pricing model of financial engineering
金融工程经典书籍
金融工程经典书籍1.Futures, Options and other derivatives--John Hull这本书被称为“华尔街圣经”,不管是找工作还是senior quant都会用到。
John Hull 非常厉害,各个方面都有开创性的成果。
2.Arbitrage theory in continuous time--Tomas Bjork这本书非常适合数学/物理背景的人读,注重数学理论的培养。
3.Financial Calculus--Martin Baxter& Rennie非常薄但是elegant的一本书,1996年,算是比较早了,但是和Hull的书齐名。
4.Financial calculus for finance I II--ShreveShreve的书,非常elegant,非常仔细,适合有数学背景的人读。
I是讲离散模型,II是讲连续模型。
5.Martingale methods in Financial modelling--Musiela & Rutkovski6. Brownian motion and stochastic calculus--Shreve& Karasatz7.Stochastic differential equations--Oksendal8.Stochastic integration and differential equations--Protter9.Numerical analysisJunior quant:10.Concepts and practice of Mathematical Finance--Mark Joshi非常适合刚入行的quant,对于学生不推荐。
非常实用,作者非常聪明。
11. C++ design patterns and derivatives pricing--Mark Joshi对于懂得C++基础的人来说很重要,更重要的是教你学会Monte Carlo。
收益定价模型
收益定价模型
收益定价模型(Earnings Pricing Model)是一种用于确定股票
或其他金融资产价格的模型。
该模型尝试通过分析公司的盈利能力来估计资产的合理价格。
常见的收益定价模型有以下几种:
1. 资本资产定价模型(Capital Asset Pricing Model,CAPM):基于风险和预期回报之间的线性关系,通过考虑资产相对于市场的风险来确定合理的期望收益率,并进而确定资产价格。
2. 股利贴现模型(Dividend Discount Model,DDM):基于公
司未来的股利或现金流量来确定股票的合理价格。
该模型将未来收益现值化,然后将其与当前股票价格进行比较。
3. 增长定价模型(Growth Pricing Model):适用于快速增长
的公司,该模型基于预计未来增长率来确定股票的合理价格。
通常使用过去的增长数据和预测的未来增长来估计。
4. 相对估值模型(Relative Valuation Model):将公司或资产
与类似公司或资产进行比较,通过比较相似公司的估值指标(如市盈率、市净率等)来确定合理的价格。
该模型基于市场上其他类似公司的估值水平。
这些模型都有其各自的局限性和假设,投资者在使用时需要结合具体情况进行综合分析。
同时,还需要注意到市场上价格由
多种因素影响,例如市场情绪、供需关系等,因此通过单一模型得出的价格可能并不一定准确。
金融工程硕士书单Master reading list for Quants, MFE students范文
以下推荐书目,由华尔街的Quant们和美国各名牌大学毕业生推荐。
FREE QUANT CAREER GUIDES•What do quant do ? A guide by Mark Joshi. Download•Paul & Dominic's Guide to Quant Careers (see attachment)•Career in Financial Markets 2011- a guide by efinancialcareers. Download•Interview Preparation Guide by Michael Page: Quantitative Analysis. Download•Interview Preparation Guide by Michael Page: Quantitative Structuring. Download•Paul & Dominic's Job Hunting in Interesting Times Second Edition (see attachment)•Peter Carr's A Practitioner's Guide to Mathematical Finance (see attachment)GENERAL READING ON WALL STREET•Reminiscences of a Stock Operator (Wiley Investment Classics)•Working the Street: What You Need to Know About Life on Wall Street•Liar’s Poker: Rising Through the Wreckage on Wall Street•Monkey Business: Swinging Through the Wall Street Jungle•Fiasco: The Inside Story of a Wall Street Trader•Den of Thieves•When Genius Failed: The Rise and Fall of Long-Term Capital Management•Traders, Guns & Money: Knowns and unknowns in the dazzling world of derivatives•The Greatest Trade Ever: The Behind-the-Scenes Story of How John Paulson Defied Wall Street and Made Financial History•Goldman Sachs : The Culture of Success•The House of Morgan: An American Banking Dynasty and the Rise of Modern Finance•Wall Street: A History: From Its Beginnings to the Fall of Enron•The Murder of Lehman Brothers: An Insider’s Look at the Global Meltdown•On the Brink: Inside the Race to Stop the Collapse of the Global Financial System•House of Cards: A Tale of Hubris and Wretched Excess on Wall Street•Too Big to Fail: The Inside Story of How Wall Street and Washington Fought to Save the Financial System-and Themselves•Liquidated: An Ethnography of Wall Street•Fortune’s Formula: The Untold Story of the Scientific Betting System That Beat the Casinos and Wall StreetCAREER AS A QUANT•My Life as a Quant: Reflections on Physics and Finance•How I Became a Quant: Insights from 25 of Wall Street’s Elite•The Big Short: Inside the Doomsday Machine•The Quants: How a New Breed of Math Whizzes Conquered Wall Street and Nearly Destroyed It •Nerds on Wall Street: Math, Machines and Wired Markets•Physicists on Wall Street and Other Essays on Science and Society•The Complete Guide to Capital Markets for Quantitative Professionals•Starting Your Career as a Wall Street Quant: A Practical, No-BS Guide to Getting a Job in Quantitative Finance and Launching a Lucrative CareerBOOKS FOR QUANT INTERVIEWS•Heard on The Street: Quantitative Questions from Wall Street Job Interviews by Timothy Crack •Quant Job Interview Questions And Answers by Mark Joshi•Frequently Asked Questions in Quantitative Finance by Paul Wilmott•A Practical Guide To Quantitative Finance Interviews by Xinfeng Zhou•Basic Black-Scholes: Option Pricing and Trading by Timothy Crack•Fifty Challenging Problems in Probability with Solutions by Frederick Mosteller•Vault Guide to Advanced Finance & Quantitative InterviewsGOOD BOOKS TO READ BEFORE STARTING MFE PROGRAM•A Primer for the Mathematics of Financial Engineering (+ Solutions Manual) by Dan Stefanica •An Introduction to the Mathematics of Financial Derivatives, Second Edition by Salih Neftci •Options, Futures, and Other Derivatives with Derivagem CD (7th Edition) by John Hull•Paul Wilmott on Quantitative Finance 3 Volume Set (2nd Edition) by Paul Wilmott•Principles of Financial Engineering, Second Edition by Salih Neftci•Elementary Stochastic Calculus With Finance in View by Thomas Mikosch•The Concepts and Practice of Mathematical Finance by Mark Joshi•Financial Options: From Theory to Practice by Stephen Figlewski•Financial Calculus : An Introduction to Derivative Pricing by Martin Baxter•A Course in Financial Calculus by Etheridge Alison•The Mathematics of Financial Derivatives: A Student Introduction by Paul Wilmott •Frequently Asked Questions in Quantitative Finance by Paul Wilmott•Derivatives Markets by Robert L. McDonald•An Undergraduate Introduction to Financial Mathematics by Robert Buchanan PROGRAMMINGC++ (ordered by level of difficulty)•Problem Solving with C++, 7th Edition by Walter Savitch•C++ How to Program (7th Edition) by Harvey Deitel•Absolute C++ (4th Edition) by Walter Savitch•Thinking in C++: Introduction to Standard C++, Volume One by Bruce Eckel•Thinking in C++: Practical Programming, Volume Two by Bruce Eckel•The C++ Programming Language: Special Edition by Bjarne Stroustrup (C++ inventor) •Effective C++: 55 Specific Ways to Improve Your Programs and Designs by Scot Myers•C++ Primer (4th Edition) by Stanley Lippman•C++ Design Patterns and Derivatives Pricing (2nd edition) by Mark Joshi•Financial Instrument Pricing Using C++ by Daniel DuffyC# (ordered by level of difficulty)•C# 2010 for Programmers (4th Edition)•Computational Finance Using C and C# by George Levy•C# in Depth, Second Edition by Jon SkeetF# (ordered by level of difficulty)•Programming F#: An introduction to functional language by Chris Smith•F# for Scientists by Jon Harrops (Microsoft Researcher)•Real World Functional Programming: With Examples in F# and C#•Expert F# 2.0 by Don Syme•Beginning F# by Robert PickeringMatlab (ordered by level of difficulty)•Matlab: A Practical Introduction to Programming and Problem Solving•Numerical Methods in Finance and Economics: A MATLAB-Based Introduction (Statistics in Practice)Excel•Excel 2007 Power Programming with VBA by John Walkenbach•Excel 2007 VBA Programmer’s Reference•Financial Modeling by Simon Benninga•Excel Hacks: Tips & Tools for Streamlining Your Spreadsheets•Excel 2007 Formulas by John WalkenbachVBA•Advanced modelling in finance using Excel and VBA by Mike Staunton•Implementing Models of Financial Derivatives: Object Oriented Applications with VBAPython•Learning Python: Powerful Object-Oriented Programming•Python CookbookFINITE DIFFERENCES•Option Pricing: Mathematical Models and Computation, by P. Wilmott, J.N. Dewynne, S.D. Howison•Pricing Financial Instruments: The Finite Difference Method, by Domingo Tavella, Curt Randall •Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach by Daniel DuffyMONTE CARLO•Monte Carlo Methods in Finance, by Peter Jäcke (errata available at )•Monte Carlo Methodologies and Applications for Pricing and Risk Management , by Bruno Dupire (Editor)•Monte Carlo Methods in Financial Engineering, by Paul Glasserman•Monte Carlo Frameworks in C++: Building Customisable and High-performance Applications byDaniel J. Duffy and Joerg KienitzSTOCHASTIC CALCULUS•Stochastic Calculus and Finance by Steven Shreve•Stochastic Differential Equations: An Introduction with Applications by Bernt Oksendal VOLATILITY•Volatility and Correlation, by Riccardo Rebonato•Volatility, by Robert Jarrow (Editor)•Volatility Trading by Euan SinclairINTEREST RATE•Interest Rate Models - Theory and Practice, by D. Brigo, F. Mercurio updates available on-line Professional Area of Damiano Brigo's web site•Modern Pricing of Interest Rate Derivatives, by Riccardo Rebonato•Interest-Rate Option Models, by Riccardo Rebonato•Efficient Methods for Valuing Interest Rate Derivatives, by Antoon Pelsser•Interest Rate Modelling, by Nick Webber, Jessica JamesFX•Foreign Exchange Risk, by Jurgen Hakala, Uwe Wystup•Mathematical Methods For Foreign Exchange, by Alexander LiptonSTRUCTURED FINANCE•The Analysis of Structured Securities: Precise Risk Measurement and Capital Allocation (Hardcover) by Sylvain Raynes and Ann Rutledge•Salomon Smith Barney Guide to MBS & ABS, Lakhbir Hayre, Editor•Securitization Markets Handbook, Structures and Dynamics of Mortgage- and Asset-backed securities by Stone & Zissu•Securitization, by Vinod Kothari•Modeling Structured Finance Cash Flows with Microsoft Excel: A Step-by-Step Guide (good for understanding the basics)•Structured Finance Modeling with Object-Oriented VBA (a bit more detailed and advanced than the step by step book)STRUCTURED CREDIT•Collateralized Debt Obligations, by Arturo Cifuentes•An Introduction to Credit Risk Modeling by Bluhm, Overbeck and Wagner (really good read, especially on how to model correlated default events & times)•Credit Derivatives Pricing Models: Model, Pricing and Implementation by Philipp J. Schönbucher •Credit Derivatives: A Guide to Instruments and Applications by Janet M. Tavakoli•Structured Credit Portfolio Analysis, Baskets and CDOs by Christian Bluhm and Ludger Overbeck RISK MANAGEMENT/VAR•VAR, by various authors•Value at Risk, by Philippe Jorion•RiskMetrics Technical Document RiskMetrics Group•Risk and Asset Allocation by Attilio MeucciSAS/S/S-PLUS•The Little SAS Book: A Primer, Third Edition by Lora D. Delwiche and Susan J. Slaughter •Modeling Financial Time Series with S-PLUS•Statistical Analysis of Financial Data in S-PLUS•Modern Applied Statistics with SHANDS ON•Implementing Derivative Models, by Les Clewlow, Chris Strickland•The Complete Guide to Option Pricing Formulas, by Espen Gaarder HaugNOT ENOUGH YET?•Energy Derivatives, by Les Clewlow, Chris Strickland,•Hull-White on Derivatives, by John Hull, Alan White•Exotic Options: The State of the Art, by Les Clewlow (Editor), Chris Strickland (Editor)•Market Models, by C.O. Alexander•Pricing, Hedging, and Trading Exotic Options, by Israel Nelken•Modelling Fixed Income Securities and Interest Rate Options, by Robert A. Jarrow•Black-Scholes and Beyond, by Neil A. Chriss•Risk Management and Analysis: Measuring and Modelling Financial Risk, by Carol Alexander •Mastering Risk: Volume 2 - Applications: Your Single-Source Guide to Becoming a Master of Risk, by Carol Alexander。
Advanced Mathematical Modeling Techniques
Advanced Mathematical ModelingTechniquesIn the realm of scientific inquiry and problem-solving, the application of advanced mathematical modeling techniques stands as a beacon of innovation and precision. From predicting the behavior of complex systems to optimizing processes in various fields, these techniques serve as invaluable tools for researchers, engineers, and decision-makers alike. In this discourse, we delve into the intricacies of advanced mathematical modeling techniques, exploring their principles, applications, and significance in modern society.At the core of advanced mathematical modeling lies the fusion of mathematical theory with computational algorithms, enabling the representation and analysis of intricate real-world phenomena. One of the fundamental techniques embraced in this domain is differential equations, serving as the mathematical language for describing change and dynamical systems. Whether in physics, engineering, biology, or economics, differential equations offer a powerful framework for understanding the evolution of variables over time. From classical ordinary differential equations (ODEs) to their more complex counterparts, such as partial differential equations (PDEs), researchers leverage these tools to unravel the dynamics of phenomena ranging from population growth to fluid flow.Beyond differential equations, advanced mathematical modeling encompasses a plethora of techniques tailored to specific applications. Among these, optimization theory emerges as a cornerstone, providing methodologies to identify optimal solutions amidst a multitude of possible choices. Whether in logistics, finance, or engineering design, optimization techniques enable the efficient allocation of resources, the maximization of profits, or the minimization of costs. From linear programming to nonlinear optimization and evolutionary algorithms, these methods empower decision-makers to navigate complex decision landscapes and achieve desired outcomes.Furthermore, stochastic processes constitute another vital aspect of advanced mathematical modeling, accounting for randomness and uncertainty in real-world systems. From Markov chains to stochastic differential equations, these techniques capture the probabilistic nature of phenomena, offering insights into risk assessment, financial modeling, and dynamic systems subjected to random fluctuations. By integrating probabilistic elements into mathematical models, researchers gain a deeper understanding of uncertainty's impact on outcomes, facilitating informed decision-making and risk management strategies.The advent of computational power has revolutionized the landscape of advanced mathematical modeling, enabling the simulation and analysis of increasingly complex systems. Numerical methods play a pivotal role in this paradigm, providing algorithms for approximating solutions to mathematical problems that defy analytical treatment. Finite element methods, finite difference methods, and Monte Carlo simulations are but a few examples of numerical techniques employed to tackle problems spanning from structural analysis to option pricing. Through iterative computation and algorithmic refinement, these methods empower researchers to explore phenomena with unprecedented depth and accuracy.Moreover, the interdisciplinary nature of advanced mathematical modeling fosters synergies across diverse fields, catalyzing innovation and breakthroughs. Machine learning and data-driven modeling, for instance, have emerged as formidable allies in deciphering complex patterns and extracting insights from vast datasets. Whether in predictive modeling, pattern recognition, or decision support systems, machine learning algorithms leverage statistical techniques to uncover hidden structures and relationships, driving advancements in fields as diverse as healthcare, finance, and autonomous systems.The application domains of advanced mathematical modeling techniques are as diverse as they are far-reaching. In the realm of healthcare, mathematical models underpin epidemiological studies, aiding in the understanding and mitigation of infectious diseases. From compartmental models like the SIR model to agent-based simulations, these tools inform public health policies and intervention strategies, guiding efforts to combat pandemics and safeguard populations.In the domain of climate science, mathematical models serve as indispensable tools for understanding Earth's complex climate system and projecting future trends. Coupling atmospheric, oceanic, and cryospheric models, researchers simulate the dynamics of climate variables, offering insights into phenomena such as global warming, sea-level rise, and extreme weather events. By integrating observational data and physical principles, these models enhance our understanding of climate dynamics, informing mitigation and adaptation strategies to address the challenges of climate change.Furthermore, in the realm of finance, mathematical modeling techniques underpin the pricing of financial instruments, the management of investment portfolios, and the assessment of risk. From option pricing models rooted in stochastic calculus to portfolio optimization techniques grounded in optimization theory, these tools empower financial institutions to make informed decisions in a volatile and uncertain market environment. By quantifying risk and return profiles, mathematical models facilitate the allocation of capital, the hedging of riskexposures, and the management of investment strategies, thereby contributing to financial stability and resilience.In conclusion, advanced mathematical modeling techniques represent a cornerstone of modern science and engineering, providing powerful tools for understanding, predicting, and optimizing complex systems. From differential equations to optimization theory, from stochastic processes to machine learning, these techniques enable researchers and practitioners to tackle a myriad of challenges across diverse domains. As computational capabilities continue to advance and interdisciplinary collaborations flourish, the potential for innovation and discovery in the realm of mathematical modeling knows no bounds. By harnessing the power of mathematics, computation, and data, we embark on a journey of exploration and insight, unraveling the mysteries of the universe and shaping the world of tomorrow.。
金融工程FinancialEngineering之期权定价理论
u = 1.1 d = 0.9
B
22
A
2.0257
20
1.2823
C
18
0.0
R=e0.12*0.25=1.0305
p=(1.0305-0.9)/(1.1-0.9)=0.6525
2.0257=(0.6525*3.2+0.35*0)/(1.0305)
c
c
c S
c S
S c
c
S c
S N (d1) c
p
p S
p S
p S
S p
p
S p
S N (d1) 1
p
由上面的公式及及期权价值的非负性,容
易知道:c>1, p<-1。由的绝对值大于1
说明期权实际充当着杠杆的作用,它使投
资者投资于期权比投资于其标的资产的收
益大得多,但也可能使其损失大得多。正
长的期权有意义。
和相似, 也是衡量当对应资产价格变化 时,期权价值的变化。确切地说,是衡量
当对应资产的价格变化一定百分比时,期
权价值变化的百分比。这一点与是不同的。 它可以通过将乘以对应资产价格与期权价
值之比得到(经济学上称为期权价值变化 相对于其对应资产价格变化的弹性)。用 数学公式表示如下:
是这一杠杆率的作用,使期权这一金融工
具充满机会和风险。
定义为投资组合中期权相对于其标的资产价格 变化的比率。由于是衡量期权敏感性的最简单重 要的指标,因此观察当对应资产价格变化时的变
化也显得十分必要。
当值小时,变化缓慢,为保持中性并不需要进
financial modeling pdf
financial modeling pdfFinancial modeling is a critical skill that allows finance professionals to create financial forecast models used in the decision-making process. These models help managers to make informed decisions by providing a clear picture of the financial health of the company. Financial modeling can be an overwhelming task, but it becomes easier when using a financial modeling PDF.A financial modeling PDF is a comprehensive guide that provides step-by-step instructions on how to create a financial model. The guide is designed for both beginners and advanced financial modelers looking to enhance theirfinancial modeling skills. The PDF is compiled by finance professionals who have years of experience in financial modeling, ensuring that the content is reliable and accurate.The financial modeling PDF is structured in a way that makes it easy to follow. The guide is divided into different sections, with each section covering a specific aspect of financial modeling. The sections are arranged in a logical order, ensuring that you first master the basics before moving to more complex tasks.Some of the sections covered in the financial modeling PDF include financial statement analysis, cash flow forecasting, valuation techniques, and sensitivity analysis. Each section provides detailed explanations, examples, and practical exercises to help you master the concepts. The exercises allow you to apply what you have learned in real-life scenarios, enhancing your understanding of financialmodeling.The financial modeling PDF also covers differentmodeling techniques, including the historical method, forecasting, regression analysis, and Monte Carlo simulations. These techniques are explained in detail, making it easy for you to choose the most appropriate technique for yourspecific financial modeling needs.Another benefit of using a financial modeling PDF isthat it provides you with a reference guide that you can access anytime, anywhere. You can save the PDF on your phone, tablet, or computer, allowing you to refer to it whenever you need to refresh your memory or clarify a concept.In summary, financial modeling is a critical skill thatall finance professionals must possess. The use of afinancial modeling PDF can make the financial modelingprocess less daunting by providing a structured guide that covers all aspects of financial modeling. The guide is designed to be easy to follow, and it's divided into sections that cover different aspects of financial modeling, making it easier to master the concepts. The financial modeling PDF isa valuable reference guide that you can access anytime, anywhere.。
金融数学简介
Kushner and Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, 1992. Kushner's Markov chain approximation method是控制论里最有用的算法
金融数学里面用的主要是随机控制,和粘性解(因为operator is often degenerate)
经典的随机控制书是
1.FLEMING and RISHEL, (1975) Deterministic and Stochastic Optimal Control.
ROGERS and TALAY, Numerical Methods in Financial Mathematics. 1997.论文集
Kloeden and Platen, Numerical Solution of Stochastic Differential Equations, 1997. 偏理论,实用性差一点
主要的研究内容和拟重点解决的问题包括:
(1)有价证券和证券组合的定价理论
发展有价证券(尤其是期货、期权等衍生工具)的定价理论。所用的数学方法主要是提出合适的随机微分方程或随机差分方程模型,形成相应的倒向方程。建立相应的非线性Feynman一Kac公式,由此导出非常一般的推广的Black一Scho1es定价公式。所得到的倒向方程将是高维非线性带约束的奇异方程。
粘性解的标准文献是
1. Crandall, Ishii and Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992),
英国个人陈述中文范文留学个人陈述中文范文汇总
英国个人陈述中文范文留学个人陈述中文范文汇总留学个人陈述中文范文汇总下面这几篇留学个人陈述范文是我们为大家挑选整理出的带有中文的个人陈述范文,留学个人陈述中文范文并不多,以下这几篇包括金融工程专业、计算机专业、医学专业、MBA以及航空航天专业,希望对大家的美国留学申请有所帮助。
申请专业:金融工程在我看来金融工程是一种创新、创造技术,一种对金融工具、金融手段和系统的创造和创新技术,一种平衡收益和风险的技术.它包含了数学,计算机,金融方面的知识,是一门充满了趣味的交叉学科,而数学知识和数学模型是这个学科中必不可少的核心内容:马科维茨的投资组合选择理论,夏普的资本资产定价模型,Black-Scholes的期权定价模型以及考克斯等人的“二项式”模型正是这种核心地位的体现。
In my opinion, the Financial Engineering is a kind of creative technology to theFinancial Instruments, Financial Means and system. It used to balance the benefits and venture as an interesting interdisciplinary subject. It covers many fields such as mathematics, computer science and finance, in which the mathematics and mathematical modeling are the two main aspects of the Financial Engineering. The Investment Portfolio Theory of Markowitz, the capital asset pricing model of the Sharp, Option Pricing Model of Black-Scholes and “Binomial” model of Cox can best reflect the critical position of the two subjects.我有幸选择了数学与应用数学这个专业,在三年和它的接触了解中,使我对数学,尤其对数学建模有了较深的理解和体会。
金融工程课件
➢新观念的创造者(创新者)——创造新的金融产 品与手段
➢钻法律空子者(在法律边缘活动的人)——精熟 会计和税法。
4、金融工程与金融理论关系
• 西方金融理论的含义(微观金融的三个 层次:Investment、Corporate Finance、 Asset Pricing)
Carnegie Mellon University Graduate School of Business Master of Science in Computational
Finance /mscf/
建立在工程学院的有 Princeton University Department of Operations Research & Financial
应用性
金融工程发展的动力源泉
金融工程的目的性
解决金融财务问题 盈利 风险管理 合理避税 逃避管制
金融工程的5个步骤
1、诊断:识别金融问题的实质和根源 2、分析:根据当前的体制、技术和金融
理论找出解决问题的最佳方案 3、生产:生产一种新工具 4、定价:确定生产成本和边际收益 5、修正:为满足每个客户的特殊需求,
➢公司治理问题,它讨论的是公司组织结构 和激励机制等问题。公司金融在国内往往 被译为公司财务,实际上其内容远远超出 了公司的财务问题。
金融工程的主要内容
• 固定收入证券 • 衍生证券 • 风险管理 • 金融产品的开发与创新
5、金融工程的工具
• 概念性工具:金融科学的思想和概念,包 括估值理论、投资组合理论、套期保值理 论、会计关系以及税收知识.
Engineering M.S.E. in Operations Research and Financial
金融工程师必须了解的金融衍生品定价模型
金融工程师必须了解的金融衍生品定价模型一、引言金融衍生品是金融市场中重要的一种金融工具,它们的定价模型对于金融工程师而言至关重要。
本文将介绍金融工程师必须了解的金融衍生品定价模型,涉及到期权定价模型、期货定价模型以及利率衍生品定价模型。
二、期权定价模型期权是一种金融衍生品,它赋予买方在未来某一时间点上以一个事先约定的价格购买或出售标的资产的权利。
常见的期权定价模型包括布莱克-斯科尔斯期权定价模型(Black-Scholes Option Pricing Model)和它的改进版本,如布莱克-斯科尔斯-默顿期权定价模型(Black-Scholes-Merton Option Pricing Model)。
这些模型基于假设标的资产价格服从几何布朗运动,并使用风险中性估计方法来计算期权的理论价格。
三、期货定价模型期货是一种金融合约,买方和卖方同意在未来的某个时间点交割特定的标的资产。
常见的期货定价模型包括未来价格的持平模型(Futures Price Equilibrium Model)和无套利模型(No-Arbitrage Model)。
这些模型一般基于市场的供需关系和无套利条件,通过对期货价格与现货价格、无风险利率等因素进行分析,来确定期货合约的理论价格。
四、利率衍生品定价模型利率衍生品是基于利率相关的金融工具,如利率互换、利率期权等。
利率衍生品的定价模型主要包括利率模型和利率曲线建模两种。
利率模型常用的有短期利率模型、随机波动率模型等;利率曲线建模一般使用广义更正模型(Generalized Yield Curve Model)或其他类似模型。
这些模型需要考虑到市场上的利率、利率期限结构以及金融市场变量的影响,以便准确估算利率衍生品的价格。
五、总结金融工程师必须了解并熟练掌握各种金融衍生品定价模型。
期权定价模型、期货定价模型以及利率衍生品定价模型都是金融衍生品定价领域的重要研究方向。
通过应用这些定价模型,金融工程师能够更好地理解金融衍生品的价格形成机制,为投资和风险管理提供决策支持。
金融数学蔡明超答案
金融数学蔡明超答案【篇一:金融学书单】学,兹威博迪,罗伯特莫顿(中文版)2、asset pricing 2005, john h. cochrane3、dynamic asset pricing , duffie4、continuous-time finance robert c. merton6、the handbook of fixed income securities 7the,frank j. fabozzi7、investments--bodie, kane, marcus 5ed8、principle of financial engineering,salih n. neftci9、financial engineering and computation,yuh-dauh lyuu11、a benchmark of quantative finace,eckhard platen12、dynamic structure modeling,sanjay k. nawalkha13、numerical methods for finance,jhon a.d.appleby14、corporate fiance 6e,ross?westerfield?jaffe15、corporate finance-theory practice,pascal quiry maurizio dallocchio yann le fur antonio salvi16、the theory of corporate finance,jean tirole17、handbook of corporate finance1,william t. ziemba18、handbook of corporate finance2,william t. ziemba19、principles of corporate finance, seventhedition,brealey?meyers20、mergers, acquisitions and corporate restructuring,patricka. gaughan21、mergers, acquisitions and corporaterestructuring,chandrashekar krishnamurti vishwanath s.r.22、the economics of money,banking and financial markets,mishkin23、monetary economics,jagdish handa24、monetary theory and policy,carl e. walsh25、financial markets and institutions 5e,peter howells and keith bain26、handbook of finance financial markets and instruments - (2008),frank j. fabozzi27、microeconomics of banking 2e,xavier freixas and jean-charles rochet28、the economics of exchange rates,lucio sarno29、handbook of international banking 2003,andrew w. mullineux30、international finance--putting theory into practice,piet sercu31、advances in behavioral finance,richard h. thaler32、股市趋势技术分析33、资本市场的混沌与秩序(第二版)34、专业投机原理35、通向金融王国的自由之路36、非理性繁荣37、伟大的博弈38、国际金融钱荣堃南开大学出版社39、公司财务原理布雷利等著,方曙红等译,机械工业出版社40、投资学博迪、凯恩、马库斯著,陈收、杨艳译机械工业出版社41、货币银行学易纲、吴有昌著上海人民出版社42、财政学陈共著中国人民大学出版社43、本杰明-格雷厄姆:《证券分析》(securities analysis)44、理查斯-盖斯特:《金融体系中的投资银行》(investment banking in financial system)45、布鲁斯-格林威尔:《价值投资》(value investing)46、彼得-伯恩斯坦:《有效资产管理》(the intelligent asset allocater)47、理查德-费里:《指数基金》(all about index funds)48、大卫-史文森:《机构投资与基金管理的创新》(pioneering portfolio management)49、斯蒂芬-戴维斯:《银行并购:经验与教训》(bank mergers: lessons for the future)50、financial management and analysis, frank j.fabozzi51、货币金融学,米什金,中国人民大学出版社,199852、金融市场学,郑振龙,高等教育出版社53、资本市场的混沌与秩序,彼得斯,经济科学出版社,199954、finance, zvi bodie, robert c.merton,中国人民大学出版社,200055、货币、信用与商业,马歇尔56、资本市场:机构与工具,frank j.fabozzi,佛朗哥.莫地利安尼,经济科学出版社,2th,199857、the financial analyst’s handbook,sumner n.lenving58、资本理论及其收益率,罗伯特.索络,商务印书馆,199259、货币、银行与经济,托马斯.梅耶60、货币与资本市场,8th,peter.s.rose,中国人民大学出版社,200661、金融工具手册,frank.j.fabozzi,上海人民出版社,2006.762、金融体系:原理与组织,埃德温.尼夫,中国人民大学出版社,200563、管制、放松与重新管制,艾伦.加特,经济科学出版社,199964、corporate finance,rose,westerfield,5th edition, mcgraw-hill65、maximizing corporate value, george m.norton66、应用公司理财67、公司财务原理,布雷利迈尔斯,东北财经大学出版社68、现代企业财务管理,11th詹姆斯.c.范霍恩,经济科学出版社,200269、financial market and corporate strategy, glinbratt,70、时间序列分析预测与控制,george e.p box71、金融数学与分析技术,蔡明超72、计量经济模型与经济预测,平尼克.鲁宾费尔德,机械工业出版社73、金融数学,joseph stampfli,蔡明超译,机械工业出版社,2005.474、金融时间序列分析,ruey.s.tsay,机械工业出版社,2006.475、微观金融学及其数学基础,昭宇,清华大学出版社,2003.1176、计量经济分析方法与建模:eviews应用与及实例,高铁梅,清华大学出版社,200677、固定收益证券,布鲁斯.塔夫曼,科文(香港)出版社78、债券市场分析与战略,frank j.fabozzi79、全球金融市场的固定收益分析80、国际金融市场:价格与政策,2th,richard m.levich,机械工业出版社,200181、国际货币与金融,迈尔斯.梅尔文82、国际经济学,保罗.克鲁格曼,5th,中国人民大学出版社,200283、期权交易入门,e-book84、futures,forwards,options and swaps:theory and practice85、衍生产品,郑振龙,武汉大学出版社86、金融工程,约翰.马歇尔,维普尔.班赛尔,清华大学出版社,199887、financial risk manager handbook,philippe jorion88、米勒.莫顿论金融衍生工具,清华大学出版社,199989、asset-based finance,by citibank90、期权、期货与其他衍生产品,约翰.赫尔,3th,华夏出版社91、金融工程学,骆伦茨.格利茨,经济科学出版社92、金融工程学案例,斯科特.梅森,东北财经大学出版社,2001.493、options,futures other derivatives,fifth editon,hall94、投资圣经,沃伦.巴非特,台海出版社95、证券分析,本杰明.格雷汉姆,海南出版社,199596、资产选择-投资的有效分散化,哈里.马克维茨,经贸出版社97、投资学,威廉.夏普,中国人民大学出版社98、投资学,zvi bodie,6edition,机械工业出版社,2005.799、投资组合管理理论及应用,机械工业出版社100、金融心理学,拉斯.特维斯,中国人民大学出版社,2000101、格雷汉姆论价值投资102、新金融学:有效市场的反例,罗伯特.a.哈根,清华大学出版社,2002103、有效资产管理,威廉.波恩斯坦,上海财经大学出版社104、active equity portfolio management,frank j.fabozzi,上海财经大学出版社 105、微观银行学,哈维尔.佛雷克斯,西南财经大学出版社,1999106、handbook of international banking ,andrew w.mullineux 107、商业银行管理,5th,peter.s.rose,机械工业出版社,2004.8 108、银行信用风险分析手册,乔纳森.格林,机械工业出版社109、银行风险分析与管理,亨利.范.格罗,中国人民大学出版社110、银行资本管理:资本配置和绩效评测,克里斯.马腾,机械工业出版社,2004 111、银行管理-教程与案例,乔治.h.汉普尔,中国人民大学出版社,2002112、金融体系中的投资银行,查理斯.r.吉斯特,经济科学出版社 113、兼并与收购,中国人民大学出版社114、共同基金运作,阿尔伯特.j.弗里德曼,清华大学出版社,1998115、对冲基金手册(中文),拉托尼奥,mcgraw-hill,2000116、指数基金,richard.a.ferri, 上海财经大学出版社117、伟大的博弈-华尔街帝国的崛起,约翰.戈登,中信出版社118、项目融资(哈佛经典),华夏出版社119、新帕尔格雷夫经济学大辞典第一、二、三、四卷:a-z,约翰.伊特维尔,经济科学出版社,1996120、公司治理学,李维安,高等教育出版社,2005121、会计学教程与案例,10th,罗伯特.n.安东尼,大卫.f.霍金斯,机械工业出版社(mcgraw-hill),2002122、《证券分析》,本杰明.格雷汉姆,海南出版社,2006,70周年纪念版123、《股史风云话投资》(stocks for the long run),杰里米.西格尔,清华大学出版社,2004124、《投资者的未来》,杰里米.西格尔,机械工业出版社,2007 125、《与天为敌-风险探索传奇》,彼得.波恩斯坦,清华大学出版社126、《资产分配-投资者如何平衡金融风险》,罗杰.c.吉布森,机械工业出版社(mcgraw-hill),2006127、《漫步华尔街》,伯顿.麦基尔,上海财经大学出版社,2002 128、《巴比伦富翁的理财圣经》,乔治.克拉森,学林出版社,2005129、《怎样选择成长股》,菲利普.a.菲舍,海南出版社,2006130、《金融炼金术》,乔治.索罗斯,海南出版社,1999131、《个人理财》,杰克.r.卡普尔,上海人民出版社,2006132、《1929年大崩盘》,约翰.肯尼斯.加尔布雷斯,上海财经大学出版社,2006.10 133、《解读华尔街》,杰弗里.b.里特,上海财经大学出版社(mcgraw-hill),2006 134、《金融理财原理》(上下册)(fpscc考试指定用书),中信出版社,2007135、《聪明的投资者》,本杰明.格雷汉姆,江苏人民出版社136、《共同基金常识》,约翰.博格137、《伯格投资-聪明投资者的最好50年》,约翰.博格138、《散户至上-证交会主席教你避险并反击股市黑幕》,阿瑟.莱维特,中信出版社,2005 139、《金融法概论》第5版,吴志攀著,北京大学出版社2011年版。
financial modeling prep介绍 -回复
financial modeling prep介绍-回复financial modeling prep是一个网站,提供各种金融建模工具和资源,帮助金融专业人士进行高效的金融分析和预测。
在本文中,我将详细介绍financial modeling prep的特点和功能,以及如何使用它来进行金融建模。
首先,让我们来看看financial modeling prep的主要特点。
该网站提供了多种金融建模工具,包括财务数据,股票市场数据,经济数据,以及一些用于分析和预测的模型和指标。
这些工具可以帮助分析师和投资者更好地理解并预测公司和市场的运行。
financial modeling prep的一个重要特点是它提供了大量的财务数据。
用户可以轻松地访问到数千家公司的财务报表和关键指标,如营业收入、利润、资产负债表和现金流量表等。
同时,这些数据也可以用于生成各种财务比率和指标,如财务杠杆比率、盈利能力指标和市盈率等。
这些数据对于进行财务分析和评估公司的健康状况非常重要。
除了财务数据之外,financial modeling prep还提供了大量的股票市场数据。
用户可以获取到股票价格、交易量、市值等数据,以及股票历史数据和技术指标。
这些数据可以用于分析股票的走势和波动,并帮助投资者制定投资策略和决策。
金融建模中经济数据的重要性不言而喻,financial modeling prep也考虑到了这一点。
该网站提供了各种宏观和微观经济数据,比如国内生产总值(GDP)、通货膨胀率、利率等,这些数据对于预测市场走势和经济环境非常有帮助。
另一个重要的功能是financial modeling prep提供了一些用于分析和预测的模型和工具。
用户可以使用这些模型来进行估值分析、财务规划和预测等任务。
比如,用户可以使用DCF模型来估值股票和企业,使用回归模型来预测股票价格和市场指数,使用蒙特卡洛模拟来评估投资组合的风险和回报等。
这些模型和工具为金融专业人士提供了有效的工具和方法,使他们能够更好地进行分析和决策。
金融数学 英文
金融数学英文金融数学是一个非常重要的学科,它涉及到金融领域中的各种数学应用,包括金融风险管理、投资组合管理、金融工程等等。
对于想要从事金融行业的人来说,学习金融数学是必不可少的。
在学习金融数学时,英文资源是非常重要的。
以下是一些可以帮助你学习金融数学的英文资源:1. 'Options, Futures, and Other Derivatives' by John C. Hull - 这是一个非常经典的金融数学教材,涵盖了金融衍生品的理论和实践。
该书已经被翻译成多种语言,包括中文。
2. 'Introduction to Mathematical Finance: Discrete Time Models' by Stanley R. Pliska - 这是一个非常全面的金融数学教材,涵盖了离散时间模型的基础知识和应用。
3. 'Mathematical Methods for Financial Markets' by Monique Jeanblanc, Marc Yor, and Marc Chesney - 这是一本关于金融市场数学方法的教材,涵盖了随机微积分和随机分析的基础知识。
4. 'Stochastic Calculus for Finance I: The Binomial Asset Pricing Model' by Steven E. Shreve - 这是关于随机微积分和金融应用的入门教材。
5. 'Financial Engineering: The Evolution of a Profession' by Tanya S. Beder - 这是一本关于金融工程学科的历史和发展的书籍,对于了解这个领域的发展历程非常有帮助。
以上是一些可以帮助你学习金融数学的英文资源,当然还有很多其他的书籍和在线资源可供选择。
金融工程专业介绍
专业名称:金融工程概述:金融工程,包括创新型金融工具与金融手段的设计、开发与实施,以及对金融问题给予创造性的解决。
金融工程的英文名字:Financial Engineering 或 Computational Finance。
关于它的定义有多种说法,美国金融学家约翰·芬尼迪(John Finnerty)提出的定义最好:金融工程包括创新型金融工具与金融手段的设计、开发与实施,以及对金融问题给予创造性的解决。
金融工程的概念有狭义和广义两种。
狭义的金融工程主要是指利用先进的数学及通讯工具,在各种现有基本金融产品的基础上,进行不同形式的组合分解,以设计出符合客户需要并具有特定P/L性的新的金融产品。
而广义的金融工程则是指一切利用工程化手段来解决金融问题的技术开发,它不仅包括金融产品设计,还包括金融产品定价、交易策略设计、金融风险管理等各个方面。
历史:金融工程(Financial Engineering)专业兴起于20世纪90年代初,是综合运用数学、统计学和计算机编程技术来解决金融问题的崭新领域。
虽然在名称上有很大的变动,可称作Financial Mathematics, Mathematical Finance, Quantitative Finance或者Computational Finance,但实际学习的内容是相似的,主要包括数学、计算机编程、证券衍生物定价、风险分析、金融模型、金融信息分析和一些高级的金融理论等。
金融工程项目课程是极具职业导向的,目标是培养具有相当强的计算机和数学素质,同时具有管理和商务技巧的专业人士,使他们可以在投资银行、商业银行、对冲基金、保险公司、公司财务部门等,从事证券金融衍生产品估价,投资组合管理,风险管理和市场预测等工作。
未来:金融工程专业主要是用计算机来实现数学模型,从而解决金融相关的问题。
所以,金融工程不同于MBA和MSP,它主要是培养金融界的技术工作者,也称作金融工程师——Quant。
金融学 中央财经大学 6 第六周金融资产与价格 (6.2.1) 金融资产与价格:名词术语
7.金融风险——风险是未来收益与损失的不确定性。金融风险包括信用风 险、市场风险、流动性风险、操作风险、法律风险、政策风险和道德风险。
用 Fj 表示第 j 种因素,j=1、2、…… k,E(j)为该因素的期望值,βij 表示第 i 种股票收益率对因素 Fj 的敏感性,ei 为第 i 种股票发行公司因素引致的收益波 动率。
三、名词术语中英对照 金融工具
financial instrument
金融资产 金融风险 非系统风险 系统风险 有效边界 市盈率 市净率 有效市场假说 资本资产定价模型 套利定价模型 金融工程 无套利均衡机制
单因素套利定价模型, E(rp)=rp+βp[F-E(F)]+ep ,其中βp 为证券对该因素 的敏感性,rp 为公司最近一期收益率。ep 为公司因素引起收益的波动。
k
多因素套利定价,
E(ri ) = rf
+
ij
j =1
E(rFj ) − rf
+ ei
,其中
rf
为无风险收益率,
用 Fj 表示第 j 种因素,j=1,2,…,k,E(j)为该因素的期望值,βij 表示 第 i 种股票收益率对因素 Fj 的敏感性,ei 为第 i 种股票发行公司因素引致的收 益波动。
关系数。
CV = p
风险—收益比:
rp 。
3.到期一次支付本息的债券的价值计算:
PB
=
A (1 + r)n
,PB 为债券价值,A
金融市场的市场定价模型
金融市场的市场定价模型金融市场的市场定价模型是指通过一系列方法和理论,来确定金融资产价格的模型。
这些模型在金融领域中起着重要的作用,帮助人们理解和预测金融市场的价格走势,为投资和决策提供依据。
在本文中,我们将介绍几种主要的金融市场定价模型,并探讨它们的应用及优缺点。
一、资本资产定价模型 (Capital Asset Pricing Model, CAPM)资本资产定价模型是金融市场定价模型中最为经典和广泛使用的一种。
该模型基于投资组合理论,通过考虑风险与回报之间的关系,计算资产的预期回报率。
CAPM模型的基本假设是,投资者以预期回报和风险为基础来进行投资决策。
根据该模型,资产的预期回报率与无风险投资回报率以及市场回报率之间的关系可以用以下公式表示:E(Ri) = Rf + βi * (E(Rm) - Rf)其中,E(Ri)表示资产i的预期回报率,Rf表示无风险投资回报率,βi表示资产i相对于整个市场的系统风险系数,E(Rm)表示市场的预期回报率。
CAPM模型认为,资产的预期回报率与其系统性风险成正相关,投资者应该在风险与回报之间进行权衡,选择合适的投资组合。
CAPM模型的优点是简单易懂,计算相对方便,并且对于那些不容易估计的投资项目具有很好的适应性。
然而,该模型也存在一些限制。
首先,CAPM模型基于一系列假设,如市场完全有效、投资者风险厌恶等,这些假设在现实市场中并不总是成立。
其次,该模型没有考虑到其他因素对资产价格的影响,如市场情绪、政策变化等。
二、期权定价模型 (Option Pricing Model)期权定价模型是一种用于确定期权合理价格的金融市场定价模型。
其中,最为著名的是布莱克-斯科尔斯模型 (Black-Scholes model)和它的改进版本。
这些模型基于股票价格、期权行权价、剩余时间、市场波动率等因素,通过建立数学模型计算期权价格。
布莱克-斯科尔斯模型的基本假设是市场不存在交易成本、无风险利率是常数、市场完全有效等。
金融工具与定价模型
金融工具与定价模型金融工具和定价模型是金融领域中的两个重要概念。
金融工具是指用于进行金融交易和投资的各种工具,如股票、债券、期权等。
而定价模型是一种用于确定金融工具价格的数学模型。
在金融市场中,各种金融工具的价格是根据市场供需关系和投资者对风险和收益的评估来确定的。
定价模型的作用就是通过分析市场的基本因素和投资者的行为,预测金融工具的价格。
一种常用的金融工具是股票。
股票是公司的所有权凭证,代表着投资者对公司的权益。
股票的价格是由市场供需关系和公司基本面因素共同决定的。
定价模型中的CAPM(Capital Asset Pricing Model)是一种常用的股票定价模型。
该模型假设投资者在进行投资决策时会考虑风险和收益之间的权衡,通过衡量股票的系统风险和市场风险溢价来确定股票的价格。
除了股票,债券也是一种重要的金融工具。
债券是借款人向债权人发行的一种债务凭证,代表着债权人对借款人的债权。
债券的价格是由市场利率和债券的基本面因素共同决定的。
定价模型中的债券定价模型可以通过计算债券的现金流量和折现率来确定债券的价格。
常用的债券定价模型包括贴现模型和收益率曲线模型。
期权是另一种常见的金融工具。
期权是一种金融合约,给予持有人在未来某个时间以约定价格买入或卖出标的资产的权利。
期权的价格是由市场供需关系和标的资产价格波动性共同决定的。
定价模型中的期权定价模型可以通过计算期权的内在价值和时间价值来确定期权的价格。
著名的期权定价模型包括布莱克-斯科尔斯模型和它的变种。
除了上述提到的金融工具,还有许多其他类型的金融工具,如期货、外汇等。
每种金融工具都有其特定的定价模型,用于根据市场因素和投资者行为来确定价格。
金融工具和定价模型的研究对于投资者和金融机构具有重要意义。
投资者可以通过研究金融工具的定价模型,预测价格的变动趋势,从而做出更明智的投资决策。
金融机构可以利用定价模型来管理风险和优化投资组合,提高投资回报率。
总之,金融工具和定价模型是金融领域中不可或缺的两个概念。
[管理工具-财务]财务模型(financialmodel)
财务模型(financial model)财务模型所谓财务模型就是将企业的各种信息按照价值创造的主线进行分类、整理和链接,以完成对企业财务绩效的分析、预测和评估等功能。
在实际操作中,财务模型既可以通过Excel办公软件也可以借助专业的财务模型软件来协助完成。
企业内部财务人员和外部分析人员根据公司经营特征和业务发展规划,以及财务需求与安排所建立的有预测性质的财务报表,可以使内部和外部人员对公司未来财务表现有完整的量化指引。
建立财务模型是专业投资者制定投资决策最核心的工作,任何对公司前景的判断,如销售额、利润率、负债状况都需要量化到财务模型中,这样才能将判断转化为具备操作性的数据,比如预期的每股收益、未来的现金流和股利,以及估值结果等。
财务模型可以提供完整的公司和股票分析框架,任何有关公司基本面的变动都有对应的会计科目和财务指标的变动,并最终影响公司的净利润和现金流。
使用电脑软件(如Excel)可以使编建财务模型的工作强度大大降低,普通投资者虽然不必自己为每家感兴趣的公司建立财务模型,但要学会看专业人员的模型数据。
阅读公司和股票分析报告最好先看其中三张报表完整的财务模型和财务假设,再到报告中寻找文字表述,看是否在逻辑上一致、可信。
财务模型的内容一般来说,一个完整的财务模型至少应该包含三个基本的组成部分:首先是对企业历史经营绩效的全面分析以及横向和纵向的比较,从而了解影响企业历史绩效的各类因素、影响方式和影响程度等;其次是依据企业特定战略、发展规划、外界环境变化等对企业未来的绩效水平进行预测,包括企业未来的资本支出、市场规模、价格趋势、成本结构等,并最终生成预测的企业资产负债表、损益表以及现金流量表;最后计算企业的自由现金流量、估计企业的各类估值参数,选择适当的估值方法并对企业当前的价值做出判断。
只有通过这样一个完整的财务模型才可能完成价值评估中对企业运营状况的定量化和系统化分析。
价值评估必须最终落实到定量分析,没有定量分析,估值工作根本无法做到清晰和深入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
long put maximal gain: strike minus premium maximal loss: premium short call maximal gain: premium maximal loss: unlimited short put maximal gain: premium maximal loss: strike minus premium
6
Call Option on AOL Stock
denote by ST the price of AOL stock on December 26 date scenario exercise option? Sep. 8 December 26 (if ST < 80) (if ST 80) no yes
英國 Glasgow大學 數學博士
控制工程理論、科學計算模擬、飛彈導引、泛函分析、財務金融工程 東海大學數學系教授 國立交通大學應用數學研究所, 財務金融研究所兼任教授 亞洲控制工程學刊編輯.
歷任
1. 3. 5. 6. 7. 8. 9. 10. 11. 英國Glasgow大學數學系客座教授 2. 英國Newcastle大學數學統計系客座教授 英國Oxford大學財務金融中心研究 4. 荷蘭國立Groningen大學資訊數學系客座授 日本國立大阪大學電子機械控制工程系客座教授 成功大學航空太空研究所兼任教授 航空發展中心顧問 東海大學數學系主任、所長、理學院院長、教務長 國科會中心學門審議委員、諮議委員 教育部大學評鑑委員 國際數學控制學刊編輯委員
(1). The expected value of the discounted future stochastic payoff (2). It is determined by market forces which is impossible have a theoretical price
option premium:
71/8 per share
on Sep. 8,… • you pay the premium of $712.50 at maturity on December 26,… • if you exercise the option, you take delivery of 100 shares of AOL stock and pay the strike price of $8,000 • otherwise, nothing happens
5
Call Option on AOL Stock
on Sep. 8, you buy one Nov.call option contract written on AOL contract size:
100 shares
strike price:
80
maturity:
December 26
protective put
Tunghai Mathematics
13
Financial Engineering
• Bond + Single Option
S&P500 InFra bibliotekex Notes
• Bond + Multiple Option
Floored Floating Rate Bonds, Range Notes
學術獎勵
1. 國際電機電子工程師學會獎 IEEE M. Barry Carlton Award 2. 國際航空電子系統傑出論文獎 3. 國科會傑出研究獎 2
Contents
1. 2. 3. 4. Classic and Derivatives Market Derivatives Pricing Methods for Pricing Numerical Solution for Pricing Model
Fang-Bo Yeh
• protective put pay-offs:
cash flows at maturity
case: ST < K ST K long stock ST ST long put K-ST total: K ST
• cost of strategy: the additional cost of protection is the price of the option, P the total cost is hence S+P
pay-off
net profit
0
7.125
60 70 80 90 100
AOL stock price on December 26
8
Mathematics Finance 2003
Option Markets
Maximal Losses and Gains on Option Positions
• Forward Contract : is an agreement to buy or sell. • Call Option : gives its owner the right but not the obligation to buy a specified asset on or before a specified date for a specified price. European, American, Lookback, Asian, Capped, Exotics…..
Methods
Assume efficient market
• Risk neutral • The elimination of valuation and solving randomness and conditional solving diffusion expectation of the equation random variable
0
K
ST
=
K
Fang-Bo Yeh
covered call
Tunghai Mathematics
11
Mathematics Finance 2003
Option Markets
Simple Option Strategies: Protective Put
protective put: • suppose you have a long position in some asset, and you are worried about potential capital losses on your position • to protect your position, you can purchase an at-the-money put option which allows you to sell the asset at a fixed price should its value decline this strategy is called “protective put”
Tunghai Mathematics
9
0
0
0
0
Fang-Bo Yeh
Mathematics Finance 2003
Option Markets
Simple Option Strategies: Covered Call
covered call: • covered call pay-offs: • the potential loss on a short cash flows at maturity call position is unlimited case: ST < K ST K • the worst case occurs when Short call K-ST the stock price at maturity is long stock ST ST very high and the option is exercised total: ST K • the easiest protection against • Cost of strategy: this case is to buy the stock at the same time as you write you receive the option the option premium C while paying the stock price S this strategy is called the total cost is hence S-C “covered call”
Problem Formulation
Contract F :
Underlying asset S, return Future time T, future pay-off Riskless bond B, return
dSt dt dZt St
f(ST)
dBt r dt Bt
Tunghai Mathematics
12
Mathematics Finance 2003
Option Markets
Simple Option Strategies: Protective Put
pay-off
long stock
K
+
long put
0
premium
K
ST
profit
=
K
Fang-Bo Yeh
Fang-Bo Yeh Tunghai Mathematics
10
Mathematics Finance 2003
Option Markets
Simple Option Strategies: Covered Call