第5章 时间序列的确定性分析
统计学第5章 时间序列(第二版)1
a.间隔不等的间断时点序列
Y1 Y2
Y3 Y4
T1
T2
T3
Yn-1
Yn
Tn-1
※间隔不相等 时,采用加权序时平均法
一季 度初
二季 度初
三季 度初
次年一 季度初
Y1 90天
Y2 90天
Y3
180天
Y4
Y1 Y2
Y2 Y3
Y3 Y4
37.7
2005
183867.9
130756
10493.0
36.7
2006 2019/5/1421087统1计.0学(第6章13)1448 主讲:王1光17玲5,9.济5 南大学经济学3院5.8 5
引导案例——实践中的统计学
国内生产总值、年末总人口、城镇居民家庭人均 可支配收入、城镇居民家庭恩格尔系数等统计数 字,和以往我们介绍的统计综合指标有所不同, 都是按时间顺序定期进行观测(每日、每月、每 季度或每年)和记录的。
人数 1200
1240
1220
1230
Y 12008 12405 1220111230 6 1220(人)
8 5 11 6
n
Y
Y1T1 Y2T2 YnTn T1 T2 Tn
YiTi
i 1 n Ti
i 1
1.绝对数序列的序时平均数
【例4】设某种股票2010年各统计时点的收盘价如表 5-2所示,计算该股票2010年的月平均价格
表5-2 某种股票2010年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
统计学时间序列分析
统计学时间序列分析时间序列是经济学、金融学和其他社会科学领域中的一个重要分析对象。
通过对时间序列数据的分析,我们可以揭示数据之间的关系、趋势和周期性,从而为决策提供有力的支持和预测。
统计学时间序列分析是一种应用数学方法的工具,用于对时间序列数据进行建模和预测。
一、时间序列的基本概念时间序列是按时间顺序排列的一系列观测值的集合。
在时间序列分析中,我们关注数据之间的内在关系,而忽略其他因素的影响。
时间序列数据通常具有以下特征:1. 趋势性:时间序列数据的长期变化趋势。
2. 季节性:时间序列数据在一年内固定时间段内的重复模式。
3. 循环性:时间序列数据中存在的多重周期性波动。
4. 随机性:时间序列数据中的不规则、无法预测的波动。
二、时间序列分析的方法在进行时间序列分析时,我们可以采用以下方法来揭示数据的内在规律:1. 描述性统计分析:通过计算数据的均值、方差、相关系数等指标,对数据的整体特征进行描述。
2. 图表分析:通过绘制折线图、柱状图等图表,展示时间序列数据的变化趋势和周期性。
3. 分解模型:将时间序列数据分解为趋势项、季节性项和残差项,以揭示数据的内在结构。
4. 平滑法:通过移动平均法、指数平滑法等方法,消除时间序列数据的随机波动,从而揭示趋势和季节性成分。
5. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列分析方法,可以对数据进行预测和建模。
它综合考虑了自回归、移动平均和差分的影响因素。
三、时间序列分析的应用领域时间序列分析广泛应用于经济学、金融学、市场调研等领域,具体应用包括:1. 经济预测:通过对经济数据进行时间序列分析,可以预测未来的经济发展趋势,为政府决策提供参考。
2. 股票市场分析:时间序列分析可以帮助分析师预测股票市场的走势,制定投资策略。
3. 需求预测:通过对销售数据进行时间序列分析,可以预测产品的需求量,为企业的生产和供应链管理提供指导。
4. 天气预测:通过对气象数据进行时间序列分析,可以预测未来的天气状况,为农业、旅游等行业提供参考。
《时间序列分析》课程教学大纲
《时间序列分析》课程教学大纲一、课程基本信息二、课程教学目标本课程的目的是使学生掌握时间序列分析的基本理论和方法,让学生借助计算机的存储功能和计算功能来抽象掉其深奥的数学理论和复杂的运算,通过建模练习来掌握时间序列分析的基本思路和方法。
第一,通过这门课程的学习,培养学生对分析方法的理解,使学生初步掌握分析随机数据序列的基本思路和方法。
第二,通过这门课程的学习,使得学生能够运用时间序列分析知识和理论去分析、解决实际问题。
第三,通过这门课程的学习,提高学生利用时间序列的基本思想来处理实际问题,为后续学习打下方法论基础。
三、教学学时分配《时间序列分析》课程理论教学学时分配表《时间序列分析》课程实验内容设置与教学要求一览表四、教学内容和教学要求第一章时间序列分析简介(学时4)(一)教学要求通过本章内容的学习,了解时间序列的定义,理解时间序列的常用分析方法,掌握随机过程、平稳随机过程、非平稳随机过程、自相关基本概念。
(二)教学重点与难点教学重点:时间序列的相关概念。
教学难点:随机过程、系统自相关性。
(三)教学内容第一节引言第二节时间序列的定义(拟采用慕课或翻转课堂)第三节时间序列分析方法1.描述性时序分析2.统计时序分析第四节时间序列分析软件第五节上机指导1.创建时间序列数据集2.时间序列数据集的处理本章习题要点:1、基本概念和特征;2、软件基本操作。
第二章时间序列的预处理(学时6)(拟采用慕课或翻转课堂)(一)教学要求通过本章内容的学习,了解平稳时间序列的定义,理解平稳性和随机性检验的原理,掌握平稳性和随机性检验的方法。
(二)教学重点与难点教学重点:平稳时间序列的定义及统计性质。
教学难点:时间序列的相关统计量。
(三)教学内容第一节平稳性检验1.特征统计量2.平稳时间序列的定义3.平稳时间序列的统计性质4.平稳时间序列的意义5.平稳性的检验第二节纯随机性检验1.纯随机序列的定义2.白噪声序列的性质3.纯随机性的检验第二节上机指导1.绘制时序图2.平稳性与纯随机性检验本章习题要点:1、绘制给定时间序列的相关图;2、计算给定时间序列的相关统计量;3、检验序列的平稳性及纯随机性。
Lecture05多元时间序列分析方法
第一节 协整检验 第二节 误差修正模型 第三节 向量自回归模型(VAR) 第四节 格兰杰因果检验
协整检验
第一节 协整检验
一、协整概念与定义
在经济运行中,虽然一组时间序列变量都是随机游走,但它们的某个 线性组合却可能是平稳的,在这种情况下,我们称这两个变量是平稳 的,既存在协整关系。
其基本思想是,如果两个(或两个以上)的时间序列变量是非平稳的, 但它们的某种线性组合却表现出乎稳性,则这些变量之间存在长期稳 定关系,即协整关系。根据以上叙述,我们将给出协整这一重要概念。 一般而言,协整是指两个或两个以上同阶单整的非平稳时间序列的组 合是平稳时间序列,则这些变量之间的关系的就是协整的。
向量自回归模型(VAR)
三、向量自回归模型(VAR)的估计
应用Eviews软件,创建VAR对应选择 Quick/Estimate VAR,或选择Objects/new object/VAR,也可以在命令窗口直接键入VAR。
向量自回归模型(VAR)
四、脉冲响应函数与预测方差分解
从结构性上看,VAR模型的F检验不能揭示某个给定变 量的变化对系统内其它变量产生的影响是正向还是负 向的,以及这个变量的变化在系统内会产生多长时间 的影响。然而,这些信息可以通过考察VAR模型中的 脉冲响应(Impulse Response )和方差分解(Variance Decompositions)得到。
协整检验
(一)E-G两步法
E-G两步法,具体分为以下两个步骤:
第一步是应用OLS估计下列方程
yt a xt ut
这一模型称为协整回归,称为协整参数,并得到相应的残差序列:
第二步检验 序uˆt列 的yt 平(a稳ˆ 性ˆx。t )
第一章_时间序列分析简介
最初,这些概念只是金融家进行贸易猜测、欺骗大 众和掩盖真相的工具。
如为应对议会调查其暂缓现金支付的行为, 银行试图在掩盖真实数值的基础上,揭示变 化模式的数据处理,最终导致了1797年指数 换算序列和1832年滑动平均序列的首次公开 ;一阶差分首先被商人和金融家用来观察价 格和数量的重大变化。
基本概念推动着统计性时序分析的初步发展
一、频域(频谱)分析方法
随着概率和统计技术这些外围理论的发展,以及对 估计和预测精度需求的提高,周期图方法进一步得 到发展,但其周期不稳定的缺陷也逐渐暴露; 1945年肯德尔提出,周期图可能会导致一些错误性 的后果,这一观点后来被英国统计学家巴特利特从 理论上证实,并指出,抽样结果会歪曲时间序列的 周期图。 这些问题的出现再次引发人们对频域方法的研究兴 趣。
基本概念推动着统计性时序分析的初步发展
17世纪,当帕斯卡和费马等学者以机会游戏 为基础讨论稳定的概率比率时,欧洲的商人 没有借鉴这些自然哲学家的数学方法,而是 借助不同的定量推理,计算自己在市场变化 中的利益得失。他们利用商人的独特方法分 析市场波动情形,无意中为商业实践转入统 计性时序分析奠定了基础。
特点
理论基础扎实,操作步骤规范,分析结果易于解释, 是时间序列分析的主流方法。
27
2013-6-8
时域分析方法的分析步骤
考察观察值序列的特征; 根据序列的特征选择适当的拟合模型;
根据序列的观察数据确定模型口径(参数);
检验进而优化模型;
利用模型来推断序列其它的统计性质或预测序
列将来的发展 。
统计时序分析
利用数理统计原理研究分析时间序 列的方法,即一般所说的时间序列分析。 分两大类: 频域分析方法
第5章(1)时间序列模型
2、关于经典模型理论基础的思考
• 经典计量经济学模型基于截面数据进行建构。 截面数据的关键特征是,数据来自于随机抽 样,数据顺序与计量分析无关。随机抽样隐含 了待界定的特定总体。
0.10 -3.24 -3.18 -3.15 -3.13 -3.13 -3.12 2.77 2.75 2.73 2.73 2.72 2.72 2.39 2.38 2.38 2.38 2.38 2.38
• 一个简单的检验过程:
– 同时估计出上述三个模型的适当形式,然后通过 ADF临界值表检验零假设H0:δ=0。
– 二是动态的总体原型,主要是持续演变的经济因素 之间的动态平衡结构,力图揭示经济系统的演变法 则,对应的总体是在时间维度上持续发生的随机过 程,通常利用时间序列数据来估计总体模型参数。
• 数据的时间序列性破坏了计量经济学静态模型 的随机抽样假定,取消了样本点之间的独立 性,样本点将发生序列相关。如果序列相关性 不能足够快地趋于零,在统计推断中发挥关键 作用的大数定律、中心极限定理等极限法则缺 乏应用基础。
• Dicky和Fuller于1976年提出了这一情形下t统计 量服从的分布(这时的t统计量称为τ统计量), 即DF分布。
• 由于t统计量的向下偏倚性,它呈现围绕小于零均 值的偏态分布。
显著性水平
0.01 0.05 0.10
样本容量 25 50 100 500
-3.75 -3.58 -3.51 -3.44 3.00 -2.93 -2.89 -2.87 2.63 -2.60 -2.58 -2.57
Xt = Xt−1 + μt X t = ρX t−1 + μt
时间序列分析
时间序列分析⼀、定义时间序列(或称动态数列)是指将同⼀统计指标的数值按其发⽣的时间先后顺序排列⽽成的数列。
时间序列分析的主要⽬的是根据已有的历史数据对未来进⾏预测。
经济数据中⼤多数以时间序列的形式给出。
根据观察时间的不同,时间序列中的时间可以是年份、季度、⽉份或其他任何时间形式。
时间序列简单的说就是各时间点上形成的数值序列。
时间序列分析并不是关于时间的回归,它主要是研究⾃⾝的变化规律的(这⾥不考虑含外⽣变量的时间序列)。
对时间序列进⾏观察,研究,寻找它变化发展的规律,预测它将来的⾛势,就是时间序列分析。
⼆、构成要素:长期趋势,季节变动,循环变动,不规则变动。
1)长期趋势( T )现象在较长时期内受某种根本性因素作⽤⽽形成的总的变动趋势。
2)季节变动( S )现象在⼀年内随着季节的变化⽽发⽣的有规律的周期性变动。
3)循环变动( C )现象以若⼲年为周期所呈现出的波浪起伏形态的有规律的变动。
4)不规则变动(I )是⼀种⽆规律可循的变动,包括严格的随机变动和不规则的突发性影响很⼤的变动两种类型。
三、作⽤1. 反映社会经济现象的发展变化过程,描述现象的发展状态和结果。
2. 研究社会经济现象的发展趋势和发展速度。
3. 探索现象发展变化的规律,对某些社会经济现象进⾏预测。
4. 利⽤时间序列可以在不同地区或国家之间进⾏对⽐分析,这也是统计分析的重要⽅法之⼀。
四、变量特征⾮平稳性(nonstationarity,也译作不平稳性,⾮稳定性):即时间序列变量⽆法呈现出⼀个长期趋势并最终趋于⼀个常数或是⼀个线性函数。
波动幅度随时间变化(Time-varying Volatility):即⼀个时间序列变量的⽅差随时间的变化⽽变化。
这两个特征使得有效分析时间序列变量⼗分困难。
平稳型时间数列(Stationary Time Series)系指⼀个时间数列其统计特性将不随时间之变化⽽改变。
五、时域分析的经典步骤1.考察序列的特征,检验是否具有平稳性2.根据序列特征选择拟合的模型3.确定模型的⼝径4.检验、优化模型5.利⽤拟合的模型进⾏预测以下为转载————————————————版权声明:本⽂为CSDN博主「Python⾦融量化」的原创⽂章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原⽂出处链接及本声明。
关于时间序列分析
1.全然概念(1)一般概念:系统中某一变量的瞧测值按时刻顺序〔时刻间隔相同〕排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻寻和分析事物的变化特征、开展趋势和规律。
它是系统中某一变量受其它各种因素碍事的总结果。
(2)研究实质:通过处理推测目标本身的时刻序列数据,获得事物随时刻过程的演变特性与规律,进而推测事物的今后开展。
它不研究事物之间相互依存的因果关系。
(3)假设根底:惯性原那么。
即在一定条件下,被推测事物的过往变化趋势会连续到今后。
暗示着历史数据存在着某些信息,利用它们能够解释与推测时刻序列的现在和今后。
近大远小原理〔时刻越近的数据碍事力越大〕和无季节性、无趋势性、线性、常数方差等。
(4)研究意义:许多经济、金融、商业等方面的数据根基上时刻序列数据。
时刻序列的推测和评估技术相对完善,其推测情景相对明确。
尤其关注推测目标可用数据的数量和质量,即时刻序列的长度和推测的频率。
2.变动特点(1)趋势性:某个变量随着时刻进展或自变量变化,呈现一种比立缓慢而长期的持续上升、下落、停留的同性质变动趋向,但变动幅度可能不等。
(2)周期性:某因素由于外部碍事随着自然季节的交替出现顶峰与低谷的规律。
(3)随机性:个不为随机变动,整体呈统计规律。
(4)综合性:实际变化情况一般是几种变动的叠加或组合。
推测时一般设法过滤除往不规那么变动,突出反映趋势性和周期性变动。
3.特征识不熟悉时刻序列所具有的变动特征,以便在系统推测时选择采纳不同的方法。
(1)随机性:均匀分布、无规那么分布,可能符合某统计分布。
(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。
)(2)平稳性:样本序列的自相关函数在某一固定水平线四面摆动,即方差和数学期瞧稳定为常数。
样本序列的自相关函数只是时刻间隔的函数,与时刻起点无关。
其具有对称性,能反映平稳序列的周期性变化。
特征识不利用自相关函数ACF:ρk =γk/γ其中γk是y t的k阶自协方差,且ρ0=1、-1<ρk<1。
确定性时间序列分析方法介绍
建模注意:
创建时序新变量时,应首先在Function框中 选择需要转换最初变量生成新变量的函数 Lag,然后将最初变量(income)移至New Variables(s)框中。该操作顺序不能改变。
在原始数据库中生成滞后新变量,将滞后 新变量作为自变量进行自回归模型中。
在建模方法一栏中应选择最小二乘法作为 预测方法。
若时间序列{Xt }满足下列模型,则称其为一个p阶自回归 序列,简记为{Xt }~AR(p):
Xt =j 0+ j1Xt-1 + j 2Xt-2 + … + j pXt-p + at
在本模型中,时间序列的当前值等于时间序列前一个值同 一个随机误差的线性组合。 计算自回归的三种方法: 精确极大似然法(能处理缺失值数据); 克科伦.奥克特法(当时序中包含有嵌入式缺失值时不可 使用); ★ 最小二乘法(最常用的方法)
Y t T t S t C t It Y t T t S t C t It
案例——带有季节因素的销售量统计分析
在原始数据库中生成的四列新数据分别为: 误差项、长期趋势、季节变动指数、周期
变动指数 关键选项注意: 在移动平均权重(Moving Average Weight)
选项栏中,应该选择All point equal选项。 (计算周期跨度相等和所有点权重相等时 的移动平均)
t = 2, 3, …
a值越接近于1,说明新的预测值包括对前
一期的预测误差的全部修正值,反之,则 相反。
注意:定义时序变量
Date-Define Dates 可用来建立时间序列的 周期性,共有20种可用来定义日期的变量, 应根据数据变量的周期属性选择合适的类 型。
选择完毕后在原始数据库中将自动生成新 的变量,不可删除;还需定义预测结果终 止的时限(Predict through).
时间序列模型
时间序列模型一、分类①按所研究的对象的多少分,有一元时间序列和多元时间序列。
②按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。
③按序列的统计特性分,有平稳时间序列和非平稳时间序列。
狭义时间序列:如果一个时间序列的概率分布与时间t无关。
广义时间序列:如果序列的一、二阶矩存在,而且对任意时刻t满足均值为常数和协方差为时间间隔T勺函数。
(下文主要研究的是广义时间序列)。
④按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。
二、确定性时间序列分析方法概述时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。
一个时间序列往往是以下几类变化形式的叠加或耦合。
①长期趋势变动:它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。
通常用T t表示。
②季节变动:通常用S t表示。
③循环变动:通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。
通常用C t表示。
④不规则变动。
通常它分为突然变动和随机变动。
通常用R t表示。
也称随机干扰项。
常见的时间序列模型:⑴加法模型:y t = S t + T t + C t + R t;⑵乘法模型:y t =S T t C t -R t ;⑶混合模型:y t =S T t + R t ;y t = S t +2T t G R t ;R t这三个模型中y t表示观测目标的观测记录, E R t = 0, E R t2 ==o2如果在预测时间范围以内,无突然变动且随机变动的方差 /较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测。
三、移动平均法当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。
移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。
时间序列分析(统计分析学概念)
统计分析学概念
01 基础知识
03 分类 05 主要用途
目录
02 性质特点 04 具体方法
时间序列分析(Time-Series Analysis)是指将原来的销售分解为四部分来看——趋势、周期、时期和不 稳定因素,然后综合这些因素,提出销售预测。强调的是通过对一个区域进行一定时间段内的连续遥感观测,提 取图像有关特征,并分析其变化过程与发展规模。当然,首先需要根据检测对象的时相变化特点来确定遥感监测 的周期,从而选择合适的遥感数据。
主要用途
时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水 文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。主要包括从 以下几个方面入手进行研究分析。
系统描述 根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。 系统分析 当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解 给定时间序列产生的机理。 预测未来 一般用ARMA模型拟合时间序列,预测该时间序列未来值。 决策和控制 根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必 要
特点:简单易行,便于掌握,但准确性差,一般只适用于短期预测。
分类
时间序列依据其特征,有以下几种表现形式,并产生与之相适应的分析方法: 1.长期趋势变化:受某种基本因素的影响,数据依时间变化时表现为一种确定倾向,它按某种规则稳步地增 长或下降。使用的分析方法有:移动平均法、指数平滑法、模型拟和法等。 2.季节性周期变化:受季节更替等因素影响,序列依一固定周期规则性的变化,又称商业循环。采用的方法: 季节指数。 3.循环变化:周期不固定的波动变化。 4.随机性变化:由许多不确定因素引起的序列变化。 时间序列分析主要有确定性变化分析和随机性变化分析。其中,确定性变化分析包括趋势变化分析、周期变 化分析、循环变化分析。随机性变化分析:有AR、MA、ARMA模型等。
第五章-时间序列的模型识别汇总
第五章时间序列的模型识别前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。
从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下:图5.1 建立时间序列模型流程图在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。
需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。
在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。
对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。
所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。
我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。
如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。
同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。
如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关的准则函数,既考虑模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数,最终选取使该函数达到最小值的阶数,常用的该类准则有AIC 、BIC 、FPE 等。
关于时间序列分析
关于时间序列分析时间序列分析是一种用于分析时间序列数据的统计方法。
时间序列数据是按照时间顺序排列的观测结果,可以是连续的或离散的。
时间序列分析是一种重要的技术,可以用于很多领域,例如经济学、金融学、气象学等。
它可以揭示时间序列数据的变化规律、趋势和季节性,为预测未来发展趋势提供依据。
时间序列分析的目标是研究时间序列数据的内在结构,以便进行预测和解释。
其核心是确定数据中的趋势、周期和随机成分。
趋势表示时间序列的长期变化趋势,周期表示时间序列的短期变化趋势,随机成分表示时间序列的无规律波动。
时间序列分析包括多种方法和技术,其中最常用的有平滑法和回归分析。
平滑法通过移动平均、指数平滑等方法消除数据中的波动,以便更好地观察趋势。
回归分析则通过建立数学模型,以自变量对因变量的影响程度来解释时间序列数据。
平滑法在时间序列分析中有多种实现方式。
移动平均是一种常见的平滑方法,它通过计算一定时间窗口内的平均值来平滑时间序列数据。
指数平滑是另一种常见的平滑方法,它给予近期数据更大的权重,以反映出时间序列的变化趋势。
回归分析是一种常用的时间序列分析方法。
它通过建立数学模型来描述自变量与因变量之间的关系,并用于预测未来值。
回归分析可以分为线性回归和非线性回归两种。
线性回归假设自变量和因变量之间存在线性关系,而非线性回归则放宽了这一假设。
时间序列分析还包括一些其他技术,例如自相关分析和谱分析。
自相关分析用于分析时间序列数据中的自相关性,即随着时间的推移,观测值之间的关联程度。
谱分析则用于分析时间序列数据中的周期性和频率特征。
时间序列分析在实际应用中具有广泛的价值。
在经济学领域,它可以用于预测股票价格、通货膨胀率等变量的未来走势。
在气象学领域,它可以用于预测气温、降雨量等变量的未来变化。
在金融学领域,它可以用于分析股票价格、汇率等金融指标的波动规律。
总之,时间序列分析是一种重要的统计方法,可以用于分析时间序列数据的变化规律和趋势。
时间序列分析
当置信度为0.95,自由度T-2=8,查t 值表,得2.306 则销量y11的区间预测为:
y11 t s
2
(11) p
y
11
y11 t s
2
(11) p
2949 2.3 80
y
11
2949 2.3 80
(5)检验预测有效性 预测有效性及模型可靠性的检验,要 求比较预测值 y T k 与支持区间 外的预测区间[T+1,T+k]中的实际值。 由于预测时点的实际值未知,不能马 上检验预测有效性,需等到事件发生 另一种方法是用现有后期预测法检验 预测有效性
应用举例 例子:人造黄油生产厂的经理对销售 地区A的高销量感到惊讶和高兴。但如 果要保持或再提高此高销量,经理必 须调整该地区的供货。为了做出决策, 需要分析和预测此销售地区的销量变 化情况。为此,他收集了近十年的销 量数据:
销售地区A的销量时间序列
时间(t) 1 2 3 4 5 6 7 8 9 10 销量(盒) 1657 1864 1950 2204 2288 2410 2414 2534 2739 2785
2.非平稳性时间序列分析方法 ARIMA模型(自回归整合移动模型) 是一种典型的非平稳时间序列预测门 模型 该方法的基本思想是采用差分方程来 做平稳化处理,使非平稳序列变成平 稳序列,然后按照平稳序列建立 ARMA模型进行预测,最后通过做差 分逆操作得到原序列的预测值
当序列蕴含显著的线性趋势时,一阶 差分方程就可以实现趋势平稳;当序 列蕴含曲线趋势,通常低阶(二或三) 差分就可以提取出曲线趋势;对于蕴 含着固定周期的序列进行步长为周期 长度的差分运算,通常可以较好地提 取周期信息 此外,还有卡尔曼(Kalman)滤波, 用状态方程和递推方法进行估计
确定性时间序列分析方法
“Continue”返回一级窗口。
• 点击“Save”按钮作预测选择后,此操作同上一节的简单 指数平滑。
• 再在一级窗口点击“OK”,即可得到所需要的结果了。
5. 我们来看看此时的指数平滑结果,见图11.6。
120
我们看到,此时的 100 估计效果比上一节
(2)滑动平均模型(简称MA模型);
(3)自回归滑动平均混合模型(简称ARMA模型)。
①博克斯一詹金斯法依据的基本思想是:
• 将预测对象随时间推移而形成的数据序列视为一个随机序 列,即除去个别的因偶然原因引起的观测值外,时间序列 是一组依赖于时间t的随机变量。这组随机变量所具有的 依存关系或自相关性表征了预测对象发展的延续性,而这 种自相关性一旦被相应的数学模型描述出来,就可以通过 时间序列的过去值及现在值预测其未来的值。
• 不考虑最初几个指数平滑值,当 t < N 时,指数平滑数 据Yt与原有观测值 Xt 之间的误差较小;可见用指数平滑 作为原有观测值的一种估计效果还是较好的。
• 但是当 t >N 时,指数平滑曲线很快得呈一条直线状,没 有体现出原有观测值的上升趋势和周期性规律。可见用这 一指数平滑作为原销售数据的预测效果不理想。
• 上述第三点的原因是我们在做指数平滑时没有考虑原数据 的任何趋势或周期规律,我们在下一部分对此做弥补。
时间序列的分解
一、成分的分离
• 从图11.1可以看出,该销售数据序列由三部分组成:指数 向上的趋势(trend)、周期性变化的季节成分(seasonal component) 和无法用趋势和季节模式解释的随机干扰 (disturbance)。
(trend-cycle series),记为{TCt }。
专题三时间序列的确定性分析教案
已知 xT 10 ,~xT1 10.5 ,平滑系数 0.25 (1) 求二期预测值 。 xˆT2 (2)求在二期预测值 xˆT2中 xT 前面的系数等于 多少?
解
(1)xˆT1 ~xT 0.25xT 0.75~xT1 10.3 xˆT 2 xˆT 1 10.3
分类
简单指数平滑 Holt两参数指数平滑
简单指数平滑
基本公式
~xt xt (1 )xt1 (1 )2 xt2
等价公式
~xt xt (1 )~xt1
经验确定
初始值的确定
~x0 x1
平滑系数的确定 一般对于变化缓慢的序列,常取较小的值 对于变化迅速的序列, 常取较大的值 经验表明 的值介于0.05至0.3之间,修匀
(2)xˆT 2 xˆT 1 xT (1 )xT 1
所以使用简单指数平滑法二期预测值中 xT 前面的
系数就等于平滑系数 0.25
Holt两参数指数平滑
使用场合
适用于对含有线性趋势的序列进行修匀
构造思想
假定序列有一个比较固定的线性趋势
xˆt xt1 r
两参数修匀
~xt xt (1 )(~xt1 rt1 ) rt (~xt ~xt1 ) (1 )rt1
xt Sˆt
Tt
It
(4)拟合长期趋势
Tˆt 1015.522 20.93178t
(5)残差检验
xt Sˆt
Tˆt
It
(6)短期预测
xˆt (l) Sˆtl Tˆtl
X-11过程
简介
X-11过程是美国国情调查局编制的时间序列季节调整过 程。它的基本原理就是时间序列的确定性因素分解方法
统计学第5章 时间序列(第二版)1
• •
时期序列:现象在一段时期内总量的排序 时点序列:现象在某一时点上总量的排序
2. 相对数时间序列
一系列相对数指标按时间顺序排列而成
3.平均数时间序列 一系列平均数指标按时间顺序排列而成
统计学(第6章) 主讲:王光玲,济南大学经济学院
表5- 1
年 份 国内生产总值 (亿元)
国内生产总值等时间序列
i 1
i
1.绝对数序列的序时平均数
(时点序列计算方法)
②间断时点序列:间隔在一天以上的时点序列 a.间隔不等的间断时点序列
Y1 Y2 Y3 Y4 Yn-1 Yn
T1
T2
T3
Tn-1
※间隔不相等 时,采用加权序时平均法
一季 度初 二季 度初
90天
三季 度初
90天
次年一 季度初
180天
Y 1
Y2
Y 3
T1 T2 ... Tn 1
1.绝对数序列的序时平均数
(时点序列计算方法)
b.间隔相等的间断时点序列
Y1 Y2 Y3 Yn-1 Yn
T1
T2
Tn-1
间隔相等(T1 = T2= …= Tn-1)
b.间隔相等的间断时点序列
※间隔相等 时,采用简单序时平均法
一季 度初 二季 度初 三季 度初 四季 度初 次年一 季度初
4
表5- 1
年 份 国内生产总值 (亿元)
国内生产总值等时间序列
年末总人口 (万人)
城镇居民家庭人均 可支配收入(元) 城镇居民家庭恩 格尔系数(%)
1996 71176.6 122389 1997 78973.0 123626 1998 84402.3 124761 1999 89677.1 125786 2000 99214.6 126743 2001 109655.2 127627 2002 120332.7 128453 2003 135822.8 129227 129988 2004 159878.3 130756 2005 183867.9 统计学(第6章) 131448 2006 2/26/2019 210871.0
时间序列5章例题
q<-read.csv("C:\\Users\\sjxy\\Desktop\\file23.csv",header=T)>x<-ts(q$汇率,start=c(1978,12,31),frequency=365)>plot(x)图2:外币对美元的日兑换率1阶差分后序列时序图从图1外币对美元的日兑换率序列时序图可以看出,该序列波动范围很广,起伏不定,有明显的趋势特征,说明该序列具有非平稳性。
为了消除非平稳性对模型的影响,进行1阶差分,结果如图2所示,该外币对美元的日兑换率1阶差分后的序列具有保持在0.0上下波动的平稳性。
但是从图2看,我们发现该图具有非常明显的集群效应。
所以分析该外币对美元的日兑换率1阶差分后序列需要同时提取水平相关信息和波动相关信息。
>for(iin1:2)print(Box.test(diff(x),lag=6*i))Box-Piercetestdata:diff(x)X-squared=12.917,df=6,p-value=0.04438Box-Piercetestdata:diff(x)X-squared=29.712,df=12,p-value=0.003085>acf(diff(x))图3:外币对美元的日兑换率1阶差分后序列自相关图>pacf(diff(x))Serie-sdifT<|x誉-Iaooaozo04o oa□oaa1oLag图4:外币对美元的日兑换率1阶差分后序列偏自相关图延迟6阶和12阶后,P值分别为p-value=0.04438、p-value=0.003085,且都小于置信水平0.05,说明该外币对美元的日兑换率1阶差分后的序列不是纯随机序列。
水平信息的提取主要是对差分后自相关与偏自相关的考察。
外币对美元的日兑换率1阶差分后序列自相关图如图3所示,该图在延迟1阶之后几乎所有值都落在2倍标准差区域内波动,具有突然衰减且衰减的速度非常快,根据衰减的速度判断,以及具有短期相关性,判断该自相关具有截尾性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列的确定性分析
理论依据:1961年的Cramer分解定理
任何一个时间序列{Xt}都可以分解为两部分的叠加:一
部分是由多项式决定的确定性趋势成分,另一部分是平
稳的零均值误差成分,即
d
X t j t Yt
j j 0
其中d<∞,β0,β1,β2,…,βd是常系数,{Yt}是一个零均值的 平稳序列
序列,有以下两种建模方法:
季节指数模型方法:先对原始序列计算季节指数(或季节 变差),剔除季节效应后再对趋势性进行分析. 含趋势变动的季节指数模型方法:先进行适当的移动平 均,再计算季节指数,然后对剔除季节效应后的序列做
适当的趋势拟合.
确定性时间序列的建模
对1993-2000年中国社会消费品零售总额的月度数据X进 行确定性时间序列分析
t t t t t
确定性分析:
Tt f1 t , St f 2 t , Ct f3 t , I t : 零均值白噪序期趋势变动Tt
数据随时间而变化,呈现出不断增加或不断减少、或围绕 某一常数值波动而无明显增减变化的总趋势. 数据图检验法:直观简单,主观性较强
季节效应的提取
1945-1950费城月度降雨量
以月度数据为例:
季节指数
Sk xk x
季节指数之和为12
季节变差
Ck xk x
季节变差之和为0
季节效应的提取
季节指数
季节变差
季节效应的提取
北京市1995-2000年月平均气温
以月度数据为例:
季节指数 Sk xk x
无法用:有负值
季节变差
Ck xk x
季节变差之和为0
季节效应的提取
北京市1995-2000年月平均气温
季节效应
周期趋势的拟合法
X-11方法简介
第五节 确定性时间序列的建模方法
确定性时间序列的建模方法
一个时间序列{Xt}通常可分解为:长期趋势变动Tt, 季节效应St和不规则变动因素It三部分的共同作用。
参数估计方法
最小二乘估计
参数估计值 最后看一下残差It是否 需要拟合ARMA模型
X t 502.252 0.095t 2 It
拟合效果图
第三节 季节效应分析
季节效应分析
在某些时间序列中,由于季节性变化(包括季度、月度、周度 等变化)或其他一些固有因素的变化,会存在一些明显的周期 性,这类序列称为季节性序列。
线性模型
X t a bt It
参数估计方法
最小二乘估计
参数估计值
ˆ 89.12 ˆ 8498.69, b a
最后看一下残差It是否 需要拟合ARMA模型
拟合效果图
趋势性提取的拟合法
对上海证券交易所每月末上证指数序列进行模型拟合
非线性模型
X t a bt ct 2 It
时间序列的确定性分析
一个时间序列{Xt}可分解为以下四部分的共同作用:
长期趋势变动Tt,季节效应St ,循环变动Ct ,不规则变动因 素It. (一般将循环变动和季节效应都称为季节性变化) 对Tt、St和Ct 建立关于时间项t的多项式来提取信息,使It成 为零均值的白噪声序列; 该方法重视对确定性信息的提取,而忽视对随机性信息的 提取. X f T , S , C I
若对Tt和St建立时间t的确定性函数,使It成为零均
值的白噪声序列,就称为确定性时间序列分析.
常用的模型:
加法模型:Xt=Tt+St+It 乘法模型:Xt=Tt · St · It
混合模型:Xt=St+Tt · It 或 Xt=Tt · St+It
确定性时间序列的建模方法
对长期趋势变动Tt和季节效应St交织在一起的时间
美国1961年1月—1985年12月 16-19岁失业女性的月度数据
美国1871年—1979年烟草 生产量的年度数据
时间序列模型
平稳时间序列
定义:常数均值,常数方差,(自)协方差函数只依赖于时
间的平移长度,而与时间的起止点无关。
模型:ARMA模型
非平稳时间序列
均值非平稳,方差和自协方差非平稳 处理方法:确定性分析,随机性分析
趋势性的提取方法
平滑法
移动平均法:k期左侧移动平均,k期右侧移动平均, k期中心移动平均
指数平均法
拟合法:建立时间t的回归模型
常用的拟合模型:线性方程,二次曲线,指数曲线,
修正指数曲线,龚帕兹曲线,Logistic曲线
趋势性提取的拟合法
拟合澳大利亚政府1981-1990年每季度的消费支出序列
时间序列图
确定性时间序列的建模
在经济领域中,季节性序列更是随处可见。如季度时间序列、 月度时间序列、周度时间序列等。
季节时间序列的重要特征表现为周期性
在一个序列中,如果经过S个时间间隔后观测点呈现出相似性, 比如同处于波峰或波谷,我们就说该序列具有以S为周期的周 期特性。 一般,季度资料的一个周期表现为一年的四个季度,月度资料 的周期表现为一年的12各月,周资料表现为一周的7天或5天。
趋势性检验的方法:
自相关函数图检验法:样本自相关系数既不截尾,又不拖 尾,则序列{Xt}具有某种确定性趋势;当自相关系数接近 1时,则序列{Xt}具有线性趋势. 特征根检验法
趋势性分析
特征根检验法
原理:先对时间序列{Xt}建立适应性模型,利用该模型
的自回归部分参数所组成的特征方程的特征根λi的模来
检验趋势性.
若特征根存在两个实根,且其绝对值接近1,则序列{Xt}
存在线性趋势;若特征根存在n个实根,且其绝对值接近
1,则序列{Xt}存在n-1次多项式趋势;若特征根存在n个 实根,且其绝对值大于1,则序列{Xt}存在n个指数增加
趋势.
趋势性分析
数据图检验法 具有递增的趋势
趋势性分析
特征根检验法
第五章 时间序列的确定性分析
第五章 时间序列的确定性分析
第一节 概述
第二节 趋势性分析
第三节 季节效应分析 第四节 X-11方法简介 第五节 确定性时间序列的建模方法
第一节 概 述
非平稳时间序列
在实际应用中,我们经常会遇见不满足平稳性的时间序列, 尤其在经济领域和商业领域中的时间序列多数都是非平稳的