这才应该是高考理综物理电磁学压轴题
高考和自主招生物理电磁学模拟压轴题
解:先由电池向电容器充电,充得电量εC Q =0。
之后电容器通过金属杆放电,放电电流是变化电流,安培力BLi F =也是变力。
根据动量定理:mv q BL t BLi t F =∆=∆=∆其中 v =s/t ,h=21gt 2综合得h g sv 2=h g BLmsBL mv q 2==∆电容器最终带电量h g BLms C q Q Q 20-ε=∆-=点评:根据动量定理来研究磁场力冲量产生的效果,实际上就是电量和导体动量变化的关系,这是磁场中一种重要的问题类型。
2、如图,宽度为L =的光滑金属框架MNPQ 固定于水平面内,并处在磁感应强度大小B =,方向竖直向下的匀强磁场中,框架的电阻非均匀分布。
将质量m =,电阻可忽略的金属棒ab 放置在框架上,并与框架接触良好。
以P 为坐标原点,PQ 方向为x 轴正方向建立坐标。
金属棒从x 0=1 m 处以v 0=2m/s 的初速度,沿x 轴负方向做a =2m/s 2的匀减速直线运动,运动中金属棒仅受安培力作用。
求:(1)金属棒ab 运动 m ,框架产生的焦耳热Q ;(2)框架中aNPb 部分的电阻R 随金属棒ab 的位置x 变化的函数关系;(3)为求金属棒ab 沿x 轴负方向运动过程中通过ab 的电量q ,某同学解法为:先算出经过金属棒的运动距离s ,以及时回路内的电阻R ,然后代入q =R=BLsR求解。
指出该同学解法的错误之处,并用正确的方法解出结果。
解析:(1)金属棒仅受安培力作用,其大小F =ma =,金属棒运动,框架中间生的焦耳热等于克服安培力做的功,所以Q =Fs =,(2)金属棒所受安培力为F =BIL ,I =E R =BLv R ,F =B 2L 2vR =ma ,由于棒做匀减速运动,v =v 02-2a (x 0-x ) ,所以R =B 2L 2mav 02-2a (x 0-x ) =x (SI ),(3)错误之处是把时回路内的电阻R代入q=BLsR进行计算,正确解法是q=It,因为F=BIL=ma,q=matBL=,3、航天飞机在地球赤道上空离地面约3000Km处由东向西飞行,相对地面速度大约×103m/s,从航天飞机上向地心方向发射一颗卫星,携带一根长20km,电阻为800Ω的金属悬绳,使这根悬绳与地磁场垂直,作切割磁感线运动。
高考物理法拉第电磁感应定律压轴题一轮复习附答案解析
高考物理法拉第电磁感应定律压轴题一轮复习附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
(1)求金属棒达到稳定时的速度是多大;(2)金属棒从静止开始到稳定速度的过程中,电阻R 上产生的热量是多少?(3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,则t =1s 时磁感应强度应为多大? 【答案】(1)8m/s 5 (2)0.0183J(3) 5T 46【解析】 【详解】(1) 在达到稳定速度前,金属棒的加速度逐渐减小,速度逐渐增大,达到稳定速度时,有sin A mg F θ=其中,A EF BIL I R r==+ 根据法拉第电磁感应定律,有E BLv = 联立解得:m 1.6sv =(2) 根据能量关系有21·sin 2mgs mv Q θ=+ 电阻R 上产生的热量R RQ Q R r=+ 解得:0.0183J R Q =(3) 当回路中的总磁通量不变时,金属棒中不产生感应电流,此时金属棒将沿导轨做匀加速运动,根据牛顿第二定律,有:sin mg ma θ=根据位移时间关系公式,有212x vt at =+设t 时刻磁感应强度为B ,总磁通量不变,有:()BLs B L s x '=+当t =1s 时,代入数据解得,此时磁感应强度:5T 46B '=2.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:(1)此时通过电阻R 上的电流; (2)这一过程通过电阻R 上的电荷量q ; (3)此时作用于导体棒上的外力F 的大小. 【答案】(1)3A (2)4.5C (3)2N 【解析】 【分析】 【详解】(1)根据热功率:P =I 2R , 解得:3A PI R== (2)回路中产生的平均感应电动势:E n tφ∆=∆ 由欧姆定律得:+E I R r=得电流和电量之间关系式:q I t nR rφ∆=⋅∆=+代入数据得: 4.5C BLdq R r==+ (3)此时感应电流I =3A ,由E BLvI R r R r==++ 解得此时速度:()6m/s I R r v BL+==由匀变速运动公式:v 2=2ax ,解得:222m/s 2v a d==对导体棒由牛顿第二定律得:F -F 安-mgsin30°=ma , 即:F -BIL -mgsin30°=ma , 解得:F =ma +BIL +mgsin30°=2 N 【点睛】本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点. 【考点】动生电动势、全电路的欧姆定律、牛顿第二定律.3.如图所示,ACD 、EFG 为两根相距L =0.5m 的足够长的金属直角导轨,它们被竖直固定在绝缘水平面上,CDGF 面与水平面夹角θ=300.两导轨所在空间存在垂直于CDGF 平面向上的匀强磁场,磁感应强度大小为B`=1T .两根长度也均为L =0.5m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,ab 杆的质量m 1未知,cd 杆的质量m 2=0.1kg ,两杆与导轨之间的动摩擦因数均为μ=36,两金属细杆的电阻均为R =0.5Ω,导轨电阻不计.当ab 以速度v1沿导轨向下匀速运动时,cd 杆正好也向下匀速运动,重力加速度g 取10m/s 2.(1)金属杆cd 中电流的方向和大小 (2)金属杆ab 匀速运动的速度v 1 和质量m 1【答案】I =5A 电流方向为由d 流向c; v 1=10m/s m 1=1kg 【解析】 【详解】(1)由右手定则可知cd 中电流方向为由d 流向c 对cd 杆由平衡条件可得:μ=+0022安sin 60(cos 60)m g m g F=安F BLI联立可得:I =5A (2) 对ab: 由 =12BLv IR得 110m/s v = 分析ab 受力可得: 0011sin 30cos 30m g BLI m g μ=+解得: m 1=1kg4.如图(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g.求:图(a) 图(b)(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向; (2)当ab 棒在区域Ⅱ内运动时,cd 棒消耗的电功率; (3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒开始下滑至EF 的过程中回路中产生的热量.【答案】(1)电流方向由d 到c ,区域Ⅰ内的磁场方向为垂直于斜面向上;(2)(3) (4)【解析】 【详解】(1)由右手定则可知通过cd 棒电流的方向为d 到c ;再由左手定则可判断区域Ⅰ内磁场垂直于斜面向上.(2)cd 棒平衡,BIl =mg sin θ, 得cd 棒消耗的电功率P =I 2R ,得(3)ab棒在到达区域Ⅱ前做匀加速直线运动,cd棒始终静止不动,ab棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab棒在区域Ⅱ中一定做匀速直线运动,可得,所以.ab棒在区域Ⅱ中做匀速直线运动的速度则ab棒开始下滑的位置离EF的距离(4)ab棒在区域Ⅱ中运动的时间ab棒从开始下滑至EF的总时间:ab棒从开始下滑至EF的过程中闭合回路中产生的热量:故本题答案是:(1)电流方向由d到c,区域Ⅰ内的磁场方向为垂直于斜面向上;(2) (3)(4)【点睛】题目中cd棒一直处于静止状态,说明cd棒受到的安培力是恒力并且大小应该和导体棒的重力分量相等,要结合并把握这个条件解题即可。
2022年高考物理压轴题预测之电磁综合计算题压轴题
2022年高考物理压轴题预测之电磁综合计算题压轴题物理考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡第Ⅱ卷主观题第Ⅱ卷的注释(共16题;共185分)1.(15分)如图甲所示,两条相距l=2m的水平粗糙导轨左端接一定值电阻R=1Ω,t=0s时,一质量m=2kg、阻值为r的金属杆,在水平外力的作用下由静止开始向右运动,5s末到达MN,MN右侧为一匀强磁场,磁感应强度B=0.5T,方向垂直纸面向内。
当金属杆到达MN(含MN)后,保持外力的功率P不变,金属杆进入磁场8s末开始做匀速直线运动。
整个过程金属杆的v—t图像如图乙所示若导轨电阻忽略不计,杆和导轨始终垂直且接触良好,两者之间的动摩擦因数μ=0.1,重力加速度g=10m/s2。
(1)(5分)求金属杆进入磁场后外力F的功率P;(2)(5分)若前8s回路产生的总焦耳热为51J,求金属杆在磁场中运动的位移大小;(3)(5分)求定值电阻R与金属杆的阻值r的比值。
2.(10分)(18分)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ现象存在沿y轴负方向的匀强电场,如图所示。
一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍。
粒子从坐标原点O离开电场进入电场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等。
不计粒子重力,为:(1)(5分)粒子到达O点时速度的大小和方向;(2)(5分)电场强度和磁感应强度的大小之比。
3.(15分)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
2024届高考高效提分物理情景题压轴汇编-4电磁学
2024届高考高效提分物理情景题压轴汇编-4电磁学一、单选题 (共7题)第(1)题如图所示,在一条直线上有两个相距0.4m的点电荷A、B,A带电荷量为+Q,B带电荷量为-9Q。
现引入第三个点电荷C,恰好使三个点电荷均在库仑力的作用下处于平衡状态(假设三个点电荷只受库仑力作用),则C的带电性质及位置应为( )A.正,B的右边0.4m处B.正,B的左边0.2m处C.负,A的左边0.2m处D.负,A的右边0.2m处第(2)题如图甲为游乐场的旋转飞椅,当中心转柱旋转后,所有飞椅均在同一水平内做匀速圆周运动。
为了研究飞椅的运动,某同学建立的简化模型如图乙所示,质量为的球,被长为细绳悬挂,悬挂点距转轴距离为,当中心转柱以恒定角速度旋转时,细绳与竖直方向的夹角为,重力加速度取,,,则( )A.球的质量越大,角越小B.球的动能为C.球所受的合外力为0D.若中心转柱的转速减少时,细绳对球做正功第(3)题如图,带正电小球P固定在绝缘地面上,另一带正电小球Q从P球正上方竖直下落,依次经过a、b、c三点,ab、bc间距相等,将两球均视作点电荷,Q球在( )A.ab间动能变化量大B.ab间电势能变化量大C.bc间机械能变化量大D.bc间重力势能变化量大第(4)题在光滑绝缘的水平面上有A、B、C三点,构成一个边长为a的正三角形,O点是正三角形的中心,D、E、F分别是AB、BC、CA的中点。
在A、B、C三点分别固定有电荷量均为+q的点电荷,k为静电力常量,下列说法正确的是( )A.D、E、F三点的电场强度相同B.A点的点电荷所受的库仑力大小为C.若将另一电荷量为+q的点电荷轻放于O点,它将向C点运动D.若将另一电荷量为+q的点电荷从D点移到E点,再从E点移到F点此电荷的电势能将增加第(5)题有一颗绕地球做匀速圆周运动的卫星,其运行周期T是地球近地卫星周期的倍,卫星轨道平面与地球赤道平面重合,卫星上装有太阳能收集板可以把光能转化为电能,提供卫星工作所必须的能量,已知sin37°=0.6,sin53°=0.8,近似认为太阳光是垂直地轴的平行光,卫星运转一周接收太阳能的时间为t,则的值为( )A.B.C.D.第(6)题一定质量的理想气体从状态A缓慢经过状态B、C、D再回到状态A,其热力学温度T和体积V的关系图像如图所示,BA和CD的延长线均过O点,气体在状态A时的压强为p0,下列说法正确的是( )A.A→B过程中气体向外界放热B.B→C过程中气体从外界吸收的热量小于C.C→D过程中气体分子在单位时间内对单位面积容器壁的碰撞次数减少D.D→A过程中气体的温度升高了第(7)题某同学在“探究电磁感应的产生条件”的实验中,设计了如图所示的装置:线圈A通过电流表甲、高阻值的电阻R′、滑动变阻器R和开关S连接到干电池上,线圈B的两端接到另一个电流表乙上,两个电流表相同,零刻度居中。
高考物理法拉第电磁感应定律-经典压轴题及答案
高考物理法拉第电磁感应定律-经典压轴题及答案一、法拉第电磁感应定律1.如图所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:(1) ab 棒1.5 s-2.1s 的速度大小及磁感应强度B 的大小; (2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量。
【答案】(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J 【解析】 【详解】(1)金属棒在AB 段匀速运动,由题中图象得:v =xt ∆∆=7 m/s 根据欧姆定律可得:I =BLvr R+ 根据平衡条件有mg =BIL解得:B =0.1T(2)根据电量公式:q =I Δt根据欧姆定律可得:I =()R r t∆Φ+∆ 磁通量变化量ΔΦ=S t∆∆B 解得:q =0.67 C(3)根据能量守恒有:Q =mgx -12mv 2 解得:Q =0.455 J所以Q R =Rr R+Q =0.26 J 答:(1) v =7 m/s B =0.1 T (2) q =0.67 C (3)0.26 J2.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义WE q=计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移 x v t ∆=∆这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆ 穿过闭合电路的磁通量的变化量B S BLv t ∆Φ=∆=∆根据法拉第电磁感应定律 E t∆Φ=∆ 解得 E BLv =(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力1v f e B =,f 1即非静电力在f 的作用下,电子从N 移动到M 的过程中,非静电力做功v W e BL =根据电动势定义 W E q= 解得 v E BL =(3)自由电荷受洛伦兹力如图所示.设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v 垂直棒方向的洛伦兹力2f quB =,做负功22ΔΔW f v t quBv t =-⋅=-所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.3.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .【答案】(1)2020n B r E t π=(2)201203n B t r q Rt π=【解析】 【详解】(1)由法拉第电磁感应定律E n tφ∆=∆有2020n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ② 由闭合电路的欧姆定律有电阻R 1中的电流EI R =总③ 0~t 1时间内通过电阻R1的电荷量1q It = ④由①②③④式得201203n B t r q Rt π=4.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。
高考物理法拉第电磁感应定律-经典压轴题附答案解析
(2)在0~4s时间内通过电阻R的电荷量q;
(3)在0~5s时间内金属棒ab产生的焦耳热Q。
【答案】(1) (2) (3)
【解析】(1)棒进入磁场之前对ab受力分析由牛顿第二定律得
由匀变速直线位移与时间关系
则由匀变速直线运动速度与时间 Nhomakorabea系得金属棒受到的安培力
(2)由上知,棒进人磁场时 ,则金属棒作匀速运动,匀速运动时间
F安=BLI
根据闭合电路欧姆定律有:
I=
联立解得解得F安=4 N
所以克服安培力做功:
而Q=W安,故该过程中产生的焦耳热Q=3.2 J
(3)设线框出磁场区域的速度大小为v1,则根据运动学关系有:
而根据牛顿运动定律可知:
联立整理得:
(M+m)( -v2)=(M-m)g·2L
线框穿过磁场区域过程中,力F和安培力都是变力,根据动能定理有:
【答案】(1)1.2 V(2)3.2 J(3)0.9 J
【解析】
【详解】
(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:
因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:
Ueb= E=1.2 V.
(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:
对棒2: 安
解得:
(2)对棒1和2的系统,动量守恒,则最后稳定时:
解得:
(3)对棒2,由动量定理: ,其中
解得:
(4)由 、 、
联立解得:
又
解得:
则稳定后两棒的距离:
8.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L=1m,导轨平面与水平面成 =30角,上端连接 的电阻.质量为m=0.2kg、阻值 的金属棒ab放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d=4m,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.
2024届高考物理情景题压轴汇编-4电磁学
2024届高考物理情景题压轴汇编-4电磁学一、单选题 (共6题)第(1)题人体内存在极微量的、等放射性元素,、衰变的核反应方程式分别为:、,下列说法正确的是( )A.的平均核子质量大于的平均核子质量B.Y是质子C.X是原子核的核外电子电离产生的D.20个原子经过一个半衰期一定还剩下10个第(2)题核能的利用可有效减少碳排放。
某次核聚变实验中向目标输入了2.05兆焦的能量,产生了3.15兆焦的聚变能量输出。
下列说法正确的是( )A.该核反应的方程可能是B.生成物比反应物更稳定,因此生成物的比结合能更小C.产生3.15兆焦的能量只需要质量为的反应物D.该核反应必须使核之间的距离达到以内,因此需要极高的温度第(3)题如图所示,小球由静止从同一出发点到达相同的终点,发现小球从B轨道滑下用时最短,C轨道次之,A轨道最长,B轨道轨迹被称为最速降线,设计师在设计过山车时大多采用B轨道。
若忽略各种阻力,下列说法正确的是( )A.由机械能守恒,小球在三条轨道的终点处速度相同B.三条轨道中小球沿B轨道滑下过程重力做功的平均功率最大C.沿C轨道滑下轨道对小球的支持力做功最多D.沿A轨道滑下轨道对小球的支持力冲量为零第(4)题如图甲所示,小明在地球表面进行了物体在竖直方向做直线运动的实验,弹簧原长时,小球由静止释放,在弹簧弹力与重力作用下,测得小球的加速度a与位移x的关系图像如图乙所示。
已知弹簧的劲度系数为k,地球的半径为R,万有引力常量为G,不考虑地球自转影响,忽略空气阻力,下列说法正确的是()A.小球的位移为x0时,小球正好处于完全失重状态B.小球的最大速度为C.小球的质量为D.地球的密度为第(5)题将一个带正电的点电荷置于足够大的水平接地金属板上方,形成的电场在金属板表面上处处垂直金属板。
如图所示,金属板上表面(光滑)有A、O、B三点,形成三角形,其中∠O=90°,∠A=30°,O为点电荷在金属板上的垂直投影,C为AB中点。
(完整版)高考物理压轴题之电磁学专题(5年)(含答案分析),推荐文档
建议收藏下载本文,以便随时学习!
建议收藏下载本文,以便随时学习!
24.(14分)2013新课标2
如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。
a、b为轨道直径的两端,该直径与电场方向平行。
一电荷为q(q>0)的质点沿轨道内侧运动.经过a点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。
建议收藏下载本文,以便随时学习!
由静止开始释放。
金属棒下落过程中保持水平,且与导轨接触良好。
已知某时刻后两灯泡
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
建议收藏下载本文,以便随时学习!
a在Ⅰ内做匀速圆周运动的圆心为(在y轴上),半径为R
,运动轨迹与两磁场区域边界的交点为,如图,由洛仑兹力公式和牛顿第二定律得
由几何关系得∠PCP′ =θ
③
0~a。
高考物理法拉第电磁感应定律-经典压轴题及答案
一、法拉第电磁感应定律l. 如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为£=0.1m, 磁场间距为21, —正方形金属线框质量为m = 0.1kg,边长也为[,总电阻为R=0.Q2 Q. 现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时be边始终与磁场边界平行.当h = 2L时,be边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.txxxxxxxX..X..X..X n(1)求磁感应强度B的人小;(2)若h>2L,磁场不变,金属线框be边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度力;(3)求在(2)情形中,金属线框经过前门个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1T (2) 0.3 m (3) 0.3nJ【解析】【详解】(1) 当h=2L时,be进入磁场时线框的速度v =(2gh = = 2m/ s此时金属框刚好做匀速运动,则有:mg=BIL又r E BLvI =—= -----R R联立解得叫浮代入数据得:3 = 1T(2)当h>2L时,be边第一次进入磁场时金属线框的速度即有mg < BI Q L又已知金属框be边每次出磁场时都刚好做匀速运动,经过的位移为L,设此时线框的速度为则有V2 = v2 + 2gL解得:v z = 5/6111 / S根据题意可知,为保证金属框be边每次出磁场时都刚好做匀速运动,则应有v' = v =』2gh即有力=0.3m(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Qo,则根据能量守恒有:丄mv2 + tng(2L)=丄mv2 + Q2代入解得:a=0.3J则经过前n个磁场区域时线框上产生的总的焦耳热Q=nQo=0.3nJo2. 如图(a)所示,间距为/、电阻不计的光滑导轨固定在倾角为/的斜面上。
在区域丨内有方向垂直于斜面的匀强磁场,磁感应强度为3;在区域II内有垂直于斜面向下的匀强磁场,其磁感应强度&的大小随时间r变化的规律如图(b)所示。
高考压轴题——电磁学大题专项训练(学生版)
高考压轴题——电磁学专项训练一、解答题1.如图所示,直角坐标系中,y 轴左侧有一半径为a 的圆形匀强磁场区域,与y 轴相切于A 点,A 点坐标为⎛⎫ ⎪ ⎪⎝⎭。
第一象限内也存在着匀强磁场,两区域磁场的磁感应强度大小均为B ,方向垂直纸面向外。
圆形磁场区域下方有两长度均为2a 的金属极板M 、N ,两极板与x 轴平行放置且右端与y 轴齐平。
现仅考虑纸面平面内,在极板M 的上表面均匀分布着相同的带电粒子,每个粒子的质量为m ,电量为q +。
两极板加电压后,在板间产生的匀强电场使这些粒子从静止开始加速,并顺利从网状极板N 穿出,然后经过圆形磁场都从A 点进入第一象限。
其中部分粒子打在放置于x 轴的感光板CD 上,感光板的长度为2.8a ,厚度不计,其左端C 点坐标为1,02a ⎛⎫ ⎪⎝⎭。
打到感光板上的粒子立即被吸收,从第一象限磁场射出的粒子不再重新回到磁场中。
不计粒子的重力和相互作用,忽略粒子与感光板碰撞的时间。
(1)求两极板间的电压U ;(2)在感光板上某区域内的同一位置会先后两次接收到粒子,该区域称为“二度感光区”,求: ①“二度感光区”的长度L ;①打在“二度感光区”的粒子数1n 与打在整个感光板上的粒子数2n 的比值12:n n ;(3)改变感光板材料,让它仅对垂直打来的粒子有反弹作用(不考虑打在感光板边缘C 、D 两点的粒子),且每次反弹后速度方向相反,大小变为原来的一半,则该粒子在磁场中运动的总时间t 和总路程s 。
2.如图所示为一同位素原子核分离器的原理图。
有两种同位素,电荷量为q ,质量分别为m 1,m 2,其中12m m <。
从同一位置A 点由静止出发通过同一加速电场进入速度选择器,速度选择器中的电场强度为E ,方向向右,磁感应强度大小为B ,方向垂直纸面。
在边界线ab 下方有垂直纸面向外的匀强磁场B 1(B 1大小未知)。
忽略粒子间的相互作用力及所受重力。
若质量为m 1的原子核恰好沿直线(图中虚线)从O 点射入下方磁场。
高考物理电磁感应现象压轴难题综合题附答案解析
高考物理电磁感应现象压轴难题综合题附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
高考物理电磁感应现象压轴题试卷含答案解析
高考物理电磁感应现象压轴题试卷含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=-联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。
高考物理电磁场压轴题
以下是高考物理电磁场的压轴题:
1.带电粒子在电磁场中的运动
在一个匀强磁场中,有一个竖直向下的匀强电场。
一个带正电的粒子从A点以一定的初速度垂直射入这个电磁场中,粒子在电场力和洛伦兹力的共同作用下做运动。
已知粒子在A点的初速度为v₀,质量为m,电量为q,磁场的磁感应强度为B,电场强度为E,重力加速度为g。
若粒子能沿直线从A点运动到B点,求A、B两点间的距离。
2.电容器与电磁场的综合问题
真空中有一个竖直放置的平行板电容器,两极板间的距离为d,电容为C,上极板带正电。
现有一个质量为m、带电量为+q的小球,从小孔正上方h高度处由静止开始释放,小球穿过小孔到达下极板处速度恰好为零。
已知小球在运动过程中所受空气阻力的大小恒为f,静电力常量为k,重力加速度为g。
求:
(1) 小球到达下极板时的动能;
(2) 电容器的带电量。
3.电磁感应与电磁场的综合问题
在匀强磁场中,一矩形金属线圈两次分别以不同的转速,绕与磁感线垂直的轴匀速转动,产生的交变电动势的图象分别如甲、乙所示,则在两图中t₁和t₁时刻()
A. 甲图中线圈平面与磁感线平行,乙图中线圈平面与磁感线垂直
B. 甲图中线圈的转速小于乙图中线圈的转速
C. 甲、乙两图中交变电动势的有效值相等
D. 甲、乙两图中交变电动势的瞬时值表达式相同。
高考物理法拉第电磁感应定律压轴题一轮复习及答案解析
高考物理法拉第电磁感应定律压轴题一轮复习及答案解析一、高中物理解题方法:法拉第电磁感应定律1.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ 与M 1P 1Q 1)间距L =0.2m ,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B =0.5T ,NN 1右侧没有磁场;竖直放置的光滑半圆轨道PQ 、P 1Q 1分别与水平轨道相切于P 、P 1,圆轨道半径r 1=0.lm ,且在最高点Q 、Q 1处安装了压力传感器.金属棒ab 质量m =0.0lkg ,电阻r =0.1Ω,运动中与导轨有良好接触,并且垂直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出它在斜面上运动的最大速度;(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量;(3)求合适值d .【答案】(1)3m /s ;(2)0.04J ;(3)0.5m .【解析】【详解】(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:A 0mgsin F θ-=安培力:A F BIL = BLv I R r =+ 联立解得:2222()sin 0.0110(0.40.1)0.63m /s 0.50.2mg R r v B L θ+⨯⨯+⨯===⨯ (2)根据能量守恒定律,从高度h =0.95m 处滑下后回路中上产生的热量:22110.01100.950.0130.05J 22Q mgh mv ==⨯⨯-⨯⨯=- 故电阻R 产生的热量为:0.40.050.04J 0.40.1R R Q Q R r ==⨯=++ (3)对从斜面最低点到圆轨道最高点过程,根据动能定理,有:()221111222mg r mgd mv mv μ--=-① 在圆轨道的最高点,重力等于向心力,有:211v mg m r =② 联立①②解得:221535100.10.5m 220.410v gr d g μ--⨯⨯===⨯⨯2.如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。
高考物理压轴题之法拉第电磁感应定律(高考题型整理,突破提升)附详细答案
一、法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。
PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。
一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。
求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如下图所示,MN 、PQ 为足够长的光滑平行导轨,间距L =0.5m.导轨平面与水平面间的夹角θ= 30°,NQ 丄MN ,N Q 间连接有一个3R =Ω的电阻,有一匀强磁场垂直于导轨平面,磁感应强度为01B T =,将一根质量为m =0.02kg 的金属棒ab 紧靠NQ 放置在导轨上,且与导轨接触良好,金属棒的电阻1r =Ω,其余部分电阻不计,现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与NQ 平行,当金属棒滑行至cd 处时速度大小开始保持不变,cd 距离NQ 为 s=0.5 m ,g =10m/s 2。
高考物理法拉第电磁感应定律压轴题培优题及答案解析
高考物理法拉第电磁感应定律压轴题培优题及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?【答案】(1)1.2 V(2)3.2 J(3)0.9 J【解析】【详解】(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 VE BLv==⨯⨯因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:U eb=34E=1.2 V.(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F安=BLI根据闭合电路欧姆定律有:I=E R联立解得解得F安=4 N所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m ga M m-=+联立整理得:12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α=︒,两侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q【答案】(1) 1V ;a 端电势高;(2) 0.1kg ;0.5J 【解析】 【详解】解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;ab 杆加速度为:a gsin α=2s t =时刻速度为:10m/s v at ==ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1E I R ===⨯ 对cd 杆有:30mgsin BIL ︒= 解得cd 杆的质量:0.1kg m = 则知ab 杆的质量为0.1kg放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热根据能量守恒定律则有:300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=3.如图为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ 和MN ,左端接有阻值为R 的定值电阻,其间有垂直轨道平面的磁感应强度为B 的匀强磁场,两轨道间距及磁场宽度均为L .质量为m 的金属棒ab 静置于导轨上,当磁场沿轨道向右运动的速度为v 时,棒ab 恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.(1)判断棒ab 刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力f 大小; (2)若磁场不动,将棒ab 以水平初速度2v 运动,经过时间22mRt B L =停止运动,求棒ab 运动位移x 及回路中产生的焦耳热Q ;(3)若t =0时棒ab 静止,而磁场从静止开始以加速度a 做匀加速运动,下列关于棒ab 运动的速度时间图像哪个可能是正确的?请分析说明棒各阶段的运动情况.【答案】(1)22B L vf R=;(2)22mvR x B L = 2Q mv =;(3)丙图正确【详解】(1)根据右手定则,感应电流方向a 至b 依题意得,棒刚要运动时,受摩擦力等于安培力:f=F A 又有F A =BI 1L ,1BLvI R=联立解得:22B L vf R=(2)设棒的平均速度为v ,根据动量定理可得:02Ft ft mv --=-又有F BIL =,BLvI R=,x vt = 联立得:22mvRx B L =根据动能定理有:()21022A fx W m v --=- 根据功能关系有:Q =W A 得:Q =mv 2 (3)丙图正确当磁场速度小于v 时,棒ab 静止不动;当磁场速度大于v 时,E=BLΔv ,棒ab 的加速度从零开始增加,a 棒<a 时,Δv 逐渐增大,电流逐渐增大,F A 逐渐增大,棒做加速度逐渐增大的加速运动; 当a 棒=a 时,Δv 保持不变,电流不变,F A 不变,棒ab 的加速度保持不变,开始做匀加速运动.4.如图甲所示,两根间距L =1.0m 、电阻不计的足够长平行金属导轨ab 、cd 水平放置,一端与阻值R =2.0Ω的电阻相连.质量m =0.2kg 的导体棒ef 在恒定外力F 作用下由静止开始运动,已知导体棒与两根导轨间的最大静摩擦力和滑动摩擦力均为f =1.0N ,导体棒电阻为r =1.0Ω,整个装置处于垂直于导轨平面向上的匀强磁场B 中,导体棒运动过程中加速度a 与速度v 的关系如图乙所示(取g =10m/s 2).求:(1)当导体棒速度为v 时,棒所受安培力F 安的大小(用题中字母表示). (2)磁场的磁感应强度B .(3)若ef 棒由静止开始运动距离为S =6.9m 时,速度已达v ′=3m/s .求此过程中产生的焦耳热Q . 【答案】(1);(2);(3)【详解】(1)当导体棒速度为v时,导体棒上的电动势为E,电路中的电流为I.由法拉第电磁感应定律由欧姆定律导体棒所受安培力联合解得:(2)由图可以知道:导体棒开始运动时加速度 ,初速度 ,导体棒中无电流.由牛顿第二定律知计算得出:由图可以知道:当导体棒的加速度a=0时,开始以做匀速运动此时有:解得:(3)设ef棒此过程中,产生的热量为Q,由功能关系知 :带入数据计算得出故本题答案是:(1);(2);(3)【点睛】利用导体棒切割磁感线产生电动势,在结合闭合电路欧姆定律可求出回路中的电流,即可求出安培力的大小,在求热量时要利用功能关系求解。
高考物理法拉第电磁感应定律压轴题综合题附答案
高考物理法拉第电磁感应定律压轴题综合题附答案一、高中物理解题方法:法拉第电磁感应定律1.如图所示,条形磁场组方向水平向里,磁场边界与地面平行,磁场区域宽度为L=0.1 m,磁场间距为2L,一正方形金属线框质量为m=0.1 kg,边长也为L,总电阻为R=0.02 Ω.现将金属线框置于磁场区域1上方某一高度h处自由释放,线框在经过磁场区域时bc边始终与磁场边界平行.当h=2L时,bc边进入磁场时金属线框刚好能做匀速运动.不计空气阻力,重力加速度g取10 m/s2.(1)求磁感应强度B的大小;(2)若h>2L,磁场不变,金属线框bc边每次出磁场时都刚好做匀速运动,求此情形中金属线框释放的高度h;(3)求在(2)情形中,金属线框经过前n个磁场区域过程中线框中产生的总焦耳热.【答案】(1)1 T (2)0.3 m(3)0.3n J【解析】【详解】(1)当h=2L时,bc进入磁场时线框的速度===v gh gL222m/s此时金属框刚好做匀速运动,则有:mg=BIL又E BLv==IR R联立解得1mgR=BL v代入数据得:1TB=(2)当h>2L时,bc边第一次进入磁场时金属线框的速度022v gh gL =>即有0mg BI L <又已知金属框bc 边每次出磁场时都刚好做匀速运动,经过的位移为L ,设此时线框的速度为v′,则有'222v v gL =+解得:6m /s v '=根据题意可知,为保证金属框bc 边每次出磁场时都刚好做匀速运动,则应有2v v gh '==即有0.3m h =(3)设金属线框在每次经过一个条形磁场过程中产生的热量为Q 0,则根据能量守恒有:'2211(2)22mv mg L mv Q +=+ 代入解得:00.3J Q =则经过前n 个磁场区域时线框上产生的总的焦耳热Q =nQ 0=0.3n J 。
2.如图所示,垂直于纸面的匀强磁场磁感应强度为B 。