一元二次方程综合测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元二次方程单元综合测试题
一、填空题(每题2分,共20分)
1.方程12
x (x -3)=5(x -3)的根是_______. 2.下列方程中,是关于x 的一元二次方程的有________. (1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x
-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.
4.如果2
1x -2x -8=0,则1x 的值是________. 5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.
6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.
7.x 2-5│x │+4=0的所有实数根的和是________.
8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________
原方程的根为________.
9.以-1为一根的一元二次方程可为_____________(写一个即可).
10.代数式12
x 2+8x+5的最小值是_________. 二、选择题(每题2分,共12分)
11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).
A .a=b=c
B .一根为1
C .一根为-1
D .以上都不对
12.若分式22632
x x x x ---+的值为0,则x 的值为( ). A .3或-2 B .3 C .-2 D .-3或2
13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ).
A .-5或1
B .1
C .5
D .5或-1
14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ).
A .(x+2)(x+3)
B .(x -2)(x -3)
C .(x -2)(x+3)
D .(x+2)(x -3)
15已知α,β是方程x 2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ).
A .1
B .2
C .3
D .4
16.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ).
A .8
B .8或10
C .10
D .8和10
三、 (2)x (x -3)=x ;
(3x 2=6x (4)(x+3)2+3(x+3)-4=0.
四、解答题(18-23题每题5分,24-25题各7分,26题8分,共52分)
18.如果x2-10x+y2-16y+89=0,求x
y
的值.
20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.
(1)填写统计表:
(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).
21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?
(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.
22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2
x+c -12
a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0.
(1)试判断△ABC 的形状.
(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.
23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)
是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由. 解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得a<
14. ∴当a<0时,方程有两个不相等的实数根.
(2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a
=0 ①, 解得a=
12,经检验,a=12
是方程①的根. ∴当a=12时,方程的两个实数根x 1与x 2互为相反数. 上述解答过程是否有错误?如果有,请指出错误之处,并解答.
24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?
Q P B D A C
C A B P Q
D ← ↑
25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的
速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,
则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?
(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?
26、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,
(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ;
(2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;
一元二次方程答案:
1.x 1=3,x 2=102.(5) 3.6x 2-2=04.4 -2 点拨:把
1x 看做一个整体.5.m ≠±1 6.m>-112
点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想. 8.y 2-5y+6=0 x 1
,x 2=
,x 3
x 4=
9.x 2-x=0(答案不唯一)
10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.
12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.
13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x 2+y 2式子本身的属性.
14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.
15.D 点拨:本题的关键是整体思想的运用.
16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.
17.(1)整理得(x+2)2=4, 即(x+2)=±2,∴x 1=0,x 2=-4
(2)x (x -3)-x=0,x (x -3-1)=0,x (x -4)=0,∴x 1=0,x 2=4.
(3
2
6x=0,x 2-
,由求根公式得x 1
x 2
. C B Q R A D l P