高中数学竞赛_立体几何【讲义】
数学竞赛教案讲义立体几何
数学竞赛教案讲义-立体几何第一章:立体几何基础1.1 空间点、线、面的位置关系点、直线、平面的基本性质点与直线、直线与直线、直线与平面、平面与平面的位置关系1.2 立体几何的基本概念棱柱、棱锥、棱台、球的定义与性质底面、侧面、顶点的概念空间角、二面角的概念与计算第二章:空间几何图形2.1 棱柱直棱柱、斜棱柱的性质棱柱的面积、体积计算2.2 棱锥直棱锥、斜棱锥的性质棱锥的面积、体积计算2.3 棱台棱台的性质棱台的面积、体积计算2.4 球球的性质球的面积、体积计算第三章:立体几何中的线面关系3.1 直线与平面的关系直线与平面平行、直线在平面内的判定与性质直线与平面相交的性质3.2 直线与直线的关系平行线、相交线的性质异面直线、共面直线的性质3.3 平面与平面的关系平面与平面平行的判定与性质平面与平面相交的性质第四章:立体几何中的角与距离4.1 空间角线线角、线面角、面面角的定义与计算空间角的性质与计算方法4.2 距离点与点、点与直线、点与平面的距离计算直线与直线、直线与平面的距离计算第五章:立体几何的综合应用5.1 立体几何图形的放缩与旋转放缩与旋转的性质与方法放缩与旋转在立体几何中的应用5.2 立体几何中的定理与性质欧拉公式、施瓦茨公式等定理的应用立体几何中的重要性质与定理5.3 立体几何与解析几何的综合应用利用解析几何的知识解决立体几何问题立体几何与解析几何的相互转化第六章:立体几何中的立体角与对角线6.1 立体角立体角的定义与性质立体角的计算方法6.2 对角线多面体的对角线长度计算对角线与几何体的性质关系第七章:立体几何中的不等式与最值7.1 立体几何中的不等式利用立体几何图形性质证明不等式利用不等式解决立体几何问题7.2 立体几何中的最值问题利用几何方法求解最值问题利用代数方法求解最值问题第八章:立体几何中的视图与投影8.1 视图正视图、侧视图、俯视图的定义与性质利用视图研究几何体的性质8.2 投影平行投影、中心投影的性质利用投影解决立体几何问题第九章:立体几何中的定理与性质(续)9.1 立体几何中的定理与性质布雷特施奈德定理、莫恩定理等定理的应用立体几何中的其他重要性质与定理9.2 立体几何中的特殊几何体圆柱、圆锥、球台的性质与应用利用特殊几何体解决立体几何问题第十章:立体几何与实际应用10.1 立体几何在实际应用中的案例分析利用立体几何解决工程、物理、艺术等领域的问题立体几何在现实生活中的应用举例10.2 立体几何竞赛题解析分析历年数学竞赛中的立体几何题目讲解解题思路与方法,提高解题能力10.3 立体几何练习题与答案解析提供立体几何练习题,巩固所学知识分析练习题答案,讲解解题过程与思路第十一章:立体几何中的坐标计算11.1 空间点的坐标空间直角坐标系的建立点的坐标表示与运算11.2 空间向量向量的定义与运算向量与立体几何的关系11.3 空间几何体的坐标表示棱柱、棱锥、棱台、球的坐标表示利用坐标解决立体几何问题第十二章:立体几何中的向量计算12.1 向量的线性运算向量的加法、减法、数乘运算向量共线与垂直的判定与性质12.2 向量的数量积与向量积向量的数量积定义与性质向量的向量积定义与性质12.3 空间向量在立体几何中的应用利用向量计算空间角与距离利用向量解决立体几何中的线面关系问题第十三章:立体几何中的解析几何方法13.1 解析几何与立体几何的关系利用解析几何方法解决立体几何问题解析几何在立体几何中的应用举例13.2 参数方程与极坐标方程立体几何图形的参数方程表示利用参数方程与极坐标方程解决立体几何问题第十四章:立体几何中的不等式与最值(续)14.1 立体几何中的不等式问题利用不等式性质解决立体几何问题不等式在立体几何中的应用举例14.2 立体几何中的最值问题(续)利用几何方法求解最值问题利用代数方法求解最值问题第十五章:立体几何的综合与应用15.1 立体几何与其他数学学科的综合立体几何与代数、分析、概率等学科的关系立体几何在交叉学科中的应用15.2 立体几何在实际应用中的案例分析(续)立体几何在工程、物理、艺术等领域中的应用案例立体几何在其他领域中的应用举例15.3 立体几何竞赛题解析与练习题答案解析(续)分析历年数学竞赛中的立体几何题目讲解解题思路与方法,提高解题能力提供立体几何练习题,巩固所学知识分析练习题答案,讲解解题过程与思路重点和难点解析重点:理解并掌握立体几何的基本概念、立体几何图形、空间几何图形、立体几何中的线面关系、立体几何中的角与距离、立体几何中的立体角与对角线、立体几何中的不等式与最值、立体几何中的视图与投影、立体几何中的定理与性质、立体几何中的坐标计算、立体几何中的向量计算、立体几何中的解析几何方法、立体几何中的不等式与最值(续)、立体几何的综合与应用。
【高中数学竞赛专题大全】 竞赛专题8 立体几何(50题竞赛真题强化训练)解析版+原卷版
【高中数学竞赛专题大全】 竞赛专题8 立体几何 (50题竞赛真题强化训练)一、填空题1.(2018·四川·高三竞赛)在三棱锥P ABC -中,三条棱PA PB PC 、、两两垂直,且122PA PB PC ===、、.若点Q 为三棱锥P ABC -的外接球球面上任意一点,则Q 到面ABC距离的最大值为______.【答案】32 【解析】 【详解】三棱锥P ABC -的外接球就是以PA PB PC 、、为长、宽、高的长方体的外接球,其直径为2 3.R ==又1cos 5BAC ∠=,从而sin BAC ∠=于是,ABC ∆的外接圆半径为2sin BC r BAC ==∠故球心O 到ABC =从而,点Q 到面ABC 距离的最大值是32+故答案为322.(2018·辽宁·高三竞赛)四面体ABCD 中,已知2AB =,1119,8,22AD BC CD ===,则异面直线AC 与BD 所成角的正弦值是_____. 【答案】1 【解析】 【详解】因为2222222219118210622BC AB CD AD ⎛⎫⎛⎫-=-=⨯=-=- ⎪ ⎪⎝⎭⎝⎭,故AC BD ⊥,因此异面直线AC 与BD 所成角的正弦值是1. 故答案为13.(2018·湖南·高三竞赛)四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为__________. 【答案】23a = 【解析】 【详解】设正方体的棱长为a ,上底为正方形ABCD ,中心为O ,则OA =.由对称性知,球心1O 在面ABCD 上的射影M 应在直线AC 或BD 上,且球1O 与邻球的切点P 在面ABCD 上的射影N 在过点O 且平行AB 的直线上.于是.OM OA AM ==+又11O M a =-,则AM =,从而整理得23840a a -+=,解得23a =,或2a =(舍去).故23a =. 故答案为23a =4.(2018·湖南·高三竞赛)在半径为R 的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】2(1R π 【解析】 【详解】设内接圆柱底面半径为sin R α,则高位2cos R α, 那么全面积为()22sin 2sin 2cos R R R παπαα+⨯ ()222sin sin2R παα=+()2122sin2R cos παα=-+()(22121R R παϕπ⎡⎤=-≤⎣⎦. 其中1tan 2ϕ=,等号成立的条件是22παϕ=+.故最大值为(21R π.故答案为(21R π5.(2018·湖南·高三竞赛)正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1CC 的中点.异面直线EF 与1AC 所成角的余弦值是_____. 【答案】223【解析】 【详解】设正方体棱长为1,以DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,则 ()()1111,,0,0,1,,1,0,1,0,1,122E F A C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.故有()1111,,,1,1,122EF AC ⎛⎫=-=- ⎪⎝⎭.所以11·223·EF AC cos EF AC θ==. 故答案为2236.(2020·江苏·高三竞赛)在长方体1111ABCD A B C D -中,4AB =,122BC CC ==,M 是1BC 的中点,N 是1MC 的中点.若异面直线AN 与CM 所成的角为θ,距离为d ,则2020sin d θ=__________.【答案】1616 【解析】 【详解】因为1CM BC ⊥,故90θ=︒.过点M 作ME AN ⊥于点E ,则ME CM ⊥,故d ME =. 因为4AB =,3BN =,所以5AN =,则4sin 5d ME MN ANB ==∠=,从而可得2020sin1616dθ=.故答案为:1616.7.(2021·全国·高三竞赛)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的有__________面数.【答案】7个【解析】【详解】计算可得正四面体的两个相邻的半平面的二面角的余弦值为13,正八面体的两个相邻的半平面(两个四棱锥共底面的边的两个半平面)的二面角的余弦值为13-,故所得多面体的有7个面,故答案为:7.8.(2018·全国·高三竞赛)在三棱锥P-ABC中,PA=PB=4,PC=3,∠APB=∠APC=60°,∠BPC=90°.则三棱锥P-ABC的体积为_______.【答案】42【解析】【详解】如图,过点A 作AH ⊥面PBC 于点H ,过H 作HD ⊥PB 于点D 、HE ⊥PC 于点E 由∠APB =∠APC =60°及PA =4,知 PD =PE =2.从而,PH 为∠BPC 的平分线,即 ∠DPH =45°则,222PH PD == 2222AH PA PH =-=故三棱锥P-ABC 的体积为 1423BPC AH S ∆⋅=9.(2018·全国·高三竞赛)已知长方体1111ABCD A B C D -的长、宽、高分别为1、2、3,P 为平面1A BD 内的一点,则AP 长的最小值为_________. 【答案】67【解析】 【详解】注意到,AP 长最小当且仅当1AP A BD ⊥面. 此时,由1111ABDA A BD A ABD A BDA A S V V AP S 三棱锥三棱锥∆--∆⋅=⇒=.由勾股定理得15A D 110A B =13BD =则11272cos sin BA D BA D ∠=∠=从而,172A BDS ∆=故min 67AP =. 10.(2021·全国·高三竞赛)已知三棱锥A BCD -的三个侧面及底面的面积分别为5、12、13、15,且侧面的斜高相等,则三棱锥的体积为___________. 【答案】56 【解析】 【分析】 【详解】设斜高为h ,则102426,,BC CD DB h h h===. 从而BCD △为直角三角形,故11024152BCDS h h==⋅⋅,得22h =. 设三棱锥的高为AH ,由斜高相等知H 为BCD △的内心. 由于内切圆半径22BCDS r BC CD BD==++,故高226AH h r =-=,体积为1615563⋅⋅=.故答案为:56.11.(2020·浙江·高三竞赛)如图所示,在单位正方体上有甲、乙两个动点,甲从P 点匀速朝P '移动;乙从Q 点匀速出发朝Q '移动,到达Q '后速度保持不变并折返.现甲、乙同时出发,当甲到达P '时,乙恰好在到达Q '后折返到Q ,则在此过程中,甲、乙两点的最近距离为__________.66【解析】 【详解】设甲、乙的速度分别为1v 、2v ,在此过程中,1232v v =,即1223v v =. 不妨设13v =、22v =,则总的时间为1.设在时间为0t 末,甲、乙之间的距离最短,即此时P 、Q 分别达到M 、N 点. 分两种情况讨论:路程前半程与路程后半程.(1)路程前半程:010,2t ⎡⎤∈⎢⎥⎣⎦,则02QN t =,03PM t =,0MH t =,02PH t =,220122QH t t =+-,进而有2220001223213333MN t t t ⎛⎫=-+=-+≥ ⎪⎝⎭,故63MN ≥(当且仅当013t =时取等号). (2)路程后半程:01,12t ⎡⎤∈⎢⎥⎣⎦,则()021QN t =-,03PM t =,0MH t =,02PH t =,220122QH t t =+-,进而有2220007661114511111111MN t t t ⎛⎫=-+=-+≥ ⎪⎝⎭,故6611MN ≥(当且仅当0711t =时取等号). 因为666311>,所以在此过程中,甲、乙两点的最近距离为6611.6612.(2021·全国·高三竞赛)在棱长为3的正方体1111ABCD A B C D -上,点P 为AB 中点,从点P 发出的光线经侧面11BCC B 内部(不含边界)一点Q 反射后投射到侧面11DCC D 内部(不含边界),则满足条件的点Q 所组成区域的面积为___________. 【答案】4【解析】 【详解】设点P 关于B 的对称点为1P ,以1P 为顶点,以11DCC D 为底面,作四棱锥111P DCC D -, 该四棱锥与侧面11BCC B 的截面即为满足条件的区域. 该梯形的面积为4. 故答案为:4.13.(2021·全国·高三竞赛)已知正三棱锥P ABC -高为2,底面边长为3,现在将三棱锥切去一部分,得到一个顶点为P ,底面在ABC 内的正四棱锥,则该四棱锥的体积最大为___________.【答案】8-【解析】 【详解】作图可知该四棱锥底边边长最大为3从而可得相应的体积为8-故答案为:8-14.(2021·全国·高三竞赛)正四面体ABCD 中,点G 为面ABC 的中心,点M 在线段DG 上,且tan AMB ∠=DM DG =___________. 【答案】78【解析】 【详解】解析;设,1AM BM x AB ===,由余弦定理得22x =,且3AG GB ==,则226GM AM AG =-=而6DG =66732486DM DG ==. 故答案为:78.15.(2021·全国·高三竞赛)A B C D 、、、是半径为1的球面上的4个点,若1AB CD ==,则四面体ABCD 体积的最大值是__. 3【解析】 【详解】设AB 与CD 间的距离为d ,夹角为θ.取AB 中点M 和CD 中点N ,则3d MN OM ON ≤≤+=故四面体体积13sin 6V AB CD d θ=⋅⋅⋅⋅≤AB CD ⊥且其中点连线过球心时等号成立.316.(2021·全国·高三竞赛)已知三棱锥S ABC -的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的大小为30,且2SA =,则此三棱锥的体积为_________.【答案】34【解析】 【分析】 【详解】由点A 在侧面SBC 上的射影H 是SBC △的垂心,知三棱锥S ABC -的三组对棱互相垂直,从而点S 在底面ABC 上的射影也是ABC 的垂心Q .又ABC 为正三角形,所以垂心Q 为ABC 的中心,则三棱锥S ABC -是正三棱锥. 延长BH 交SC 于点E ,则二面角E AB C --的大小为30.又SAC SBC ≌,得AE BE =,取AB 的中点D ,则易证EDC ∠为二面角E AB C --的平面角,EC ED ⊥(SC ⊥平面AHB ).设BC a =,则2212CD CE BC BE ==-,2344a a =,3a =,从而三棱锥S ABC -的体积为34.故答案为:34.17.(2021·全国·高三竞赛)如图,已知正方体1111ABCD A B C D -的棱长为2,P 为空间一点,且满足1111,A P AB APB ADB ⊥∠=∠,则1D P 的最小值为_______.316【解析】 【分析】 【详解】先不看条件11A P AB ⊥,只关注11APB ADB ∠=∠,即1APB ∠为定角.若Р点在平面11AB C D 上,则如图2所示,此时有11APB ADB ∠=∠可知,P 在以1AC 为 直径的圆弧1ADB 上.那么在任意一个过直线1AB 的平面上,P 点均为类似地一段圆弧. 故P 点的轨迹即圆弧1ADB 绕1AB 旋转形成的一个曲面Γ(苹果曲面). 再由11A P AB ⊥知,P 在过1A 且垂直于1AB 的垂面,即平面11A BCD 上. 故P 为平面11A BCD 截曲面Γ所得的曲线,即图3所示的圆O , 故易知1D P 的最小值为1OP OD -316 316.18.(2021·全国·高三竞赛)四面体ABCD 中,,,,1CD BC AB BC CD AC AB BC ⊥⊥===,平面BCD 与平面ABC 成45︒的二面角,则点B 到平面ACD 的距离为___________. 3【解析】 【分析】 【详解】2DC AC ==DE ⊥平面ABC ,垂足为E ,连结CE 、AE ,由三垂线逆定理,EC BC ⊥,所以45DCE ∠=︒, 故2111,36ABCD ABCCE DE V DE S ====⋅=. 又因ABCE 为正方形,1AE =,则2AD = 因此正三角形ACD 3 设B 到平面ACD 的距离为h ,由1136ACDh S⋅=,得33h .19.(2021·全国·高三竞赛)已知正三棱锥P ABC -,M 是侧棱PC 的中点,PB AM ⊥.若N 是AM 的中点,则异面直线BN 与PA 所成角的余弦值为________.【解析】 【分析】 【详解】易证PA 、PB 、PC 互相垂直.以P 为坐标原点,分别以PB 、PC 、PA 所在的直线为x 、y 、z 轴建立空间直角坐标系.设1PA PB PC ===,则111(0,0,1),(0,1,0),(1,0,0),0,,0,0,,242A C B M N ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以111,,,(0,0,1)42BN PA ⎛⎫=-= ⎪⎝⎭,故1||||1BNPA BN PA ⋅==⋅⨯20.(2021·全国·高三竞赛)正方体1111ABCD A B C D -中,P 是线段11A C 上一点,平面PAB 与底面ABCD 的夹角为α,平面PBC 与底面ABCD 的夹角为β,则tan()αβ+的最小值为________. 【答案】43-【解析】 【分析】 【详解】过P 作1PP ⊥平面ABCD ,垂足为1P ;过1P 作1PM AB ⊥,垂足为M ,作1P N BC ⊥,垂足为N .易知11,PMP PNP αβ=∠=∠,设正方体的棱长为1,11,PM x PN y ==, 则111,tan ,tan x y x yαβ+===, 2tan tan 4tan()1tan tan 1312x y x y xy x y αβαβαβ++++==≥=---+⎛⎫- ⎪⎝⎭,当且仅当x y =时等号成立,所以tan()αβ+的最小值为43-.故答案为:43-.21.(2021·全国·高三竞赛)在三棱锥P ABC -中,7,8,9AP BC BP CA CP AB ======,则这个三棱锥的体积为________. 【答案】1611【解析】 【分析】 【详解】可以把这个三棱锥嵌人到一个长宽高分别为33,43使其六条棱分别为长方体六个面的面对角线,于是三棱锥的体积恰为长方体的13,即14334316113⨯故答案为:161122.(2021·全国·高三竞赛)在三棱锥P ABC -中,6,8,10BC CA AB ===.若三侧面与顶面所成二面角均为45︒,则三棱锥P ABC -的体积为__________. 【答案】16 【解析】 【分析】作PO ⊥平面ABC ,垂足为O ,作,,OD BC OE CA OF AB ⊥⊥⊥,垂足分别为D E F 、、. 设OP h =,则45,cot 45PDO PEO PFO OD OE OF h h ∠=∠=∠=︒===︒=. 在ABC 中,有6810248ABCOD OE OF S++==,解得2h =.故112241633ABCV hS==⨯⨯=. 故答案为:16.23.(2021·全国·高三竞赛)已知正方形,ABCD E 是边AB 的中点.将DAE △和CBE △分别沿DE 和CE 折起,使得AE 与BE 重合.记A 与B 重合后的点为P ,则平面PCD 与平面ECD 所成的二面角的大小为__________. 【答案】30 【解析】 【分析】 【详解】PCD 中,PC PD CD ==,故60PCD ∠=︒.PCE中,cos PCE ∠=CDE △中,cos DCE ∠=设二面角P CD E --大小为θ.对三面角C PDE -应用三面角余弦定理,得:cos cos cos cos sin sin PCE PCD ECD PCD ECD θ∠-∠∠===∠∠即30θ=︒. 故答案为:30.24.(2021·全国·高三竞赛)在菱形ABCD中,60,A AB ∠=︒=ABD △折起到PBD △的位置,若三棱锥–P BCD,则二面角P BD C --的正弦值为__________.【解析】 【分析】由外接球的体积为776π,则该球的半径72R =,设球心O 在平面PBD 和平面BCD 上的射影分别为12O O 、,则12O O 、为正PBD △和正BCD △的中心,取BD 的中点E ,连结12O E O E 、,则12,O E BD O E BD ⊥⊥, 则12O EO ∠是二面角P BD C --的平面角,在2Rt OO C 中,273,123OC R O C AB ====,则232OO =, 又在直角2OO E 中,23162O E AB ==,则21260,120O EO O EO ∠=∠=︒︒,则二面角P BD C --的正弦值为32. 故答案为:32. 25.(2021·全国·高三竞赛)如图,棱长为1的正四面体S ABC -的底面在平面α上,现将正四面体绕棱BC 逆时针旋转,当直线SA 与平面α第一次成30角时,点A 到平面α的距离为_______.61- 【解析】 【分析】 【详解】取BC 的中点D ,折叠后A 在平面α内的射影为E ,则 30ADE SAD ∠=∠-︒,()sin sin 30ADE SAD ∠=∠-︒ 323sin cos30cos sin 30SAD SAD -=∠︒-∠︒=所以332361sin 264AE AD ADE --=⨯∠=⨯=.故答案为:614-. 26.(2019·江西·高三竞赛)P 是正四棱锥V -ABCD 的高VH 的中点若点P 到侧面的距离为3,到底面的距离为5,则该正四棱锥的体积为____________ . 【答案】750 【解析】 【详解】如图所示,PF ⊥面VBC ,5,10VP VH ==,2222534VF VP PF =-=-=.而PHMF 共圆,VP •VH =VF •VM ,所以252VM =,22152HM VM VH =-=, 则AB =15.所以正四棱锥的体积217503V VH AB =⋅⋅=.故答案为:750.27.(2019·吉林·高三竞赛)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E 、F 分别是AC 、BC 的中点,60EPF ︒∠=,则球O 的表面积为____________ . 【答案】6π 【解析】 【详解】由于P -ABC 为正三棱锥,故EP FP =,从而△EPF 为等边三角形,且边长EF =1.由此可知侧面P AC 的高PE =1,故棱长2PA =. 还原成棱长为2的正方体可知,P -ABC 的外接球的直径长恰为正方体的体对角线长6, 从而表面积为6π. 故答案为:6π.28.(2019·上海·高三竞赛)边长为2的正方形,经如图所示的方式裁剪后,可以围成一个正四棱锥,则此正四棱锥的体积最大值为________.165【解析】 【详解】设围成的正四棱锥为P ABCD -,PO 为四棱锥的高作OE ⊥BC ,垂足为E ,连结PE .令OE =x ,则p =1-x ,12PO x =-于是正四棱锥P -ABCD 的体积为21(2)123V x x =⋅-所以2416(12)9V x x =-44162(12)92x x ⎛⎫=⋅⋅⋅- ⎪⎝⎭512256222295x x x x x ⎛⎫++++- ⎪ ⎪ ⎪⎝⎭525695=⨯, 故165375V,当25x =165165 29.(2018·甘肃·高三竞赛)已知空间四点,,,A B C D 满足,,AB AC AB AD AC AD ⊥⊥⊥,且1,AB AC AD Q ===是三棱锥A BCD -的外接球上的一个动点,则点Q 到平面BCD 的最大距离是______.【解析】 【详解】将三棱锥A BCD -补全为正方体,则两者的外接球相同. 球心就是正方体的中心,记为O ,在正方体里,可求得点O 到平面BCD Q 到平面BCD 的最大距离是=30.(2018·天津·高三竞赛)半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________ 【答案】14 【解析】 【详解】设四个球的球心分别为A 、B 、C 、D ,则AB=BC=CA=12,DA=DB=DC=13, 即A 、B 、C 、D 两两连结可构成正三棱锥.设待求的球心为X ,半径为r.,则由对称性可知DX ⊥平面ABC. 也就是说,X 在平面ABC 上的射影是正三角形ABC 的中心O.易知OA =11OD =.设OX=x ,则AX =由于球A 内切于球X ,所以AX=r-66r =- ①又DX=OD-OX=11-x ,且由球D 内切于球X 可知DX=r-7 于是 117x r -=- ② 从①②两式可解得4x =,14r = 即大球的半径为14. 故答案为1431.(2018·河南·高三竞赛)一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2 【解析】 【详解】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为R ,小正四面体的外接球(大正四面体的内切球)半径为r , 易知13r R =,故小正四面体棱长的最大值为1623⨯=. 32.(2018·河北·高三竞赛)1111ABCD A B C D -内部有一圆柱,此圆柱恰好以直线1AC 为轴,则该圆柱体积的最大值为_____. 【答案】2π 【解析】 【详解】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A 点的三个面相切,且切点分别在1AB 、AC 、1AD 上.设线段1AB 上的切点为E ,圆柱上底面中心为1O ,半径1O E r =.由1111B AO E A C ∽得1AO =,则圆柱的高为1323AO -=-,()23V r π=-,由导数法或均值不等式得max 2V π=.33.(2018·河北·高二竞赛)若123A A A △的三边长分别为8、10、12,三条边的中点分别是B 、C 、D ,将三个中点两两连结得到三条中位线,此时所得图形是三棱锥A-BCD 的平面展开图,则此三棱锥的外接球的表面积是________. 【答案】772π【解析】 【详解】由已知,四面体A-BCD 的三组对棱的长分别是4、5、6.构造长方体使其面对角线长分别为4、5、6,设长方体的长、宽、高分别为x 、y 、z ,外接球半径为R ,则222222222456x y x z y z ⎧+=⎪+=⎨⎪+=⎩,得()22227722R x y z =++=,故2778R =,所以772S π=. 34.(2018·江西·高三竞赛)四棱锥P ABCD -的底面ABCD 是一个顶角为60︒的菱形,每个侧面与底面的夹角都是60︒,棱锥内有一点M 到底面及各侧面的距离皆为1,则棱锥的体积为______.【答案】83 【解析】 【详解】设菱形两对角线AC 、BD 的交点为H ,则PH 既是线段AC 的中垂线,又是BD 的中垂线,故是四棱锥的高,且点M 在PH 上,于是平面PBD 与底面ABCD 垂直,同理平面PAC 与与底面ABCD 垂直,平面PBD 将四棱锥分成两个等积的四面体.只需考虑四面体P ABD -.如图,设点M 在面PAD 上的投影为E ,平面MEH 过点P ,且交AD 于F ,因90MHF MEF ∠=︒=∠,则M 、E 、F 、H 四点共圆.由于ME ⊥面PAD ,得ME AD ⊥,由MH ⊥面ABD ,得MH AD ⊥, 所以AD ⊥面MEH ,故AD PF ⊥.FH 是PF 在面ABD 内的射影,则AD FH ⊥,即二面角的平面角60EFH ∠=︒,于是120EMH ∠=︒.据1ME MH ==,得3EH =MEF 与MHF 中,EF HF =. 因60EFH ∠=︒,所以EFH 是正三角形,即3FH EF EH === 在直角AFH 中,30HAF ∠=︒,则223AH FH == 故正ABD 的边长为4,于是43ABDS=.在直线PFH 中,tan603PH FH =︒=,1433P ABD ABDV PH S-=⋅=从而283P ABCD P ABD V V --==. 故答案为8335.(2018·福建·高三竞赛)如图,在三棱锥P ABC -中,PAC △、ABC 都是边长为6的等边三角形.若二面角P AC B --的大小为120︒,则三棱锥P ABC -的外接球的面积为______.【答案】84π 【解析】 【详解】如图,取AC 的中点D ,连结DP 、DB ,则由PAC 、ABC 都是边长为6的等边三角形,得PD AC ⊥,BD AC ⊥,PDB ∠为二面角P AC B --的平面角,120PDB ∠=︒.设O 为三棱锥P ABC -的外接球的球心,1O 、2O 分别为ABC 、PAC 的中心. 则1OO ⊥面ABC ,2OO ⊥面PAC ,且2113633O D O D ⎫===⎪⎪⎝⎭21OO OO =. 易知O 、2O 、D 、1O 四点共面,连结OD ,则160ODO ∠=︒,1133OO DO =. 所以三棱锥P ABC -的外接球半径()22221132321R OB OO O B ==++所以三棱锥P ABC -的外接球的面积为24π84πR =.36.(2018·全国·高三竞赛)在正方体1111ABCD A B C D -中,已知棱长为1,点E 在11A D 上,点F 在CD 上,112A E ED =,2DF FC =.则三棱锥1B FEC -的体积为__________. 【答案】527【解析】 【详解】如图,过点F 作111FF C D ⊥,联结11B F ,与1EC 交于点K.易知,111B F EC ⊥,1EC BFK ⊥面.因为BF 与1EC 异面垂直,且距离为1,BF=1EC 10, 所以,1113BFK B FEC V EC S ∆-=⋅三棱锥 2110153227=⨯=⎝⎭. 37.(2019·全国·高三竞赛)已知四面体ABCD 的四个面DBC DCA DAB ABC ∆∆∆∆、、、的面积分别为12、21、28、37,顶点D 到面ABC ∆的距离为h.则h=__________. 5042【解析】 【详解】注意到,222212212837++=. 因此,四面体ABCD 为直角四面体. 故332442565042ABC DA DB DC h S ∆⋅⋅⨯⨯===38.(2018·全国·高三竞赛)在四面体ABCD 中,已知3ADB BDC CDA π∠=∠=∠=,△ADB 、△BDC 、△CDA2、1.则此四面体体积为________.【解析】 【详解】设DA 、DB 、DC 分别为x 、y 、z.则333=21222xysinyzsin xzsin,,πππ==.三式相乘得xyz =设DC 与面ABD 所成角为a ,点C 到面ABD 的距离为h.则h=zsina.由图形的对称性知coscos ?cos cos sin 36a a a ππ=⇒⇒.故所求四面体体积为113·sin 332ABD xysinS h z a π∆⎛⎫⎪== ⎪ ⎪⎝⎭. 39.(2018·全国·高三竞赛)在金属丝制作的3×4×7的长方体框架中放置一个球,则该球的半径的最大值为________. 【答案】52【解析】 【详解】显然,球的直径不能超过3×45=,故该球半径的最大值为52.40.(2018·安徽·高三竞赛)在边长为1的长方体1111ABCD A B C D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值=___________.【解析】 【详解】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点1D 的三个面相切.以1D 为原点,11DC 、11D A 、1D D 分别为x 、y 、z 轴正方向,建立空间直角坐标系.设A (0,1,1),1C (1,0,0),小球圆心P (r ,r ,r ),则P 到1AC 的距离112123AP AC r r AC ⨯=-=. 再由12r <,得465r -=. 故答案为465- 41.(2021·全国·高三竞赛)把半径为1的4个小球装入一个大球内,则此大球的半径的最小值为___________. 【答案】612+ 【解析】 【详解】4个小球在大球内两两相切,4个小球的球心连线构成1个正四面体,正四面体的中心与大球的球心重合,大球的半径等于正四面体的外接球半径加上小球的半径, 所以大球半径为336661121144342h a +=⨯⋅+=⨯+=+. (其中h 表示正四面体的高,a 表示正四面体的棱长.) 故答案为:612+. 42.(2019·浙江·高三竞赛)如图,在△ABC 中,∠ABC =120°,AB =BC =2.在AC 边上取一点D (不含A 、C ),将△ABD 沿线段BD 折起,得到△PBD .当平面PBD 垂直平面ABC 时,则P 到平面ABC 距离的最大值为____________.【答案】2 【解析】 【详解】在△ABC 中,因为AB =BC =2,∠ABC =120°,所以30BAD BCA ︒∠=∠=. 由余弦定理可得23AC =设AD =x ,则03,3x DC x <<=.在△ABD中,由余弦定理可得BD =在△PBD 中,PD =AD =x ,PB =BA =2,∠BPD =30°. 设P 到平面ABC 的距离为d ,则11sin 22PBDSBD d PD PB BPD =⨯=⋅∠,解得d由0x <<max 2d =. 故答案为:2.43.(2019·贵州·高三竞赛)若半径2R =的空心球内部装有四个半径为r 的实心球,则r 所能取得的最大值为____________cm . 【答案】2 【解析】 【详解】当半径为r 的四个实心球“最紧凑”时,即此四个球两两相切且内切于空心球时,r 取得最大值.此时,小球的四个球心连线构成棱长为2r 的正四面体,显然,此四面体外接球的球心即为实心球球心.在棱长为2r 的正四面体中,求得外接球半径.r +,2r +=r =2. 故答案为:2.44.(2019·四川·高三竞赛)已知正四棱锥Γ的高为3,侧面与底面所成角为3π,先在Γ内放入一个内切球O 1,然后依次放入球234,,,O O O ,使得后放入的各球均与前一个球及Γ的四个侧面均相切,则放入所有球的体积之和为_____ . 【答案】1813π 【解析】 【详解】设侧面与底面所成角为θ.记球Oi 的半径为ri ,体积为Vi ,i =1,2,3,…. 因为1cos 2θ=,故1113cos r h r r θ=+=,即1113r h ==. 定义12n n s r r r =+++,由于132(2)n n r h s n -=-,所以()132n n n r r r +-=,即113n n r r +=,所以113n n r -⎛⎫= ⎪⎝⎭.故333111441333i nnni i i i i V r ππ-===⎛⎫==⋅ ⎪⎝⎭∑∑∑,所以118lim 13ni n i V π→∞==∑. 故答案为:1813π. 45.(2019·山东·高三竞赛)空间有4个点A 、B 、C 、D ,满足AB BC CD ==.若∠ABC =∠BCD =∠CDA =36°,那么直线AC 与直线BD 所成角的大小是______ . 【答案】90°或36° 【解析】 【详解】如果△ABC 与△CDA 全等,那么AC ⊥BD ,此时直线AC 与直线BD 所成的角为90°; 如果△ABC 与△CDA 不全等,则易知A 、B 、C 、D 四点共面,且点D 在∠ACB 的内部, 由于△ABC ≌△DCB ,且他们均是等腰三角形, 故直线AC 与直线BD 所成的角是36°. 故答案为:90°或36°.46.(2019·重庆·高三竞赛)已知正四面体可容纳10个半径为1的小球则正四面体棱长的最小值为_______ .【答案】4+ 【解析】 【详解】当正四面体棱长最小时,设棱长为a ,此时,一、二、三层分别有1、3、6个小球,且相邻小球两两相切,注意到重心分四面体的高为1:3,所以正四面体的高3221h ==+,得4a =+故答案为:426+. 二、解答题47.(2019·甘肃·高三竞赛)已知三棱锥P -ABC 的平面展开图中,四边形ABCD 为边长等于22的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P -ABC 中:(1)证明:平面P AC ⊥平面ABC ; (2)若点M 为棱P A 上一点且12PM MA =,求二面角P -BC -M 的余弦值. 【答案】(1)见解析(2)223【解析】 【详解】(1)如图①,设AC 的中点为O ,连结,BO PO .由题意,得22PA PB PC ===PO =2,2AO BO CO ===. 因为在△P AC 中,P A =PC ,O 为AC 的中点,所以PO ⊥AC.又因为在△POB 中,PO =2,OB =2,PB =22222PO OB PB +=,所以PO ⊥OB. 因为AC ∩OB =O ,AC ,OB ⊆平面ABC ,所以PO ⊥平面ABC. 又因为PO ⊆平面P AC ,所以平面P AC ⊥平面ABC .(2)由PO ⊥平面ABC ,OB ⊥AC ,所以,PO OB PO OC ⊥⊥.于是以OC 、OB 、OP 所在直线分别为x 轴、y 轴、z 轴建立如图②所示的空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0)O C B ,24(2,0,0),(0,0,2),,0,33A P M ⎛⎫-- ⎪⎝⎭,(2,2,0),(2,0,2)BC PC =-=-,84,0,33MC ⎛⎫=- ⎪⎝⎭.设平面MBC 的法向量为()111,,m x y z =,则由00m BC m MC ⎧⋅=⎪⎨⋅=⎪⎩得1111020x y x z -=⎧⎨-=⎩,令11x =,则111,2y z ==,即(1,1,2)m =. 设平面PBC 的法向量为()222,,n x y z =,由00n BC n PC ⎧⋅=⎪⎨⋅=⎪⎩得22220x y x z -=⎧⎨-=⎩,令x 2=1,则221,1y z ==,即(1,1,1)n =.422cos ,||||318m n n m m n ⋅〈〉===⋅. 由图可知,二面角P -BC -M 的余弦值为223. 48.(2018·广东·高三竞赛)如图①,已知矩形ABCD 满足AB=5,34AC =,沿平行于AD 的线段EF 向上翻折(点E 在线段AB 上运动,点F 在线段CD 上运动),得到如图②所示的三棱柱ABE DCF -.⑴若图②中△ABG 是直角三角形,这里G 是线段EF 上的点,试求线段EG 的长度x 的取值范围;⑵若⑴中EG 的长度为取值范围内的最大整数,且线段AB 的长度取得最小值,求二面角C EF D --的值;⑶在⑴与⑵的条件都满足的情况下,求三棱锥A-BFG 的体积.【答案】(1)[)0,2.5(2)8arccos 25AEB π∠=-(3【解析】 【详解】⑴由题设条件可知△AEG 、△BEG 均为直角三角形, 因此222AG AE x =+,222BG BE x =+.由余弦定理2222cos AB AE BE AE BE AEB =+-⋅∠.于是22222222cos x AE BE AB AE BE AE BE AEB ++==+-⋅∠.()222cos 55 2.5x AE BE AEB AE BE t t t t =-⋅∠<⋅=-=-+≤.所以,[)0,2.5x ∈.又对任意[)0,2.5k ∈, 2.5AE EB ==,22arccos 2.5k AEB π∠=-.则x k =,故x 的取值范围为[)0,2.5.⑵因为AE ⊥EF ,BE ⊥EF ,所以∠AEB 就是二面角C-EF-D 的平面角 又由⑴知EG 的长度x 为[)0,2.5的最大整数,因此x=2. 于是()22225421029AB t t t t =+-+=-+,t ∈(0,5). 因此t=2.5时,线段AB 的长度取得最小值. 由此得252cos 4AEB =-∠,8arccos 25AEB π∠=-.⑶由⑴、⑵知8arccos25AEB π∠=-,52AE EB ==,AG BG ==2EG =且3EF ===. 因为AE ⊥EF ,BE ⊥EF ,AE BE E ⋂=. 所以EF ⊥平面EAB ,故()13A BFG A BEF A BEG AEB AGB V V V S EF S EG ---∆∆=-=⋅-⋅ 22111sin 322AE AEB EF BG EG ⎡⎤⎛⎫=∠- ⎪⎢⎥⎝⎭⎣⎦1413264⎫=-⨯=⎪⎪⎭. 49.(2021·全国·高三竞赛)空间中的n 个点,其中任何三点不共线,把它们分成点数互不相同的m 组()3n m >≥,且,2m n m ,在任何三个不同的组中各取一点为顶点作三角形,要使这种三角形的总数最大,各组的点数应是多少 【答案】答案见解析 【解析】 【分析】 【详解】把这n 个点分成m 组,设当每组点数分别为12,,,m a a a ,这里120m a a a <<<<,顶点分别在三个组的三角形的总数为:1i j k i j k mS a a a ≤<<≤=∑①取得最大值.(1)先证明:12,1,2,,1i i a a i m +-=-.若不然,设有0i 使0013i i a a +-≥,不妨设01i =,我们将①式改写为()1212333mi j k i j k i j k mi j k mS a a a a a a a a a a =≤<≤≤<<≤=+++∑∑∑. ②令11221,1a a a a ''=+=-,则1212a a a a ''+=+,()1212211212131a a a a a a a a a a ''=+--≥+->,当用12a a ''、代替12、a a ,其余值保持不变时S 值变大,矛盾. (2)证明使12i i a a +-=的i 值不多于1个,若有0011i j m ≤<≤-,使0000112,2i i j j a a a a ++-=-=,则当用0000111,1i i j j a a a a ''++=+=-代替001,i j a a +而其余k a 不变时,000011i j i j a a a a ''++>, 但000011i j i j a a a a ''+++=+,类似②式可知S 也变大,这是不可能的.(3)证明:使12i i a a +-=的值恰有一个.若对所有11i m ≤≤-,均有11i i a a +-=,则m 组的点数分别为,1,,(1)s s s m ++-,于是有:(1)(1)((1))2m m s s s m ms n -+++++-=+=. ③ 由题设2m 及③式,得mn ∣,而题设m n ,故矛盾.(4)设第0i 个差0012i i a a +-=,而其余的差均为1,于是可令01,1,2,,j a s j j i =+-=;0,1,,j a s j j i m =+=+, 所以0011(1)()i m j j i s j s j n ==++-++=∑∑,得0(1)2m m ms i n ++-=. ④ 又011i m ≤≤-,由④式得222222 22n m m n m m s m m--+-+-≤≤. ⑤ 故符合题意的对应各组的点数由④、⑤两式确定正整数s 与0i .50.(2021·全国·高三竞赛)证明:如下构造的空间曲线Γ的任意五等分点组都不在同一球面上,曲线Γ的构造:作周长为l 的圆O ,在圆O 上取AmB 使15l AmB <的长度25l <,并以AB 为轴将AmB 旋转180︒得弧Am B ',在圆O 上取BnC ,使AmB 的长度BnC +的长度25l <,并以BC 为轴将BnC 旋转θ度()0180θ︒<<︒得弧Bn C ',这样,由弧Am B BnC CrA ''、、组成的曲线便是空间曲线.(如图所示)【答案】证明见解析【解析】【分析】【详解】设12345A A A A A 、、、、是曲线Γ的任一五等分点组.由曲线Γ的构造知,曲线Γ的长度为,l AmB 的长度1,5CrA >的长度35l >, 那么至少有一个分点不妨设为1A ,落在弧Am B '内(不包括端点),同时至少有三个分点,不妨设为234A A A 、、,落在CrA 内(不包括端点).又由曲线Γ的构造知Am B '与弧CrA 在同一平面内,从而1234A A A A 、、、四点在同一平面内.由平面几何知识知,234A A A 、、三点只能确定唯一的圆O ,而1A 不在圆O 上,所以1234A A A A 、、、四点不共圆.于是1234A A A A 、、、四点必不共球面,否则过1234A A A A 、、、的平面与1234A A A A 、、、所在的球的截面是圆,即1234A A A A 、、、四点共圆,矛盾.故12345A A A A A 、、、、不可能共球面,即曲线Γ的任意五等分点组都不在同一球面上.【高中数学竞赛专题大全】竞赛专题8 立体几何(50题竞赛真题强化训练)一、填空题1.(2018·四川·高三竞赛)在三棱锥P ABC -中,三条棱PA PB PC 、、两两垂直,且122PA PB PC ===、、.若点Q 为三棱锥P ABC -的外接球球面上任意一点,则Q 到面ABC 距离的最大值为______.2.(2018·辽宁·高三竞赛)四面体ABCD 中,已知2AB =,1119,8,22AD BC CD ===,则异面直线AC 与BD 所成角的正弦值是_____.3.(2018·湖南·高三竞赛)四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为__________.4.(2018·湖南·高三竞赛)在半径为R 的球内作内接圆柱,则内接圆柱全面积的最大值是_____.5.(2018·湖南·高三竞赛)正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1CC 的中点.异面直线EF 与1AC 所成角的余弦值是_____.6.(2020·江苏·高三竞赛)在长方体1111ABCD A B C D -中,4AB =,122BC CC ==,M 是1BC 的中点,N 是1MC 的中点.若异面直线AN 与CM 所成的角为θ,距离为d ,则2020sin d θ=__________.7.(2021·全国·高三竞赛)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的有__________面数.8.(2018·全国·高三竞赛)在三棱锥P-ABC 中,PA =PB =4,PC =3,∠APB =∠APC =60°,∠BPC =90°.则三棱锥P-ABC 的体积为_______.9.(2018·全国·高三竞赛)已知长方体1111ABCD A B C D -的长、宽、高分别为1、2、3,P 为平面1A BD 内的一点,则AP 长的最小值为_________.10.(2021·全国·高三竞赛)已知三棱锥A BCD -的三个侧面及底面的面积分别为5、12、13、15,且侧面的斜高相等,则三棱锥的体积为___________.11.(2020·浙江·高三竞赛)如图所示,在单位正方体上有甲、乙两个动点,甲从P 点匀速朝P '移动;乙从Q 点匀速出发朝Q '移动,到达Q '后速度保持不变并折返.现甲、乙同时出发,当甲到达P '时,乙恰好在到达Q '后折返到Q ,则在此过程中,甲、乙两点的最近距离为__________.12.(2021·全国·高三竞赛)在棱长为3的正方体1111ABCD A B C D -上,点P 为AB 中点,从点P 发出的光线经侧面11BCC B 内部(不含边界)一点Q 反射后投射到侧面11DCC D 内部(不含边界),则满足条件的点Q 所组成区域的面积为___________.13.(2021·全国·高三竞赛)已知正三棱锥P ABC -高为2,底面边长为3,现在将三棱锥切去一部分,得到一个顶点为P ,底面在ABC 内的正四棱锥,则该四棱锥的体积最大为___________.14.(2021·全国·高三竞赛)正四面体ABCD 中,点G 为面ABC 的中心,点M 在线段DG 上,且351tan AMB ∠=DM DG =___________. 15.(2021·全国·高三竞赛)A B C D 、、、是半径为1的球面上的4个点,若1AB CD ==,则四面体ABCD 体积的最大值是__.16.(2021·全国·高三竞赛)已知三棱锥S ABC -的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的大小为30,且2SA =,则此三棱锥的体积为_________.17.(2021·全国·高三竞赛)如图,已知正方体1111ABCD A B C D -的棱长为2,P 为空间一点,且满足1111,A P AB APB ADB ⊥∠=∠,则1D P 的最小值为_______.。
数学竞赛教案讲义立体几何
数学竞赛教案讲义-立体几何教案章节:一、立体几何基本概念1.1 空间点、线、面的基本定义及性质1.2 平面、直线、圆锥、球等基本几何体的性质和方程1.3 空间向量与立体几何的关系二、立体几何中的角度和距离2.1 点与点、点与线、点与面之间的距离公式2.2 线与线、线与面之间的角度和距离公式2.3 空间中的平行公理和推论三、立体几何中的体积和表面积3.1 棱柱、棱锥、圆柱、圆锥等几何体的体积计算公式3.2 棱柱、棱锥、圆柱、圆锥等几何体的表面积计算公式3.3 空间几何体的对称性和轴截面四、立体几何中的定理和性质4.1 线面垂直、线面平行、面面垂直、面面平行等定理及其应用4.2 三垂线定理、射影定理等的重要性质和应用4.3 空间几何中的等体积转换和等角转换五、立体几何在数学竞赛中的应用题型及解题策略5.1 立体几何与解析几何的综合题型5.2 立体几何中的构造题型5.3 立体几何中的极限与最值问题5.4 立体几何中的几何计数问题六、立体几何中的坐标系和变换6.1 空间直角坐标系的定义和性质6.2 坐标变换公式及应用6.3 利用坐标系解决立体几何问题七、立体几何中的视图和投影7.1 平行投影和中心投影的定义和性质7.2 三视图的画法和性质7.3 利用视图和投影解决立体几何问题八、立体几何中的定积分和面积计算8.1 立体几何中的定积分定义和性质8.2 利用定积分计算立体几何体的表面积和体积8.3 立体几何中的面积计算方法和技巧九、立体几何中的概率和组合问题9.1 立体几何中的几何概率定义和性质9.2 利用几何概率解决立体几何问题9.3 立体几何中的组合问题和解题策略十、立体几何在数学竞赛中的应用实例解析10.1 立体几何与解析几何的综合实例解析10.2 立体几何中的构造实例解析10.3 立体几何中的极限与最值问题实例解析10.4 立体几何中的几何计数问题实例解析重点和难点解析一、立体几何基本概念重点和难点解析:空间点、线、面的关系及性质是立体几何的基础,理解并熟练运用这些基本概念对于解决复杂立体几何问题至关重要。
高中数学讲义:立体几何中的建系设点问题
⽴体⼏何解答题的建系设点问题在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。
一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于,x y 轴上(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。
4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。
但是通过坐标所得到的结论(位置关系,角)是一致的。
5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。
6、与垂直相关的定理与结论:(1)线面垂直:① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直④ 直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直):① 正方形,矩形,直角梯形② 等腰三角形底边上的中线与底边垂直(三线合一)③ 菱形的对角线相互垂直④ 勾股定理逆定理:若222AB AC BC +=,则AB AC^(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出,H I 点的坐标,位置关系清晰明了111,,0,,1,022H I æöæöç÷ç÷èøèø2、空间中在底面投影为特殊位置的点:如果()'11,,A x y z 在底面的投影为()22,,0A x y ,那么1212,x x y y ==(即点与投影点的横纵坐标相同)由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。
高中数学立体几何(向量法)—建系讲义
立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。
一、利用共顶点的互相垂直的三条线构建直角坐标系例1(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB A C ⊥求二面角 的平面角的余弦值.【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为CD =BC 2-BD 2= 5.(2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角.因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1AA 1,即AA 21=AD ·A 1B 1=8,得AA 1=2 2.从而A 1D =AA 21+AD 2=2 3.所以,在Rt △A 1DD 1中, cos ∠A 1DD 1=DD 1A 1D =AA 1A 1D =63.解法二:如图,过D 作DD 1∥AA 1交A 1B 1于点D 1,在直三棱柱中,易知DB ,DC ,DD 1两两垂直.以D 为原点,射线DB ,DC ,DD 1分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .设直三棱柱的高为h ,则A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ),C (0,5,0),C 1(0,5,h ),从而AB 1→=(4,0,h ),A 1C →=(2,5,-h ).由AB 1→⊥A 1C →,有8-h 2=0,h =2 2. 故DA 1→=(-2,0,22),CC 1→=(0,0,22),DC →= (0,5,0).设平面A 1CD 的法向量为m =(x 1,y 1,z 1),则m ⊥DC →,m ⊥DA 1→,即⎩⎨⎧5y 1=0,-2x 1+22z 1=0,取z 1=1,得m =(2,0,1),设平面C 1CD 的法向量为n =(x 2,y 2,z 2),则n ⊥DC →,n ⊥CC 1→,即 ⎩⎨⎧5y 2=0,22z 2=0,取x 2=1,得n =(1,0,0),所以 cos 〈m ,n 〉=m·n|m ||n |=22+1·1=63. 所以二面角A 1-CD -C 1的平面角的余弦值为63.二、利用线面垂直关系构建直角坐标系例 2.如图所示,AF 、DE 分别是圆O 、圆1O 的直径,AD 与两圆所在的平面均垂直,8AD =.BC 是圆O 的直径,6AB AC ==,//OE AD .(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角的余弦值. 19.解:(Ⅰ)∵A D 与两圆所在的平面均垂直,∴AD⊥AB, AD⊥AF,故∠BAD 是二面角B —AD —F 的平面角, 依题意可知,ABCD 是正方形,所以∠BAD=450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点,BC 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,23-,0),B (23,0,0),D (0,23-,8),E (0,0,8),F (0,23,0)所以,)8,23,0(),8,23,23(-=--=FE BD10828210064180||||,cos =⨯++=>=<FE BD FE BD EF BD 设异面直线BD 与EF 所成角为α,则1082|,cos |cos =><=EF BD α直线BD 与EF 所成的角为余弦值为8210.三、利用图形中的对称关系建立坐标系例3 (2013年重庆数学(理))如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sinπ3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ⎝⎛⎭⎫0,-1,z 2,又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 22=0,z =2 3(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2).由1·AD →=0,1·AF →=0,得⎩⎨⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得⎩⎨⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为3 78.四、利用正棱锥的中心与高所在直线,投影构建直角坐标系 例4-1(2013大纲版数学(理))如图,四棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==∆o,与PAD ∆都是等边三角形.(I)证明:;PB CD ⊥ (II)求二面角A PD C --的余弦值.【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE .由△P AB 和△P AD 都是等边三角形知P A =PB =PD ,所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE .因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .(2)解法一:由(1)知CD ⊥PB ,CD ⊥PO ,PB ∩PO =P , 故CD ⊥平面PBD .又PD ⊂平面PBD ,所以CD ⊥PD .取PD 的中点F ,PC 的中点G ,连FG . 则FG ∥CD ,FG ⊥PD .联结AF ,由△APD 为等边三角形可得AF ⊥PD . 所以∠AFG 为二面角A -PD -C 的平面角. 联结AG ,EG ,则EG ∥PB . 又PB ⊥AE ,所以EG ⊥AE .设AB =2,则AE =2 2,EG =12PB =1,故AG =AE 2+EG 2=3,在△AFG 中,FG =12CD =2,AF =3,AG =3.所以cos ∠AFG =FG 2+AF 2-AG 22·FG ·AF =-63.解法二:由(1)知,OE ,OB ,OP 两两垂直.以O 为坐标原点,OE →的方向为x 轴的正方向建立如图所示的空间直角坐标系O -xyz .设|AB →|=2,则A (-2,0,0),D (0,-2,0), C (2 2,-2,0),P (0,0,2),PC →=(2 2,-2,-2),PD →=(0,-2,-2), AP →=(2,0,2),AD →=(2,-2,0). 设平面PCD 的法向量为1=(x ,y ,z ),则 1·PC →=(x ,y ,z )·(2 2,-2,-2)=0,1·PD →=(x ,y ,z )·(0,-2,-2)=0,可得2x -y -z =0,y +z =0.取y =-1,得x =0,z =1,故1=(0,-1,1). 设平面P AD 的法向量为2=(m ,p ,q ),则 2·AP →=(m ,p ,q )·(2,0,2)=0, 2·AD →=(m ,p ,q )·(2,-2,0)=0,可得m +q =0,m -p =0.取m =1,得p =1,q =-1,故2=(1,1,-1). 于是cos 〈,2〉=n 1·n 2|n 1||n 2|=-63. 例4-2如图1-5,在三棱柱ABC -A 1B 1C 1中,已知AB =AC =AA 1=5,BC =4,点A 1在底面ABC 的投影是线段BC 的中点O .(1)证明在侧棱AA 1上存在一点E ,使得OE ⊥平面BB 1C 1C ,并求出AE 的长; (2)求平面A 1B 1C 与平面BB 1C 1C 夹角的余弦值.图1-5【答案】解:(1)证明:连接AO,在△AOA1中,作OE⊥AA1于点E,因为AA1∥BB1,所以OE⊥BB1.因为A1O⊥平面ABC,所以A1O⊥BC.因为AB=AC,OB=OC,所以AO⊥BC,所以BC⊥平面AA1O.所以BC⊥OE,所以OE⊥平面BB1C1C,又AO=AB2-BO2=1,AA1=5,得AE=AO2AA1=55.(2)如图,分别以OA,OB,OA1所在直线为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,2,0),C(0,-2,0),A1(0,0,2),由AE →=15AA 1→得点E 的坐标是⎝ ⎛⎭⎪⎫45,0,25, 由(1)得平面BB 1C 1C 的法向量是OE→=⎝ ⎛⎭⎪⎫45,0,25,设平面A 1B 1C 的法向量=(x ,y ,z ),由⎩⎪⎨⎪⎧·AB →=0,n ·A 1C →=0得⎩⎨⎧-x +2y =0,y +z =0,令y =1,得x =2,z =-1,即=(2,1,-1),所以 cos 〈OE →,〉=OE →·n |OE →|·|n |=3010.即平面BB 1C 1C 与平面A 1B 1C 的夹角的余弦值是3010三、利用面面垂直关系构建直角坐标系 例5(2012高考真题安徽理18)(本小题满分12分)平面图形ABB 1A 1C 1C 如图1-4(1)所示,其中BB 1C 1C 是矩形,BC =2,BB 1=4,AB=AC=2,A1B1=A1C1= 5.图1-4现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图1-4(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A-BC-A1的余弦值.【答案】解:(向量法):(1)证明:取BC,B1C1的中点分别为D和D1,连接A1D1,DD1,AD.由BB1C1C为矩形知,DD 1⊥B 1C 1,因为平面BB 1C 1C ⊥平面A 1B 1C 1,所以DD 1⊥平面A 1B 1C 1,又由A 1B 1=A 1C 1知,A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4).故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0,因此AA 1→⊥BC →,即AA 1⊥BC . (2)因为AA 1→=(0,3,-4), 所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以 cos 〈DA →,DA 1→〉=-21×22+(-4)2=-55. 即二面角A -BC -A 1的余弦值为-55.(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1, 由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG . 因为AD 綊GD 1,所以AG 綊DD 1綊BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G . 由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得sin ∠D 1DA 1=55,cos ∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55. 即二面角A -BC -A 1的余弦值为-55.。
数学竞赛之立体几何专题精讲(例题+练习)
数学竞赛中的立体几何问题立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法.一、求角度这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90︒︒;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=⋅得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=⋅.分析:如图,设射线OA 任意一点A ,过A 作AB α⊥于点B ,又作BC OC ⊥于点C ,连接AC .有:cos ,cos ,cos ;OC OB OCOA OA OBαβγ=== 所以,cos cos cos αβγ=⋅.评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得:()0AE CFEB FDλλ==<<∞,记()f λλλαβ=+, αOC BAF EDCBAG其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()f λ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少; (C )()fλ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.` 分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=︒例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则sin α= .分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于α即可.如图所示的平面A BD '就是合乎要求的平面,于是:sin 3α=二、求体积这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高例十五、(2003年全国联赛一试)在四面体ABCD 中,设1,AB CD ==直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 ()()()(11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1V=3S h ⋅⋅.从题目所给条件看,已知长度的两条线段分别位于两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:111sin 362A BCD A BDE D ABE BDE V V V S h AB BE ABE h ---∆====⋅⋅∠⋅=例十六、(2002年全国联赛一试)由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所ODCBAD 'C 'B ' A 'EDCBA得旋转体的体积为V 1,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则: (A )V 1=12V 2; (B )V 1=23V 2; (C )V 1=V 2; (D )V 1=2V 2; 分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:取()44y a a =-≤≤,则:()21162164S aa ππππ=-⋅⋅=-当0a <时:()()()22221642164S aa a ππππ=⋅--⋅-+=+ 当0a >时:()()()22221642164S a a a ππππ=⋅--⋅--=-显然,12S S =,于是有:12V V =.例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:222r a =∴3343424V a a π⎛⎫=⋅⋅= ⎪ ⎪⎝⎭练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:3h a ===,所以,,412R a r ==.例十八、(1999年全国联赛一试)已知三棱锥S--ABC 的底面为正三角形,A 点在侧面SBC 上的射影H 是∆SBC 的垂心,二面角H-AB-C 的平面角等于30︒,SA=.那么,三棱锥S-ABC 的体积为 .分析:在求解立体几何问题时,往往需要首先明白所要 考查对象的图形特点.连接BH 并延长交SC 于D ,连AD . ∵H 为∆SBC 的垂心∴BD ⊥SC , 且 HD ⊥SC ,故 AD ⊥SC ,SC ⊥平面ABC ∴SC ⊥AB作SO ⊥平面ABC 于O ,连接CO 并延长交AB 于E ,易知:CE ⊥AB ,连DE . ∵AB=AC∴HB=HC ,即A 在平面SBC 内的射影H 在线段BC 的垂直平分线上,而点H 是∆SBC 的垂心,可知∆SBC 为SB=SC 的等腰三角形.∴S 在平面ABC 内的射影O 在线段BC 的垂直平分线上.故射影O 为∆ABC 的中心,三棱锥S —ABC 为正三棱锥.设底面边长为2a ,则,ROEDC APrOED HCAS B∵SA=SB=SC=23 ∴SO=3,OC=233=CE=233a ∴11139333333224S ABCABC V S h -∆==⨯⨯⨯⨯⨯=例十九、(1998年全国联赛一试)ABC ∆中,90,30,2C B AC ∠=︒∠=︒=,M 是AB 的中点.将ACM ∆沿CM 折起,使A 、B 两点间的距离为22A —BCM 的体积等于 .分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,问题中经常会涉及折叠图形形成二面角,在折叠前作一条直线与折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.如图,作BD⊥CM的延长线相交于D,AF⊥CM于F,并延长到E,使EF=BD,连BE.显然,AF=EF=BD= EB=DF=2,所以:A E2=AB2-EB2=8-4=4三棱锥A—BCM的高即点A到平面BCM的距离也就是等腰∆AEF中点A到边EF的距离.根据面积相等可求得:3h==∴111323V=⋅⋅=例二十、(1995年全国联赛一试)设O是正三棱锥P—ABC底面△ABC的中心,过O的动平面与P—ABC的三条侧棱或其延长线的交点分别记为Q、R、S,则和式111PQ PR PS++(A)有最大值而无最小值;(B)有最小值而无最大值;(C)既有最大值又有最小值,且最大值与最小值不等;(D)是一个与平面QRS位置无关的常量.分析:借助于分割思想,将三棱锥P—QRS划分成三个以O为顶点,以三个侧面为FF MMEEDDBB CCAAOSRQCBAP底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设QPR ∠=RPS SPQ α∠=∠=,于是有:()13P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----∆∆∆=++=++⋅ ()1sin 6PQ PR PR PS PS PQ h α=⋅+⋅+⋅⋅⋅ 又:1sin sin 6P QRS Q PRS V V PQ PR PS αθ--==⋅⋅⋅⋅,其中θ为PQ 与平面PRS 所成的角.()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴⋅+⋅+⋅⋅⋅=⋅⋅⋅⋅于是得:111PQ PR PS ++sin hθ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:12DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱 锥的外接球的球心.例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 . 分析:本题可以采用构造法求解.考查图中的 四条线段:A 1D 、AC 、BC 1、B 1D 1,显然其中任意GFMED 'DCBA SH A 1DCD 1C 1B 1两条都是异面直线.另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, 因为5条线段中任意两条均为异面直线,所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k =.例二十三、(1991年全国联赛一试)设正三棱锥P —ABC 的高为PO ,M 为PO 的中点,过AM 作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比. 分析:取BC 的中点D ,连接PD 交AM 于G ,设 所作的平行于BC 的平面交平面PBC 于EF ,由 直线与平面平行的性质定理得:EF ∥BC ,连接AE ,AF ,则平面AEF 为合乎要求的截面. 作OH ∥PG ,交AG 于点H ,则:OH=PG .51112BC PD PG GD GD GD AD EF PG PG PG OH AO +===+=+=+=; 故:2425A PEF PEF A PBC PBC V S EF V S BC -∆-∆⎛⎫=== ⎪⎝⎭;于是:421A PEF A EFBC V V --=. 三、求面积这类题常设计为求几何体中某一特殊位置的截面面积 解决这类题的关键是 ,封断出截面的形状及截面和已知中相关图形的关系F E OM D CBAPHG四、求距离这类题常是以几何体为依托 ,求其中的某些点 、线 、面之间的距离 解决这类题的关键在于 ,根据已知条件判断出或作出符合题意的线段 ,其长度就是符合题意的距离4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,2ababbGEFBCDA作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC —D 的平面角.AG=EG=b 2-a 2,BF=DF=2a b 2-a 2b,AE=2b 2-(233a )2=2b 2-43a 2.由cos ∠AGE=cos ∠BFD ,得2AG 2-AE 22AG 2=2BF 2-BD 22BF 2.∴ 4(b2-432a 2)b 2-a 2=4a 2b 24a 2(b 2-a 2)⇒9b 2=16a 2,⇒b=43a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3.分析:设正三棱锥的底面边长为a ,侧棱长为b ,则:2222223244a a b a a a b b b-=⋅--即:2223b a b =- 化简得: 32ba =所以,3,2a b ==.于是可求得线段PP '的长:2432pp '=-=.于是有最远距离为底边长3.ACBD EFOP 'P五、求元素个数这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数,作到不重复、不遗漏8、如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .9、给定平面上的5个点A 、B 、C 、D 、E ,任意三点不共线. 由这些点连成4条线,每点至少是一条线段的端点,不同的连结方式有 种.解:图中,4种连结方式都满足题目要求.(图中仅表示点、线间连结形式,不考虑点的位置) .情况(1),根据中心点的选择,有5种其连结方式;情况(2),可视为5个点A 、B 、C 、D 、E 的排列,但一种排列与其逆序排列是同一的,且两者是一一对应的,则有连结方式5!602=种;情况(3),首先是分歧点的选择有5种,其次是分叉的两点的选择有246C =种,最后是余下并连两点的顺序有别,有2!种,共计56260⨯⨯=种;情况(4),选择3点构造三角形,有3510C =种. 共有5606010135+++=种连结方式.B‘C’D’A‘BCDASQ PR acb(1) (2) (3) (4)3. 设四棱锥P ABCD -的底面不是平行四边形, 用平面α去截此四棱锥, 使得截面四边形是平行四边形, 则这样的平面 α( )(A) 不存在 (B)只有1个 (C) 恰有4个 (D)有无数多个例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A )4; (B )8; (C )12; (D )24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现112224C =次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为2483=个. 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .分析:就四棱锥P —ABCD 而言,显然顶点P 的颜色必定不同于A 、B 、C 、D 四点,于是分三种情况考虑:① 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3560A =(种) ② 若使用四种颜色,底面有一对对角线同色,其染色种数为:1425240C A ⋅=(种)③ 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:55120A =(种)故不同染色方法种数是:420种.六、特殊四面体1.四面体 由于四面体是三角形在空间中的推广,因此三角形的许多性质也可以推广到四面体: (1)连接四面体的棱中点的线段交于一点,且在这里平分这些线段;(2)连接四面体任一顶点与它对面重心的线段交于一点,且这点将线段分成的比为3:1,G 称为四面体的重心.(3)每个四面体都有外接球,球心是各条棱的中垂面的交点.(4)每个四面体都有内切球,球心是四面体的各个二面角的平分面的交点. 例10(1983年全国)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.2.特殊四面体(i )等腰四面体:三组对棱分别相等的四面体.性质(1)等腰四面体各面积相等,且为全等的锐角三角形;(2)体积是伴随长方体的13.(ii )直角四面体 从一个顶点出发的三条棱相互垂直的四面体.性质(1)直角四面体中,不含直角的面是锐角三角形(称该面为底面);(2)任一侧面面积是它在底面投影的面积和地面面积的比例中项,且侧面面积的平方和是底面面积的平方;(3)三个侧面与底面所成三个二面角的余弦的平方和是1.3.正四面体 每个面都是全等的等边三角形的四面体.性质(1)若正四面体的棱长为a ,则四面体的全面积S =3a 2,体积V =212a 3;(2)正四面体对棱中点的连线长d =22a ;(3)正四面体外接球的半径64a ,内切球的半径为612a .七、“ 多球” 问 题在解决立体几何问题时, 常会遇到若干个球按照一定的法则“ 叠加” 的问题, 我们将 这类问题简称为“ 多球” 问题. 对于“ 多球” 问 题, 我们往往可以从多球中提炼出球心所组成的立体图形, 将问题简化, 然后通过解决这简化的问题, 获得原问题的待求结论,这是 解决“ 多球” 问题的一个常用方法.5、将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45 而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.6、底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形.所以注水高为1+22.故应注水π(1+22)-4×43π(12)3=(13+22)π. 例 1在桌面上放着四个两两相切、 半 径均为r 的球, 试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个 球均相切的小球的半径.例 2 制作一个底圆直径为4 c m的圆柱形容器,要内装直径为2 c m的钢珠2 6 只,那么这容器至少要多高?( 上海市1 9 8 6 年竞赛试题)例 3 在正四面体内装入半径相同的球,使相邻的球彼此相切,且外层的球又和正四面体的面都相切,如此装法,当球的个数无穷大时,求所装球的体积与正四面体体积之比的极限.( 第八届希望杯高二数学培训题)八、体积法及其应用体积法是处理立体几何问题的重要方法.在高中数学竞赛中,利用体积法解题形式简洁、构思容易,内涵深刻,应用广泛,备受青睐.几何体的体积包括基本几何体的体积计算、等积变换等方法,同时有以下常用方法和技巧:( 1 ) 转移法:利用祖咂原理或等积变换,把所求几何体转化为与它等底、等高的几何体的体积.( 2 ) 分割求和法:把所求几何体分割成基本几何体的体积.( 3 ) 补形求差法:通过补形化归为基本几何体的体积.( 4 ) 四面体体积变换法.( 5 ) 算两次法:对同一几何体的体积,从两种方法计算,建立出未知元素的等量关系,从而使问题求解.利用这种方法求点到平面的距离,可以回避作出表示距离的垂线段.另外,体积法中对四面体的体积变换涉及较多应用广泛.关于四面体的体积有如下常用性质:( 1 ) 底面积相同的两个三棱锥体积之比等于对应高之比;( 2 ) 高相同的两个三棱锥的体积比等于其底面积之比;( 3 ) 用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方;九、立体几何中的截面问题截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状2 截面面积和周长的计算3 计算截面图形的个数4 确定截面图形的性质5 求截面图形的最值九、综合问题7、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且P A=4,C 为P A 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面P AB ⊥面POB .OH ⊥PB ,⇒OH ⊥面P AB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2.而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.解2:连线如图,由C 为P A 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PHPB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,A BP OH CV B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC=sin2α3+cos2α⨯112R 3.∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33,∴ OB=263,选D .例19把一个长方体切割成k 个四面体,则k 的最小值是 .例20已知l αβ--是大小为45的二面角,C 为二面角内一定点,且到半平面α和β和6,A ,B 分别是半平面α,β内的动点,则ABC ∆周长的最小值为_____.例21如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.例六、设锐角,,αβγ满足:222cos cos cos 1αβγ++=.求证:tan tan tan αβγ⋅⋅≥分析:构造长方体模型.构造如图所示的长方体 ABCD —A 1B 1C 1D 1,连接AC 1、A 1C 1、BC 1、DC 1. 过同一个顶点的三条棱AD 、AB 、AA 1与对角线AC 1所成的角为锐角,,αβγ,满足:222cos cos cos 1αβγ++=不妨设长方体过同一个顶点的三条棱AD 、AB 、AA 1的长分别为,,a bc .则:tan tan tan aa b b c cαβγ=≥=≥=≥ 以上三式相乘即可.证明二:因为,,αβγ为锐角,故:2222sin 1cos cos cos 2cos cos ααβγβγ=-=+≥⋅,sin α∴≥同理:sin βγP ED F BCAD 1C 1B 1 A 1DC BA例22已知三棱锥ABC P -的三条侧棱PA 、PB 、PC 两两垂直,侧面PAB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面ABC 的面积为34. (1)证明:22tan tan tan 321≥⋅⋅θθθ;(2)若23tan tan tan 321=++θθθ,求该三棱锥的体积ABC P V -. 练 习 题例七、(1994年全国联赛一试)在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A ) 2,n n ππ-⎛⎫⎪⎝⎭; (B ) 1,n n ππ-⎛⎫ ⎪⎝⎭; (C ) 0,2π⎛⎫ ⎪⎝⎭; (D ) 21,n n n n ππ--⎛⎫⎪⎝⎭.分析:根据正n 棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n 边形的内角,同时小于π,于是得到(A ).例八、(1992年全国联赛一试)设四面体四个面的面积分别为S 1、S 2、S 3、S 4,它们的最大值为S ,记1234S S S S Sλ+++=,则λ一定满足(A ) 24λ<≤; (B ) 34λ<<; (C ) 2.5 4.5λ<≤; (D ) 3.5 5.5λ<<. 分析:因为 i S S ≤ ()1,2,3,4i =所以12344S S S SS+++≤.特别的,当四面体为正四面体时取等号.另一方面,构造一个侧面与底面所成角均为45︒的三棱锥,设底面面积为S 4,则:()()1231231234123cos 451 2.5cos 45S S S S S S S S S S S S S S λ+++++⋅︒+++===+++⋅︒,若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥,另外此时有1234S S S S ++=,也就是2λ=,于是必须2λ>.故选(A ).。
数学竞赛教案讲义立体几何
数学竞赛教案讲义-立体几何教案内容:一、立体几何的基本概念1. 立体图形的定义和分类2. 立体图形的性质和判定3. 立体图形的对称性4. 立体几何中的点、线、面关系二、立体图形的面积和体积1. 立体图形的面积计算2. 立体图形的体积计算3. 立体图形面积和体积的应用4. 立体图形的不规则体积计算三、立体几何中的角和线段1. 立体图形的角和线段长度计算2. 立体图形中的角和线段关系3. 立体图形中的角和平面关系4. 立体图形中的线段和平面关系四、立体几何中的方程和不等式1. 立体图形中的方程求解2. 立体图形中的不等式求解3. 立体图形中的线性方程组求解4. 立体图形中的参数方程求解五、立体几何中的图形的变换1. 立体图形的平移和旋转2. 立体图形的缩放和反射3. 立体图形变换的应用4. 立体图形变换与几何问题的解决六、立体几何中的视图和投影1. 立体图形的正交视图2. 立体图形的斜视图3. 立体图形的投影变换4. 视图和投影在立体几何中的应用七、立体几何中的坐标系和向量1. 立体坐标系的基本概念2. 向量在立体几何中的应用3. 向量的运算规则4. 向量与立体几何图形的交点求解八、立体几何中的空间解析几何1. 空间解析几何的基本概念2. 点、直线、平面的方程表示3. 空间解析几何中的距离和角度计算4. 空间解析几何在立体几何中的应用九、立体几何中的立体几何问题解析1. 立体几何问题的分类和特点2. 立体几何问题的解题方法和技巧3. 典型立体几何问题的解析和解答4. 立体几何问题在数学竞赛中的应用十、立体几何的综合训练和提高1. 立体几何的综合训练题目3. 立体几何解题中的常见错误和注意事项4. 提高立体几何解题能力的方法和技巧重点和难点解析一、立体几何的基本概念补充和说明:在讲解立体几何的基本概念时,需要重点强调立体图形的性质和判定方法,以及它们之间的对称性。
要详细解释点、线、面之间的关系,以及它们在立体几何中的作用。
《新课程标准高中数学必修②复习讲义》第一、二章-立体几何
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
高中数学立体几何空间点线面的位置关系讲义及练习
课 题: 2.1 空间点、直线、平面之间的位置关系一、内容讲解知识点1 平面的概念: 平面是没有厚薄的,可以无限延伸,这是平面最基本的属性 常见的桌面,黑板面都是平面的局部形象 指出: 平面的两个特征:①_薄厚一致___ ②_无限延伸_。
平面的表示:__1.在每个顶点处写大写字母____2.小写的希腊字母,,αβχ______________。
点的表示:大写字母 点A 点B线的表示:小写英文字母 线l,线a 线b平面的画法:在立体几何中,通常画成水平放置的平行四边形来表示平面;锐角画成45ο, 2倍长。
两个相交平面:画两个相交平面时,若一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画。
图形 符号语言 文字语言(读法)A a A ∈a 点A 在直线a 上A aA ∉a 点A 在直线a 外 Aα A ∈α 点A 在平面α上(内) A αA ∉α 点A 在平面α外 b a A a b A =I直线a,b 交于点A a αa α⊂线a 在面α内 aα a α⊄ 线a 在面α外a Aα a A α=I 直线a 交α于点Al αβ=I平面α交β于线l与平面、平面与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言。
知识点2 公理1 :如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内指出:(1)符号语言:____________________________________.(2)应用:这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面。
知识点3 公理2 :如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线指出:(1)符号语言:____________________________________(2)应用:确定两相交平面的交线位置;判定点在直线上 知识点4 公理3 :经过不在同一条直线上的三点,有且只有一个平面 指出:(1)符号语言:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合推论1 经过一条直线和直线外的一点有且只有一个平面.指出:推论1的符号语言:_____________________________-推论2 经过两条相交直线有且只有一个平面指出:推论2的符号语言:____________________________________推论3 经过两条平行直线有且只有一个平面指出:推论3的符号语言:________________________________三、典例解析例1 用符号语言表示下列图形中点、直线、平面之间的位置关系.例2 正方体ABCD-A 1B 1C 1D 1中,对角线A 1C∩平面BDC 1=O ,AC 、BC 交于点M ,求证:点C 1、O 、M 共线.五、备选习题1. 画图表示下列由集合符号给出的关系:(1) A ∈α,B ∉α,A ∈l ,B ∈l ; (2) a ⊂α,b ⊂β,a ∥c ,b ∩c =P ,α∩β=c .2. 根据下列条件,画出图形.(1)平面α∩平面β=l ,直线AB ⊂α,AB ∥l ,E ∈AB ,直线EF∩β=F ,F ∉l ;(2)平面α∩平面β=a ,△ABC 的三个顶点满足条件:A ∈a ,B ∈α,B ∉a ,C ∈β,C ∉a .3. 画一个正方体ABCD —A′B′C′D′,再画出平面ACD′与平面BDC′的交线,并且说明理由.4. 正方体ABCD —A 1B 1C 1D 1的棱长为8 cm ,M 、N 、P 分别是AB 、A 1D 1、BB 1的中点,(1) 画出过M 、N 、P 三点的平面与平面A 1B 1C 1D 1的交线,以及与平面BB 1C 1C 的交线.(2) 设过M 、N 、P 三点的平面与B 1C 1交于点Q ,求PQ 的长.5.已知△ABC 三边所在直线分别与平面α交于P 、Q 、R 三点,求证:P 、Q 、R 三点共线.6. 点A ∉平面BCD ,,,,E F G H 分别是,,,AB BC CD DA 上的点,若EH 与FG 交于P (这样的四边形ABCD 就叫做空间四边形)求证:P 在直线BD 上G H AC D E P空间点、线、面位置关系练习题1、下列命题:其中正确的个数为( )①若直线l 平行于平面α内的无数条直线,则l ∥α;②若直线a 在平面α外,则a ∥α; ③若a ∥b ,α⊂b ,那么直线a 平行于平面α内的无数条直线;A .1B .2C .3D .02、若两个平面互相平行,则分别在这两个平行平面内的直线( )A .平行B .异面C .相交D .平行或异面3、如图,在正方体ABCD —A 1B 1C 1D 1中判断下列位置关系:(1)AD 1所在直线与平面BCC 1的位置关系是 ;(2)平面A 1BC 1与平面ABCD 的位置关系是 ;4、如果直线l 在平面α外,那么直线l 与平面α( )A .没有公共点B .至多有一个公共点C .至少有一个公共点D .有且只有一个公共点5、以下四个命题:其中正确的是( ) A .①② B .②③ C .③④ D .①③ ①三个平面最多可以把空间分成八部分;②若直线⊂a 平面α,直线⊂b 平面β,则“a 与b 相交”等价于“α与β相交”;③若l =⋂βα,直线⊂a 平面α,直线⊂b 平面β,且P b a =⋂,则l P ∈;④若n 条直线中任意两条共面,则它们共面,6、若一条直线上有两点到一个平面的距离相等,那么这条直线和这个平面的位置关系是( )A .在平面内B .相交C .平行D .以上均有可能7、若直线m 不平行于平面α,且α⊄m ,则下列结论中正确的是( )A .α内的所有直线与m 异面B .α内不存在与m 平行的直线C .α内存在唯一一条直线与m 平行D .α内的直线与m 都相交8、在长方体ABCD —A 1B 1C 1D 1的六个表面与六个对角面(面AA 1C 1C ,面BB 1D 1D ,面ABC 1D 1,面ADC 1B 1,面A 1BCD 1及面A 1B 1CD )所在平面中,与棱AA 1平行的平面共有( )A .2个B .3个C .4个D .5个9、两条直线都与一个平面平行,则这两条直线的位置关系是( )A .平行B .相交C .异面D .以上均有可能10、下列命题:其中正确的个数是( )A .0 B .1 C .2 D .3①如果一条直线与一个平面平行,那么这条直线与平面内的任意一条直线平行;②如果一条直线与一个平面相交,那么这条直线与平面内的无数条直线异面;③过平面外一点有且只有一条直线与平面平行;④一条直线上有两点到一个平面的距离相等,则这条直线平行于这个平面,11、下列命题中正确的个数是( )A .1 B .2 C .3 D .4①四边相等的四边形是菱形;②若四边形有两个对角都是直角,则这个四边形是圆内接四边形; ③“直线不在平面内”的等价说法是“直线上至多有一个点在平面内”;④若两平面有一条公共直线,则这两个平面的所有公共点都在这条公共直线上;12、若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面13、与两个相交平面的交线平行的直线和这两个平面的位置关系是14、经过平面外两点可作这个平面的平行平面的个数是15、设有不同的直线a ,b 和不同的平面γβα,,,给出下列三个命题:其中正确命题的序号是 ①若a ∥α,b ∥α,则a ∥b ;②若a ∥α,a ∥β,则α∥β;③若α∥β,β∥γ,则α∥γ。
高中数学竞赛讲义_立体几何
立体几何一、基础知识公理1 一条直线。
上如果有两个不同的点在平面。
内.则这条直线在这个平面内,记作:a⊂a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。
公理3 过不在同一条直线上的三个点有且只有一个平面。
即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义 1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义 2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理 4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。
高三立体几何讲义
立体几何讲义一、空间几何体 球与正方体的组合体问题(1)正方体的内切球: 球与正方体的每个面都相切,切点为每个面的中心,显然球心为正方体的中心。
设正方体的棱长为a ,球半径为R 。
如图3,截面图为正方形EFGH 的内切圆,得2aR =; (2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,如图4作截面图,圆O 为正方形EFGH 的外接圆,易得a R 22=。
(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面1AA 作截面图得,圆O 为矩形C C AA 11的外接圆,易得a O A R 231==。
例1.某三棱锥的三视图如图所示,该三棱锥的表面积是().ABCD例2.(1) 在球面上有四个点P 、A 、B 、C .如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===,那么这个球的表面积是______.(2)正四棱锥S ABCD -,点S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为_________。
二、平行关系例3. 如图,直三棱柱ABC-A'B'C',∠BA点M,N 分别为A'B 和B'C'的中点.图3图4图5证明:MN ∥平面A'ACC';三、垂直关系例4.如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点证明:平面BDC 1⊥平面BDC(2). 如图,三棱柱ABC-A 1B 1C 1中,CA=CB,AB=A A 1,∠BA A 1=60°.证明AB ⊥A 1C; 如图,三棱柱ABC-A 1B 1C 1中,CA=CB,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC⊥平面AA 1B 1B,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.B 1CB A DC 1A 1(3)如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值练习题1. 一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长.2.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.3. 如图,某三棱锥的三视图都是直角边为2的等腰直角三角形,则该三棱锥的体积是(A)43 (B) 83(C) 4 (D) 8 4.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .65. 如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面PAC ⊥平面PBD ;(2) )若AB =6,∠APB =∠ADB =60°,求面APD 与面BPC 所成二面角的余弦值。
数学竞赛之立体几何专题精讲(例题+练习)
数学竞赛中的立体几何问题立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法.一、求角度这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角.立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90︒︒;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=⋅得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角.例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=⋅.分析:如图,设射线OA 任意一点A ,过A 作AB α⊥于点B ,又作BC OC ⊥于点C ,连接AC .有:cos ,cos ,cos ;OC OB OCOA OA OBαβγ=== 所以,cos cos cos αβγ=⋅.评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立.②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小.例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, F 在棱CD 上,使得:()0AE CFEB FDλλ==<<∞,记()f λλλαβ=+, αOC BAF EDCBAG其中λα表示EF 与AC 所成的角,其中λβ表示EF 与BD 所成的角,则: (A )()f λ在()0,+∞单调增加;(B )()f λ在()0,+∞单调减少; (C )()fλ在()0,1单调增加;在()1,+∞单调减少;(D )()f λ在()0,+∞为常数.` 分析:根据题意可首先找到与,λλαβ对应的角.作EG ∥AC ,交BC 于G ,连FG .显然 FG ∥BD ,∠GEF=λα,∠GFE=λβ.∵AC ⊥BD ,∴EG ⊥FG ∴90λλαβ+=︒例五、(1994年全国联赛一试)已知一个平面与一个正方体的12条棱的夹角都等于α,则sin α= .分析:正方体的12条棱可分为三组,一个平面与12条棱的夹角都 等于α只需该平面与正方体的过同一个顶点的三条棱所成的角都等于α即可.如图所示的平面A BD '就是合乎要求的平面,于是:sin 3α=二、求体积这类题常是求几何体的体积或要求解决与体积有关的问题 解决这类题的关键是 ,根据已知条件选择合适的面作为底面并求出这个底面上的高例十五、(2003年全国联赛一试)在四面体ABCD 中,设1,AB CD ==直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于 ()()()(11 ; ; 23A B C D 分析:根据锥体的体积公式我们知道:1V=3S h ⋅⋅.从题目所给条件看,已知长度的两条线段分别位于两条异面直线上,而已知距离是两条异面直线之间的距离而非点线距.显然需要进行转化.作BE ∥CD,且BE=CD ,连接DE 、AE ,显然,三棱锥A —BCD 与三棱锥A —BDE 底面积和高都相等,故它们有相等的体积.于是有:111sin 362A BCD A BDE D ABE BDE V V V S h AB BE ABE h ---∆====⋅⋅∠⋅=例十六、(2002年全国联赛一试)由曲线224,4,4,4x y x y x x ==-==-围成的图形绕y 轴旋转一周所ODCBAD 'C 'B ' A 'EDCBA得旋转体的体积为V 1,满足()()22222216,24,24x y x y x y +≤+-≥++≥的点(),x y 组成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则: (A )V 1=12V 2; (B )V 1=23V 2; (C )V 1=V 2; (D )V 1=2V 2; 分析:我国古代数学家祖暅在对于两个几何体体积的比较方面作出了卓越的贡献,祖暅原理告诉我们: 对于两个底面积相同,高 相等的几何体,任做一个 平行于底面的截面,若每 一个截面的面积相等,则这两个几何体的体积相等.运用祖 原理的思想我们可以将不规则的几何体的体积计算转化为规则几何体的体积计算.如计算球的体积时我们可以将半球转化为圆柱与圆锥的组合体.显然,本题中的两个几何体符合祖暅原理的条件,比较其截面面积如下:取()44y a a =-≤≤,则:()21162164S aa ππππ=-⋅⋅=-当0a <时:()()()22221642164S aa a ππππ=⋅--⋅-+=+ 当0a >时:()()()22221642164S a a a ππππ=⋅--⋅--=-显然,12S S =,于是有:12V V =.例十七、(2000年全国联赛一试)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积是 .分析:由正四面体的图象的对称性可知,内切球的球心必为正四面体的中心,球与各棱相切,其切点必为各棱中点,考查三组对棱中点的连线交于一点,即为内切球的球心,所以每组对棱间的距离即为内切球的直径,于是有:22r a =∴3343424V a a π⎛⎫=⋅⋅= ⎪ ⎪⎝⎭练习:同样可用体积法求出棱长为a 的正四面体的外 接球和内切球的半径.分析可知,正四面体的内切球 与外接球球心相同,将球心与正四面体的个顶点相连,可将正四面体划分为四个全等的正三棱锥,于是可知内切球的半径即为正四面体高度的四分之一,外接球半径即为高度的四分之三.故只要求出正四面体的高度即可.又:3h a ===,所以,,412R a r ==.ROEDC APr例十九、(1998年全国联赛一试)ABC ∆中,90,30,2C B AC ∠=︒∠=︒=,M 是AB 的中点.将ACM ∆沿CM 折起,使A 、B 两点间的距离为22A —BCM 的体积等于 . 分析:关于折叠问题,弄清折叠前后线段之间的变与不变的关系往往是我们解决问题的关键,问题中经常会涉及折叠图形形成二面角,在折叠前作一条直线与折叠线垂直相交,于交点的两侧各取一点形成一个角,于是在折叠过程中,此角始终能代表图形折叠所形成的二面角的大小.此外,通过分析可知解决本例的另一个关键是需要得到棱锥的高,其实只要能找到二面角,高也就能迎刃而解了.如图,作BD ⊥CM 的延长线相交于D ,AF ⊥CM 于F ,并延长到E ,使EF=BD ,连BE . 显然,AF=EF=BD=3EB=DF=2,所以: A E 2=AB 2-EB 2=8-4=4三棱锥A —BCM 的高即点A 到平面BCM 的距离也就是等腰∆AEF 中点A 到边EF 的距离.根据面积相等FF M ME E D D BB C C A A可求得:h ==∴11132V =⋅⋅=例二十、(1995年全国联赛一试)设O 是正三棱锥P —ABC 底面△ABC 的中心,过O 的动平面与P —ABC 的三条侧棱或其延长线的交点分别记为Q 、R 、S ,则和式111PQ PR PS++ (A )有最大值而无最小值; (B )有最小值而无最大值; (C )既有最大值又有最小值,且最大值与最小值不等; (D )是一个与平面QRS 位置无关的常量. 分析:借助于分割思想,将三棱锥P —QRS 划分成三个以O 为顶点,以三个侧面为 底面的三棱锥O —PQR ,O —PRS ,O —PSQ . 显然三个三棱锥的高相等,设为h ,又设QPR ∠=RPS SPQ α∠=∠=,于是有:()13P QRS O PQR O PRS O PSQ PQR PRS PSQ V V V V S S S h ----∆∆∆=++=++⋅ ()1sin 6PQ PR PR PS PS PQ h α=⋅+⋅+⋅⋅⋅ 又:1sin sin 6P QRS Q PRS V V PQ PR PS αθ--==⋅⋅⋅⋅,其中θ为PQ 与平面PRS 所成的角.()sin sin sin PQ PR PR PS PS PQ h PQ PR PS ααθ∴⋅+⋅+⋅⋅⋅=⋅⋅⋅⋅于是得:111PQ PR PS ++sin hθ= 例二十一、(1993年全国联赛一试)三棱锥S —ABC 中,侧棱SA 、SB 、SC 两两互相垂直,M 为三角形ABC 的重心,D 为AB 中点,作与SC 平行的直线DP . 证明:(1)DP 与SM 相交;OSRQCBAP(2)设DP 与SM 的交点为D ',则D 为三棱锥S —ABC 的外接球的球心. 分析:根据题中三棱锥的特点,可将三棱锥补形成为一个如图所示的长方体,因为 C 、M 、D 三点共线,显然,点C 、S 、D 、M 在同一平面内.于是有DP 与SM 相交. 又因为:12DD DM SC MC '==,而点D 为长 方体的底面SAEB 的中心,故必有点D '为 对角线SF 的中点,即为长方体的也是三棱 锥的外接球的球心.例二十二、(1992年全国联赛一试)从正方体的棱和各个面的面对角线中选出k 条,使得其中任意两条线段所在的直线都是异面直线,则k 的最大值是 . 分析:本题可以采用构造法求解.考查图中的 四条线段:A 1D 、AC 、BC 1、B 1D 1,显然其中任意 两条都是异面直线.另一方面,如果满足题目 要求的线段多于4条,若有5条线段满足要求, 因为5条线段中任意两条均为异面直线,所以其中任意两条没有公共点,于是产生这些线段的端点几何体的顶点的个数必定大于或等于10个,这与题中的正方体相矛盾.故:4k =.例二十三、(1991年全国联赛一试)设正三棱锥P —ABC 的高为PO ,M 为PO 的中点,过AM 作与棱BC 平行的平面,将三棱锥截为上、下两个部分,试求此两部分的体积比. 分析:取BC 的中点D ,连接PD 交AM 于G ,设 所作的平行于BC 的平面交平面PBC 于EF ,由 直线与平面平行的性质定理得:EF ∥BC ,连接AE ,AF ,则平面AEF 为合乎要求的截面.GFMED 'DCBA SH A 1DCBA D 1C 1B 1F E OM D CBAPHG作OH ∥PG ,交AG 于点H ,则:OH=PG .51112BCPD PG GDGD GD AD EF PG PG PG OH AO +===+=+=+=; 故:2425A PEF PEF A PBC PBC V S EF V S BC -∆-∆⎛⎫=== ⎪⎝⎭;于是:421A PEF A EFBC V V --=. 三、求面积这类题常设计为求几何体中某一特殊位置的截面面积 解决这类题的关键是 ,封断出截面的形状及截面和已知中相关图形的关系四、求距离这类题常是以几何体为依托 ,求其中的某些点 、线 、面之间的距离 解决这类题的关键在于 ,根据已知条件判断出或作出符合题意的线段 ,其长度就是符合题意的距离4、(1996年全国联赛一试)已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是________.解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a ,侧棱为b .取CD 中点G ,则AG ⊥CD ,EG ⊥CD ,故∠AGE 是二面角A —CD —E 的平面角.由BD ⊥AC ,作平面BDF ⊥棱AC 交AC 于F ,则∠BFD 为二面角B —AC —D 的平面角.AG=EG=b 2-a 2,BF=DF=2a b 2-a 2b,AE=2b 2-(233a )2=2b 2-43a 2.由cos ∠AGE=cos ∠BFD ,得2AG 2-AE 22AG 2=2BF 2-BD 22BF 2.∴ 4(b 2-432a 2)b 2-a 2=4a 2b 24a 2(b 2-a 2)⇒9b2=16a 2,⇒b=43a ,从而b=2,2a=3.AE=2.即最远的两个顶点距离为3. 分析:设正三棱锥的底面边长为a ,侧棱长为b ,则:2222223244a a b a aa b b -=⋅--即:2223b a b =-化简得: 32ba =所以,3,2a b ==.于是可求得线段PP '的长:2432pp '=-=.于是有最远距离为底边长3.2ababbGEFBCDAACBD EFOP 'P五、求元素个数这类题常以长方体或三棱锥等几何体为背景,通过计算符合题意的元素个数,来考查学生对计数问题的理解程度解决这类题的关键是计数时要有规律的数,作到不重复、不遗漏8、如果空间三条直线a ,b ,c 两两成异面直线,那么与a ,b ,c 都相交的直线有(A ) 0条 (B ) 1条 (C )多于1 的有限条 (D ) 无穷多条 解:在a 、b 、c 上取三条线段AB 、CC '、A 'D ',作一个平行六面体ABCD —A 'B 'C 'D ',在c 上取线段A 'D '上一点P ,过a 、P 作 一个平面,与DD '交于Q 、与CC '交于R ,则QR ∥a ,于是PR 不与a 平行,但PR 与a 共面.故PR 与a 相交.由于可以取无穷多个点P .故选D .9、给定平面上的5个点A 、B 、C 、D 、E ,任意三点不共线. 由这些点连成4条线,每点至少是一条线段的端点,不同的连结方式有 种.解:图中,4种连结方式都满足题目要求.(图中仅表示点、线间连结形式,不考虑点的位置) .情况(1),根据中心点的选择,有5种其连结方式;情况(2),可视为5个点A 、B 、C 、D 、E 的排列,但一种排列与其逆序排列是同一的,且两者是一一对应的,则有连结方式5!602=种;情况(3),首先是分歧点的选择有5种,其次是分叉的两点的选择有246C =种,最后是余下并连两点的顺序有别,有2!种,共计56260⨯⨯=种;情况(4),选择3点构造三角形,有3510C =种. 共有5606010135+++=种连结方式.B‘C’D’A‘CDASQ PR acb(1) (2) (3) (4)3. 设四棱锥P ABCD -的底面不是平行四边形, 用平面α去截此四棱锥, 使得截面四边形是平行四边形, 则这样的平面 α( )(A) 不存在 (B)只有1个 (C) 恰有4个 (D)有无数多个例一、(1991年全国联赛一试)由一个正方体的三个顶点所能构成的正三角形的个数为 (A )4; (B )8; (C )12; (D )24.分析:一个正方体一共有8个顶点,根据正方体的结构特征可知,构成正三角形的边必须是正方体的面对角线.考虑正方体的12条面对角线,从中任取一条可与其他面对角线构成两个等边三角形,即每一条边要在构成的等边三角形中出现两次,故所有边共出现112224C =次,而每一个三角形由三边构成,故一共可构成的等边三角形个数为2483=个. 例二、(1995年全国联赛一试)将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两个端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是 .分析:就四棱锥P —ABCD 而言,显然顶点P 的颜色必定不同于A 、B 、C 、D 四点,于是分三种情况考虑:① 若使用三种颜色,底面对角线上的两点可同色,其染色种数为:3560A =(种) ② 若使用四种颜色,底面有一对对角线同色,其染色种数为:1425240C A ⋅=(种)③ 若使用五种颜色,则各顶点的颜色各不相同,其染色种数为:55120A =(种)故不同染色方法种数是:420种.六、特殊四面体1.四面体 由于四面体是三角形在空间中的推广,因此三角形的许多性质也可以推广到四面体: (1)连接四面体的棱中点的线段交于一点,且在这里平分这些线段;(2)连接四面体任一顶点与它对面重心的线段交于一点,且这点将线段分成的比为3:1,G 称为四面体的重心.(3)每个四面体都有外接球,球心是各条棱的中垂面的交点.(4)每个四面体都有内切球,球心是四面体的各个二面角的平分面的交点. 例10(1983年全国)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.2.特殊四面体(i )等腰四面体:三组对棱分别相等的四面体.性质(1)等腰四面体各面积相等,且为全等的锐角三角形;(2)体积是伴随长方体的13.(ii )直角四面体 从一个顶点出发的三条棱相互垂直的四面体.性质(1)直角四面体中,不含直角的面是锐角三角形(称该面为底面);(2)任一侧面面积是它在底面投影的面积和地面面积的比例中项,且侧面面积的平方和是底面面积的平方;(3)三个侧面与底面所成三个二面角的余弦的平方和是1.3.正四面体 每个面都是全等的等边三角形的四面体.性质(1)若正四面体的棱长为a ,则四面体的全面积S =3a 2,体积V =212a 3;(2)正四面体对棱中点的连线长d =22a ;(3)正四面体外接球的半径64a ,内切球的半径为612a .七、“ 多球” 问 题在解决立体几何问题时, 常会遇到若干个球按照一定的法则“ 叠加” 的问题, 我们将 这类问题简称为“ 多球” 问题. 对于“ 多球” 问 题, 我们往往可以从多球中提炼出球心所组成的立体图形, 将问题简化, 然后通过解决这简化的问题, 获得原问题的待求结论,这是 解决“ 多球” 问题的一个常用方法.5、将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 .解:如图,ABCD 是下层四个球的球心,EFGH 是上层的四个球心.每个球心与其相切的球的球心距离=2.EFGH 在平面ABCD 上的射影是一个正方形.是把正方形ABCD 绕其中心旋转45 而得.设E 的射影为N ,则MN=2-1.EM=3,故EN 2=3-(2-1)2=22.∴ EN=48.所求圆柱的高=2+48.6、底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形.所以注水高为1+22.故应注水π(1+22)-4×43π(12)3=(13+22)π. 例 1在桌面上放着四个两两相切、 半 径均为r 的球, 试确定其顶端离桌面的高度;并求夹在这四个球所组成图形空隙中与四个 球均相切的小球的半径.例 2 制作一个底圆直径为4 c m的圆柱形容器,要内装直径为2 c m的钢珠2 6 只,那么这容器至少要多高?( 上海市1 9 8 6 年竞赛试题)例 3 在正四面体内装入半径相同的球,使相邻的球彼此相切,且外层的球又和正四面体的面都相切,如此装法,当球的个数无穷大时,求所装球的体积与正四面体体积之比的极限.( 第八届希望杯高二数学培训题)八、体积法及其应用体积法是处理立体几何问题的重要方法.在高中数学竞赛中,利用体积法解题形式简洁、构思容易,内涵深刻,应用广泛,备受青睐.几何体的体积包括基本几何体的体积计算、等积变换等方法,同时有以下常用方法和技巧:( 1 ) 转移法:利用祖咂原理或等积变换,把所求几何体转化为与它等底、等高的几何体的体积.( 2 ) 分割求和法:把所求几何体分割成基本几何体的体积.( 3 ) 补形求差法:通过补形化归为基本几何体的体积.( 4 ) 四面体体积变换法.( 5 ) 算两次法:对同一几何体的体积,从两种方法计算,建立出未知元素的等量关系,从而使问题求解.利用这种方法求点到平面的距离,可以回避作出表示距离的垂线段.另外,体积法中对四面体的体积变换涉及较多应用广泛.关于四面体的体积有如下常用性质:( 1 ) 底面积相同的两个三棱锥体积之比等于对应高之比;( 2 ) 高相同的两个三棱锥的体积比等于其底面积之比;( 3 ) 用平行于底面的平面去截三棱锥,截得的小三棱锥与原三棱锥的体积之比等于相似比的立方;九、立体几何中的截面问题截面问题涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形的性质及截面图形的最值.本文介绍此类问题的求解方法.1 判断截面图形的形状2 截面面积和周长的计算3 计算截面图形的个数4 确定截面图形的性质5 求截面图形的最值九、综合问题7、顶点为P 的圆锥的轴截面是等腰直角三角形,A 是底面圆周上的点,B 是底面圆内的点,O 为底面圆圆心,AB ⊥OB ,垂足为B ,OH ⊥PB ,垂足为H ,且P A=4,C 为P A 的中点,则当三棱锥O -HPC 的体积最大时,OB 的长为A .53 B .253 C .63 D .263解:AB ⊥OB ,⇒PB ⊥AB ,⇒AB ⊥面POB ,⇒面P AB ⊥面POB .OH ⊥PB ,⇒OH ⊥面P AB ,⇒OH ⊥HC ,OH ⊥PC ,又,PC ⊥OC ,⇒PC ⊥面OCH .⇒PC 是三棱锥P -OCH 的高.PC=OC=2.而∆OCH 的面积在OH=HC=2时取得最大值(斜边=2的直角三角形).当OH=2时,由PO=22,知∠OPB=30︒,OB=PO tan30︒=263.解2:连线如图,由C 为P A 中点,故V O -PBC =12V B -AOP ,而V O -PHC ∶V O -PBC =PHPB =PO 2PB2(PO 2=PH ·PB ).记PO=OA=22=R ,∠AOB=α,则V P —AOB =16R 3sin αcos α=112R 3sin2α,A BP OH CV B -PCO =124R 3sin2α.PO 2PB 2=R 2R 2+R 2cos 2α=11+cos 2α=23+cos2α.⇒V O -PHC=sin2α3+cos2α⨯112R 3.∴ 令y=sin2α3+cos2α,y '=2cos2α(3+cos2α)-(-2sin2α)sin2α(3+cos2α)2=0,得cos2α=-13,⇒cos α=33,∴ OB=263,选D .例19把一个长方体切割成k 个四面体,则k 的最小值是 .例20已知l αβ--是大小为45的二面角,C 为二面角内一定点,且到半平面α和β和6,A ,B 分别是半平面α,β内的动点,则ABC ∆周长的最小值为_____.例21如图所示,等腰ABC △的底边AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积. (1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值? (3)当()V x 取得最大值时,求异面直线AC 与PF 所成角的余弦值.例六、设锐角,,αβγ满足:222cos cos cos 1αβγ++=.求证:tan tan tan αβγ⋅⋅≥分析:构造长方体模型.构造如图所示的长方体 ABCD —A 1B 1C 1D 1,连接AC 1、A 1C 1、BC 1、DC 1. 过同一个顶点的三条棱AD 、AB 、AA 1与对角线AC 1所成的角为锐角,,αβγ,满足:222cos cos cos 1αβγ++=不妨设长方体过同一个顶点的三条棱AD 、AB 、AA 1的长分别为,,a bc .则:tan tan tan aa b b c cαβγ=≥=≥=≥ 以上三式相乘即可.证明二:因为,,αβγ为锐角,故:2222sin 1cos cos cos 2cos cos ααβγβγ=-=+≥⋅,sin α∴≥同理:sin βγP ED F BCAD 1C 1B 1 A 1DC BA例22已知三棱锥ABC P -的三条侧棱PA 、PB 、PC 两两垂直,侧面PAB 、PBC 、PCA 与底面ABC 所成的二面角的平面角的大小分别为1θ、2θ、3θ,底面ABC 的面积为34. (1)证明:22tan tan tan 321≥⋅⋅θθθ;(2)若23tan tan tan 321=++θθθ,求该三棱锥的体积ABC P V -. 练 习 题例七、(1994年全国联赛一试)在正n 棱锥中,相邻两侧面所成的二面角的取值范围是 (A ) 2,n n ππ-⎛⎫⎪⎝⎭; (B ) 1,n n ππ-⎛⎫ ⎪⎝⎭; (C ) 0,2π⎛⎫ ⎪⎝⎭; (D ) 21,n n n n ππ--⎛⎫⎪⎝⎭.分析:根据正n 棱锥的结构特征,相邻两侧面所成的二面角应大于底面正n 边形的内角,同时小于π,于是得到(A ).例八、(1992年全国联赛一试)设四面体四个面的面积分别为S 1、S 2、S 3、S 4,它们的最大值为S ,记1234S S S S Sλ+++=,则λ一定满足(A ) 24λ<≤; (B ) 34λ<<; (C ) 2.5 4.5λ<≤; (D ) 3.5 5.5λ<<. 分析:因为 i S S ≤ ()1,2,3,4i =所以12344S S S SS+++≤.特别的,当四面体为正四面体时取等号.另一方面,构造一个侧面与底面所成角均为45︒的三棱锥,设底面面积为S 4,则:()()1231231234123cos 451 2.5cos 45S S S S S S S S S S S S S S λ+++++⋅︒+++===+++⋅︒,若从极端情形加以考虑,当三棱锥的顶点落在底面上时,一方面不能构成三棱锥,另外此时有1234S S S S ++=,也就是2λ=,于是必须2λ>.故选(A ).。
高一数学立体几何讲义
I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。
【精】高中数学:立体几何优质讲义.docx
高中数学:立体几何优质讲义姓名:指导:日期:立体几何证平行(一)甄蟻平有<■图丄E)--------------- K如果两条蛾切平行于第三条最,那么这两条蛾相互平行.2.如果一条蛛平行于另一个平面,那么这条蟻就平行于这这条地的平面与已知平而的交蟻. 图丄】3 .血果商个平面平行,那玄另一个平血虹诳两个平血的交妹互制平行.4如果两喪直蟻都制另一•个平而垂直.那么这两条直蟻平有.5一在同T面内,如果两条直或垂直于同一条直墟,那么这两条直慟'成.,程茜师中学亞建化L.如果平而外一条直絞平行于平面内的一条直銭,那衣宜城与平而干径 :!.如果两个平部平行,一个平薊内的任何一条直域平行于另一个平面. 3 .州果平血*了平而如一条如果干时垂直于另--条直邑, 4 一如果平面与平面外一条直理同时垂直于另一个平面,I. 如果一个平而内有两果闵全平f li 平有于另一个平而,丄如果两个平面揺平行于第三个平潮,那互这两个平面平有. 3.如果两个平面问畦垂直于同一条面雄,那么这两个平ffii 平行.证塔直大部分毎是通过隼直证垂直:下能ii 史旳时榛.平移到另i 一个位置证垂直. (一) 或蟻垂西如果一案直蛾垂直于一个平St 那佥谊条宜戒垂直于这个平ifi 内的任何一条直銭一 (二) 蜷海垂苴【一如果一条直蜷垂直于平而内两条招交的部,那么这条直坡就垂直于两条相交直域所在的平面. 丄如果睥个平而常有,在其中一个 平血內,垂森于公芯検的il 注垂立于yi-t-Tni!. t 三)而而垂直(■囲At )【.辻一个平而垂洼旳平而垂辻于巳辻平而. 土二部南为直请的两个平面垂直.〈理科)(四〉不能祝匿征垂直的情况L 把已知蟻成ffii 平秽到容駐证照垂直的位置 2.询和已知蟻或面平行的蟻凍海证垂直一那么场面平有. 图卩二.求相疔,求距离,成求体根〈一)求術》〈理我丄技线爾.絞血曲•和二而跆歩L建系,崖可能il.薮将计算的点落在抽我和軸而L坐株系可以任意拆向*凡是角度渉成的面都要至少已如(SU出)3个点,肅度演及的絞都要至少巳知《成求出)£个点.歩,标期段坐标,不能表廚的可以持定字毋系数,当盧坐岳中只舍有一个未知字毋时可以直接代入下一歩求解:当点坐标中含有£个以上未知字毋盹需要握据以下三点列式求字母取住.①前量垂成a ijj =>^15 +y L k'i + -^i = u囲向量其蟻,"Jj2n W =虹2.乂 =加.=切崖向0模,何|=巧了「了歩丄表航向量,终点跋起点歩4:朮法曲丽1也(歩I上(如丄"I'""(歩3丄不姉妨X."中一一个字辱为。
(完整word版)高中数学立体几何讲义(一)
平面与空间直线(Ⅰ)、平面的基本性质及其推论1、空间图形是由点、线、面组成的。
点、线、面的基本位置关系如下表所示:图形符号语言文字语言(读法) AaA a ∈ 点A 在直线a 上。
AaA a ∉ 点A 不在直线a 上。
AαA α∈点A 在平面α内。
AαA α∉ 点A 不在平面α内。
b a Aa b A = 直线a 、b 交于A 点。
aαaα直线a 在平面α内。
aαa α=∅ 直线a 与平面α无公共点。
aAαa A α= 直线a 与平面α交于点A 。
l αβ= 平面α、β相交于直线l 。
α⊄a αa )表示a α=∅或a A α=。
2、平面的基本性质公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内推理模式:A ABB ααα∈⎫⇒⎬∈⎭。
如图示:应用:是判定直线是否在平面内的依据,也是检验平面的方法。
BA α公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
推理模式:A l A ααββ∈⎫⇒=⎬∈⎭且A l ∈且l 唯一如图示:应用:①确定两相交平面的交线位置;②判定点在直线上。
例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD ,∴AB ,CD 确定一个平面β. 又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β,即E 为平面α与β的一个公共点.同理可证F ,G ,H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线.说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论.例2.如图,已知平面α,β,且α β=l .设梯形ABCD 中,AD ∥BC ,且AB ⊂α,CD ⊂β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB CD =M .又∵AB ⊂α,CD ⊂β,∴M ∈α,且M ∈β.∴M ∈α β.又∵α β=l ,∴M ∈l ,即AB ,CD ,l 共点.说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的.公理3: 经过不在同一条直线上的三点,有且只有一个平面。
(完整word版)高中数学立体几何讲义(二)
空间中的垂直关系I、直线与平面垂直1线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直.其中直线叫做平面的垂线,平面叫做直线的垂面。
交点叫做垂足。
直线与平面垂直简称线面垂直,记作:a丄a。
2、直线与平面垂直的判定方法:①利用定义。
②判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
③其它方法:(I)、如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面。
(n)、如果一条直线垂直于两个平行平面中的一个,那么也垂直于另一个面。
(川)、如果两个平面互相垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。
(W)、如果两个相交平面都和第三个平面垂直,那么相交平面的交线也垂直于第三个方面。
3、直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
4、三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的投影垂直,那么它也和这条斜线垂直。
说明:(1)定理的实质是判定平面内的一条直线和平面的一条斜线的垂直关系;PO ,OPAI A a PAa , a OA5、三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的投影垂直。
aAPO ,O PAI A a AOa , a AP练习:1若a,b,c 表示直线,表示平面,下列条件中,能使 a 的是 (D )(A) a b, a c,b , c (B)a b,b//(C)aI b A, b, a b(D) a//b,b2 .已知 l 与m 是两条不同的直线,若直线 1平面,①若直线m l ,则m 〃;②若m,则m//l ;③若m,则m l:④ m//l ,则 m。
上述判断正确的是 (B)(A)①②③(B)②③④(C)①③④ (D)②④3.设三棱锥P ABC 的顶点P 在平面ABC 上的射影是H ,给出以下命题:① 若PA BC ,PB AC ,则H 是 ABC 的垂心② 若PA, PB,PC 两两互相垂直,则 H 是 ABC 的垂心 ③ 若 ABC 90°,H 是AC 的中点,贝U PA PB PC ④ 若PA PB PC ,则H 是 ABC 的外心其中正确命题的命题是 _①②③④ ________________例1、 已知PA ^O O 所在的平面,AB 是O O 的直径,C 是O O 上任意一点,过 A 点作AE ± PC 于点E ,求证:AE ±平面PBC证明:••• PAL 平面 ABC 二PA !BG 又T AB 是O O 的直径,二BC 丄AG 而PC A AC=C ••• BC 丄平面 PAC 又T AE 在平面 PAC 内,二BC 丄AE= •/ PC 丄 AE,且 PC n BC=C • AE!平面 PBC[反思归纳]证明直线与平面垂直的常用方法有:利用线面垂直的定义; 利用线面垂直的判定定理;利用"若直线a //直线b ,直线a 丄平面a,则直线 b 丄平面a”P KC例2、在直三棱柱ABC-A i BQ 中,BC =A C, A B± AC,求证:A i B±B G证明:取A i B 的中点D,连结C i D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章立体几何一、基础知识公理1 一条直线。
上如果有两个不同的点在平面。
内.则这条直线在这个平面内,记作:a⊂a.公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。
公理3 过不在同一条直线上的三个点有且只有一个平面。
即不共线的三点确定一个平面.推论l 直线与直线外一点确定一个平面.推论2 两条相交直线确定一个平面.推论3 两条平行直线确定一个平面.公理4 在空间内,平行于同一直线的两条直线平行.定义 1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.定义 2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直.定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.定理2 两条直线垂直于同一个平面,则这两条直线平行.定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.定理 4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.定义 5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角.结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.定理4 (三垂线定理)若d为平面。
的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若c⊥b,则c⊥a.逆定理:若c⊥a,则c⊥b.定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行定理6 若直线。
与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b.结论2 若直线。
与平面α和平面β都平行,且平面α与平面β相交于b,则a//b.定理7 (等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等.定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交.定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β.定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b.定义7 (二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角.它的取值范围是[0,π].特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即α⊥β.定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直.定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内.定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直.定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)都互相平行,由这些面所围成的几何体叫做棱柱.两个互相平行的面叫做底面.如果底面是平行四边形则叫做平行六面体;侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫做正棱柱.底面是矩形的直棱柱叫做长方体.棱长都相等的正四棱柱叫正方体.定义9 有一个面是多边形(这个面称为底面),其余各面是一个有公共顶点的三角形的多面体叫棱锥.底面是正多边形,顶点在底面的射影是底面的中心的棱锥叫正棱锥.定理13 (凸多面体的欧拉定理)设多面体的顶点数为V ,棱数为E ,面数为F ,则V+F-E=2.定义10 空间中到一个定点的距离等于定长的点的轨迹是一个球面.球面所围成的几何体叫做球.定长叫做球的半径,定点叫做球心.定理14 如果球心到平面的距离d 小于半径R ,那么平面与球相交所得的截面是圆面,圆心与球心的连线与截面垂直.设截面半径为r ,则d 2+r 2=R 2.过球心的截面圆周叫做球大圆.经过球面两点的球大圆夹在两点间劣弧的长度叫两点间球面距离.定义11 (经度和纬度)用平行于赤道平面的平面去截地球所得到的截面四周叫做纬线.纬线上任意一点与球心的连线与赤道平面所成的角叫做这点的纬度.用经过南极和北极的平面去截地球所得到的截面半圆周(以两极为端点)叫做经线,经线所在的平面与本初子午线所在的半平面所成的二面角叫做经度,根据位置不同又分东经和西经.定理15 (祖 原理)夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.定理16 (三面角定理)从空间一点出发的不在同一个平面内的三条射线共组成三个角.其中任意两个角之和大于另一个,三个角之和小于3600.定理17 (面积公式)若一个球的半径为R ,则它的表面积为S球面=4πR 2。
若一个圆锥的母线长为l ,底面半径为r ,则它的侧面积S 侧=πrl. 定理18 (体积公式)半径为R 的球的体积为V 球=334R π;若棱柱(或圆柱)的底面积为s ,高h ,则它的体积为V=sh ;若棱锥(或圆锥)的底面积为s ,高为h ,则它的体积为V=.31sh 定理19 如图12-1所示,四面体ABCD 中,记∠BDC=α,∠ADC=β,∠ADB=γ,∠BAC=A ,∠ABC=B ,∠ACB=C 。
DH ⊥平面ABC 于H 。
(1)射影定理:S ΔABD •cos Ф=S ΔABH ,其中二面角D —AB —H 为Ф。
(2)正弦定理:.sin sin sin sin sin sin CB A γβα== (3)余弦定理:cos α=cos βcos γ+sin βsin γcosA.cosA=-cosBcosC+sinBsinCcos α. (4)四面体的体积公式31=VDH •S ΔABC =γβαγβαcos cos cos 2cos cos cos 161222+---abc ϕsin 611d aa =(其中d 是a 1, a 之间的距离,ϕ是它们的夹角) a 32=S ΔABD •S ΔACD•sin θ(其中θ为二面角B —AD —C 的平面角)。
二、方法与例题1.公理的应用。
例1 直线a,b,c 都与直线d 相交,且a//b,c//b ,求证:a,b,c,d 共面。
[证明] 设d 与a,b,c 分别交于A,B,C,因为b 与d 相交,两者确定一个平面,设为a.又因为a//b ,所以两者也确定一个平面,记为β。
因为A ∈α,所以A ∈β,因为B ∈b ,所以B ∈β,所以d ⊂β.又过b,d 的平面是唯一的,所以α,β是同一个平面,所以a ⊂α.同理c ⊂α.即a,b,c,d 共面。
例2 长方体有一个截面是正六边形是它为正方体的什么条件?[解] 充要条件。
先证充分性,设图12-2中PQRSTK 是长方体ABCD-A 1B 1C 1D 1的正六边形截面,延长PQ ,SR 设交点为O ,因为直线SR ⊂平面CC 1D 1D ,又O ∈直线SR ,所以O ∈平面CC 1D 1D ,又因为直线PQ ⊂平面A 1B 1C 1D 1,又O ∈直线PQ ,所以O ∈平面A 1B 1C 1D 1。
所以O ∈直线C 1D 1,由正六边形性质知,∠ORQ=∠OQR=600,所以ΔORQ 为正三角形,因为CD//C 1D 1,所以RO SR R C CR =1=1。
所以R 是CC 1中点,同理Q 是B 1C 1的中点,又ΔORC 1≌ΔOQC 1,所以C 1R=C 1Q ,所以CC 1=C 1B 1,同理CD=CC 1,所以该长方体为正方体。
充分性得证。
必要性留给读者自己证明。
2.异面直线的相关问题。
例3 正方体的12条棱互为异面直线的有多少对?[解] 每条棱与另外的四条棱成异面直线,重复计数一共有异面直线12×4=48对,而每一对异面直线被计算两次,因此一共有=24824对。
例4 见图12-3,正方体,ABCD —A 1B 1C 1D 1棱长为1,求面对角线A 1C 1与AB 1所成的角。
[解] 连结AC ,B 1C ,因为A 1A =//B 1B =//C 1C ,所以A 1A =//C 1C ,所以A 1ACC 1为平行四边形,所以A 1C 1=//AC 。
所以AC 与AB 1所成的角即为A 1C 1与AB 1所成的角,由正方体的性质AB 1=B 1C=AC ,所以∠B 1AC=600。
所以A 1C 1与AB 1所成角为600。
3.平行与垂直的论证。
例5 A ,B ,C ,D 是空间四点,且四边形ABCD 四个角都是直角,求证:四边形ABCD 是矩形。
[证明] 若ABCD 是平行四边形,则它是矩形;若ABCD 不共面,设过A ,B ,C 的平面为α,过D 作DD 1⊥α于D 1,见图12-4,连结AD 1,CD 1,因为AB ⊥AD 1,又因为DD 1⊥平面α,又AB ⊂α,所以DD 1⊥AB ,所以AB ⊥平面ADD 1,所以AB ⊥AD 1。
同理BC ⊥CD 1,所以ABCD 1为矩形,所以∠AD 1C=900,但AD 1<AD,CD 1<CD ,所以AD 2+CD 2=AC 2=2121CD AD +,与2121CD AD +<AD 2+CD 2矛盾。
所以ABCD 是平面四边形,所以它是矩形。
例6 一个四面体有两个底面上的高线相交。
证明:它的另两条高线也相交。
[证明] 见图12-5,设四面体ABCD 的高线AE 与BF 相交于O ,因为AE ⊥平面BCD ,所以AE ⊥CD ,BF ⊥平面ACD ,所以BF ⊥CD ,所以CD ⊥平面ABO ,所以CD ⊥AB 。
设四面体另两条高分别为CM ,DN ,连结CN ,因为DN ⊥平面ABC ,所以DN ⊥AB ,又AB ⊥CD ,所以AB ⊥平面CDN ,所以AB ⊥CN 。
设CN 交AB 于P ,连结PD ,作'CM ⊥PD 于'M ,因为AB ⊥平面CDN ,所以AB ⊥'CM ,所以'CM ⊥平面ABD ,即'CM 为四面体的高,所以'CM 与CM 重合,所以CM ,DN 为ΔPCD 的两条高,所以两者相交。