导数与微分练习题问题详解
导数与微分练习题及解析
导数与微分练习题及解析在微积分学中,导数和微分是最基本的概念之一。
它们可以帮助我们研究函数的变化率和性质,广泛应用于物理、经济、工程等各个领域。
为了帮助你更好地理解导数和微分的概念,以下是一些练习题及其解析。
练习题1:求函数f(x) = x^2 + 3x + 2在x = 2处的导数和切线方程。
解析:首先,我们求函数f(x)的导数。
使用求导法则,对于多项式函数来说,可以将每一项的指数与系数相乘,并将指数减一,得到函数的导数。
f'(x) = 2x + 3接下来,我们计算x = 2处的导数值。
f'(2) = 2(2) + 3 = 7切线方程的一般形式为y = mx + b,其中m代表斜率,b代表截距。
根据导数的定义,导数即为切线的斜率。
所以切线的斜率为m = 7。
将切点的坐标代入切线方程,我们可以得到b的值。
2 = 7(2) + b2 = 14 + bb = -12最终的切线方程为y = 7x - 12。
练习题2:求函数f(x) = e^x * sin(x)的导数。
解析:考虑到函数f(x) = e^x * sin(x)是两个函数的乘积,我们可以使用乘积法则来求导。
乘积法则的公式为:(uv)' = u'v + uv'对于e^x和sin(x)两个函数,它们的导数分别为e^x和cos(x)。
根据乘积法则,我们可以将这两个导数与原函数进行组合,得到最终的导数为:f'(x) = (e^x * cos(x)) + (e^x * sin(x))练习题3:求函数f(x) = ln(x^2 + 1)的导数和微分。
解析:首先,我们求函数f(x)的导数。
根据链式法则,可以分别计算外函数和内函数的导数。
设内函数为u = x^2 + 1,则内函数的导数为du/dx = 2x。
外函数为f(u) = ln(u),则外函数的导数为df/du = 1/u。
根据链式法则,函数f(x)的导数为:f'(x) = df/du * du/dx= (1/u) * (2x)= 2x / (x^2 + 1)接下来,我们计算函数f(x)的微分。
第三章 导数与微分 习题及答案
第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。
2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。
3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。
4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。
5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。
6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。
7、已知x x y ln =,则)10(y = 。
8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。
9、设1111ln22++-+=x x y ,则y '= 。
10、设方程y y x =确定y 是x 的函数,则dy = 。
11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。
二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。
导数与微分习题及答案
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。
数学复习中的常见微积分题解析
数学复习中的常见微积分题解析微积分是数学中的重要分支之一,涉及到对函数的导数、积分等运算。
在数学的学习与应用中,对微积分的理解和掌握至关重要。
本文将对常见的微积分题进行解析,帮助读者更好地复习和掌握微积分知识。
一、导数的计算导数是微积分中的基本概念,表示函数在某一点上的变化率。
常见的导数计算包括使用基本导数公式、链式法则、求导法则等。
下面以几个常见的例子进行解析。
1. 例题1:求函数f(x)=(3x^2+2x+1)^2的导数。
解析:首先,我们可以使用链式法则,将该函数拆解为两个函数的复合形式,即f(x)=u^2,其中u=3x^2+2x+1。
接下来,我们求u的导数,即u'。
根据求导法则,我们得到u' = 6x + 2。
然后,将u'代入链式法则的公式中,即d(f(u))/du * u'。
根据链式法则的公式,我们可以求得f(x)的导数为f'(x) = 2u * u' = 2(3x^2+2x+1)(6x+2)。
2. 例题2:求函数f(x)=sin(2x+3)的导数。
解析:对于这个问题,我们可以利用三角函数的导数规则。
根据导数规则,sin函数的导数是cos函数,因此该函数的导数f'(x) =cos(2x+3)。
二、定积分的计算定积分是微积分中另一个重要的概念,表示函数在某一区间上的面积。
常见的定积分计算包括使用基本积分表、换元积分法、分部积分法等。
下面以几个常见的例子进行解析。
1. 例题1:计算定积分∫[0, 1] x^2 dx。
解析:对于这个问题,我们可以直接应用定积分的公式,即∫[a, b]f(x) dx = F(b) - F(a),其中F(x)是f(x)的原函数。
根据该公式,我们可以求得∫[0, 1] x^2 dx = 1/3 * x^3 |[0, 1] = 1/3 - 0 = 1/3。
2. 例题2:计算定积分∫[0, π] sin(x) dx。
第03章微分中值定理与导数的应用习题详解
M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。
可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。
—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。
可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。
「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。
导数与微分习题及答案
导数与微分习题及答案导数与微分习题及答案在数学学科中,导数与微分是非常重要的概念。
它们不仅在数学分析中有广泛的应用,还在物理、经济学等领域中起着重要的作用。
本文将为大家提供一些导数与微分的习题,并附上详细的答案,希望能够帮助大家更好地理解和掌握这一内容。
1. 习题一:求函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数。
解答:根据导数的定义,我们有f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
代入函数 f(x) = x^2 + 3x - 2 和 x = 2,得到f'(2) = lim(h→0) [(2+h)^2 + 3(2+h) - 2 - (2^2 + 3(2) - 2)] / h。
化简后得到f'(2) = lim(h→0) [4h + h^2 + 6h] / h = lim(h→0) (h^2 + 10h) / h = lim(h→0) (h + 10) = 10。
因此,函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数为 10。
2. 习题二:求函数 g(x) = 2sin(x) + cos(x) 在点x = π/4 处的导数。
解答:同样地,我们可以利用导数的定义来求解。
根据定义,g'(x) = lim(h→0) [g(x+h) - g(x)] / h。
代入函数 g(x) = 2sin(x) + cos(x) 和x = π/4,得到g'(π/4) = lim(h→0) [2sin(π/4+h) + cos(π/4+h) - (2sin(π/4) + cos(π/4))] / h。
化简后得到g'(π/4) = lim(h→0) [2(sin(π/4)cos(h) + cos(π/4)sin(h)) + (cos(π/4)cos(h) -sin(π/4)sin(h))] / h。
导数与微分(含答案)
第二单元 导数与微分一、基本题1、设()23f '=,则()()232limh f h f h h→--+=2、()cos x y e -=,则()0y '=3、3sin y x =,则dy =4、y =1|x dy ==5、()3ln f x x x =,则()1f ''=6、设()62ln 3x y e =+,则()8y =7、设()23sin 7n y x e -=+,则()n y =8、设210cos 2x y e x x =++,则()10y = ;()12y =9、设()()22f x x y ef e =+,则dy dx=10、曲线2x y e -=+在点0x =处的切线方程为 法线方程为 11、()()()()()123......10f x x x x x x =----,则()1f '= 12、()22,43f x y x xy y =-+,则()()1,1,limh f y h f y h→+-=13、ln 2y z x x ⎛⎫=+ ⎪⎝⎭,则()1,0z x ∂=∂ ;()1,0y f '=14、()zu xy =,则du = 15、2ln xz y=,则12x y dz ===16、yz x=在点()2,1处当0.1x ∆=,0.2y ∆=时的z ∆= ;dz = 17、设233z x xy y =-+,则22z x∂=∂ ;22z y ∂=∂ ;2zy x ∂=∂∂18、22,x z f x y y ⎛⎫=- ⎪⎝⎭,则x f '= ;y f '=19、一元函数可微、可导、连续、极限之间关系:可微可导是连续的 条件; 连续是极限存在的 条件 极限存在是连续的 条件; 连续是可微可导的 条件20、多元函数可微、可导(偏导数存在)、连续之间关系:(1)(),f x y 在点(),x y 处可微分是在该点连续的 条件; (),f x y 在点(),x y 处连续是在该点可微分的 条件(2)(),f x y 在点(),x y 处两偏导数存在是在该点处可微分的 条件; (),f x y 在点(),x y 处可微分是在该点处两偏导数存在的 条件 (3)(),f x y 在点(),x y 处两偏导数存在且连续是在该点处可微分的 条件(4)(),f x y 在点(),x y 处两二阶混合偏导22,z zx y y x∂∂∂∂∂∂连续 是该两混合偏导相等的 条件二、计算题1、xaaa x e y e e x =++ ()0,1a a >≠,求y ' 2、()3ln 32cos 2sin 332x x y e x x +=+-+,求(0)y '3、()2sin 2x y x =,求y ' 4、sin x y x =y '5、y =y ' 6、设ln tan x y arc t ⎧⎪=⎨=⎪⎩,求dy dx7、设sin cos t tx e ty e t⎧=⎨=⎩,求0t dy =8、设()ln(2)111x x f x x x -≤⎧=⎨->⎩,求()2f '-,()f x '9、设函数()22111x f x x ax b x ⎧≤⎪=+⎨⎪+>⎩在点1x =处可导,求,a b10、设()2135f x x x -=++,求()f x '11、设()3sin 2sin 3cos24f x x x =+-,求()f x '12、设()2cos 2z x x y =-,求22z x∂∂;22z y ∂∂;2zx y ∂∂∂13、设(),,sin u v z e u xy v x y +===+,求zx ∂∂;z y∂∂ 14、设()223x z x y =-,求zx ∂∂;z y∂∂ 15、设()2,cos 2,ln 32x y z e x t y t -===+,求dz dt16、函数()y y x =由方程:()1cos x y e e xy -+=所确定的隐函数,求0x dy dx=17、设方程22220x z y z y ++=确定函数(),z z x y =,求zx ∂∂;z y∂∂ 18、设函数(),z z x y =由方程22xy z e z e -+-=所确定,求212x y dz==-19、设()22,y z xf xy g x y x ⎛⎫=++ ⎪⎝⎭,求z x ∂∂;z y ∂∂三、证明题1、设()2arcsin 3y z xy x =+,证明:220z zx xy y x y ∂∂-+=∂∂ 2、设()2sin 2323x y z x y z +-=+-,证明:1z zx y∂∂+=∂∂导数与微分答案二、基本题1、设()23f '=,则()()232limh f h f h h →--+=()4212f '-=-2、设()12f '=-,则()()11limh f f h h→-+=()12f '-=3、()cos x y e -=,则()0y '=sin14、3sin y x =,则233cos dy x x dx =5、()3ln f x x x =,则()15f ''=6、设()62ln 3x y e =+,则()824x y e =7、设()2sin 7n y x -=,则()49sin 7ny x =-8、设210cos 2x y e x x =++,则()10102101021022cos 21010!22cos 210!2x x y e x e x π⎛⎫=++⋅+=-+ ⎪⎝⎭ ;()12122121221222cos 21222cos 22x x y e x e x π⎛⎫=++⋅=+ ⎪⎝⎭9、设()()22f x x y e f e =+,则()()()222222f x x x dy xe f x xf e e dx''=⋅+⋅10、曲线2x y e -=+在点0x =处的切线方程为3y x =- 法线方程为3y x =+11、()()()()()123......10f x x x x x x =----,则()19!f '=-()()()()()123......10f x x x x x x =----⇒⎡⎤⎣⎦()()()()()()()()()123......10123......10f x x x x x x x x x x x '''=----+----⎡⎤⎡⎤⎣⎦⎣⎦ ()()()()()()()23......10123......10x x x x x x x x x '=---+----⇒⎡⎤⎡⎤⎣⎦⎣⎦()()()()11121311009!f '=⋅-⋅-⋅⋅⋅-+=-12、一元函数可微、可导、连续、极限之间关系:可微可导是连续的 充分 条件; 连续是极限存在的 充分 条件 极限存在是连续的 必要 条件; 连续是可微可导的必要 条件 13、()212y x x x x =-+-不可导点2x =-14、ln 2y z x x ⎛⎫=+ ⎪⎝⎭,则()1,01z x ∂=∂ ;()11,02y f '=15、()22,43f x y x xy y =-+,则()()()01,1,lim1,46y h f y h f y f y y h→+-'==-+16、2lnxz y=,则1212x y dz dx dy ===-17、设233z x xy y =-+,则222z x∂=∂ ;226z y y ∂=∂ ;23zy x ∂=-∂∂ 18、()z u xy =,则()()()()11ln z z zdu yz xy dx xz xy dy xy xy dz --=++19、yz x =在点()2,1处当0.1x ∆=,0.2y ∆=时的()()2.1,1.22,10.0714z f f ∆=-= 21110.10.20.07542y dz dx dy dz x x =-+⇒=-⋅+⋅=20、22,x z f x y y ⎛⎫=- ⎪⎝⎭,则1212x f f xf y '''=+ ;1222y xf f yf y '''=--21、(1)(),f x y 在点(),x y 处可微分是在该点连续的 充分 条件; (),f x y 在点(),x y 处连续是在该点可微分的 必要 条件(2)(),f x y 在点(),x y 处两偏导数存在是在该点处可微分的 必要 条件; (),f x y 在点(),x y 处可微分是在该点处两偏导数存在的 充分 条件 (3)(),f x y 在点(),x y 处两偏导数存在且连续是在该点处可微分的 充分条件(4)(),f x y 在点(),x y 处两二阶混合偏导22,z zx y y x∂∂∂∂∂∂连续是该两混合偏导相等的 充分 条件22、曲线2cos 2sin 3x t y t z t=⎧⎪=⎨⎪=⎩上对应于6t π=处的切线方程213z x π-==- , 法平面方程:()1302x y z π⎛⎫--+-+-= ⎪⎝⎭23、曲面27z e z xy -+=在点()2,3,0处的切平面方程()()()322310032120x y z x y z -+---=⇒+--= , 法线方程 :230231x y z ---==-二、计算题1、x a aa x e y e e x =++ ()0,1a a >≠,求y '【解】:()()111ln x a a x a a a x x a a e a x x a a e y e a e x e x e a a e ax e x ---'''=⋅+⋅+=⋅+⋅+2、()3ln 32cos 2sin 332xx y e x x +=+-+,求y ' 【解】:()()()33213323ln 32323cos 22sin 2032x xx x x y e x e x x ⋅⋅+-++'=-+-+ ()()33233ln 323cos 22sin 232x x x e x e x x -+=-++3、sin x y x =y ' 【解】:()1sin sin ln 223xx xy xex x ==++⇒()()1s i n l n22s i n 1c o s l n 3232x x x y e x x x x x x -⎛⎫'=⋅+++⋅+ ⎪⎝⎭4、()2sin 2x y x =,求y ' 【解】:()222lnsin 2lnsin 22cos 2sin 22ln sin 22sin 2x x xxxx y x e y e x x x x ⎛⎫'==⇒=+⋅⋅⎪⎝⎭ ()2l n s i n 222l n s i n 22c ot 2xx e x xx x =+⋅5、y =y ' 【解】:1)()()()()()21ln ln 1ln 13ln 5ln 1ln 212y x x x x x =+--++--+ 2)等式两边同时对x 求导()()212135211221221x y y x x xx x --'=-++-⇒+--+ ()()2213511122121x y y x xx x x ⎡⎤'=++--⎢⎥+--+⎣⎦()()2213511122121x x xx x x ⎡⎤=++--⎢⎥+--+⎣⎦6、函数()y y x =由方程:()1cos x y e e xy -+=所确定的隐函数,求0x dydx =【解】:1)0x =时0y =2)()()()1cos sin x y x y e e xy e e y xy y xy ''''-+=⇒-⋅=-⋅+⎡⎤⎣⎦ ()0,0sin sin 01sin sin x x x y yy e y xy e y xyy y e x xy e x xy==++''=⇒==--7、求由方程:()()cos sin xyy x =所确定的函数()y y x =的导数dydx【解】:1)等式两边同时取对数()()ln cos ln sin x y y x = 2)等式两边同时对x 求导数:()()sin cos ln cos ln sin cos sin y xy x y y x y y x-''+⋅⋅=+⋅⇒ ()()ln cos cot ln sin tan y y xdy dx x x y -=+8、设ln tan x y arc t⎧⎪=⎨=⎪⎩,求dy dx【解】:1)()()2222121ln 12tan 1tan 1t t t x t x t x y arc t y arc t y t ⎧'=⎧⎪⎧+=+⎪⎪⎪=⇒⎨⎨⎨=⎪⎪⎪⎩=⎩'=⎪+⎩2)1t t y dy dx x t'==' 9、设2323sin 10y x t t e t y ⎧=++⎨-+=⎩,求t dy dx =【解】:1)0t =时,1y =2) 6262cos sin cos 01sin t t y y yt t t y x t x t e t e y t e t y y e t '=+⎧'=+⎧⎪⇒⇒⎨⎨⋅''⋅+⋅-='=⎩⎪-⎩3)0,1cos cos 1sin 1sin 62622y y y yt t t y t e te ty dy dy e e t e t dx x t dxt ===⋅⋅'--==⇒=='++ 10、设()ln 111x x f x x x ≥⎧=⎨-<⎩,求()2f ',()f x '【解】:1)()()()2212ln 2x x f f x x =='''===2)()()11ln x f x x f x x'>⇒=⇒=, ()()111x f x x f x '<⇒=-⇒= 1x =为分段点,且()1=ln1=0f ()()()111101lim lim 111x x f x f x f x x ---→→---'===--, ()()()()()()11111ln 01lim lim lim 11111111x x x f x f x x f f f f x x ++++-+→→→--''''====⇒=⇒=-- ()1111x f x xx ⎧>⎪'=⎨⎪≤⎩11、设函数()22111x f x x ax b x ⎧≤⎪=+⎨⎪+>⎩在点1x =处可导,求,a b【解】:1)可导必连续,故()()()()211112lim lim 1lim lim 11x x x x f x f x f ax b x -+-+→→→→==⇒=+=+ 即11a b b a +=⇒-=-2)因为可导,故()()()()()()111111lim lim 11x x f x f f x f f f x x -+-+→→--''=⇒=-- ()()()()221111211111lim lim lim lim 11111x x x x x x ax b ax a x a x x x x x -+-+→→→→--++--+=⇒==----+ 1,2a b =-=12、设()2135f x x x -=++,求()f x '【解】:1)()()()()()()22135131521325f x x x f x x x f x x x '-=++⇒=++++⇒=++=+ 13、设()3sin 2sin 3cos24f x x x =+-,求()f x '【解】:()()()3232sin 2sin 312sin 4261f x x x f x x x =+--⇒=-- ()2612f x x x '⇒=-14、设()2cos 2z x x y =-,求22z x∂∂;22z y ∂∂;2zx y ∂∂∂【解】:1)()()()()22222322cos 22sin 26sin 24cos 2z z x y x x y x x y x x y x x∂∂=---⇒=----∂∂2)()()22222sin 24cos 2z z x x y x x y y y ∂∂=-⇒=--∂∂3)()()22222sin 24cos 2zx y x x y x y∂=-+-∂∂15、设(),,sin u v z e u xy v x y +===+,求zx ∂∂;z y∂∂ 【解】:()()()()()sin u v u v x x u v z z u z ve xy e x y x u x v x++∂∂∂∂∂''''=⋅+⋅=⋅+⋅+∂∂∂∂∂()()()sin cos cos xy x y u v u v ye e x y y x y e ++++=+⋅+=++⎡⎤⎣⎦()()()()()sin u v u v y y u v z z u z ve xy e x y y u y v y++∂∂∂∂∂''''=⋅+⋅=⋅+⋅+∂∂∂∂∂()()()sin cos cos xy x y u v u v xe e x y x x y e++++=+⋅+=++⎡⎤⎣⎦16、设()223x z x y =-,求zx ∂∂;z y∂∂ 【解】:()()22ln 2323x x x y z x y e-=-=()()22ln 2322ln 2323x x y z x e x x y x x y -⎛⎫∂=⋅-+ ⎪∂-⎝⎭()212323x z x x y y -∂=--∂ ,17、设()2,cos 2,ln 32x y z e x t y t -===+,求dzdt【解】:()()()22cos2ln 32cos2ln 326ln 322sin 232t t t t t dz z ee t dt t -+-+⎡⎤⎡⎤⎣⎦⎣⎦+⎛⎫=⇒=⋅-- ⎪+⎝⎭ 18、设方程22220x z y z y ++=确定函数(),z z x y =,求zx ∂∂;z y∂∂ 【解】:1)()222,,2F x y z x z y z y =++2222,41,4x y z F xz F yz F x y z '''==+=+2)2224x z F z xz x F x y z '∂=-=-'∂+, 222414y z F z yz y F x y z '∂+=-=-'∂+19、设方程()222sin xy e y x y +=+确定函数()y y x =,求dy dx【解1】:()()()()()()22222s i n 2c o s 22x y x y e y x y e y x y y x y x y '''''+=+⇒⋅++=+⋅+()()22222cos 22cos xyxy x x y ye y xe y y x y +-'⇒=+-+ 【解2】:1)()()222,sin xy F x y e y x y =+-+ ()()22222cos ,22cos xy xy x y F ye x x y F xe y y x y ''=-+=+-+2)()()()()222222222cos 2cos 2cos 2cos xy xy x xy xy y ye x x y x x y ye F dy dx F xe y x y xe y x y -++-'=-=-='-+-+ 20、设函数(),z z x y =由方程22xy z e z e -+-=所确定,求212x y dz ==-【解】:1)(),,22xy z F x y z e z e -=+--, 12,12x y z ==-⇒= ,,2xy xy z x y z F ye F xe F e --'''=-=-=- 12,,12224xy x z x y z z F z ye z e x F e xe -==-='∂∂=-=⇒='∂-∂-, 12,,12222xy y z x y z z F z xe z e y F e y e -==-='∂∂=-=⇒='∂-∂- 2)2122242x y e e dzdx dy e e==-=+-- 21、设()22,y z xf xy g x y x ⎛⎫=++ ⎪⎝⎭,求z x ∂∂;z y ∂∂ 【解】:1)()()1222z y f xy xyf xy xg g x x ∂'''=++-∂2)()21212z x f xy yg g y x∂'''=++∂三、证明题1、设()2arcsin 3y z xy x =+,证明:220z z x xy y x y∂∂-+=∂∂ 2、设()2sin 2323x y z x y z +-=+-,证明:1z z x y ∂∂+=∂∂ 设()(),,2sin 2323F x y z x y z x y z =+---+。
导数与微分练习题及习题详细解答
第二章 导数与微分练习题及习题详细解答练习题2.11.已知质点作直线运动的方程为23s t =+,求该质点在5t =时的瞬时速度.解 由引例2.1可知,质点在任意时刻的瞬时速度d 2d sv t t==.代入5t =,得10v =. 2.求曲线cos y x =在点π(6处的切线方程和法线方程. 解 由导数的几何意义知,曲线cos y x =在π(6点切线的斜率 ππ661(cos )(sin )2x x k x x =='==-=-,所以,切线方程为1π()226y x -=--,即612π=0x y +-.法线方程为π2()6y x =-,即1262π=0x y -+. 3.讨论函数32,0()31,013,1x f x x x x x ⎧≤⎪=+<≤⎨⎪+>⎩在0x =和1=x 处的连续性与可导性.解 在0x =处,0lim ()lim 22x x f x --→→==,0lim ()lim (31)1x x f x x ++→→=+=, 由于0lim ()lim ()x x f x f x -+→→≠,所以不连续,根据可导与连续的关系知,也不可导. 在1x =处,11lim ()lim(31)4x x f x x --→→=+=,311lim ()lim(3)4x x f x x ++→→=+=,(1)4f =, 所以连续.又00(1)(1)3(1)lim lim 3x x f x f xf x x---∆→∆→+∆-∆'===∆∆, 2300(1)(1)33()()(1)lim lim 3x x f x f x x x f x x+++∆→∆→+∆-∆+∆+∆'===∆∆,所以可导.4.已知函数()f x 在点0x 处可导,且0()f x A '=,求下列极限:000(5)()(1)limx f x x f x x ∆→-∆-∆; 000(2)()(2)lim h f x h f x h →+-解 (1)000000(5)()(5)()55()55limlim x x f x x f x f x x f x f x A x x ∆→∆→-∆--∆-'=-=-=-∆-∆;(2)000000(2)()(2)()22()22limlim h h f x h f x f x h f x f x A h h →→+-+-'===.5.求抛物线2y x =上平行于直线43y x =-+的切线方程.解 由于切线平行于43y x =-+,所以斜率为4k =-.又2k y x '==,所以2x =-.对应于抛物线上的点为(2,4)-,所以切线方程为44(2)y x -=-+,即440x y ++=.练习题2.21.求下列函数的导数:(1)100(21)y x =-; (2)22e xxy +=;(3)sin(3π)y x =+; (4)2cos y x =; (5)2e sin x y x =; (6)2ln(1)y x =+; (7)tan 2y x =; (8)cot 3y x =; (9)arctan(31)y x =+; (10)arcsin(41)y x =+. 解 (1)9999100(21)(21)200(21)y x x x ''=--=-; (2)22222e (2)e (41)xxxxy x x x ++''=+=+;(3)cos(3π)(3π)3cos(3π)y x x x ''=+⋅+=+; (4)2cos (cos )2sin cos sin 2y x x x x x ''=⋅=-=-;(5)22222(e )sin e (sin )2e sin e cos e (2sin cos )xxxxxy x x x x x x '''=+=+=+; (6)22212(1)11x y x x x''=⋅+=++; (7)22sec 2(2)2sec 2y x x x ''=⋅=; (8)22csc 3(3)3csc 3y x x x ''=-⋅=-;(9)2213(31)1(31)1(31)y x x x ''=⋅+=++++;(10)(41)y x ''=+=2.设y =d d y x .解对于y =[]1ln ln(1)ln(2)ln(3)ln(4)3y x x x x =+++-+-+ 两边对x 求导,得111111()31234y y x x x x '=+--++++ 所以1111()1234y x x x x '=+--++++ 3.求曲线31x ty t =+⎧⎨=⎩上,点(1,0)处的切线方程. 解 点(1,0)对应参数t 的值为0. 设k 为曲线上对应(1,0)点的切线斜率,则32000d ()30d (1)1t t t y t t k x t ==='===='+,于是,所求切线方程为0y =,即x 轴.4.求由方程3330y x xy --=所确定的隐函数的导数d d y x. 解 方程两边对x 求导,可得22333()0y y x y xy ''--+=由上式解出y ',便得隐函数的导数为22x yy y x+'=-(20y x -≠). 练习题2.31.求下列函数的微分:(1)22sin 34y x x x =+-+; (2)2ln y x x x =-; (3)2(arccos )1y x =-; (4)arctan y x x =; (5)ln tan 2x y =; (6)sin ln 57xy x x x x=++-; (7)1cos 2xy -=; (8)3(e e )x x y -=+.解 (1)22d (sin 34)d (2sin 23)d y x x x x x x x '=+-+=+-; (2)2d (ln )d (ln 12)d y x x x x x x x '=-=+-; (3)2d ((arccos )1)d y x x x '=-=;(4)2d (arctan )d (arctan )d 1xy x x x x x x '==++; (5)2111d (ln tan )d sec d d csc d 222sin tan 2x x y x x x x x x x '==⋅⋅==;(6)2sin cos sin d (ln 57)d (ln 6)d x x x xy x x x x x x x x-'=++-=++; (7)11cos cos d (2)d 2ln 2sec tan d xxy x x x x --'==-⋅;(8)32d (e e )d 3(e e )(e e )d x x x x x xy x x ---'⎡⎤=+=+-⎣⎦. 2.填空. (1)23d d()x x =(2)21d d()1x x =+ (3)2cos2d d()x x = (4)21d d()x x= 解 (1)3x C +; (2)arctan x C +; (3)sin 2x C +; (4)1C x-+. 3解=()f x =064x =,1x ∆=.因为000()()()f x x f x f x x '+∆≈+∆,()f x ''==所以1188.062516=≈=+=.4.半径为10m 的圆盘,当半径改变1cm 时,其面积大约改变多少?解 圆盘面积函数为2S πR =,并取0R 10m =,R 1cm 0.01m ∆==.因为 S 2πR '= 所以面积改变量2S dS 2πR R 2π100.010.2π0.628m ∆≈=⋅∆=⨯⨯=≈.习题二1.如果函数()f x 在点0x 可导,求:(1)000()()limh f x h f x h →--; (2)000()()lim h f x h f x h hαβ→+--.解 (1)0000000()()()()limlim ()h h f x h f x f x h f x f x h h →-→----'=-=--; (2)00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h hαβαβ→→+--+-+--=0000000()()()()limlim ()()h h f x h f x f x h f x f x h hαβαβαβαβ→→+---'=+=+-2.求函数3y x =在点(2,8)处的切线方程和法线方程. 解 由导数的几何意义,得3222()312x x k x x =='===切,112k =-法. 所以,切线方程为812(2)y x -=-即12160x y --=.法线方程为18(2)12y x -=--即12980x y +-=.3.设2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,试确定,a b 的值,使()f x 在1x =处可导.解 若()f x 在1x =处可导,则必在1x =处连续.1lim ()1x f x -→=,1lim ()x f x a b +→=+, 11lim ()lim ()x x f x f x -+→→=,即1a b +=. 又2111()(1)1(1)limlim lim(1)211x x x f x f x f x x x ----→→→--'===+=--, 111()(1)1(1)(1)lim lim lim 111x x x f x f ax b a x f a x x x ++-+→→→-+--'====--- 所以 2a =,1b =-. 4.求下列各函数的导数:(1)231251y x x x =-++; (2)2sin y x x =; (3)1cos y x x =+; (4)1ln 1ln xy x-=+.解 (1)23413(251)45y x x x x x''=-++=++;(2)22(sin )2sin cos y x x x x x x ''==+; (3)221(cos )sin 1()cos (cos )(cos )x x x y x x x x x x '+-''==-=+++;(4)21ln (1ln )(1ln )(1ln )(1ln )()1ln (1ln )x x x x x y x x ''--+--+''==++ 2211(1ln )(1ln )2(1ln )(1ln )x x x x x x x -+--==-++ . 5.求下列函数的导数:(1)36()y x x =-; (2)y =;(3)2sin (21)y x =-; (4)21sin y x x=; (5)ln1xy x=-; (6)[]ln ln(ln )y x =; (7)ln(y x =; (8)arcsin 2x y x =+解 (1)3533526()()6()(31)y x x x x x x x ''=--=--;(2)322(1)y x -'==-; (3)2sin(21)cos(21)(21)2sin(42)y x x x x ''=-⋅-⋅-=-; (4)22221111111()sin(sin )2sin cos ()2sin cos y x x x x x x x x x x x x'''=+=+⋅-=-; (5)lnln ln(1)1x y x x x ==---,∴1111(1)y x x x x -'=-=--; (6)[]{}[]1ln ln(ln )ln(ln )(ln )ln ln(ln )y x x x x x x ''''=⋅⋅=;(7)((1y x ''==+=;(8)1arcsin22x y '=++arcsin arcsin 22x x=+=.6.若以310cm /s 的速率给一个球形气球充气,那么当气球半径为2cm 时,它的表面积增加的有多快?解 设气球的体积为V ,半径为R ,表面积为S ,则34π3V R =,24πS R =. d d d d d d V V R t R t =⋅,d d d d d d S S Rt R t =⋅, 2d d d d dV 12d 8πd d d d dt 4πd S S V R V R t R t V R R t ∴=⋅⋅=⋅⋅=, 将3d 10cm /s d V t =,2cm R =代入得,2d 10cm /s d St=.7.求下列函数的高阶导数:(1)2sin 2y x x =,求y '''; (2)y =5x y =''. 解 (1)Q 22sin 22cos2y x x x x '=+,22sin 24cos24cos24sin 2y x x x x x x x ''=++-22sin 28cos 24sin 2x x x x x =+-,∴24cos28cos216sin 28sin 28cos2y x x x x x x x x '''=+---212cos 224sin 28cos 2x x x x x =--.(2)Q 2y '==y ''==23222(24)(16)x x x -=-,∴5x y =''1027=. 8.求由下列方程所确定的隐函数的导数: (1)3330y x xy +-=; (2)arctan ln yx=. 解 (1)方程两边对x 求导,得22333()0y y x y xy ''+-+=,从中解出y ',得22y x y y x-'=-. (2)方程两边对x 求导,得2222112221()xy y x yy y x x y x''-+⋅=⋅++, 从中解出y ',得x yy x y+'=-. 9.用对数求导法求下列各函数的导数:(1)y =; (2)cos (sin )x y x = (s i n 0)x >.解 (1)方程两边取对数,得11ln ln(23)ln(6)ln(1)43y x x x =++--+,两边对x 求导,得1211234(6)3(1)y y x x x '=+-+-+, 即211[234(6)3(1)y x x x '=+-+-+ (2)方程两边取对数,得cos ln ln(sin )cos lnsin x y x x x ==⋅两边对x 求导,得11sin ln sin cos cos sin y x x x x y x'=-⋅+⋅⋅ sin lnsin cos cot x x x x =-⋅+⋅,即cos (sin )(sin lnsin cos cot )x y x x x x x '=-⋅+⋅.10.求由下列各参数方程所确定的函数()y y x =的导数:(1)33cos sin x a t y b t ⎧=⎪⎨=⎪⎩; (2)e cos e sin tt x t y t ⎧=⎪⎨=⎪⎩,求π2d d t y x =. 解 (1)22d d 3sin cos d tan d d 3cos sin d yy b t t bt t x x a t t a t===--;(2)Q d d e (sin cos )sin cos d d d e (cos sin )cos sin d t t yy t t t tt x x t t t t t++===--, ∴π2d d t y x =π2sin cos 101cos sin 01t t tt t=++===---. 11.求下列函数的微分: (1)ln sin2x y =; (2)1arctan 1x y x+=-; (3)e 0x yxy -=; (4)24ln y y x +=.解 (1)111d (lnsin )d (cos )d cot d 22222sin 2x x xy x x x x '==⋅⋅=; (2)2221(1)(1)1d d d 1(1)11()1x x y x x x x x x-++=⋅=+-++- (3)方程两边同时取微分,得d(e )d()0x yxy -=,2d de (d d )0x yy x x yy x x y y-⋅-+=, 整理得22d d xy y y x x xy-=+.(4)方程两边同时取微分,得312d d 4d y y y x x y+=, 整理得324d d 21x yy x y =+.12.利用微分求近似值:(1)sin3030︒'; (2解 (1)设()sin f x x =,则0π306x ︒==,π30360x '∆==,()cos f x x '=.11 / 11 000sin3030()()()f x x f x f x x ︒''=+∆≈+∆πππsincos 0.507666360=+⋅≈ (2)设()f x =064x =,1x ∆=,561()6f x x -'=.000()()()f x x f x f x x '=+∆≈+∆5611(64)12 2.00526192-⋅=+≈ 13.已知单摆的振动周期2T =2980cm/s g =,l 为摆长(单位为cm ),设原摆长为20cm ,为使周期T 增大0.05s ,摆长约需加长多少?解由2T =224πgT l =,02T =0.05s T ∆=,22πgT l '=. 所以027d 0.050.050.05 2.23cm 2ππgT l l l T '∆≈=⋅∆=⋅===≈, 即摆长约需加长2.23cm .。
导数与微分真题答案及解析
导数与微分真题答案及解析一、基础概念在微积分中,导数与微分是非常重要的概念。
导数描述了函数在某一点的变化率,而微分则描述了函数在某一点附近的局部变化情况。
了解导数与微分的概念对于解决数学问题至关重要,下面就是一些导数与微分的真题及其答案解析。
二、导数计算真题1. 求函数f(x) = 3x^2 - 2x + 1的导数。
解析:根据导数的定义,可以使用求导法则来计算导数。
对于多项式函数f(x) = ax^n + bx^m + cx^l + ...,其导数可以通过对每一项求导后再相加的方式得到。
根据此法则,对于f(x) = 3x^2 - 2x + 1,求导后得到f'(x) = 6x - 2。
2. 求函数f(x) = sin(2x)的导数。
解析:根据导数的链式法则,对于复合函数f(g(x)),其导数可以通过对外层函数求导后再乘以内层函数的导数得到。
对于f(x) = sin(2x),将外层函数设为f(u) = sin(u),内层函数设为g(x) = 2x,则f'(x) = f'(g(x)) * g'(x) = cos(2x) * 2 = 2cos(2x)。
三、微分计算真题1. 求函数f(x) = e^x的微分。
解析:对于指数函数f(x) = e^x,其微分可以通过导数乘以微小变化量dx的方式得到。
由于f'(x) = e^x,所以微分df = f'(x) * dx = e^x * dx。
2. 求函数f(x) = ln(x)的微分。
解析:对于对数函数f(x) = ln(x),其微分可以通过导数除以x的方式得到。
由于f'(x) = 1/x,所以微分df = f'(x) / x = 1 / (x * dx)。
四、综合计算真题1. 求函数f(x) = (x^2 + 1) / (x - 1)在点x = 2处的导数和微分。
解析:首先,求导数。
利用求导法则,对于f(x) = (x^2 + 1) / (x - 1),可以通过分子分母求导再计算商的导数的方式来求得导数。
高等数学导数及微分练习题
作业习题1、求下列函数的导数。
(1)223)1(-=x x y ; (2)xxy sin =; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)xx x y )1(+=。
2、求下列隐函数的导数。
(1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。
3、求参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy与二阶导数22dx yd 。
4、求下列函数的高阶导数。
(1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。
5、求下列函数的微分。
(1))0(,>=x x y x ; (2)21arcsin xx y -=。
6、求双曲线12222=-by a x ,在点)3,2(b a 处的切线方程与法线方程。
7、用定义求)0(f ',其中⎪⎩⎪⎨⎧=,0,1sin )(2xx x f .0,0=≠x x 并讨论导函数的连续性。
作业习题参考答案:1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222⋅-+-= )37)(1(222--=x x x 。
(2)解:2sin cos )sin (x xx x x x y -='='。
(3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=')cos sin (bx b bx a e ax +=。
(4)解:][1])[ln(222222'++++='++='a x x a x x a x x y])(211[1222222'+++++=a x a x a x x]2211[12222x ax ax x ⋅++++=]1[12222ax x ax x ++++=221ax +=。
导数与微分习题及答案
第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。
C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 • 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x ) C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.210. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在 x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i= f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。
(完整版)导数与微分习题及答案
第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆0 2.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim( )A .()0x f '-B .()0x f -'C .()0x f 'D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dxdy( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){}x f x f e x f ''+'29.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( )A .2=a ,1=bB . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数 12.已知()()[]x g f x F =,在0x x =处可导,则( ) A .()x f ,()x g 都必须可导 B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( )A .211x +-B .211x + C .221x x +- D . 221x x +14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( )A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在 16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim。
微积分高中练习题及讲解
微积分高中练习题及讲解微积分基础练习题1. 导数的概念和计算题目:求函数 \( f(x) = 3x^2 - 2x + 1 \) 在 \( x = 2 \) 处的导数。
解答:\[f'(x) = \frac{d}{dx}(3x^2 - 2x + 1) = 6x - 2\]当 \( x = 2 \) 时,\( f'(2) = 6 \times 2 - 2 = 10 \)。
2. 复合函数的导数题目:若 \( u(x) = x^3 \) 且 \( v(x) = \sin(x) \),求\( (u \cdot v)' \)。
解答:\[(u \cdot v)' = (x^3 \cdot \sin(x))' = u'(x) \cdot v(x) + u(x) \cdot v'(x) = 3x^2 \cdot \sin(x) + x^3 \cdot \cos(x) \]3. 链式法则题目:求 \( y = (x^2 + 1)^3 \) 的导数。
解答:设 \( u = x^2 + 1 \),则 \( y = u^3 \)。
\[y' = (u^3)' = 3u^2 \cdot u' = 3(x^2 + 1)^2 \cdot (2x) =6x(x^2 + 1)^2\]4. 积分的概念和计算题目:计算定积分 \( \int_{0}^{1} x^2 dx \)。
解答:\[\int_{0}^{1} x^2 dx = \left[ \frac{x^3}{3} \right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}\]5. 微分方程题目:解微分方程 \( y' + 2y = e^{-x} \),其中 \( y(0) = 1 \)。
解答:这是一个一阶线性微分方程。
首先求解齐次方程 \( y' + 2y = 0 \),得到 \( y_h(x) = Ce^{-2x} \)。
(完整版)第二章导数与微分部分考研真题及解答
第二章 导数与微分 2.1导数的概念01.1)设f (0)=0,则f (x )在点x =0可导的充要条件为 ( B )(A )01lim(1cosh)h f h →-存在 (B )01lim (1)h h f e h →-存在 (C )01lim (sinh)h f h h →-存在 (D )01lim [(2)()]h f h f h h→-存在03.3) 设f (x )为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x =0处左极限不存在. (B) 有跳跃间断点x =0.(C) 在x =0处右极限不存在. (D) 有可去间断点x =0. [ D ] 03.4) 设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在x =1处连续,则0)1(=ϕ是f (x )在x =1处可导的 [ A ](A) 充分必要条件. (B )必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. 05.12)设函数n nn xx f 31lim )(+=∞→,则f (x )在),(+∞-∞内 [ C ](A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. 05.34) 以下四个命题中,正确的是 [ C ] (A ) 若)(x f '在(0,1)内连续,则f (x )在(0,1)内有界. (B) 若)(x f 在(0,1)内连续,则f (x )在(0,1)内有界. (C) 若)(x f '在(0,1)内有界,则f (x )在(0,1)内有界. (D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. (取f (x )=x1,x x f =)(反例排除) 06.34) 设函数()f x 在x =0处连续,且()22lim1n f h h→=,则 ( C )(A )()()'000f f -=且存在(B)()()'010f f -=且存在(C)()()'000f f +=且存在 (D)()()'010f f +=且存在07.1234) 设函数f (x )在x =0处连续,下列命题错误的是: ( D )(反例:()f x x =)(A ) 若0()limx f x x →存在,则f (0)=0. (B) 若0()()lim x f x f x x→+-存在,则f (0)=0.(C) 若0()lim x f x x →存在,则(0)f '存在. (D) 若0()()lim x f x f x x→--存在,则(0)f '存在04.2) 设函数()f x 在(,-∞+∞)上有定义, 在区间[0,2]上, 2()(4)f x x x =-, 若对任意的x 都满足()(2)f x k f x =+, 其中k 为常数.(Ⅰ)写出()f x 在[2,0]-上的表达式; (Ⅱ)问k 为何值时, ()f x 在0x =处可导. 【详解】(Ⅰ)当20x -≤<,即022x ≤+<时,()(2)f x k f x =+2(2)[(2)4](2)(4)k x x kx x x =++-=++.(Ⅱ)由题设知 (0)0f =.200()(0)(4)(0)lim lim 40x x f x f x x f x x+++→→--'===-- 00()(0)(2)(4)(0)lim lim 80x x f x f kx x x f k x x ---→→-++'===-.令(0)(0)f f -+''=, 得12k =-. 即当12k =-时, ()f x 在0x =处可导.2.2导数的运算法则06.2)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C](A )ln31- (B )ln31-- (C )ln21--(D )ln21-03.3) 已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 64a .03.3) 设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x =0处连续,则λ的取值范围是2>λ. 04.1) 曲线y=ln x 上与直线1=+y x 垂直的切线方程为 1-=x y .04.4) 设1ln arctan 22+-=x xxe e e y ,则1121+-==e e dx dy x .05.2) 设xx y )sin 1(+=,则π=x dy=dx π- .09农)设2()ln(4cos 2)f x x x =+,则()8f π'=41π+ 10.2)已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加,则当12cm l =,5cm w =时,它的对角线增加速率为3cm/s2.3高阶导数06.34) 设函数()2f x x =在的某领域内可导,且()()(),21f x f x e f '==,则()2f '''=32e(复合求高阶导) 07.234)设函数1,23y x =+则()(0)n y =12(1)!().33n n n - 10.2)函数ln(12)y x =-在0x =处的n 阶导数()(0)n y =2(1)!n n --2.4隐函数导数 由参数方程确定的函数的导数 01.2)设函数()y f x =由方程2cos()1x ye xy e +-=-所确定,则曲线()yf x =在点(0,1)处的法线方程为220x y -+=03.2) 设函数y =f (x )由方程4ln 2y x xy =+所确定,则曲线y =f (x )在点(1,1)处的切线方程是x-y =0 .08.1)曲线()sin ln()xy y x x +-=在点(0,1)处的切线方程是1y x =+02.1)已知函数()y y x =由方程2610ye xy x ++-=确定,则(0)y ''= -209.2) 设()y y x =是方程1yxy e x +=+确定的隐函数,则202|x dy dx== -306.2) 设函数()y y x =由方程1yy xe =-确定,则x dy dx==e-02.2)已知曲线的极坐标方程是1cos r θ=-,求曲线上对应于6πθ=处的切线与法线的直角坐标方程.07.2) 曲线2cos cos ,1sin x t t y t⎧=+⎨=+⎩上对应于4t π=03.2) 设函数y =y (x )由参数方程)1(,21ln 2112>⎪⎩⎪⎨⎧=+=⎰+t du u e y t x t u所确定,求.922=x dx y d【详解】由t et t t e dt dy t ln 2122ln 21ln 21+=⋅+=+,t dtdx4=,得,)ln 21(24ln 212t e t t et dtdx dt dy dx dy +=+== 所以 dtdx dx dy dt d dx y d 1)(22==t t t e 412)ln 21(122⋅⋅+-⋅ =.)ln 21(422t t e+-当x =9时,由221t x +=及t >1得t =2, 故.)2ln 21(16)ln 21(42222922+-=+-===et t edx y d t x 07.2) 已知函数f (u )具有二阶导数,且(0)1f '=,函数y =y (x )由方程11y y xe --=所确定,设(ln sin )z f y x =-,求2002,.x x dzd z dxdx ==【详解】(ln sin )(cos )dz y f y x x dx y''=-⋅-,22222(cos )(sin )d z y y y y f x f x dx y y ''''-'''=⋅-+⋅+ 在11y y xe--=中, 令x = 0 得y =1 . 而由11y y xe --=两边对x 求导得110y y y e xe y --''--=再对x 求导得 111210y y y y y ey e y xe y xe y ----'''''''----=将x =0, y =1代入上面两式得 (0)1,(0) 2.y y '''== 故(0)(00)0,x dz f dx='=-=202(0)(21) 1.x d z f dx ='=⋅-=10.2)设函数()y f x =由参数方程22()x t t y t ψ⎧=+⎨=⎩,(1)t >-所确定,其中()t ψ具有2阶导数,且5(1),2ψ=(1)6,ψ'=已知2234(1)d y dx t =+,求函数()t ψ.2.5微分及其应用02.2)设函数()f u 可导,2()y f x =当自变量x 在1x =-处取增量0.1x ∆=-时,相应的函数增量y ∆的线性主部为0.1,则(1)f '= ( D ) (A )-1. (B )0.1. (C )1. (D )0.5.06.1234) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 [ A ] (A )0.dy y <<∆ (B )0.y dy <∆< (C) 0.y dy ∆<<(D )0.dy y <∆<弹性07.34)设某商品的需求函数为1602Q P =-,其中Q ,P 分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是 ( D ) (A ) 10. (B) 20. (C) 30. (D) 40.01.34)设生产函数为,Q AL K αβ=其中Q 是产出量,L 是劳动投入量,K 是资本投入量,而,,A αβ均为大于零的参数,则当1Q =时K 关于L 的弹性为αβ-09.3) 设某产品的需求函数为Q=Q(P),其对应价格P 的弹性ζ=0.2,则当需求量为1000件时,价格增加1元会使产品收益增加 12000 元10.3)设某商品的收益函数为()R p ,收益弹性为31p +,其中p 为价格,且(1)1R =,则()R p =313p pe-02.4)设某商品需求量Q 是价格p 的单调减少函数:(),Q Q p =其需求弹性2220.192p pη=>-(1)设R 为总收益函数,证明(1)dRQ dpη=-.(2)求6p =时,总收益对价格的弹性,并说明其经济意义.04.34) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量.(I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=P P E d ,得P = 10. 当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.。
导数与微分的实际问题
导数与微分的实际问题在数学中,导数与微分是一对密不可分的概念。
它们是解决实际问题中的重要工具,广泛应用于物理、经济学、生物学等领域。
本文将探讨导数与微分在实际问题中的应用,包括最优化、速度与加速度、近似计算等方面。
一、最优化问题在实际问题中,我们经常需要找到一个函数的极大值或者极小值。
导数与微分为我们提供了解决这类问题的方法。
考虑一个函数f(x),我们可以通过求解f'(x)=0来找到该函数的极值点。
当导数为正时,函数呈现增长趋势;当导数为负时,函数呈现下降趋势。
通过求解导数为零的方程,我们可以得到函数的驻点,即潜在的极值点。
例如,在经济学中,我们希望通过最大化效用函数来确定最佳的消费组合。
我们可以将效用函数对商品数量进行微分,得到边际效用函数,然后求解边际效用函数等于零的方程,从而找到消费者理性选择的最优解。
二、速度与加速度导数与微分在物理学中有着广泛的应用。
考虑一个物体在时间t上的位置函数x(t),其导数x'(t)表示物体在某一时刻的速度。
同样地,二阶导数x''(t)表示物体在某一时刻的加速度。
在运动学中,导数与微分为我们提供了描述物体运动状态的工具。
通过对位置函数进行微分,我们可以得到速度函数,进而计算物体在不同时刻的瞬时速度。
同样地,通过对速度函数进行微分,我们可以得到加速度函数,进而计算物体在不同时刻的瞬时加速度。
三、近似计算导数与微分还可以用于近似计算。
在实际问题中,我们经常遇到需要进行近似计算的情况。
例如,我们希望在某一点附近对一个复杂函数进行线性近似,以便更轻松地进行计算。
利用微分的概念,我们可以得到一个函数在某一点的切线方程,进而得到该函数在附近点的近似值。
这种近似计算方法在物理学中的应用尤为广泛。
例如,在力学中,我们可以通过对受力函数进行微分,得到某一点附近的线性近似函数,从而更容易计算物体所受的力。
总结:导数与微分在解决实际问题中发挥了重要的作用。
大一高等数学教材答案详解
大一高等数学教材答案详解在大一高等数学教材中,学生们经常遇到各种各样的问题和习题。
为了更好地帮助学生理解和掌握数学知识,本文将为大一高等数学教材中一些重要章节的习题答案进行详解。
一、函数与极限1. 习题:求函数f(x) = 3x^2 - 2x + 1的极限lim(x→2) f(x)。
解答:首先,将x代入函数中得到f(x) = 3(2)^2 - 2(2) + 1 = 9。
由于当x趋近于2时,f(x)也趋近于9,所以lim(x→2) f(x) = 9。
二、导数与微分1. 习题:对函数f(x) = x^3 - 4x^2 + 3x + 1求导。
解答:根据导数的定义,将幂次降低1,并乘以原幂次的系数。
所以f'(x) = 3x^2 - 8x + 3。
三、积分与应用1. 习题:求函数f(x) = 2x的不定积分∫f(x)dx。
解答:由于f(x) = 2x是一个简单的线性函数,其不定积分等于原函数再加上常数。
所以∫f(x)dx = x^2 + C,其中C为任意常数。
四、级数与序列1. 习题:判断级数∑(n=1,∞) 1/n是否收敛。
解答:这是一个著名的调和级数,根据调和级数的性质,该级数发散。
五、多元函数与偏导数1. 习题:对函数f(x, y) = x^2 + y^2求关于x的偏导数∂f/∂x。
解答:对x求偏导数时,将y视为常数,所以∂f/∂x = 2x。
通过以上习题的详细解答,相信大家对大一高等数学教材中的一些重要知识点有了更深入的理解。
希望这些答案详解能够帮助到各位同学,在学习数学的过程中更加得心应手。
当然,数学的学习需要不断的练习和思考,通过理论与实践的结合,我们能够更好地掌握数学知识,提高数学能力。
总结起来,本文针对大一高等数学教材中的重要章节,给出了一系列习题的详细解答。
希望这些解答能够帮助到大家,加深对数学知识的理解和应用。
数学是一门需要不断实践和思考的学科,只有通过实际操作,才能真正掌握其中的精髓。
导数与微分的应用练习题及解析
导数与微分的应用练习题及解析在微积分学中,导数和微分是重要的概念和工具,它们在很多实际问题中有着广泛的应用。
本文将通过一些经典的导数和微分应用练习题,为读者展示它们的具体运用,并给出相应的解析。
1. 题目:一个长方形的长和宽分别是x和y,且满足x+y=20。
求长方形面积的最大值。
解析:设长方形的长为x,宽为y,则由题意可知x+y=20。
长方形的面积为S=x*y。
我们的目标是求解长方形面积S的最大值,即求解关于x的函数S=f(x)的最大值。
由题意可知,我们可以将y表示为y=20-x,代入面积函数得到S=x*(20-x)=20x-x^2。
为了求解函数S的最大值,可以使用导数法。
对函数S关于x求导,得到S'=(20-2x)。
令S'=0,解得x=10。
再对x=10进行二阶导数检验得到S''=(-2),小于0。
所以x=10是S的极大值点。
将x=10代入S得到S=10*(20-10)=100。
因此,当长方形的长为10时,面积取得最大值100。
2. 题目:一个矩形的周长为12m,求解矩形面积的最大值。
解析:设矩形的长为x,宽为y,则由题意可知2x+2y=12,即x+y=6。
矩形的面积为S=x*y。
我们的目标是求解矩形面积S的最大值,即求解关于x的函数S=f(x)的最大值。
由题意可知,我们可以将y表示为y=6-x,代入面积函数得到S=x*(6-x)=6x-x^2。
同样地,为了求解函数S的最大值,可以使用导数法。
对函数S关于x求导,得到S'=(6-2x)。
令S'=0,解得x=3。
再对x=3进行二阶导数检验得到S''=(-2),小于0。
所以x=3是S的极大值点。
将x=3代入S得到S=3*(6-3)=9。
因此,当矩形的长为3m时,面积取得最大值9。
3. 题目:一个长方体的长、宽、高分别为x、y和z,且满足xyz=8。
求长方体表面积的最小值。
解析:长方体的表面积为S=2(xy+xz+yz)。
经济数学(导数与微分习题与答案)
第三章 函数的导数与微分习题 3-11. 根据定义求下列函数的导数: (1)x y 1=(2)x y cos =(3)b ax y +=(a ,b 为常数) (4)x y =解(1)因为00()()'limlimx x y f x x f x y x x ∆→∆→∆+∆-==∆∆=x x x x x ∆-∆+→∆11lim 0=01lim ()x x x x ∆→-+∆=21x -所以21y x '=-. (2) 因为00cos()cos 'limlimx x y x x x y x x ∆→∆→∆+∆-==∆∆02sin()sin22 limsin x x xx x x ∆→∆∆-+==-∆所以sin y x '=-(3) 因为00[()][]'limlimx x y a x x b ax b y x x ∆→∆→∆+∆+-+==∆∆=x x a x ∆∆→∆0lim=a所以y a '=(4)因为00'limlimx x y y x x ∆→∆→∆-==∆∆=)(lim0x x x x xx +∆+∆∆→∆lim x ∆→==所以y '=.2. 下列各题中假定)(0'x f 存在, 按照导数的定义观察下列极限, 指出A 表示什么?(1) A x x f x x f x =∆-∆-→∆)()(lim 000(2) A x x f x =→)(lim 0(其中0)0(=f 且)0('f )存在)(3) A x f tx f x =-→)0()(lim 0(其中)0('f 存在)(4) Ah h x f h x f h =--+→)()(lim000解(1)因为x x f x x f x ∆-∆-→∆)()(lim000=x x f x x f x ∆--∆--→∆)()(lim 000=)(0'x f - 故)(0'x f A -=. (2) 因为x x f x )(lim→=0)0()(lim 0--→x f x f x =)0('f故)0('f A =. (3) 因为x f tx f x )0()(lim-→=tx f tx f t x )0()0(lim 0-+→=)0('tf故)0('tf A =.(4) 因为000()()limh f x h f x h h →+--00000000000()()()()lim[]()()()()lim lim ]h h h f x h f x f x h f x h hf x h f x f x h f x h h →→→+---=-+---=+-=)()(0'0'x f x f +=)(20'x f 故)(20'x f A =. 3.已知2,,x y x ⎧=⎨⎩11≥<x x , 求d d y x 解由已知易得当1<x 时, x y 2'=, 当1x >时, 1'=y 又1)1()(lim )1(1'--=+→+x f x f f x =11lim 1--+→x x x =11)1()(lim )1(1'--=-→-x f x f f x =11lim 21---→x x x =2)1()1(''-+≠f f即)1('f 不存在.故'2,()1,x f x ⎧=⎨⎩11><x x . 4. 如果f (x )为偶函数,且(0)f '存在,证明(0)0f '=.证由于f (x )为偶函数,所以f (-x ) = f (x ) 则0()(0)()(0)(0)limlim00x x f x f f x f f x x →-→---'==---- 0()(0)lim '(0)0t f t f t x f t →-=--=--故(0)0f '=.5.讨论下列函数在0=x 处的连续性和可导性:(1)21sin ,0,x y x ⎧⎪=⎨⎪⎩00=≠x x (2) cos y x = (3)2,,x y x ⎧=⎨-⎩00<≥x x 解(1) 因为()(0)'(0)lim0x f x f f x →-=- 2001sin1limlim sin 0x x x x x x x →→===所以函数21sin ,0,x y x ⎧⎪=⎨⎪⎩00=≠x x 在0=x 处可导,从而也连续.(2) 因为()(0)'(0)lim0x f x f f x →-=- 0cos cos 0limx x x→-=2002sin cos 12limlimx x xx xx→→--===所以函数cos y x =在x = 0处可导,从而也连续.(3)因为200lim ()lim 0(0)x x f x x f ++→→===00lim ()lim ()0(0)x x f x x f --→→=-==所以函数)(x f 在0=x 处连续.又因为2'00()(0)0(0)lim lim 000x x f x f x f x x +++→→--===--'00()(0)0(0)limlim 100x x f x f x f x x ---→→---===--- ''(0)(0)f f +-≠故'(0)f 不存在, 即函数)(x f 在0=x 不可导.6. 设函数2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,为使函数f (x ) 在x = 1处连续且可导,a ,b 应取什么值?解由题意,有11lim ()lim ()(1)(1)(1)x x f x f x f f f -+→→-+==⎧⎪⎨''=⎪⎩首先可得 a+b = 1 即b =1-a又因为211(1)lim 21x x f x --→-'==-11111(1)lim lim 11x x ax b ax a f a x x +++→→+-+--'===--所以a = 2 ,于是b = -1.故当a = 2, b = -1时,函数f (x ) 在x = 1处连续且可导.7.求曲线2x y =在点(-1,1)处的切线方程. 解因1'2,'2x y x y =-==-故曲线2x y =在点(-1,1)处的切线方程为12(1)y x -=-+即21y x =--.8*.设曲线f (x ) = x n 在点 (1, 1) 处的切线与x 轴的交点为(a n ,0), 求lim ()n n f a →∞.解因为1(1)n x f nx n ='==所以曲线()nf x x =在点(1, 1)处的切线方程为y -1 = n ( x -1)切线与x 轴的交点为1(1,0)n -,即11n a n =-从而1()(1)nn f a n =-习题 3-21 求下列函数的导数:(1)52423+-=x x y (2)x y xln 2= (3 )x x y sin 23= (4) 4tan 3-=x y (5) )32)(23(x x y -+=(6)x x x y ln 1ln +=(7) x x e y x 22+=(8) t ty cos 1sin 1++=解(1)x x y 4122'-=. (2)x x y x x2)2)(2(ln ln '+=. (3) x x x x y cos 2sin 632'+=. (4) x y 2'sec 3=.(5))3)(23()32(2'-++-=x x y =x 125--. (6)x xx x x x y 22'ln 1ln 1-+-==x x x x 22ln 1ln 1--.(7) 2'4222x x e x e x y x x -=-=42222x x xe e x x x --.(8)2')cos 1()sin )(sin 1()cos 1(cos t t t t t y t +-+-+==2cos sin 1(1cos )t t t +++.2. 求下列函数在给定点的导数:(1)xxe y =, 求0'|=x y (2)θθθρcos 21sin +=, 求0'|=θρ(3)553)(2x x x f +-=, 求)0('f 和)2('f . 解(1) 因为xx xe e y +=', 所以10|000'=+==e e y x(2) 因为'11sin cos sin sin cos 22θρθθθθθθθ=+-=+所以'211|sin cos 22222θπθπππρ==+=.(3) 因为x x x x f 52)5()5(3)(2'+---==x x 5253+- 所以53)0('-=f , 51)2('-=f . 3. 求21123(1)n x x nxx -++++≠L 的和.解注意到1()n n x nx -'=,有1212121123(1)11(1) (1).(1)n n nn n x x x nxx x x x n x nx x x +-+'⎛⎫-'++++=+++= ⎪-⎝⎭-++=≠-L L4. 求曲线2sin x x y +=上横坐标为0=x 的点处的切线方程和法线方程.解当0=x 时,0=y , 且有x x y 2cos '+=则00cos |0'+==x y =1习题 3-31. 求下列函数的导数:(1)223x y -=(2)32x e y =(3)x y arcsin = (4))ln(22x a x y ++= (5)2cos ln x e y -= (6)x y 1arctan =解(1))4(23212'x x y --==.(2) 33'2222(6)6x xy e x x e ==.(3)x x y 2111'-==)1(21x x -.(4) y '=+=. (5) 22222'1(sin )(2)2tan cos x x x x x y e e x xe e e -----=--=. (6) )1(11122'x x y -+==211x +-.2. 求下列函数的导数: (1)x ey x 2cos 2-=(2))]ln[ln(ln x x y =(3)nx x y n cos sin =(4)x x y 22ln 2-= 解(1)'221()cos 2(sin 2)22x xy e x e x --=-+-⋅()21cos 24sin 22xe x x -=-+.(2)[]1'ln[ln(ln )]ln(ln )ln y x x x -=+⋅. (3) nx x x n y n cos cos sin 1'-=n nx x n)sin (sin -+()1sin cos cos sin sin n n x x nx x nx -=-sin cos(1)n n x n x =+.(4) x x y 2'ln 22-=)ln 221(22x x -+x x 1)ln 2(- =xx 2ln 22-x xx 2ln 2ln --.3. 设f 可导,求下列函数的导数d d yx :(1))(e x x e f y +=(2))(sin 2cos 2x f x y -= (3)na x f y )]([2+=(4))]ln ([x x f f y +=(5))arctan 1(x xf ey +=解(1)()'1dy()d x e x e f e x e ex x -=++.(2)'2d 2sin 2(sin )d yx f x x=--x x cos sin 2.=x x f x 2sin )(sin 2sin 22'--2sin 22(sin )x f x '⎡⎤=-+⎣⎦.(3) 212d [()]()2d n yn f x a f x a xx -'=+⋅+⋅1222()()n nx f x a f x a -'⎡⎤=+⋅+⎣⎦.(4) []d 1(1)(ln )(ln )dx y f f x x f x x x ''=+⋅+⋅+. (5) 1(arctan )d d f x x y e x+=)arctan 1('x x f +)111(22x x ++- 1(arctan )2211arctan (1)f x xf x e x x x +⎛⎫'=-+ ⎪+⎝⎭.4设2ln(1), >0()0, 0 , ().sin , 0x x f x x f x x x x ⎧⎪+⎪⎪'==⎨⎪⎪<⎪⎩求解当x > 0时,[]1()ln(1)1f x x x ''=+=+ 当x < 0时,222sin sin 2sin ()x x x xf x x x '⎛⎫-'== ⎪⎝⎭当x = 0时,由0()(0)ln(1)(0)lim lim 0x x f x f x f x x +++→→-+'==-10lim ln(1)ln 1x x x e +→⎡⎤=+==⎢⎥⎢⎥⎣⎦22000sin ()(0)sin (0)lim =lim lim 10x x x xf x f x x f x x x ----→→→-⎛⎫'=== ⎪-⎝⎭得(0)1f '=.故221, 01()1, 0sin 2sin , 0x x f x x x x x x x ⎧<⎪+⎪⎪'==⎨⎪-⎪<⎪⎩ .5. 设2()1 ()()ln f x y a f x f x a '==且,证明2y y '=. 证由复合函数的求导法则,得2()ln 2()()fx y a a f x f x ''=⋅⋅将1()()ln f x f x a '=代入上式, 可得22()()1ln 2()=22()ln fx f x y a a f x a yf x a '=⋅⋅⋅=即2y y '=.6. 设函数f 可导,且y = f (a + t ) -f (a - t ), 求0d d t yt =.解因为d ()()()()d yf a t a t f a t a t t ''''=+⋅+--⋅- ()()f a t f a t ''=++- 故0d ()()2()d t yf a f a f a t ='''=+=.*7 设()lim xx x t f t t x t →∞+⎛⎫= ⎪-⎝⎭,求()f t '. 解因为1lim lim 1xxx x t x t x t x t x →∞→∞⎛⎫+ ⎪+⎛⎫= ⎪ ⎪-⎝⎭ ⎪-⎪⎝⎭2lim 1 lim 1xtx t xt x t e x e e t x →∞-→∞⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭所以2()lim lim xxt x x x t x t f t t t t e x t x t →∞→∞++⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪--⎝⎭⎝⎭故22()()(12)t tf t t e e t ''=⋅=+.习题 3-41. 求下列函数的二阶导数:(1)x xe y 2=(2))1ln(2x y -= (3)x y arctan =(4))21(sin 2x y +=(5))1ln(2x x y ++=(6)2(1)arctan y x x =+解(1)2222(12)xx x y exe e x '=+=+2222(12)24(1)x x x y e x e e x ''=⋅++⋅=+.(2) 因为)1ln(2x y -==)1ln()1ln(x x ++- 所以='y x x --+1111=''y 22222112(1)(1)(1)(1)x x x x -+-=-+--.(3) ='y 211x +, =''y 22)1(2x x +-.(4)()2sin(12)cos(12)22sin 212)y x x x '=++⋅=+ ()()2cos21248cos212y x x ''=+⋅=+.(5)='y =()3221x y x''==-+.(6)='y 2211arctan 2x x x x +++=1arctan 2+x x =''y 22"2arctan .1x y x x=++2. 已知)(''x f 存在,且0)(≠x f ,求22d d yx .(1))(2a x f y +=(2))](ln[x f y = 解(1) '22d ()22()d yf x a x xf x a x '=+⋅=+2'222d 2()2()2d y f x a xf x a x x ''=+++⋅2222()4()f x a x f x a '''=+++.(2) 'd 1()d ()y f x x f x =2'''''''2222d ()()()()()()[()]d ()()y f x f x f x f x f x f x f x x f x f x --==.3. 设f (x ) 的n 阶导数存在,求[]()()n f ax b +. 解因[]()()()f ax b f ax b a af ax b '''+=+⋅=+[][]2()()()f ax b af ax b a f ax b ''''''+=+=+………………………………故[]()()()()n n n f ax b a f ax b +=+.4. 验证函数x e y x sin =满足关系式022'''=+-y y y . 解因x e y x sin '=x e xcos +''sin x y e x =x e x cos +x e x cos +x e x sin -=x e x cos 2故'''22y y y -+=x e x cos 2x e x sin (2-)cos x e x +x e x sin 2+=0. 5.求下列函数的n 阶导数的一般表达式:(1)ln y x x = (2) 3xy =解 (1) 因(4)23112ln 1,, , ,y x y y y x x x ''''''=+==-=L故()1(1)(2)!(2)n n n n yn x --⋅-=≥.(2)23ln 3,3ln 3, x x y y '''=⋅=⋅L故()3(ln 3)n x ny =⋅.*6 设22411x y x -=-,求y (100). 解2224133114411211x y x x x x -⎛⎫==+=+- ⎪---+⎝⎭ 而(100)(100)1011011100!1100!, 11(1)(1)x x x x ⎛⎫⎛⎫==⎪ ⎪-+-+⎝⎭⎝⎭(100)10110110110121013100!100! 2(1)(1)3100!(1)(1) .2(1)y x x x x x ⎡⎤=-⎢⎥-+⎣⎦⎡⎤⨯+--=⎢⎥-⎣⎦故习题 3-51. 求由下列方程确定的隐函数的导数'y : (1)y x e xy +=(2))arctan(2xy xy x =+ (3)1=-y xe y (4)033=-+a y x (a 为常数) 解(1)方程两边同时对x 求导, 得)1(''y e xy y y x +=++ 解方程得='y yx y x e x y e ++--.(2) 方程两边同时对x 求导,得=++'2xy y x 22'1y x xy y ++ 解方程得3222222xy x y y x y ++'=-.(3) 方程两边同时对x 求导, 得0''=--y xe e y y y解方程得='y y yxe e -1.(4) 方程两边同时对x 求导, 得033'22=+y y x解方程得='y 22y x -.2. 求曲线2ln ()cot 02yy x x e π-+-=在点(e , 1)处的切线方程。
导数与微分习题及答案
导数与微分习题及答案第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。
C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 ? 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x )C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.10. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i=f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学练习题 第二章 导数与微分第一节 导数概念一.填空题 1.若)(0x f '存在,则xx f x x f x ∆-∆-→∆)()(lim000= )(0x f '-2. 若)(0x f '存在,hh x f h x f h )()(lim000--+→= )(20x f ' .000(3)()limx f x x f x x∆→+∆-∆=03()f x '.3.设20-=')(x f , 则=--→)()2(lim)000x f x x f xx 414.已知物体的运动规律为2t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点(3π,21)处的切线方程为03123=--+πy x ,法线方程为0322332=-+-πy x 6.用箭头⇒或⇏表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ⇔可导<≠⇒| 连续 <≠⇒ 极限存在。
二、选择题1.设0)0(=f ,且)0(f '存在,则xx f x )(lim0→= [ B ](A ))(x f ' ( B) )0(f ' (C) )0(f (D) 21)0(f2. 设)(x f 在x 处可导,a ,b 为常数,则xx b x f x a x f x ∆∆--∆+→∆)()(lim 0 = [ B ](A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2ba +)(x f ' 3. 函数在点0x 处连续是在该点0x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要4.设曲线22-+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ] (A )(0,1) ( B) (1, 0) (C) ( 0,0) (D) (1,1)5.设函数|sin |)(x x f =,则 )(x f 在0=x 处 [ B ] (A )不连续。
(B )连续,但不可导。
(C)可导,但不连续。
(D )可导,且导数也连续。
三、设函数⎩⎨⎧>+≤=11)(2x b ax x x x f 为了使函数)(x f 在1=x 处连续且可导,a ,b 应取什么值。
解:由于)(x f 在1=x 处连续, 所以 )1()1(1)1(f b a f f =+===+-即1=+b a又)(x f 在1=x 处可导,所以2'11(1)lim 21x x f x --→-==-'1()(1)lim 1x ax b a b f ax ++→+-+==-有 2=a , 1-=b 故 求得 2=a , 1-=b 四、如果)(x f 为偶函数,且)0(f '存在,证明)0(f '=0。
解:由于)(x f 是偶函数, 所以有 )()(x f x f -=0()(0)(0)lim 0x f x f f x →-'=-0()(0)lim 0x f x f x →--=-()(0)lim (0)x tt f t f f t=→-'==--令 即 0)0(2='f , 故 0)0(='f五、 证明:双曲线2a xy =上任一点处的切线与两坐标轴构成三角形的面积为定值。
解:222,xa y x a y -='=在任意),(00y x 处的切线方程为 )(02020x x x a y y --=-则该切线与两坐标轴的交点为:)2,0(02x a 和)0,2(0x所以切线与两坐标轴构成的三角形的面积为20222221a x x a A =⋅⋅=,(a 是已知常数) 故其值为定值.第二节 求导法则一、填空题1.x x y sin )sec 2(+=, y '=1cos 2tan2++x x ; x e y sin -=, y '=x xe sin cos --.2.)2cos(xe y =,y '= 2sin(2)x xe e -; y =x x2sin ,y '=22sin 2cos 2x x x x - 3.2tan ln θρ=,ρ'=θcsc ; =r 2ln log 2+x x , r '=e x 22log log +4.)tan ln(sec t t w +=, w '=t sec . 2arccos()y x x =+,y '=5. ='+)1(2x 21xx +; (c x++21 )'=21xx + .6. ]2tan [ln 'x = ; ( c x x +++)1ln(2)'=211x+ .二、选择题 1.已知y=xxsin ,则 y '= [ B ] (A )2cos sin x x x x - (B) 2sin cos x x x x - (C) 2sin sin xx x x - (D)x x x x sin cos 23- 2. 已知y=xxcos 1sin + ,则 y '= [ C ] (A )1cos 21cos +-x x (B) 1cos 2cos 1-+x x (C) x cos 11+ (D) xx cos 11cos 2+-3.已知xe y sec =,则y '=[ A ](A )xxxe e e tan sec (B) x xe e tan sec(C) x e tan (D)xx e e cot4.已知)1ln(2x x y ++=,则y '=[ A ] (A )211x + (B) 21x + (C)21x x + (D) 12-x 5.已知xy cot ln ==,则4|π='x y =[ D ](A )1 (B )2 (C )2/1- (D) 2- 6.已知xx y +-=11,则y '=[ B ] (A ) 2)1(2+x (B) 2)1(2+-x (C) 2)1(2+x x (D) 2)1(2+-x x三、计算下列函数的导数:(1) y =+ (2) )tan(ln x y =解:2311(ln )3y x x -''=+ 解:xx y 1)(ln sec '2= 23111(ln )33y x x x -'=+)(ln sec 12x x= (3) v e u 1sin 2-= (4 ) )(ln sec 3x y =解:⋅-⋅=-v eu v1sin 2('1sin 2))1(1cos 2v v -⋅ 解:⋅=)sec(ln )(ln sec 3'2x x y xx 1)tan(ln ⋅v e v v 1sin 222sin 1-= )tan(ln )(ln sec 33x x x=(5) ln(y x =+ (6) 1arctan 1xy x-=+解:'y x =+ 解:211()111()1xy x xx-''=-+++=211x-=+=四、设)(x f 可导,求下列函数y 的导数dxdy (1))()(x f xe ef y =(2))(cos )(sin 22x f x f y +=解:)()(''x f x x e e e f y ⋅⋅= 解:x x x f y cos sin 2)(sin ''2= )(')()(x f e e f x f x ⋅⋅+ 2'(cos )(2cos (sin ))f x x x +⋅-=)()(')('[)(x x x x f e f x f e f e e+ =22sin 2('(sin )'(cos ))x f x f x -(3) )](arctan[x f y = (4))](sin[)(sin x f x f y += 解:)(')(11'2x f x f y ⋅+=解:+=x x f y cos )(sin '')('))(cos(x f x f ⋅ =)(1)('2x f x f + +=)(sin 'cos x x ))(cos()('x f x f第三节 隐函数及由参数方程所确定的函数的导数一、填空题1.设yxe y +=1,则y '=ye y-2 .2. 设)tan(r r +=θ,则r '=)(csc 2r +-θ .3. 设x yy x arctan ln22=+,则y '=yx y x -+ 。
4.设⎩⎨⎧==te y t e x t t cos sin ,则dx dy =t t tt cos sin sin cos +- ,3|π=t dx dy =23- 。
二、选择题1. 由方程0sin =+yxe y 所确定的曲线)(x y y =在(0,0)点处的切线斜率为 [ A ] (A )1- (B )1 (C )21 (D )21- 2.设由方程22=xy 所确定的隐函数为)(x y y =,则dy =[ A ](A )dx x y 2-(B )dx x y 2 (C )dx x y - (D )dx xy3. 设由方程0sin 21=+-y y x 所确定的隐函数为)(x y y =,则dxdy=[ A ] (A )y cos 22- (B )y sin 22+ (C )y cos 22+ (D )xcos 22-4. 设由方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 所确定的函数为)(x y y =,则在2π=t 处的导数为[ B ](A )1- (B )1 (C )0 (D )21-5.设由方程arctan x y t ⎧⎪=⎨=⎪⎩)(x y y =,则=dx dy [ B ](A(B )1t(C )12t ; (D )t .三、求下列函数的导数dy dx1.222333x y a += , 2. 33cos sin x a ty a t ⎧=⎨=⎩解:方程两边同时对x 求导,得 解: 223sin cos tan 3cos sin a t ty t a t t'==-- 113322'033x y y --+=y '= 3.2310xy x y ye +++= 4. x e x x y -=1sin解:方程两边同时对x 求导,得 解:)1ln(41sin ln 21ln 21ln x e x x y -++=322230xxy xy x y y ye y e '''++++= )1(4sin 2cos 21'1xxe e x x x y y --++=322213xxxy ye y x y e +'=-++))1(4cot 221(1sin 'x xxe e x x e x x y --+-=四、求曲线⎩⎨⎧=--=+-0201sin 3θθθy e x x 在0=θ处的切线方程,法线方程 解: θθd dy )23(2+=0cos sin =+⋅-θθθd e dx e dx x xθθθsin 1cos x x e d e dx -=∴, 从而 θθθcos )sin 1)(23(2x x e e dx dy -+=当 0,1,0=-==y x θ,e dxdy20==θ故 切线方程为)1(2+=x e y 法线方程为)1(21+-=x ey第四节 高阶导数一、填空题1.设φφcos =r ,则r '=φφφsin cos - , r ''=φφφcos sin 2-- .2.设)1ln(2x x y ++=,则y '=211x +,y ''=2/32)1(x x+-3若)(2t f y =, 且)(t f '' 存在,则dt dy =)('22t tf ,22dty d =)(''4)('2222t f t t f +4.设yxe y +=1,则y '=y e y -2 , y ''=32)2()3(y y e y -- 5.设⎩⎨⎧-==arctgtt y t f x )(,且2tdx dy =,则22dx y d =t t 412+。