数A 为∞,输入电阻为∞,输出电阻为0,由此可得出两︒ ︒ ︒ ︒+-1u +-12 u u μ = (a)1(b)11i (c)(d)图 8-1图 8-2O=u + u -个特性:特性1:u+=u_;特性2:i+=i_=0。

(1)电压控制电压源(VCVS )图8-3所示电路是由运算放大器构成的电压控制电压源,图中是反馈电阻,是负载电阻。

因为,且所以,又因为令,称为转移电压比或电压增益,是无量纲的常数,则;可见,运算放大器的输出电压u L 受输入电压u 1控制,其电路模型如图8-1(a )所示,转移电压比:)1(2f R R +=μ。

0-30V简易可调式直流稳压电源的设计

0-30V简易可调式直流稳压电源的设计

网络高等教育专科生毕业大作业题目:0~30V简易可调式直流稳压电源的设计学习中心:新疆伊犁经贸培训中心层次:高中起点专科专业电气工程及其自动化年级: 2009 年秋季学号: 0914********学生:李平指导教师:白俊完成日期: 2011 年 8 月 17 日摘要本文详细介绍了30V简易直流稳压电源计的发展现状,发展中所面临的问题。

随着时代的发展,数字电子技术已经普及到我们生活,工作,科研,各个领域,本文将介绍一种直流稳压电源,同时分析了数字技术和模拟技术相互转换的概念。

同时也详尽的介绍了此次设计中最重要的组成部件单片机的概念、工作原理及设备总体结构,其中包括MCS-51的发展历程,选型依据。

设计了一种基于单片机MCS-51的自动装箱机,介绍了所选用的8031、8255等单片机。

关键词:D/A转换;单片机;电源目录第1章绪论 (1)1.1 设计要求 (2)1.2 总体方案确定 (2)1.3 单元电路设计 (3)第2章系统硬件设计 (4)2.1 MCS—51单片机主要应用特性 (4)2.2 系统面板设计及控制原理图 (4)2.3 输入/输出接口系统设计 (5)2.4 调整输出的设计 (8)2.5 电路调试 (8)2.6 改进措施 (9)2.7 电源 (9)第3章系统软件设计 (11)3.1 主程序 (11)3.2 显示子程序流程图 (12)3.3 输入给定值中断服务程序 (13)第4章结论 (14)参考文献 (15)致谢 (16)第1章绪论电源技术尤其是数控电源技术是一门实践性很强的工程技术,服务于各行各业。

电力电子技术是电能的最佳应用技术之一。

当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。

随着计算机和通讯技术发展而来的现代信息技术革命,给电力电子技术提供了广阔的发展前景,同时也给电源提出了更高的要求。

随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。

《电路原理》实验报告

《电路原理》实验报告

《电路原理》实验报告实验一电阻元件伏安特性的测量一、实验目的1、学会识别常用电路和元件的方法。

2、掌握线性电阻及电压源和电流源的伏安特性的测试方法。

3、学会常用直流电工仪表和设备的使用方法。

二、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)表示,即I-U平面上的一条曲线来表征,即元件的伏安特性曲线。

线性电阻器的伏安特性曲线是一条通过坐标原点的直线该直线的斜率等于该电阻器的电阻值。

三、实验设备四、实验内容及实验数据测定线性电阻器的伏安特性按图1-1接线,调节稳压电源的输出电压U,从0伏开始缓慢地增加,一直到10V,记下相、I。

应的电压表和电流表的读数UR图1-1实验二 基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。

2、学会用电流表测量各支路电流。

二、实验原理1、基尔霍夫电流定律(KCL ):基尔霍夫电流定律是电流的基本定律。

即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。

2、基尔霍夫电压定律(KVL ):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。

这一定律实质上是电压与路径无关性质的反映。

基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

三、实验设备四、实验内容及实验数据实验线路如图4-1。

把开关K1接通U1,K2接通U2,K3接通R4。

就可以连接出基尔霍夫定律的验证单元电路,如图4-2。

图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。

图4-2中的I1、I2、I3的方向已设定。

三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。

2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。

实验三 基尔霍夫定律验证和电位的测定

实验三 基尔霍夫定律验证和电位的测定

实验三基尔霍夫定律验证和电位的测定实验三基尔霍夫定律验证和电位的测定一、实验目的1.验证基尔霍夫电流定律(KCL)和电压定律(KVL)。

2.通过电路中各点电位的测量加深对电位、电压及它们之间关系的理解。

3.通过实验加强对参考方向的掌握和运用的能力。

4.训练电路故障的诊查与排除能力。

二、原理与说明1.基尔霍夫电流定律(KCL)在任一时刻,流出(或流入)集中参数电路中任一可以分割开的独立部分的端子电流的代数和恒等于零,即:ΣI=0 或ΣI入=ΣI出式(3-1)此时,若取流出节点的电流为正,则流入节点的电流为负。

它反映了电流的连续性。

说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。

要验证基式电流定律,可选一电路节点,按图中的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正,将测得的各电流代入式(3-1),加以验证。

2.基尔霍夫电压定律(KVL)按约定的参考方向,在任一时刻,集中参数电路中任一回路上全部元件两端电压代数和恒等于零,即:ΣU=0 式(3-2)它说明了电路中各段电压的约束关系,它与电路中元件的性质无关。

式(3-2)中,通常规定凡支路或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。

3.电压、电流的实际方向与参考方向的对应关系参考方向是为了分析、计算电路而人为设定的。

实验中测量的电压、电流的实际方向,由电压表、电流表的“正”端所标明。

在测量电压、电流时,若电压表、电流表的“正”端与参考方向的“正”方向一致,则该测量值为正值,否则为负值。

4.电位与电位差在电路中,电位的参考点选择不同,各节点的电位也相应改变,但任意两节点间的电位差不变,即任意两点间电压与参考点电位的选择无关。

5.故障分析与检查排除 (1) 实验中常见故障①连线:连线错,接触不良,断路或短路;②元件:元件错或元件值错,包括电源输出错;③参考点:电源、实验电路、测试仪器之间公共参考点连接错误等等。

《电工电子技术A》实验指导书1

《电工电子技术A》实验指导书1

《电工电子技术A》实验指导书电工技术部分实验学时:12学时实验一基尔霍夫定律一、实验目的1.对基尔霍夫电压定律和电流定律进行验证,加深对两个定律的理解。

2.学会用电流插头、插座测量各支路电流的方法。

二、原理说明KCL和KVL是电路分析理论中最重要的的基本定律,适用于线性或非线性电路、时变或非变电路的分析计算。

KCL和KVL是对于电路中各支路的电流或电压的一种约束关系,是一种“电路结构”或“拓扑”的约束,与具体元件无关。

而元件的伏安约束关系描述的是元件的具体特性,与电路的结构(即电路的接点、回路数目及连接方式)无关。

正是由于二者的结合,才能衍生出多种多样的电路分析方法(如节点法和网孔法)。

KCL指出:任何时刻流进和流出任一个节点的电流的代数和为零,即Σi(t)=0或ΣI=0KVL指出:任何时刻任何一个回路或网孔的电压降的代数和为零,即Σu(t)=0或ΣU=0运用上述定律时必须注意电流的正方向,此方向可预先任意设定。

实验线路如图2-1所示。

图2-11.实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路结构,掌握各开关的操作使用方法。

2.分别将两路直流稳压源接入电路,令E1=6V,E2=12V,其数值要用电压表监测。

3.熟悉电流插头和插孔的结构,先将电流插头的红黑两接线端接至数字毫安表的“+、-”极;再将电流插头分别插入三条支路的三个电流插孔中,读出相应的电流值,记入表2-1中。

4.用直流数字电压表分别测量两路电源及电阻元件上的电压值,数据记入表2-1中。

五、实验注意事项1.两路直流稳压源的电压值和电路端电压值均应以电压表测量的读数为准,电源表盘指示只作为显示仪表,不能作为测量仪表使用,恒压源输出以接负载后为准。

2.谨防电压源两端碰线短路而损坏仪器。

3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性。

当电表指针出现反偏时,必须调换电流表极性重新测量,此时读得的电流值必须冠以负号。

实验一 叠加定理的验证教学文案

实验一 叠加定理的验证教学文案

实验一叠加定理的验证实验一叠加定理的验证一、实验目的验证线性电路叠加定理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。

二、原理说明叠加定理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。

四、实验内容实验线路如图1-1所示,用DG05挂箱的“基尔夫定律/叠加定理”线路。

1. 将两路稳压源的输出分别调节为12V 和6V ,接入U 1 和U 2处,K3合至330Ω。

2. 令U 1电源单独作用(将开关K 1投向U 1侧,开关K 2 投向短路侧)。

用直流数字电压表和毫安表(接电流插头) 测量各支路电流及各电阻元件两端的电压,数据记入表1-1。

3. 令U 2电源单独作用(将开关K 1投向短路侧,开关K 2投向U 2侧),重复实验步骤2的测量和记录,数据记入表1-1。

4. 令U 1和U 2共同作用(开关K 1和K 2分别投向U 1和U 2侧), 重复上述的测量和记录,数据记入表1-1。

5. 将R 5(330Ω)换成二极管 1N4007(即将开关K 3投向二极管IN4007侧),重复1~4的测量过程,数据记入表1-2。

五、实验注意事项1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,正确判断测得值的+、-号后,记入数据表格。

2. 注意仪表量程的及时更换。

六、预习思考题1. 在叠加定理实验中,要令U 1、U 2分别单独作用,应如何操作?可否直接将不作用的电源(U 1或U 2)短接置零?2. 实验电路中,若有一个电阻器改为二极管, 试问叠加定理的迭加性还成立吗?为什么?七、实验报告1. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线性电路的叠加性。

电路实验报告_3

电路实验报告_3

实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌握线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理说明电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。

电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。

实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。

万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。

一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。

1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。

图1-1 元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。

一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。

通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。

3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。

二极管的电阻值随电压或电流的大小、方向的改变而改变。

它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。

发光二极管正向电压在0.5~2.5V 之间时,正向电流有很大变化。

可见二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。

线性与非线性元件伏安特性的测定

线性与非线性元件伏安特性的测定
7 标准型短接桥 若干
8 九孔实验方板 1块200mm×300mm
9 交直流电压电流表 2块 MC1102,MC1108
五.分析与讨论
1.按报告单上所列项日认真填写实验报告。
2.根据实验中所得数据,在坐标纸上绘制两个线性电阻、半导体二极管、小灯泡灯丝的伏安特性曲线。
3.分析实验结果,并得出相应结论。
基尔霍夫回路电压定律;电路中任意时刻.沿任一闭合回路,电压的代数和为零。其数
学表达式为
∑U=0。
此定阐明了任一闭合回路中各电压间的约束关系。这种关系仅与电路的结构有关.而
与构成回路的各元件的性质无关。不论这些元件是线性的或非线性的,含源的或无源的,时
变的或时不变的。
参考方向:
KCL和KVI表达式中的电流和电压都是代数量。它们除具有大小之外,还有其方向,其方向是以它量值的正、负表示的。为研究问题方便,人们通常在电路中假定一个方向为参考.称为参考方向。当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。
2k
2.5k
开路
I(mA)
U(V)
2 验证戴维南定理
(1) 分别用直接测量法和补偿法测量C、D端口网络的开路电压UOC;
(2) 用补偿法(或直接测量法)所测得的开路电压UOC和步骤1中测得的短路电流(RL=0)ISC,计算C、D端入端等效电阻
(3)按图3一l(b)构成戴维南等效电路,其中电压源用直流稳压电源代替,调节电源输出电压,使之等于UOC,Ri用电阻箱代替,在C、D端接入负载电阻RL,如图3-5所示。按表3一l中相同的电阻值,测取电流和电压,填入表3—2。
用等效电路替代一端口含源网络的等效性,在于保持外电路中的电流和电压不变,即替

0-30v 5A数显可调稳压电源电路图

0-30v 5A数显可调稳压电源电路图
下面是 [大功率可调稳压电源电路]的电路图
大功率可调稳压电源电路
无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能自然美)
如图所示大功率可调稳压电源电路图
其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。变压器的功率可根据输出电流灵活掌握,次级电压15V左右。桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。调整管用的是大电流NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

实验三 线性有源二段网络的测量

实验三 线性有源二段网络的测量

除源二端网络AB两端的电阻 Req=
,并与步骤1
所计算的结验电路板和可变电阻器
三、实验内容及步骤
1、按下图接入恒压源 ES=12V ,恒流源 IS=10mA及 可变电阻RL ,先断开RL测UAB即UOC ,再短接RL测ISC ,则计算 有源二端网络等效电R阻0 Uoc / I sc ,填入表3-1中。
330
R1 R2
10 510
直流数显可调稳压源
开启直流稳压电源带灯开关, 0~30V电压源两路输出插孔均 有电压输出。
(1) 将“电压指示切换”按键弹 起,数字式电压表指示A口输出的 电压值;将此按键按下,则电压 表指示B口输出的电压值。
(2)调节“输出调节”多圈电 位器旋钮,可平滑地调节输出电 压值。调节范围为0~30V(自 动换档),额定电流为0.5A。
路的外特性,并计算相应负载的功率,将数据填入表2-5,验证
戴维南等效定理的正确性,并总结负载获得最大功率的条件。
表2-5 RL(Ω) 900 700 RO 500 300 100 U(V) I(mA) PRL
注意:当RL=RO时,选用10k电位器,将其电阻值调到RO
+ UOC _
R0
+
_
A
mA
+
表2-4
RL (Ω) 0 51 200 100 0
U(V)
R
I(mA)
3、用步骤1所得的参数:开路电压UOC(由恒压源构成)和等 效电阻RO(用1k电位器RL调到RO值)组成从A、B端向左看 的有源二端网络的戴维宁等效电路,再接入电阻箱的100档
做为可变负载组成电路,如图2-4 (a)所示,测量戴维南等效电
V
RL
_

压敏电阻的分类和特性

压敏电阻的分类和特性

压敏电阻器的特性和分类压敏电阻器简称压敏电阻,是一种电压敏感元件,其特点是在该元件上的外加电压增加到某一临界值(标称电压值)时,其阻值将急剧减小。

它是利用半导体材料具有非线性伏安特性原理制成的,因此属于非线性电阻器。

一、压敏电阻器的种类压敏电阻器的品种很多,按材料不同可分为:碳化硅压敏电阻,硅锗压敏电阻、金属氧化物压敏电阻、钛酸钡压敏电阻、硒化镉和硒压敏电阻等。

目前使用较多的是氧化锌(Zn0)压敏电阻。

氧化锌压敏电阻的特点:通流容量大、时间响应快、电压范围宽、非线性系数大、伏安曲线对称、可靠性高等。

图1(a)是标称电压为56V的氧化锌压敏电阻的外形,图1(b)是它的电路符号,图中的字母U也可用V代替。

图2是MYJ型压敏电阻的伏安特性曲线。

二、压敏电阻的型号组成压敏电阻的型号般由五部分组成,第一部分为主称,第二部分为用途,第三部分为基片直径,第四部分为误差,第五部分为标称电压。

各部分代表的具体意义如表1所示。

不同的国家及不同的厂家对压敏电阻的型号标法有所不同。

如我国标法为MYJl5K471,日本松下公司标法为ERZ一15K471,日本东芝公司标法为TNRl5G471 K。

在型号所标识的各种参数中,最重要的是标称电压值。

三、压敏电阻的测量压敏电阻的好坏,用普通万用表是测不出来的,因为一般压敏电阻的标称电压都比万用表的测试电压高,静态内阻很大,所以用普通万用表测压敏电阻的阻值,一般都是无穷大。

如果测出的阻值接近于0,说明压敏电阻已经短路,不能再用了。

所以,一般检测压敏电阻,需要通过搭接测试电路来完成。

现以测量标称电压为56V的压敏电阻为例,说明压敏电阻的测量方法。

图3是一种测试电路,图中E是一个O~60V(高于60V也可)的可调直流电压源。

逐渐加大电源输出电压,刚开始时电流表没有指示,当电压增加到某-数值时,电流表的指示明显增大,此时直流电源所示的电压值就是压敏电阻的标称电压值,同时说明该压敏电阻的性能是好的。

实验指导书-《电路分析与模拟电子技术》

实验指导书-《电路分析与模拟电子技术》

电路分析与模拟电子技术实验指导书实验要求1.实验前必须充分预习,完成指定的预习任务。

预习要求如下:(1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。

(2)完成各实验“预习要求”中指定的内容。

(3)熟悉实验任务。

(4)复习实验中所用各仪器的使用方法及注意事项。

2.使用仪器和实验箱前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。

3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。

4.模拟电路实验注意:(1)在进行小信号放大实验时,由于所用信号发生器及连接电缆的缘故,往往在进入放大器前就出现噪声或不稳定,有些信号源调不到毫伏以下,实验时可采用在放大器输入端加衰减的方法。

一般可用实验箱中电阻组成衰减器,这样连接电缆上信号电平较高,不易受干扰。

(2)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大,由于实验箱所用三极管h fe较大,特别是两级放大电路容易饱和失真。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应立即关断电源,保持现场,报告指导教师。

找出原因、排除故障,经指导教师同意再继续实验。

6.实验过程中需要改接线时,应关断电源后才能拆、接线。

7.实验过程中应仔细观察实验现象,认真记录实验结果(数据波形、现象)。

所记录的实验结果经指导教师审阅签字后再拆除实验线路。

8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。

9.实验后每个同学必须按要求独立完成实验报告。

实验一电位、电压的测定及电路电位图的绘制一.实验目的1.学会测量电路中各点电位和电压的方法,理解电位的相对性和电压的绝对性。

2.学会电路电位图的测量、绘制方法。

3.掌握使用直流稳压电源、直流电压表的使用方法。

二.实验原理在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。

电子技术综合实验1实验

电子技术综合实验1实验

25
9.操作考试(1小时)
精选ppt
3
实验须知
上课前预习实验指导书及有关书籍,并写出预 习报告。(未预习取消本次实验资格)
不得迟到、早退,有病有事须事先请假。旷课
不补做实验。(迟到10分钟以上者取消本次实验资
格,并且不补做)
按照学号对号入座,以后每次实验座位要相对 固定下来。
实验前要清点工具和器材,如有缺少或损坏应 及时报告。
精选ppt
5
课程考核
平时成绩50%,考试50%。平时成绩合格 者参加考试,考试形式为闭卷操作。
平时成绩包括预习10%、当场验收20%和 实验报告成绩20%。
实验数据记录在空白的实验报告纸上,老 师检查完实验原始数据并签字后,实验电 路方可拆掉。学生交实验报告时,应一并 将此成绩单附上。无签字的原始记录纸, 该实验成绩为0。
精选ppt
18
仪器二
数字万用表
电源 开关
量程 开关
直流电流 量程档
精选ppt
直流电压 量程档
表笔 接口
19
万用表注意事项
仪表在测试时,不能旋转开关旋钮。
当被测之量不能确定其大约数值时, 应先将量程转换开关旋到最大量程的 位置上,然后再根据指示值选择适当 的量程。
测量在线电阻之前,要确保电路中的 电源已经切断并且电容器已经充分放 电。
直流稳压电源
HG6531系列直流稳压电源是实验室通用电源,具 有5组输出端口,其中2组输出电压从0~30V连续可 调,电流从0~1A连续可调。
具有预置、输出功能和稳压、稳流随负载变化而自 动转换的功能
且具有优良的负载特性和纹波性能。本机的第2组 可调输出具有跟踪功能,在串联使用时,采用跟踪 模式可使第2组输出随第1组输出变化而变化,从而 获得2组对称输出。

GPS-3303C 型直流稳压电源使用说明

GPS-3303C 型直流稳压电源使用说明

附录3 GPS-3303C型直流稳压电源使用说明一、主要性能指标简介1) 二路独立输出0~30V连续可调,最大电流为3A;二路串联输出时,最大电压为60V,最大电流为3A;二路并联输出时,最大电压为30V,最大电流为6A。

另一路为固定输出电压5V,最大电流为3A的直流电源。

2)主回路变压器的付边无中间抽头,故输出直流电压为0~30V不分档。

3)独立 (INDEP),串联(SERLES),并联(PARALLEL)。

是由一组按钮开关在不同的组合状态下完成的。

根据两个不同值的电压源不能并联,两个不同值的电流源不能串联的原则,在电路设计上将两路0~30V直流稳压电源在独立工作时电压(VOLTAGE),电流(CURRENT)独立可调,并由两个电压表和两个电流表分别指示,在用作串联或并联时,两个电源分为主路电源(MASTER)和从路电源(SLA VE)。

二、面板介绍图F3-1 GPS-3303C型直流稳压电源面板图(1).POWER :电源开关。

(2).Meter V :显示 CH1 或 CH3 的输出电压。

(3).Meter A :显示 CH1 或 CH3 的输出电流。

(4).Meter V :显示 CH2 或 CH4 的输出电压。

(5).Meter A :显示 CH2 或 CH4 的输出电流。

(6).VOLTAGE Control Knob:调整CH1输出电压。

.并在并联或串联追踪模式时,用于CH2最大输出电压的调整。

.(7).CURRENT Control Knob:调整CH1输出电流.并在并联模式时,用于CH2最大输出电流的调整。

(8).VOLTAG Control Knob:用于独立模式的CH2输出电压的调整。

(9).CURRENT Control Knob:用于CH2输出电流的调整。

.(10).VOLTAGE Control Knob:用于CH3输出电压的调整(不适用于GPS-2303C/3303C)。

实训二 电路元器件伏安特性的测绘

实训二  电路元器件伏安特性的测绘

是非线性电阻,它们的伏安特性曲线是什么形状?
4.设某电阻元件的伏安特性函数式为U=f(I),
如何用逐点测试法绘制出伏安特性曲线。
七.实训报告要求 1.根据实训数据,分别在毫米方格纸上绘制出各 个元器件的伏安特性曲线。 2.根据伏安特性曲线,计算线性电阻的电阻值,
并与实际电阻值比较。
3.回答思考题。
测稳压管正向伏安特性接线1
1
测稳压管正向伏安特性接线2
1
2
1N4728
-
测稳压管正向伏安特性接线3
1 2
3
1N4728
-
测稳压管正向伏安特性接线4
1 -
2
1N4728
3
4
测稳压管正向伏安特性接线5,电压表并联到稳压管两端
1N4728
打开电源开关,观察右边电压表读数为0,记下下面 电流表读数也为0
把USI从0伏开始慢慢往上调,观察右边电压表读数, 根据表格要求使其从-1.0V、-2.0V一直调到-3.6V, 把下面电流表对应的读数记录在表格内。
记下所有电流表数据后,最后把电源电压调回到0,关 闭电源,撤除接线,把所有接线整理好如下图,以后每 次实验结束都必须整理好!
最长导线
最短导线 中长导线
把USI从0伏开始慢慢往上调,观察右边电压表读数,根据表格要 求从0.50V、0.70V一直调到0.80V,记下下面电流表对应的读数。
B.测稳压管的反向伏安特性,先关闭电源 将测正向特性时的电路图中可
调稳压电源的输出端正、负连
线互换,调节可调稳压输出电
1N4728
压U,从0伏开始缓慢地调节。
表2-6 稳压管反向特性实训数据
实训二 电路元器件伏安特性的测绘 一.实训目的

电工技术实验报告

电工技术实验报告

实验一:认识实验
一、实验目的
1、熟悉电工实验室管理制度,严格执行操作规程。

2、掌握DGJ-3型电工实验装置的基本使用方法。

3、正确使用电压表、电流表和万用表。

二、实验设备和器材
1、直流电压源( 0- 30伏)一路
2、直流电压表(0-200伏)一台
3、直流毫安表(0-2000毫安)一台
4、万用表(MF-47型)一台
5、电阻箱(0-99999.9欧)一个
6、导线若干
三、实验原理
1、根据欧姆定律U=IR,只要测出通过一电阻的电流I 和其两端的电压U ,即可求出其阻值R ,这就是伏安法测电阻。

2、根据闭合电路的欧姆定律I=E/(R+r),未知电阻R 与电路电流I 有一一对应关系,这就是欧姆表的工作原理。

四、实验步骤与数据分析
1、掌握DGJ-3型电工实验装置电源的开关、启动和停止方法,直流电压源的使用方法,及装置中仪表、元件和电路的布局。

2、用伏安法测标称值为“50欧”的电阻器的电阻,电路采用电流表内接,改变电压、电流的数值,连测3次,最后求电阻的平均值。

R (欧)R 平均值
I (毫安)U (伏)3
21次数
数值。

基尔霍夫定律和叠加原理的验证

基尔霍夫定律和叠加原理的验证

实验三、四基尔霍夫定律和叠加原理的验证13级电子一班第1组杜博文13348026董佳羽13348025一、实验目的1.基尔霍夫定律的验证:验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。

2.叠加原理的验证:(1)验证线性电路中叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。

(2)进一步掌握仪器仪表的使用方法。

二、原理说明1.基尔霍夫定律:基尔霍夫定律是电路的基本定律。

它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。

(1)基尔霍夫电流定律(KCL)在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。

(2)基尔霍夫电压定律(KVL)在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。

基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。

测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。

即对电路中的任意一个节点而言,应有ΣI=0;对任何一个闭合回路而言,应有ΣU=0。

运用上述定律时必须注意电流的正方向,此方向可预先任意设定。

2.叠加原理:(1)叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。

(2)线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。

三、实验设备1.基尔霍夫定律的验证实验设备:序号1 2 3 4 5名称直流稳压电源万用电表直流数字电压表直流数字毫安表电位、电压测定实验线路板型号与规格0~30V数量11111备注U、U12DGJ-032.叠加原理的验证实验设备:序号1 2 3 4名称直流稳压电源直流数字电压表直流数字毫安表叠加原理实验线路板型号与规格0~30V数量1111备注U、U12DGJ-03四、实验内容1.基尔霍夫定律的验证实验:按图2-1接线,(1)实验前先任意假定三条支路电流的参考方向及三个闭合回路的绕行方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DIY日记——0-30V可调线性稳压电源啊哲作为一名电子爱好者,平时喜欢做一些电子小制作,在电路调试和制作过程中经常为电源犯愁,有时候为了调试一个简单的电路而单独搭一个电源,这样即费时又消磨DIY的兴致。

最近本人利用手头一些闲置零件,自己打造了一台“MINI”型直流0-30V可调稳压电源。

现将整个DIY过程与大家分享。

(图1)本人在深圳工作时买了几个大小不一的铝合金外壳(当时看到这些外壳挺漂亮就买了,一直闲置着),其中一个较大一点的外壳尺寸为:134x106x55mm。

家里还闲置了一个功率约30W左右的小变压器(该变压器是从旧黑白电视机上拆下来的,有8V和18V两组输出),其厚度还刚好能装到这较大尺寸的铝合金外壳内。

既然这么巧合,想不“撮合”它们都找不到理由了。

那接下来就是考虑稳压电路部分了,0-30V可调稳压电路可以通过以下几个方案来实现:1)采用运放加大功率管来实现(市面上很多批量生产的可调稳压电源都采用这种方案),该方案使用的材料非常低廉,但线路复杂不适合手工搭板;2)采用LM723专用电源稳压IC加大功率管来实现,该方案比较成熟,线路也比较简单,但LM723比较难买,需要到电子市场去找或邮购;3)采用LM317/338电源稳压IC,该方案线路非常简单,但按其典型应用电路接法,输出最低只能调到1.25V,要想0V起调必须加一个稳定的负电压基准来修正,一些电子杂志上也有人在LM317输出端串联2个二极管来降压,达到调“0V”的目的,这是初学的菜鸟们讨论的问题,大家心知肚明就行了;4)采用TL431电源稳压IC加大功率管来实现,该方案也具有线路简单的优点,但也同样遇到LM317不能调“0V”的问题;5)采用LM2576-ADJ开关型稳压IC来实现,该方案也具有线路简单、效率高等优点,但也同样遇到输出不能调“0V”的问题和电感线圈比较难加工;通过一番权衡利弊后,决定采用LM317的方案,刚好手头还有几个闲置的LM317T,“量身”设计的完整电路如图2所示。

(图2)主要元气件参数资料:尽管LM317我们已经非常熟识了,但还是翻阅一下LM317的PDF资料比较稳妥,其中几个比较重要的参数如下:1、输入与输出端最高压差为:40V(很多人误认为是输入最高电压为40V);2、输入与输出端最小工作压差:3V;3、输出电压范围:1.25V-37V范围内连续可调(其实只要保证前一项条件,其输出范围的上限是可以扩展的);4、最大输出电流:1.5A(LM317T TO-220封装);5、输出最小负载电流:5mA;6、基准电压V REF:1.25V;7、工作温度范围为:0-70℃;8、LM317T TO-220封装引脚排列如图3所示:(图3)为了让LM317T输出0V起调,该电路设计时增加了一个由TL431构成的-2.5V基准电源,TL431相信大家也是非常熟识,它是三端可调并联型稳压IC,详细资料可参考:安森美的《TL431中文手册》。

在本列电路应用中,我们比较关心的几个参数如下:1.参考电压VREF:2.5V ±0.4%(25℃);2.最大阴极电流范围:-100mA至+150mA;3.最小阴极电流:0.5mA;4.最大额定功耗:0.7W (TO-92封装);5.TL431内部结构和引脚排列如附图4所示;6.TL431的典型应用电路如图5所示;(图4)(图5)工作原理:如图2所示,220V市电通过S1和F1连接到变压器的输入端,经过变压后分别输出:18V、8V、10V、3V(其中10V和3V绕组是自己以手工穿线的方式加绕的)四组电压,为了降低LM317T的功耗提高电源效率,采用了2个继电器的3级换档电路,换档电路如图6所示,电源输出电压V+加在W2的两端,当W2的滑动触片上获得的分压低于U4的V REF(2.5V)电压时,U4的K、A之间只有微弱的维持电流,J1因得不到足够高的工作电压,其常开触点断开,8 V AC绕组通过J1和J2的常闭触点对后级电路供电;当W2的滑动触片上获得的分压高于U4的V REF(2.5V)电压时,U4的阴极电流剧增使J1得到足够工作电压,其常开触点吸合,18 V AC绕组通过J1常开触点和J2的常闭触点对后级电路供电。

由W3、J2和 U5构成的另一级换档电路工作原理类同(可能有人会说换档电路也可以用运放来实现,当然是可以的,只是电路要复杂一点,要是做产品需要考虑成本我会用运放,但偏(图6)偏我是懒人不喜欢做复杂的事)。

经过换档输出依次得到8V AC 、18 V AC 、26 V AC 电压,经过D1-D4整流,C1、C2滤波后对应得到:11.3V、25.5V、36.8V三档电压。

由U1、R1、R2、W1组成LM317T的典型稳压电路,D5、D6构成LM317T防短路保护电路。

其输出电压计算公式为:Vo≈V REF {1+(W1+R2)/R1}-2.5V式中减2.5V是因为W1的低端没有接V-上,而是接在由U3(TL431)和R6构成的-2.5V基准上。

变压器3V绕组经过DB2和C6整流滤波后得到4.2V左右的直流电压,该电压正端与地相连形成负电压,该电压通过限流电阻R6加在U3上,这里U3(TL431)接成了图5中第一种典型应用电路,故V KA =V REF =-2.5V 基准。

图2中Q1、U2A、R3、R4、R5、W2等构成恒压至恒流自动转换电路,其工作原理如下,W2与R7串联后连接在V-与-2.5V基准上,W2的滑动触片经过分压后向U2A(LM358)的同相输入端提供一个可设定的基准电压,当电源输出端连接负载后,通过R3对电流进行取样,由R5送至U2A(LM358)的反相输入端,当输出电流↑时,R3上的电压降↑,U2A(LM358)的反相输入端电压↓,当U2A(LM358)反相输入端电压低于U2A(LM358)同相输入端的设定电压时(即电流超出设定值),U2A(LM358)输出高电平通过R4加到Q1的基极上,使Q1的I CE ↑,则流过W1的电流↓W1两端的电压↓,对应LM317T 的输出电压↓,流过负载的电流↓,这时电源由原来的恒压状态转换为恒流状态,并且保持输出电流等于设定电流,调节W2可设定输出的恒定电流值,其最大输出恒定电流计算公式为:Io MAX ≈{2.5[W2/(W2+R7)]}/R3在本列的实际应用中,因为变压器功流电路,故可设定的最大输出 尺寸为:134x106x55mm 铝合金外壳(RMB:25¥/PCS)率有限,另LM317T 也没有增加扩恒定电流为1.6A 左右(若需要增大输出电流请自己修改参数)。

组装调试:电路设计好了,接下来就要动手用实践来验证我的设计了,先看看我搜集到的一些部件和工具:十圈精密电位器套件(RMB:30¥/PCS) 做功放用的接线柱(RMB:2.5¥/PCS)普通船型电源开关 ø5mm LED灯座精制香蕉插头(RMB:2.5¥/PCS) 精制小鳄鱼夹(朋友赠送)旧黑白电视机用的变压器(功率30W左右,矽钢片很薄而且均匀,应该是文革年代的“古董”)本次DIY作业时所使用的主要工具元件和工具搜集好了,现在是考验我动手能力的时候了,看我的MINI电源是怎样一步一步打造出来的:步骤1——变压器加工:因原变压器输出只有8V和18V两个绕组,还需要增加一个3V和10V绕组,原变压器线圈与铁心之间还有一定的距离,我决定用ø0.2mm的漆包线以穿线的方式绕制,先大概估算一下绕制3V和10V 绕组所需要的圈数和漆包线长度,一般低频小功率变压器的伏/匝比大约为:0.1V/匝,实践证实了我的估算值,当然你也可以用漆包线先绕几圈加电直接量出伏/匝比,这样更准确。

(我已经再三强调了:我是懒人,所以自然到关键时候就会偷懒。

)准备好了漆包线就开始绕制了,刚开始绕3V绕组的时候,我还感觉今天暖洋洋的太阳一定是专为我出的,绕10V绕组的时候才感觉那长长的漆包线穿来穿去怎么也绕不完。

(突然回想起妈妈给我织的毛线衣,那毛线比这漆包线长多了,当初总嫌它太粗糙,对它不消一顾,直到今天我才感悟到那是用爱一针一针织成的精品呀!------)线圈绕好了,再接上市电测量一下电压是否正确,然后还需要在线圈外面贴上绝缘胶带,以保护好线圈。

这样变压器就加工好了,来欣赏一下(图7)。

(图7)步骤2——外壳加工:该电源所使用的铝合金外壳是从赛格电子市场买的通用外壳,所以要想在面板上安装电位器和接线柱必须自己开孔,先用游标卡尺依次测量出:电位器、接线柱和LED 灯座安装所需要的开孔直径,然后简单的排布一下相应的位置并作好标记。

接下来就是找到对应规格的麻花钻头,开始钻孔加工了,钻好的孔还需要用小刀或整形锉将孔边上毛刺处理干净。

加工好的前面板见(图8)(图8)后面板也一样需要加工,要开一个多边形的孔,用于安装插座和电源开关。

先用游标卡尺依次测量出插座和电源开关的外部尺寸,然后在要加工的后面板上标志出需要开孔的区域,这里还需要注意插座和电源开关安装位置不能与变压器的安装位置相冲突,而且还需要保持美观。

加工时,先用电钻在标记好的开孔区钻孔,然后用整形锉细心修整,直到将插座和电源开关安装完成(图9)。

(图9)步骤3——加工PCB 板:因为电路比较简单,为了省去做印刷PCB 的繁琐工作,所以我决定用实验板来搭接(我向来对自己的手工搭板技术充满信心,同时也将我的懒惰精神进行到底)。

找了一片100x150mm 的实验板,该板刚好能插入铝合金外壳的安装槽内,只需将长出的部分剪去。

另外为了安装变压器方便,我将PCB 板右下角剪去一个空角,利用PCB 板和变压器安装时相互抵触,免去固定变压器的烦恼。

接下来的工作是找元件、布板和搭焊作业了,在此就不一一细述了,搭焊好的PCB 板见(图10)。

LED 灯座安装孔 电位器安装孔电位器安装孔 电源开关 AC 插座(图10)步骤4——焊接变压器和后面板:PCB板搭焊好了,现在要将PCB板和变压器、电源开关、插座等连接起来。

先找来线材和热缩套管,将线材剪取合适的长度,套上热缩套管按电路依次焊接好,并用烙铁加热热缩套管让套管缩紧,加工好如(图11)。

(图11)步骤5——焊接前面板:面板上需要安装接线柱和电位器等部件。

先依次将接线柱、电位器和LED灯座锁紧到前面板的对应孔位上,再用导线依次将这些部件按电路连接到PCB板上。

电源指示灯原来准备用一只高亮蓝光LED,配合那冷冷的铝合金外壳漂亮极了。

只可惜那仅有的一颗蓝光LED被我焊接几次(因为焊点没有达到专业的饱满程度,所以重焊了)后坏掉了,至今我还没搞清楚:它到底是被烫坏了还是被静电打坏了。

最后不得不换了一只紫光LED代替,效果也还不错啦,还可以用来验钞呢。

相关文档
最新文档