合肥市育英中学九年级数学下册第四单元《投影与视图》测试题(答案解析)
人教版初中数学九年级数学下册第四单元《投影与视图》测试题(有答案解析)(1)
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.下面四个几何体中,俯视图为四边形的是()A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个5.如图,该几何体的俯视图是()A.B.C.D.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm28.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形9.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1010.如图所示几何体的左视图是()A.B.C.D.11.如图所示的几何体的俯视图为( )A.B.C.D.12.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.14.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为_____.15.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.16.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.AB CD,17.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,//=,点P到CD的距离为2.7m,则AB与CD间的距离是CD m=, 4.51.5AB m________m.18.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.19.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.20.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题21.如图是某几何体从三个不同方向看到的形状图.(1)这个几何体的名称是;(2)若从正面看到的图形的宽为4cm,长为6cm,从左面看到的图为3cm,从上面看到的图形是直角三角形,其中斜边长为5m,求这个几何体的表面积为多少;它的体积为多少.22.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.23.用5个棱长为1的正方体组成如图所示的几何体.(1)该几何体的体积是立方单位,表面积是平方单位(包括底面积);(2)请在方格纸中用实线画出它的三个视图.24.如图,上午小明在上学路上发现路灯的灯泡B在太阳光下的影子恰好落到点E处,他自己的影子恰好落在另一灯杆CD的底部点C处,晚自习放学时,小明又站在上午同一地方,此时发现灯泡D的灯光下自己的影子恰好落在点E处.请在图中画出表示小明身高的线段(用线段FG表示).25.如图是由6个相同的小正方体组成的几何体,请在指定的位置画出从正面、左面、上面看得到的这个几何体的形状图.26.如图1,是一个由正方体截成的几何体,请在图2的网格中依次画出这个几何体从正面、上面、和左面看到的几何体的平面图形.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.D解析:D【解析】A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.3.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.4.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.5.A解析:A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选:A.点睛:此题主要考查了简单几何体的三视图,关键是掌握所看的位置.6.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键. 7.B解析:B【解析】【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD , ∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.8.A解析:A【分析】根据平行投影的性质进行分析即可得出答案.【详解】将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形. 故选A .【点睛】本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.9.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.10.B解析:B【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.11.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题13.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.14.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm底面三角解析:2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【详解】解:该几何体是一个三棱柱,底面等边三角形边长为2cm cm,三棱柱的高为3cm,∴其左视图为长方形,长为3cm,∴面积为:cm2),故答案为:2.【点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.15.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.16.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的解析:2【解析】考点:由三视图判断几何体.分析:由主视图可得长方体的高和底面正方形的对角线长,利用勾股定理即可求得长方体的底面边长.解答:解:∵主视图的长为,俯视图为正方形,∴长方体的底面边长为=2,∵主视图的高就是几何体的高,∴这个长方体的高和底面边长分别是3,2.点评:用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.17.【分析】由AB∥CD得:△PAB∽△PCD由相似三角形对应高之比等于对应边之比列出方程求解【详解】∵AB∥CD∴△PAB∽△PCD假设CD到AB距离为x则:即x=18∴AB与CD间的距离是18m;故解析:1.8【分析】由AB∥CD得:△PAB∽△PCD,由相似三角形对应高之比等于对应边之比,列出方程求解.【详解】∵AB∥CD,∴△PAB ∽△PCD ,假设CD 到AB 距离为x , 则:2.72.7AB x CD -= 即1.5 2.74.5 2.7x -=, x=1.8,∴AB 与CD 间的距离是1.8m ;故答案是:1.8.【点睛】 考查了中心投影,用到的知识点是相似三角形的性质和判定,相似三角形对应高之比等于对应边之比.解此题的关键是把实际问题转化为数学问题(三角形相似问题). 18.bdca 【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca 考点:简单几 解析:bdca .【解析】试题分析:根据观察的角度不同,得到的视图不同,可得答案.①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子…看到的由少到多,最后全看到,得b ,d ,c ,a .考点:简单几何体的三视图.19.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.20.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题21.(1)直三棱柱;(2)284cm ;336cm .【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出表面积和体积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的表面积为:()21234463656842cm ⎛⎫⨯⨯⨯+⨯+⨯+⨯=⎪⎝⎭, 它的体积为:()31346362cm ⨯⨯⨯=. 【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键. 22.见解析【分析】根据几何体的三视图的性质作图即可.【详解】如图所示,即为所求.本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.23.(1)5;22;(2)见解析.【分析】(1)根据几何体的形状得出立方体的体积和表面积即可;(2)主视图有3列,从左往右每一列小正方形的数量为2,1,1;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右小正方形的个数为1,2,1.【详解】解:(1)几何体的体积:1×1×1×5=5(立方单位),表面积:小正方体被遮住的面有8个,所以表面积为:1×1×22=22(平方单位);(2)如图所示:【点睛】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.24.详见解析.【分析】先画出上午太阳光线下的灯泡B的照射光线BE,过点C作BE的平行线,再连接下午时灯光下灯泡D的光线DE,与过点C的光线交于点G,在过点G作地面的垂线GF,即是表示小明身高的线段.【详解】如图所示,线段FG即为所求.【点睛】此题考查投影,投影分为平行投影和中心投影,解题中能正确区分两种投影的区别是解题的关键.25.见解析.【分析】根据三视图的定义画出图形即可.该几何体的三视图如图所示:【点睛】此题考查三视图的定义,解题的关键是学会观察和想象,再画它的三视图.26.见解析【分析】根据三视图的定义,画出图形即可.【详解】解:【点睛】本题考查作图-三视图,解题的关键是理解题意,正确作出三视图,属于中考常考题型.。
九年级数学下册《投影与视图》单元测试卷(附答案解析)
九年级数学下册《投影与视图》单元测试卷(附答案解析)一、单选题1.“皮影戏”是我国一种历史悠久的民间艺术,下列关于它的说法正确的是()A. 皮影戏的原理是利用平行投影将剪影投射到屏幕上B. 屏幕上人物的身高与相应人物剪影的身高相同C. 屏幕上影像的周长与相应剪影的周长之比等于对应点到光源的距离之比D. 表演时,也可以利用阳光把剪影投射到屏幕上2.下列几何体各自的三视图中,有且仅有两个视图相同的是()A. ①②B. ②③C. ①④D. ②④3.如图,某剧院舞台上的照明灯P射出的光线成“锥体”,其“锥体”面图的“锥角”是60°.已知舞台ABCD是边长为6m的正方形.要使灯光能照射到整个舞台,则灯P的悬挂高度是()A. 3√6mB. 3√3mC. 4√3mD. √6m4.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是()A. B.C. D.5.如图所示的几何体的左视图是()A. B.C. D.6.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A. 逐渐变短B. 先变短后变长C. 先变长后变短D. 逐渐变长7.下列图形中,主视图和左视图一样的是()A. B.C. D.8.图中三视图对应的几何体是()A. B.C. D.9.图中几何体的俯视图是()A. B. C. D.10.人离窗子越远,向外眺望时此人的盲区是()A. 变大B. 变小C. 不变D. 无法确定二、填空题11.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形 ______ 相似.(填“可能”或“不可能”).12.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB//CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于______m.13.圆柱的主视图是长方形,左视图是______形,俯视图是______形.14.画三种视图时,对应部分的长度要________,而且通常把俯视图画在主视图________面,把左视图画在主视图________面.15.许多影院的座位做成阶梯形,目的是____(请用数学知识回答).16.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的表面积为______.17.如图所示是一个几何体的三视图,若这个几何体的体积是6,则它的表面积是 ______.18.直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(−10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是______.19.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有 ______个.三、解答题20.小明周末到公园里散步,当他沿着一段平坦的直线跑道行走时,前方出现一棵树AC和一座景观塔BD(如图),假设小明行走到M处时正好透过树顶C看到景观塔的第5层顶端E处,此时他的视角为30°,已知树高AC=10米,景观塔BD共6层(塔顶高度和小明的身高忽略不计),每层5米.(1)当小明向前走到点N处时,刚好看不到景观塔BD,请在图中作出点N,不必写作法;(2)请问,小明再向前走多少米刚好看不到景观塔BD?(结果保留根号)21.已知小明和树的高与影长,试找出点光源和旗杆的影长.22.明明与亮亮在借助两堵残墙玩捉迷藏游戏,若明明站在如图所示位置时,亮亮在哪个范围内活动是安全的?请在图(1)的俯视图(2)中画出亮亮的活动范围.23.如图,两棵树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?24.补全下面物体的三视图.25.一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.(1)请只用直尺和圆规,将此零件的左视图画在规定的位置(不必写作法,只须保留作图痕迹);(2)若此零件底面圆的半径r=2cm,高ℎ=3cm,求此零件的表面积.26.如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为37°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB和楼房MN的高度.(√3≈1.73,sin37°≈0.60,cos37°≈0.800,tan37°≈0.75,结果精确到0.1m)参考答案和解析1.【答案】C;【解析】解:A.“皮影戏”是根据中心投影将剪影投射到屏幕上,因此选项A不符合题意;B.由中心投影的性质可知幕上人物的身高与相应人物剪影的身高成比例,因此选项B不符合题意;C.由中心投影的性质可知屏幕上影像的周长与相应剪影的周长之比等于相似比,即等于对应点到光源的距离之比,因此选项C符合题意;D.表演时,不可以利用阳光把剪影投射到屏幕上,因此选项D不符合题意;故选:C.根据中心投影的意义和性质,逐项进行判断即可,同时注意与平行投影的区别与联系.此题主要考查的是中心投影的性质,注意中心投影与平行投影的区别,利用生活中的“皮影戏”体现光的中心投影性质,这是光投影在生活中的应用,平时多观察,多思考.2.【答案】D;【解析】本题是基础题,考查几何体的三视图的识别能力,作图能力,三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:∵正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,∴正确答案为D.故选D.3.【答案】A;【解析】解:连接AC,∵∠APC=60°,∴∠PAC=∠PCA=60°,∵ABCD是边长为6m的正方形,∴AC=6√2,OC=3√2∴PC=6√2,∴PO=3√6,故选:A.先根据题意进行连接AC,再根据“锥体”面图的“锥角”是60°得出△PAC是等边三角形,再根据它的计算方法和正方形的特点分别进行计算,即可求出答案.此题主要考查了中心投影和圆锥的计算,解答该题的关键是根据等边三角形和正方形的计算方法进行计算.4.【答案】D;【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项错误;D、在同一时刻阳光下,树高与影子成正比,所以D选项正确.故选:D.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.该题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5.【答案】B;【解析】解:从左边看,是一列两个矩形.故选:B.根据左视图是从左边看得到的图形,可得答案.此题主要考查了简单组合体的三视图,从左边看得到的图形是左视图.6.【答案】B;【解析】【试题解析】该题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.小亮由A处径直走到路灯下,他的影子由长变短,再从路灯下走到B处,他的影子则由短变长.解:根据中心投影的特点,知小亮由A处走到路灯下,他的影子由长变短,由路灯下走到B处,他的影子由短变长.故选B.7.【答案】D;【解析】解:A.主视图和左视图不相同,故本选项不合题意;B.主视图和左视图不相同,故本选项不合题意;C.主视图和左视图不相同,故本选项不合题意;D.主视图和左视图相同,故本选项符合题意;故选:D.根据各个几何体的主视图和左视图进行判定即可.此题主要考查简单几何体的三视图,掌握各种几何体的三视图的形状是正确判断的关键.8.【答案】B;【解析】解:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度不相同,从俯视图推出上面是圆柱体,直径小于下面柱体的宽.由此可以判断对应的几何体是选项B.故选:B.由主视图和左视图可得此几何体为柱体,根据俯视图可判断出此上面是圆柱体,由此观察图形即可得出结论.此题主要考查了三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.9.【答案】D;【解析】解:从上面看可得到三个矩形左右排在一起,中间的较大,故选:D.找到从上面看所得到的图形即可.该题考查了三视图的知识,俯视图是从物体的上面看得到的视图.10.【答案】A;【解析】解:如图:AB为窗子,EF∥AB,过AB的直线CD,通过想象我们可以知道,不管在哪个区域,离窗子越远,视角就会越小,盲区就会变大.故选:A.11.【答案】可能;【解析】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.根据中心投影是由点光源发出的光线形成的投影可以得到三角形是否相似.此题主要考查了相似三角形的应用及中心投影的知识,解答该题的关键是了解中心投影是由点光源发出的光线形成的投影.12.【答案】3;【解析】解:如图,作PF⊥CD于点F,∵AB//CD,∴△PAB∽△PCD,PE⊥AB,∴△PAB∽△PCD,∴ABCD =PEPF,即:1.54.5=1PF,解得PF=3.故答案为:3.易得△PAB∽△PCD,利用相似三角形对应边的比等于对应高的比可得AB与CD间的距离.考查相似三角形的应用;用到的知识点为:相似三角形对应边的比等于对应高的比.13.【答案】长方圆;【解析】解:圆柱的主视图是长方形,左视图是长方形,俯视图是圆形.从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.此题主要考查了几何体的三视图的判断.14.【答案】相等;下;右;【解析】这道题主要考查三视图的画法,熟练掌握物体的长、宽、高与三种视图的关系是解答该题的关键,首先正确理解:主视图,左视图,俯视图分别是从物体正面,左面和上面看所得到的图形,然后再从几何体的长、宽、高三个方面分析从不同的角度所观察到物体的情况,进而作出解答.解:在画三种视图时,对应部分的长度要相等,而且通常把俯视图画在主视图下面,把左视图画在主视图右面.故答案为相等;下;右.15.【答案】减少观众的盲区(看不见的地方),使得每人都能看到屏幕;【解析】解:结合盲区的定义,我们可以知道影院的座位做成阶梯形是为了然后面的观众有更大的视野从而减少盲区,使得没人都能看到屏幕,因此影院的座位做成阶梯形的原因是减少观众的盲区(看不见的地方),使得每人都能看到屏幕.故答案为:减少观众的盲区(看不见的地方),使得每人都能看到屏幕.16.【答案】(18+2√3)c m2;【解析】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为√3cm,三棱柱的高×2×√3=18+2√3(cm2).为3,所以,其表面积为3×2×3+2×12故答案为(18+2√3)cm2.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.该题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.17.【答案】22;【解析】解:∵由主视图得出长方体的长是3,宽是1,这个几何体的体积是6,∴设高为ℎ,则1×3×ℎ=6,解得:ℎ=2,∴它的表面积是:1×3×2+3×2×2+1×2×2=22.故答案为:22.根据主视图与左视图得出长方体的长和宽,再利用图形的体积得出它的高,进而得出表面积.此题主要考查了利用三视图判断几何体的长和宽,得出图形的高是解题关键.18.【答案】0<y≤2.5;【解析】解:过D作DF⊥OC于F,交BE于H,OF=1.5,BH=0.5,三角形DBH中,tan∠BDH=BH:DH=0.5:5,因此三角形CDF中,CF=DF⋅tan∠BDH=1因此,OC=OF+CF=1+1.5=2.5.因此盲区的范围在0<y⩽2.5.如图,本题所求的就是OC的值,过D作DF⊥OC于F,交BE于H,利用三角函数可求出.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.【答案】5;【解析】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成,故答案为:5.易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.20.【答案】解:(1)如图,点N 即为所求.(2)由题意得,BE=5×5=25(米),BD=5×6=30(米),在Rt △ACM 中,∵∠M=30°,AC=10米,∴AM=10√3(米),在Rt △BEM 中,∵∠M=30°,BE=25米,∴BM=25√3(米),∴AB=BM-AM=25√3-10√3=15√3(米),∵AC ∥BD ,∴△ACN ∽△BDN ,∴AC BD =NA NB =1030=13,设NA=x 米,则NB=(x+15√3)米, x+15√3=13, 解得,x=15√33, ∴MN=MA-NA=10√3-15√32=5√32(米), 答:小明再向前走5√32米刚好看不到景观塔BD .;【解析】 (1)连接DC 并延长交BM 于点N.(2)利用直角三角形的边角关系和相似三角形的性质进行解答即可.此题主要考查直角三角形的边角关系,相似三角形的判断和性质,连接和掌握直角三角形的边角关系、相似三角形的性质是解决问题的前提.21.【答案】解:如图:连接AB、CD并延长交与点O,点O即为点光源,EG为旗杆的影子.;【解析】首先根据小明的身高和影长与树的高度和影长确定点光源,然后由过点光源和旗杆的顶部确定旗杆的影长即可.此题主要考查了中心投影的知识,中心投影是由点光源发出的,确定了点光源是解决本题的关键.22.【答案】解:阴影部分A、B为亮亮活动的范围.;【解析】亮亮活动的安全范围其实就是明明的盲区,因此画亮亮的活动范围只要画出明明的盲区就行了.本题是结合实际问题来考查学生对视点,视角和盲区的理解能力.23.【答案】解:设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6m,CD=8m,小强的眼睛与地面的距离为1.6m,∴BG=4.4m,DH=6.4m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG:FH=BG:DH,即FG•DH=FH•BG,∴x×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD的树顶D.;【解析】根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH 的比例关系式,用FG表示出FG后即可求出FG的长.24.【答案】解:如图示,.;【解析】此题主要考查了三视图的画法,注意实线和虚线在三视图的用法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.25.【答案】(1)左视图与主视图形状相同,有作垂线(直角)的痕迹(作法不唯一).(2)两个底面积:2πr2×3=6π(c m2);4+2r)×3=(3π+4)×3=9π+12(c m2);侧面积:(2πr×34表面积:15π+12(c m2).;【解析】(1)由削去了占底面圆的四分之一部分的柱体易得主视图和左视图相同,可先画一条线段等于主视图中大长方形的长,然后分别做两个端点的垂线及线段的垂直平分线,在两端点的垂线上分别截取主视图的高连接即可得到几何体的左视图;(2)此零件的表面积=两个底面积+侧面积,把相关数值代入即可求解.解决本题的关键是得到零件全面积的等量关系,注意侧面积的展开图应为一个长方形,长方形的长为四分之三圆的周长+半径长.26.【答案】解:在Rt△CDN中,,∵tan30°=CDDN∴CD=tan30°•DN=5√3,∵∠CBD=∠EMB=37°,√3,∴BD=CD÷tan37°=203√3∴BN=DN+BD=15+203,在Rt△ABN中,tan30°=ABBN∴AB=tan30°•BN≈15.3,√3)≈19.9在Rt△MNB中,MN=BN•tan37°=0.75(15+203∴树高AB是15.3米,楼房MN的高度是19.9米.;【解析】,得到CD=tan30°⋅DN=5√3于是得到BD=CD=5√3,在RtΔCDN中,由于tan30°=CDDN在RtΔABN中,根据三角函数的定义即可得到结论;该题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.。
九年级下册数学投影与视图单元重点练习试卷附答案学生版
九年级下册数学投影与视图单元重点练习试卷附答案一、单选题(共31题;共62分)1.如图是一个正方体,则它的表面展开图可以是()A. B. C. D.2.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅3.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A. B. C. D.4.一个正方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利5.如图的几何体由五个相同的小正方体搭成,它的主视图是()A. B. C. D.6.一个几何体的三视图如图所示,则该几何体的形状可能是()A. B. C. D.7.小强制作了一个正方体模型的展开图,如图所示,把“读书使人进步”六个字分别粘贴在六个面上,那么在正方体模型中与“书”相对的面上的字是()A.使B.人C.进D.步8.一个几何体的展开图如图所示,这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱9.下列几何体中,主视图和左视图都为矩形的是()A. B. C. D.10.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A. B. C. D.11.一个几何体的侧面展开图如图所示,则该几何体的底面是()A. B. C. D.12.如图,已知圆柱的底面直径BC= ,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为()A. B. C. D.13.一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A. B. C. D.14.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A. B. C. D.15.如图所示的工件,其俯视图是()A. B. C. D.16.如图所示几何体的俯视图是()A. B. C. D.17.如图,该几何体主视图是()A. B. C. D.18.如图是一个正方体的表面展开图,则原正方体中与“美”字所在面相对的面上标的字是()A.丽B.张C.家D.界19.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利20.下列哪个图形是正方体的展开图()A. B. C. D.21.如图是一个正方体,则它的表面展开图可以是()A. B. C. D.22.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个23.如图的几何体由六个相同的小正方体搭成,它的主视图是()A. B. C. D.24.如图所示的几何体的俯视图为()A. B. C. D.25.如图所示的工件是由两个长方体构成的组合体,则它的主视图是()A. B. C. D.26.下列图形是四棱柱的侧面展开图的是()A. B. C. D.27.将正方体展开后,不能得到的展开图是().A. B. C. D.28.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦29.小李同学的座右铭是“态度决定一切“,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“切”相对的字是()A.态B.度C.决D.定30.如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是()A. B. C. D.31.下列图形中,是棱锥展开图的是()A. B. C. D.二、填空题(共2题;共4分)32.如图所示的四幅平面图中,是三棱柱的表面展开图的有________.(只填序号)33.如图是某些几何体的表面展开图,则这些几何体分别是图1:________,图2:________,图3:________.三、综合题(共1题;共10分)34.如图为一个几何体的三视图.(1)写出这个几何体的名称;(2)若俯视图中等边三角形的边长为4cm,主视图中大长方形的周长为28cm,求这个几何体的侧面积.答案解析部分一、单选题1.【答案】B【解析】【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.【分析】本题主要考查的是几何体的展开图,明确含有田字形和凹字形的图形不能折成正方体是解题的关键.根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.2.【答案】A【解析】【解答】解:易知“建”与“力”相对,“魅”与“大”相对,则“创”与“庆”相对.故答案为:A.【分析】此题考查正方体的展开图;除了可能通过想象将展开图拼成原来的立体图形;也可通过:相对的面只隔着一个小方形,如“建”与“力”只隔着一个小正方形“魅”,则建”与“力”相对.3.【答案】B【解析】【解答】解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形不交于一个顶点, 与正方体三个剪去三角形交于一个顶点不符.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.4.【答案】C【解析】【解答】解:以“考”为底面,将其他依次折叠,可以得到利对中,你对顺,考对祝,故选C.【分析】可先选一个面为底面,折叠后即可得到.5.【答案】A【解析】【解答】解:从正面看到的图形是故选A.【分析】主视图是从主视方向看到的图形,也可以说是从正面看到的图形.6.【答案】D【解析】【解答】由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.7.【答案】D【解析】【解答】结合展开图可知,与“书”相对的面上的字是“步”.故答案为:D.【分析】运用展开图找对面的基本法则“隔行隔列法”.8.【答案】C【解析】【解答】解:圆锥的侧面展开图是扇形,底面是圆,故选:C.【分析】根据圆锥的展开图,可得答案.9.【答案】B【解析】【解答】解:A、主视图和左视图都为圆,所以A选项错误;B、主视图和左视图都为矩形的,所以B选项正确;C、主视图和左视图都为等腰三角形,所以C选项错误;D、主视图为矩形,左视图为圆,所以D选项错误.故选B.【分析】分别写出各几何体的主视图和左视图,然后进行判断.10.【答案】B【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.11.【答案】B【解析】【解答】解:根据展开图推出几何体是四棱柱,底面是四边形。
九年级数学下册第四单元《投影与视图》测试(答案解析)
一、选择题1.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥2.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.3.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.4.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个5.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.66.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.8.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.9.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.10.如图所示的几何体的左视图是()A.B.C.D.11.如图所示几何体的左视图是()A.B.C.D.12.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.二、填空题13.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则点P到AB间的距离是________.14.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.15.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由________个小正方体搭成.16.如图是某几何体的三视图,则该几何体左视图的面积为_________.17.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=_____.18.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.19.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.20.一个几何体由若干大小相同的小正方体搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小正方体的个数.在不破坏原几何体的前提下,再添加一些小正方体,使其搭成一个大正方体,则至少还需要添加______个这样的小正方体.三、解答题21.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为________.(2)该几何体的主视图如图所示,请按照主视图的阴影方式在下面的方格纸中分别画出它的左视图和俯视图.22.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.23.如图是由10个同样大小的小正方体搭成的物体.(1)请画阴影分别表示从正面、上面观察得到的平面图形的示意图;(2)分别从正面、上面观察这个图形,得到的平面图形不变的情况下,你认为最多还可以添加个小正方体.从正面看从上面看24.用5个棱长为1的正方体,组成如图所示的几何体.(1)该几何体的体积是立方单位;(2)请在所给的方格纸中,用实线画出它的三个视图.25.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为4cm,从上面看三角形的边长都为3 cm,求这个几何体的侧面积.26.如图所示的几何体是由若干个相同的小正方体组成的.(1)填空:这个几何体由个小正方体组成;(2)画出它的三个视图.(作图必须用黑色水笔描黑)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.2.D解析:D【分析】根据主视图的概念即可求解.【详解】A.是左视图.故该选项错误;B.不是主视图.故该选项错误;C.是俯视图.故该选项错误;D.是主视图.故该选项正确.故选:D【点睛】此题主要考查组合体的三视图,正确理解每种视图的概念是解题的关键.3.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.5.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.6.D解析:D【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【详解】从正面看得到2列正方形的个数依次为2,1,故选D.【点睛】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.8.C解析:C【解析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.9.A解析:A【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.10.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.B解析:B根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题13.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).14.17【解析】【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最多的正方体的个数相加即可【详解】最多需要8+6+3=17个小正方体;故答案为:17【点睛】考查学生解析:17【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最多的正方体的个数,相加即可.【详解】最多需要8+6+3=17个小正方体;故答案为: 17.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.15.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少解析:4【解析】【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成,故答案为:4.【点睛】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,熟练掌握是关键.16.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:2【解析】【分析】由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为=,故答案为:2.【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.17.16【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】易得第一层有4个正方体第二层最多有3个正方体最少有2个正方体第三层最多有2个正方体最少有1个正方体M=4+3+2=9N=4+2+1=解析:16【分析】主视图、俯视图是分别从物体正面、上面看所得到的图形.【详解】易得第一层有4个正方体,第二层最多有3个正方体,最少有2个正方体,第三层最多有2个正方体,最少有1个正方体,M=4+3+2=9,N=4+2+1=7,所以M+N=9+7=16.故答案为:16.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.18.14【解析】试题解析:14【解析】试题根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.19.12【分析】在同一时刻物体的实际高度和影长成比例据此列方程即可解答【详解】解:由题意得∴16:12=旗杆的高度:9∴旗杆的高度为12m 故答案为:12解析:12【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:由题意得∴1.6:1.2=旗杆的高度:9.∴旗杆的高度为12m .故答案为:12.20.110【分析】根据题意可知最小的大正方体为边长是5个小正方体组成从而可求得大正方体总共需要多少小正方体进而得出需要添加多少小正方体【详解】∵立体图形中有一处是由5个小正方体组成∴最小的大正方体为边长 解析:110【分析】根据题意可知,最小的大正方体为边长是5个小正方体组成,从而可求得大正方体总共需要多少小正方体,进而得出需要添加多少小正方体.【详解】∵立体图形中,有一处是由5个小正方体组成∴最小的大正方体为边长是5个小正方体组成则大正方体需要小正方体的个数为:5×5×5=125个现有小正方体:1+2+3+4+5=15个∴还需要添加:125-15=110个故答案为:110.【点睛】本题考查空间想象能力,解题关键是得出大正方体的边长.三、解答题21.(1)226cm ;(2)见解析【分析】(1)直接利用几何体的表面积求法,分别求出各侧面即可;(2)利用从不同角度进而得出观察物体进而得出左视图和俯视图.【详解】(1)该几何体的表面积(含下底面)为:(623242)11S =⨯+⨯+⨯⨯⨯226cm =, 故答案为26 cm 2;(2)如图所示.左视图 俯视图【点睛】此题主要考查了几何体的表面积求法以及三视图画法,注意观察角度是解题的关键. 22.(1)证明见试题解析;(2)5;(3)5013. 【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x ,CD ,BD ,BO 用x 表示出来,所以可得BD 长.(3)同(2)原理,BD =B′D =x , AB′,B′O ,BO 用x 表示,利用等腰三角形求BD 长.试题(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x , ∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5. (3)∵点B 与点B′关于直线DO 对称,∴∠B =∠OB′D ,BO =B′O =45x ,BD =B′D =x , ∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB′D 是等腰三角形时,AB′=DB′,∵AB′+B′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =.②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4)④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)23.(1)见解析;(2)3【分析】(1)左视图有3列,每列小正方数形数目分别为3,1,2,俯视图有3列,每列小正方形数目分别为3,2,1.再根据小正方形的位置可画出图形;(2)根据两个平面图形不变的情况下,得出可以添加的小正方体个数.【详解】解:(1)如图,从上面看 从正面看(2)在上面两个平面图形不变的情况下,可以将多添加的小正方体放在最左侧的那一列上,最多还可以添加 3个小正方体.故答案为:3.【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.24.(1)5;(2)见解析.【分析】(1)根据几何体的形状得出立方体的体积即可;(2)主视图有3列,从左往右每一列小正方形的数量为1,1,2;左视图有2列,小正方形的个数为2,1;俯视图有3列,从左往右的个数为2,1,1.【详解】⨯⨯⨯=(立方单位);(1)几何体的体积:11155故答案为:5;(2)如图所示:【点睛】此题主要考查了画几何体的三视图,关键是掌握三视图所看位置.25.(1)三棱柱;(2)见解析;(3)36cm2.【分析】(1)根据三视图的特点,即可解决问题;(2)画出正三棱柱的侧面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可;【详解】解:(1)几何体的名称是三棱柱;(2)表面展开图为:(3)3×4×3=36cm2,∴这个几何体的侧面积为36 cm2【点睛】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图,属于中考常考题型.26.(1)7个,(2)图形见详解【分析】(1)前排有2个,后排有5个,据此解题,(2)主视图要将几何体从前往后压缩,使看到的面全部落在一个竖立的平面内;左视图要从正面的左面看,要正对着几何体,视线要与放置几何体的平面平行,并合理想象;俯视图要从正上方往下看,每一竖列的图形最顶的一个面,它们无高低之分使看到的面都落在同一个平面内.【详解】解:(1)前排有2个,后排有5个,∴这个几何体由7个小正方体组成,(2)如图【点睛】本题考查了图形的三视图,属于简单题,熟悉三视图的画法是解题关键.。
新人教版初中数学九年级数学下册第四单元《投影与视图》测试(答案解析)(1)
一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.33.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图所示几何体的主视图是()A.B.C.D.5.下列四个几何体中,主视图是三角形的是()A.B.C.D.6.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.7.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.8.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.10.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.11.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是()A.24 m B.25 m C.28 m D.30 m12.如图所示的立体图形的主视图是()A.B.C.D.二、填空题13.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.14.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.15.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要_____块正方体木块,至多需要_____块正方体木块.16.如图,一几何体的三视图如图:那么这个几何体是______.17.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多可以离开树干多少米才可以不被阳光晒到?____.18.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.19.用小立方块搭成的几何体从正面和上面看的视图如图,这个几何体中小立方块的个数最多有_________个.20.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,EF cm EG cm==,4512,18∠=︒,则AB的长为_____cm.EFG参考答案三、解答题21.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)22.如图,是由几个边长为1的小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请画出这个几何体的主视图和左视图,并求出这个几何体的表面积.23.树AB和木杆CD在同一时刻的投影如图所示,木杆CD高2m,影子DE长3m;若树的影子BE长7m,则树AB高多少m?24.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)直接写出a,b,c的值;(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;(3)当d=1,e=2,f=1时画出这个几何体的左视图.25.把边长为2厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.26.(1)如图是由10个同样大小棱长为1的小正方体搭成的几何体,请分别画出它的主视图、左视图和俯视图(2)这个组合几何体的表面积为个平方单位(包括底面积)(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最多要个小立方体.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.2.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.3.C解析:C【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.D解析:D【解析】主视图是正面看去所得图形.【详解】解:由图可知,该几何体的主视图为D选项所示图形,故选择D.【点睛】本题考查了立体图形三视图的概念.5.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.6.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.7.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.8.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.9.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.10.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.11.D解析:D【解析】由题意可得:EP ∥BD ,所以△AEP ∽△ADB ,所以AP EP AP PQ BQ BD=++,因为EP =1.5,BD =9,所以1.59220AP AP =+,解得:AP =5,因为AP=BQ ,PQ =20,所以AB=AP+BQ+PQ =5+5+20=30,故选D. 点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.12.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A . 点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.二、填空题13.2【分析】首先判定△ABE ∽△CDE 根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB ⊥EDCD ⊥ED ∴AB ∥DC ∴△ABE ∽△CDE ∴∵AB=15mCD=6mBD=6m ∴解得:EB解析:2【分析】首先判定△ABE ∽△CDE ,根据相似三角形的性质可得AB EB CD ED =,然后代入数值进行计算即可.【详解】解:∵AB ⊥ED ,CD ⊥ED ,∴AB ∥DC ,∴△ABE ∽△CDE , ∴AB EB CD ED= ∵AB=1.5m ,CD=6m ,BD=6m , ∴1.566EB EB =+ 解得:EB=2,故答案为2【点睛】 此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.14.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.15.616【解析】试题分析:由物体的主视图和左视图易得第一层最少有4块正方体最多有12块正方体;第二层最少有2块正方体最多有4块正方体故总共至少有6块正方体至多有16块正方体考点:几何体的三视图解析:6 16【解析】试题分析:由物体的主视图和左视图易得,第一层最少有4块正方体,最多有12块正方体;第二层最少有2块正方体,最多有4块正方体,故总共至少有6块正方体,至多有16块正方体.考点:几何体的三视图.16.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.17.8【分析】设小明这个时刻在水平地面上形成的影长为x 米利用同一时刻物体的高度与影长成正比得到=解得x =2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x 米根据题意得=解得x = 解析:8【分析】设小明这个时刻在水平地面上形成的影长为x 米,利用同一时刻物体的高度与影长成正比得到1.5x =107.5,解得x =2,然后计算两影长的差即可. 【详解】解:设小明这个时刻在水平地面上形成的影长为x 米, 根据题意得1.5x =107.5,解得x =2, 小明这个时刻在水平地面上形成的影长为2米,因为10﹣2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为:8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.18.3【分析】如图由题意证明AB =EBAB =BF 推出DB =AB ﹣17BN =AB ﹣15根据DN =28构建方程求解即可【详解】解:如图由题意可得:在Rt △CDE 中CD =DE =17m 在Rt △MNF 中MN =NF解析:3【分析】如图,由题意证明AB =EB ,AB =BF ,推出DB =AB ﹣1.7,BN =AB ﹣1.5,根据DN =2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt △CDE 中,CD =DE =1.7m ,在Rt △MNF 中,MN =NF =1.5m ,∵∠CDE =∠MNF =90°,∴∠E =∠F =45°,∵AB ⊥EF ,∴AB =EB =BF ,∴DB =AB ﹣1.7,BN =AB ﹣1.5,∵DN =2.8m ,∴2AB ﹣1.7﹣1.5=2.8,∴AB =3(m ),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.19.10【分析】根据俯视图和主视图确定每一层正方体可能有的个数最后求和即可【详解】解:从俯视图可以看出下面的一层有6个由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个另一个上放1或2 解析:10.【分析】根据俯视图和主视图,确定每一层正方体可能有的个数,最后求和即可.【详解】解:从俯视图可以看出,下面的一层有6个,由主视图可以知道在中间一列的一个正方体上面可以放2个或在一个上放2个,另一个上放1或2个.所以小立方块的个数可以是628+=个,6219++=个,62210++=个.所以最多的有10个.故答案为10.【点睛】本题主要考查了通过三视图确定立方体的数量,正确理解俯视图和主视图以及较好的空间想象能力是解答本题的关键.20.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62【分析】作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题21.(1)主,俯;(2)207.36cm 2【分析】(1)根据三视图的定义解答即可;(2)所求组合几何体的表面积=长方体的表面积+圆柱的侧面积,据此代入数据计算即可.【详解】解:(1)如图所示:;故答案为:主,俯;(2)组合几何体的表面积=2×(8×5+8×2+5×2)+4×π×6=2×66+24×3.14=207.36(cm 2).【点睛】本题考查了几何体的三视图和几何体表面积的计算,正确理解题意、熟练掌握基本知识是关键.22.见解析,44【分析】根据主视图、左视图、俯视图的画法画出相应的图形即可;表面积为三种视图的面积和的2倍.【详解】解:这个几何体的主视图和左视图如图所示,表面积为:(8+8+6)×2=44.【点睛】本题主要考查简单几何体的三视图的画法,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形,解决本题的关键是要熟练掌握三视图的画法.23.树AB高14 3m【分析】根据树和标杆平行列出比例式代入相关数据即可求解.【详解】解:∵AB与CD平行,∴AB:BE=CD:DE,∴AB:7=2:3,解得AB=14 3故树AB高143m.【点睛】考核知识点:平行投影.理解平行投影性质是关键.24.(1)a=3,b=1,c=1;(2)最少9个,最多11个;(3)见解析.【分析】(1)由主视图可得,俯视图中最右边一个正方形处有3个小立方体,中间一列两个正方形处各有1个小立方体;(2)依据d,e,f处,有一处为2个小立方体,其余两处各有1个小立方体,则该几何体最少有9个小立方体搭成;d,e,f处,各有2个小立方体,则该几何体最多有11个小立方体搭成;(3)依据d=1,e=2,f=1,以及a=3,b=1,c=1,即可得到几何体的左视图.【详解】解:(1)由主视图可得,俯视图中最右边一正方形处有3个小立方体,中间一列两个正方形处各有1个小立方体,∴a=3,b=1,c=1;(2)若d,e,f处,有一处为2个小立方体,其余两处各有1个小立方体,则该几何体最少有9个小立方体搭成;若d,e,f处,各有2个小立方体,则该几何体最多有11个小立方体搭成;(3)当d=1,e=2,f=1时,几何体的左视图为:【点睛】此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.25.(1)见解析;(2)104平方厘米;(3)2【分析】(1)直接利用三视图的画法进而得出答案;(2)利用几何体的形状进而得出其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.【详解】解:(1)如图所示:(2)几何体表面积:2×2×5+2×2×4+2×2×5+2×2×12=104(平方厘米);(3)如图,可以在A和B的位置上各加一个小正方体,这个几何体的左视图和俯视图不变.所以最多可以再添加2个小正方体.故答案为:2.【点睛】此题主要考查了画三视图以及几何体的表面积,正确得出三视图是解题关键.26.(1)主视图、左视图和俯视图如图所示,见解析;(2)这个组合几何体的表面积为38平方单位;(3)这样的几何体最多要14个.【分析】(1)根据主视图、左视图、俯视图的定义画出图形即可;(2)根据几何体的露在外面的面个数以及底面,即可得到表面积;(3)根据保持这个几何体的左视图和俯视图不变,几何体的第二排的高度都是2,第三排的高度都是3个,可得这样的几何体最多要:3+3+3+2+2+1=14个小立方体.【详解】解:(1)主视图、左视图和俯视图如图所示:(2)这个组合几何体的表面积为:6×2×3+2=38(平方单位)故答案为:38.(3)这样的几何体最多要3+3+3+2+2+1=14个小立方体.【点睛】此题主要考查了作图——三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.。
(易错题)初中数学九年级数学下册第四单元《投影与视图》检测(有答案解析)
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥3.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个4.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米5.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.6.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm27.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.8.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.9.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是410.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.12.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是()A.24 m B.25 m C.28 m D.30 m二、填空题13.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为_____.14.小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是_____m.15.一个用小立方块搭成的几何体的主视图和左视图都是图15,这个小几何体中小立方块最少有________块.16.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.17.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.18.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状图如图所示,则所需的小正方体的个数最多是______个.19.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.20.如图,将19个棱长为a的正方体按如图摆放,则这个几何体的表面积是_____.三、解答题21.由几个相同的边长为1的小立方块搭成的几何体如图所示,排放在桌面上.(1)请在下面方格纸中分别画出这个几何体从三个不同的方向(上面、正面和左面)看到的视图;(2)根据三个视图,请你求出这个几何体的表面积(不包括底面积).22.在桌面上,有若干个完全相同的小正方体堆成的一个几何体,如图所示.(1)请依次画出从正面、左面、上面看这个几何体得到的形状图;(2)如果保持从上面和正面观察到的形状图不变,那么最多可以添加______个小正方体.23.如图,路灯(P点)距地面9米,身高1.5米的小云从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?24.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.25.根据要求完成下列题目(1)图中有______块小正方体;(2)请在下面方格纸中分别画出它的主视图、左视图和俯视图;(3)用小正方体搭一几何体,使得它的俯视图和主视图与你在上图方格中所画的图一致,a b的值为___________.若这样的几何体最少要个a小正方体,最多要b个小正方体,则26.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加块小正方体.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.3.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正方体的三种视图都是正方形,所以三视图全等;球的三种视图都是圆,所以球的三视图也全等.其他那几个几何体的三视图都不全等.故选:B.【点睛】此题考查了简单几何体的三视图,解题关键在于要熟练掌握,解答此题的关键是分别判断出每个几何体的三视图.4.A解析:A【解析】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质.【分析】延长AC交BF延长线于E点,则∠CFE=30°.作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°=23,在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4.∴BD=BF+EF+ED=12+23.∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt△ABD中,AB=BD=.故选A.5.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B .【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.6.B解析:B【解析】【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD , ∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.7.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.8.A解析:A【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.9.A解析:A【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A.主视图的面积为4,此选项正确;B.左视图的面积为3,此选项错误;C.俯视图的面积为4,此选项错误;D.由以上选项知此选项错误;故选A.【点睛】本题主要考查三视图的画法,关键在于正面方向.10.A解析:A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.11.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.D解析:D【解析】由题意可得:EP ∥BD ,所以△AEP ∽△ADB ,所以AP EP AP PQ BQ BD=++,因为EP =1.5,BD =9,所以1.59220AP AP =+,解得:AP =5,因为AP=BQ ,PQ =20,所以AB=AP+BQ+PQ =5+5+20=30,故选D. 点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.二、填空题13.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm 底面三角解析:2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【详解】解:该几何体是一个三棱柱,底面等边三角形边长为2cm cm ,三棱柱的高为3cm ,∴其左视图为长方形,长为3cm,∴面积为:cm 2),故答案为:2.【点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.14.14【分析】设水塔的高为xm根据同一时刻平行投影中物体与影长成正比得到x:42=17:51然后利用比例性质求x即可【详解】设水塔的高为xm根据题意得x:42=17:51解得x=14即水塔的高为14m解析:14.【分析】设水塔的高为xm,根据同一时刻,平行投影中物体与影长成正比得到x:42=1.7:5.1,然后利用比例性质求x即可.【详解】设水塔的高为xm,根据题意得x:42=1.7:5.1,解得x=14,即水塔的高为14m.故答案为14.【点睛】本题考查了平行投影的知识,解题的关键是熟练的掌握投影的性质与运用.15.3【解析】试题解析:3【解析】试题易得此组合几何体只有一层,有3行,3列,当3行上的小立方块在不同的3列时可得这样的视图,故这个小几何体中小立方块最少有3块.16.bdca【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca考点:简单几解析:bdca.【解析】试题分析:根据观察的角度不同,得到的视图不同,可得答案.①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子…看到的由少到多,最后全看到,得b,d,c,a.考点:简单几何体的三视图.17.12【分析】在同一时刻物体的实际高度和影长成比例据此列方程即可解答【详解】解:由题意得∴16:12=旗杆的高度:9∴旗杆的高度为12m故答案为:12解析:12【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:由题意得∴1.6:1.2=旗杆的高度:9.∴旗杆的高度为12m .故答案为:12.18.7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案【详解】由题意得:这个几何体是由2行2列组成所需的小正方体的个数最多的搭配是其中数字表示所在行列的小正方体的个数则故答案为:7【点睛】本题 解析:7【分析】根据主视图和左视图得出这个几何体的组成即可得出答案.【详解】由题意得:这个几何体是由2行2列组成,所需的小正方体的个数最多的搭配是3121,其中,数字表示所在行列的小正方体的个数,则31217+++=,故答案为:7.【点睛】本题考查了三视图中的主视图和左视图,掌握理解三视图的相关概念是解题关键. 19.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则解析:18+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12,在t ABD R △中,∴11=BC AD=222ABC S ⨯⨯⨯△ ∴三棱柱的表面积为2332⨯⨯+.故答案为:183【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.20.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088解析:54a2【分析】求这个几何体的表面积,就要数出这个几何体中小正方体漏在外面的面的个数,从前、后、左、右、上、下方向上来数,然后用一个面的面积乘面的个数即可.【详解】解:从前、后、左、右、上、下方向看到的面数分别为:10,10,8,8,9,9所以表面积为(10+10+8+8+9+9 )a2=54a2,故答案为:54a2.【点睛】本题主要考查组合体的表面积,分析图形,掌握表面积的计算公式是解题的关键.三、解答题21.(1)见解析;(2)18【分析】(1)由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,1,1,从左面看有2列,每列小正方形数目分别为2,1,从上面看有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.(2)将正面看的图形、左面看的图形的面积相加乘以2再加上从上面看的图形面积即可得.【详解】(1)如图所示:(2)从正面看,有4个面,从后面看有4个面,从上面看,有4个面,从左面看,有3个面,从右面看,有3个面,∵不包括底面积+⨯+=.∴这个几何体的表面积为:(43)2418【点睛】此题考查了从不同方向看几何体及几何体的表面积的计算,考察空间想象能力,在计算表面积时要与从三个方向看所得图形联系起来.22.(1)见解析;(2)3【分析】(1)由题意可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)保持俯视图和主视图不变,最多可往第一列前面的几何体上放2个小正方体,中间的几何体上放1个小正方体.【详解】解:(1)如图所示:(2)保持从上面和正面观察到的形状图不变,那么最多可以添加3个小立方块.故答案为:3.【点睛】本题考查了几何体的三视图,属于常考题型,熟练掌握三视图的定义和画法是解题关键.23.变短了2.8米.【解析】试题分析:试题根据AC∥BD∥OP,得出△MAC∽△MOP,△NBD∽△NOP,再利用相似三角形的性质进行求解,即可得出答案.试题如图:∵∠MAC=∠MOP=90°,∠AMC=∠OMP ,∴△MAC ∽△MOP , ∴=MA AC MO OP , 即 1.5=209MA MA , 解得,MA=4米;同理,由△NBD ∽△NOP ,可求得NB=1.2米,则马晓明的身影变短了4−1.2=2.8米.∴变短了,短了2.8米.24.见解析【分析】根据几何体的三视图的性质作图即可.【详解】如图所示,即为所求.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.25.(1) 10; (2) 主视图、左视图和俯视图见解析; (3) 22.【分析】(1)有规律的根据组合几何体的层数来数即可;(2) 根据主视图、左视图、俯视图的定义画出图形即可(3)根据保持这个几何体的主视图和俯视图不变,利用俯视图计算搭这一几何体最少要个a小正方体,最多要b个小正方体,即可算出a+b的值.【详解】解:(1)这个组合几何体小正方体个数为:6+3+1=10(个)故答案为:10.(2) 主视图、左视图和俯视图如图所示:(3)这样的几何体最少如图:∴a=3+1+2+1+1+1=9(个)这样的几何体最多需要如图:∴b=3+1+2+3+1+3=13(个)∴a+b=9+13=22故答案为22.【点睛】本题主要考查了作图的三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.26.(1)如图所示. 见解析;(2)5.【分析】(1)由已知条件可知,主视图有4列,每列小正方体数目分别为1,2,3,1左视图有2列,每列小正方形数目分别为3,1;俯视图有4列,每列小正方数形数目分别为2,1,1,1据此可画出图形.(2)根据三视图投影间的关系确定即可.【详解】(1)如图所示.(2)可在最底层第一列第一行加2个,第二列第一行加1个,第四列第一行加2个,共5个.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.解决本题的关键是熟练掌握三视图的投影规律.。
九年级数学下册第四单元《投影与视图》测试卷(含答案解析)
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图,在平整的地面上,有若干个完全相同的边长为 2cm 的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是( )A.30cm2B.32cm2C.120cm2D.128cm23.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时6.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.7.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个8.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A.B.C.D.9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个11.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.12.如图是由一些完全相同的小立方块搭成的几何体的三种视图.搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个二、填空题13.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.14.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.15.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高______米.(结果精确到1米.3≈1.732,2≈1.414)16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.18.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=_____.19.如图为一个长方体,则该几何体主视图的面积为______cm2.20.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆___g.三、解答题21.(1)如右图,已知A、B、C是由边长为1的小正方形组成网格纸上的三个格点,根据要求在网格中画图.①画线段BC;②过点A画BC的平行线AD;③在②的条件下,过点C画直线AD的垂线,垂足为点E.(2)下图是由10个相同的小立方块搭成的几何体,请在下面方格纸中画出它的主视图.22.如图所示为一个上、下底密封纸盒的三视图,请描述图中所表示的几何体.并根据图中数据,计算这个密封纸盒的表面积.23.如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.24.如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.26.如图是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)在小亮由B 沿OB 所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB 处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B .【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.D解析:D【分析】根据露出的小正方体的面数,可得几何体的表面积.【详解】解:露出表面的面一共有32个,则这个几何体喷漆的面积为32×4=128cm 2, 故答案为:D .【点睛】本题考查了几何体的表面积,关键是观察出小正方体露出表面的面的个数.3.B解析:B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.4.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.6.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.7.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.8.D解析:D【解析】分析:根据从正面看得到的图形是主视图,可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.10.B解析:B【解析】试题根据俯视图而得出,第一行第一列有2个正方形,第二列有1个正方体,第二行第二列有1个正方体,共需正方体2+1+1=4.故选B.11.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.12.D解析:D【解析】【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【详解】综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点睛】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.二、填空题13.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x 时碟子的高度为2+15(x ﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x 时,碟子的高度为2+1.5(x ﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm ).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.14.36cm2【分析】从上面看到6个正方形从正面和右面可看到6个正方形从两个侧后面可看到6个正方形从底面可到到6个正方形面积相加即为所求【详解】从上面看到的面积为6从正面和右面看到的面积为从两个侧后面看 解析:36cm 2【分析】从上面看到6个正方形,从正面和右面可看到62⨯个正方形,从两个侧后面可看到62⨯个正方形,从底面可到到6个正方形,面积相加即为所求.【详解】从上面看到的面积为62116cm ⨯⨯=,从正面和右面看到的面积为2621112cm ⨯⨯⨯=,从两个侧后面看到的面积为2621112cm ⨯⨯⨯=,从底面看到的面积为62116cm ⨯⨯=, 那么这个几何体的表面积为6+12+12+6=362cm .【点睛】本题考查了几何体的表面积,解决问题的关键是分别从各个视角求出面积,然后相加即可. 15.24【解析】【分析】过点C 作CE ⊥BD 与点E 可得四边形CABE 是矩形知CE=AB=40AC=BE=1在Rt △CDE 中DE=tan30°•CE 求出DE 的长由DB=DE+EB 可得答案【详解】如图过点C 作解析:24【解析】【分析】过点C 作CE ⊥BD 与点E ,可得四边形CABE 是矩形,知CE =AB =40,AC =BE =1.在Rt △CDE 中DE =tan30°•CE 求出DE 的长,由DB =DE +EB 可得答案.【详解】如图,过点C 作CE ⊥BD 与点E .在Rt△CDE中,∠DCE=30°,CE=AB=40,则DE=tan30°•CE33=⨯40≈23,而EB=AC=1,∴BD=DE+EB=23+1=24(米).【点睛】本题考查了解直角三角形的应用.注意能根据题意构造直角三角形,并能借助于解直角三角形的知识求解是解答此题的关键.16.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.10【解析】试题解析:10【解析】试题如图所示,作DH⊥AB与H,则DH=BC=8 m,CD=BH=2 m,根据题意得∠ADH = 45°,所以△ADH为等腰直角三角形,所以AH=DH=8 m,所以AB=AH+BH=8+2=10 m.所以本题的正确答案应为10米.18.12【分析】结合主视图和俯视图分别求出ab的值随之即可解答【详解】解:结合主视图和俯视图可知左边后排最多有3个左边前排最多有3个右边只有一层且只有1个所以图中的小正方体最多7块结合主视图和俯视图可知解析:12结合主视图和俯视图分别求出a,b的值,随之即可解答.【详解】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,所以a+b=12.【点睛】本题考查组合体的三视图,熟悉掌握根据图像获取信息是解题关键.19.20【分析】根据从正面看所得到的图形即可得出这个几何体的主视图的面积【详解】解:该几何体的主视图是一个长为5宽为4的矩形所以该几何体主视图的面积为20cm2故答案为:20【点睛】本题考查了三视图的知解析:20【分析】根据从正面看所得到的图形,即可得出这个几何体的主视图的面积.【详解】解:该几何体的主视图是一个长为5,宽为4的矩形,所以该几何体主视图的面积为20cm2.故答案为:20.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.20.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表解析:66【分析】分别求出各层的总面积,进而可得答案【详解】最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,∴露出的表面总面积为5+11+17=33,∴33×2=66(g).答:共需用漆66g.故答案为:66此题考查的知识点是几何体的表面积,关键是明确各个面上喷漆的小正方体的面的总个数.三、解答题21.(1)①见解析;②见解析;③见解析;(2)见解析【分析】(1)①根据线段的定义画图即可;②根据网格特点和平行线的定义画图即可;③根据网格特点和垂线的定义画图即可;(2)主视图有3列,左侧一列有3层,中间一列有2层,右侧一列有1层;【详解】(1)①如图所示;②如图所示;③如图所示;(2)如图所示,【点睛】本题考查了线段、平行线、垂线的画法,以及三视图的画法,熟练掌握三视图的画法是解答本题的关键.22.32【分析】根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解:根据该几何体的三视图知道其是一个六棱柱,设正六边形的中心为O ,连接OA 、OB ,作OD ⊥AB 于D ,由图可知其高为12cm ,底面半径为5cm ,∴侧面积为6×5×12=360cm 2,∵∠AOB=360°÷6=60°,∴△AOB 是等边三角形,∴AB=5cm ,OD=sin60°×OA=53cm , ∴密封纸盒2个底面的面积为:153********⨯⨯⨯⨯= cm 2, ∴其全面积为:(753+360)cm 2.【点睛】 本题考查了由三视图判断几何体,等边三角形的判定与性质,正六边形的性质,以及解直角三角形的知识,解题的关键是正确的判定几何体.23.(1)见解析;(2)10m【分析】(1)根据平行投影作图即可;(2)根据同一时刻,不同物体的物高和影长成比例计算即可;【详解】(1)如图所示:EF 即为所求;(2)∵AB =5m ,某一时刻AB 在阳光下的投影BC =3m ,EF =6m ,∴AB BC =DE EF ,则53=6DE , 解得:DE =10,答:DE的长为10m.【点睛】本题主要考查了平行投影,相似三角形的性质,准确分析计算是解题的关键.24.见解析【分析】根据主视图,左视图的定义画出图形即可.【详解】如图,主视图,左视图如图所示.【点睛】本题考查三视图,解题的关键是理解三视图的定义.25.(1)见解析;(2)24;(3)1,4,1;1,1,4;4,1,1,见解析【分析】(1)从正面看到的图形是两列,第一列有两个正方形,第二列有三个正方形;从左面看有两列,第一列有三个正方形,第二列有一个正方形.(2)根据三视图可以求出表面积,(3)要使表面积最大,则需满足两正方体重合的最少,将其中的两个位置各放1个,其余都放在剩下的位置上即可.【详解】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:【点睛】考查简单几何体的三视图,从三个方向看物体的形状实际就是从三个方向的正投影所得到的图形.26.(1)逐渐变短;(2)详见解析;(3)167【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度的变化情况为变短(2)连接PA 并延长交直线BO 于点E,则线段BE 即为小亮站在AB 处的影子 (3)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可【详解】(1)因为光是沿直线传播的,所以当小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE 即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米,∴ 1.6 1.6, 4.2 1.6AB BE OP OE x ==+即 ∴x=5.8米当OD=6米时,设小亮的影长是y 米,∴DF CD DF OD OP =+ ∴1.66 5.8y y =+ y=167(米) 即小亮的影长是167米。
新人教版初中数学九年级数学下册第四单元《投影与视图》测试卷(答案解析)(4)
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图所示,该几何体的主视图为()A.B.C.D.3.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.54.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.5.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A.B.C.D.6.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)7.如图所示的几何体,它的左视图是()A.B.C.D.8.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时9.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.10.如图所示的几何体的左视图是()A.B.C.D.11.如图所示几何体的左视图是()A.B.C.D.12.路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A .6.75米B .7.75米C .8.25米D .10.75米二、填空题13.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.14.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)15.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.16.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x +y =________.17.如图,一根直立于水平地面的木杆AB 在灯光下形成影子AC (AC >AB ),当木杆绕点A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE =5m ,在旋转过程中,影长的最大值为5m ,最小值3m ,且影长最大时,木杆与光线垂直,则路灯EF 的高度为_____ m.18.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.19.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.20.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,45EF cm EG cm12,18∠=︒,则AB的长为_____cm.EFG参考答案三、解答题21.如图,AB是某公园的一个圆形桌面的主视图,MN是该桌面在一路灯下的影子,CD是一个圆形凳面的主视图.(桌面、凳面均与地面平行)(1)请标出路灯O的位置,并画出CD在该路灯下的影子PQ;(保留画图痕迹,光线用虚线表示)(2)若桌面直径和桌面与地面的距离均为1.2m ,并测得影子2MN m =,求路灯O 与地面的距离.22.在下面44⨯的网格中,请分别画出如图所示的几何体从三个方向看到的平面图形.23.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB .24.用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)直接写出a ,b ,c 的值;(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;(3)当d =1,e =2,f =1时画出这个几何体的左视图.25.画出下图几何体的三视图26.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接(2)已知小正方体的边长为a,求这个几何体(*)的体积和表面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.B解析:B【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.3.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.4.C解析:C【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.6.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.7.D解析:D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.8.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.9.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.10.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B .【点睛】 本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.B解析:B【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B .【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.12.C解析:C【解析】【分析】延长AG 交DE 于N ,则四边形GNEF 为平行四边形,所以NE=GF=2,BN=11米,然后根据实际高度和影长成正比例列式求解即可.【详解】如图,延长AG 交BE 于N 点,则四边形GNEF 是平行四边形,故NE=GF=2,BN=5+4+4-2=11米, ∴AB DF BE DE =, ∴3114AB =, ∴AB=8.25米.故选C.【点睛】此题考查的平行投影及平行四边形的判定与性质,是较简单题目.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.二、填空题13.8【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】由俯视图可知:底层最少有5个小立方体由主视图可知:第二层最少有2个小立方体第三层最少有1个小正方体∴搭成这个几何体的小正方体的个数最少解析:8【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.15.左视图【分析】根据立体图形作出三视图求出面积即可【详解】解:如图该几何体正视图是由5个小正方形组成左视图是由3个小正方形组成俯视图是由5个小正方形组成故三种视图面积最小的是左视图故答案为左视图【点睛解析:左视图【分析】根据立体图形作出三视图,求出面积即可.【详解】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为左视图【点睛】本题考查了图形的三视图,属于简单题,画出三视图是解题关键.16.-4【解析】【分析】根据正方体相对面上的两个数互为相反数可得xy的值继而可得x+y的值【详解】由题意得x与1相对y与3相对则可得x=-1y=-3∴x+y=-4故答案为:-4【点睛】本题考查了正方体的解析:-4【解析】【分析】根据正方体相对面上的两个数互为相反数,可得x、y的值,继而可得x+y的值.【详解】由题意得,x与1相对,y与3相对,则可得x=-1,y=-3,∴x+y=-4.故答案为:-4.【点睛】本题考查了正方体的展开,注意正方体的空间图形,从相对面入手,分析及解答问题.17.75【解析】试题解析:7.5【解析】试题当旋转到达地面时,为最短影长,等于AB,∵最小值3m ,∴AB =3m ,∵影长最大时,木杆与光线垂直,即AC =5m ,∴BC =4,又可得△CAB ∽△CFE , ∴BC AB EC EF=, ∵AE =5m , ∴4310EF=, 解得:EF =7.5m .故答案为7.5.点睛:相似三角形的性质:相似三角形的对应边成比例.18.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.19.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n 的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯 解析:18【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有2327++=个,第二层最多有2327++=个,第三层最多有2024++=个则n 的最大值是77418++=故答案为:18.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.20.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题21.(1)见解析;(2)路灯O 与地面的距离为3m【分析】(1)延长MA 、NB ,它们的交点即为路灯O 的位置,然后再连结OC 、OD ,并延长交地面与P 、Q 点,则PQ 为CD 的影子;(2)作OF ⊥MN 交AB 于E ,如图,AB =1.2m ,EF =1.2m ,MN =2m ,证明△OAB ∽△OMN ,利用相似比计算出OF 即可得到路灯O 与地面的距离.【详解】解:(1)如图,路灯O 和线段PQ 即为所画.(2)如图,过点O 作OF MN ⊥,交AB 于点E ,∵//AB MN ,∴OF AB ⊥,OAB OMN ∠=∠,OBA ONM ∠=∠.∴OAB ∽OMN , ∴AB OE MN OF=. ∵ 1.2AB =, 1.2EF =,2MN =,∴1.2 1.22OF OF-=, ∴3OF =. 答:路灯O 与地面的距离为3m .【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了相似三角形的判定与性质.22.详见解析【分析】根据几何体三视图的画图要求画图即可.【详解】如图所示:【点睛】此题考查几何体的三视图,此类题要求学生有一定的空间想象能力.23.3.45米【分析】 根据平行投影性质可得:1.50.92MN =;1.52 4.6AB =. 【详解】 解:延长DH 交BC 于点M ,延长AD 交BC 于N .可求 3.4BM =,0.9DM =.由1.50.92MN=,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【点睛】 考核知识点:平行投影.弄清平行投影的特点是关键.24.(1)a =3,b =1,c =1;(2)最少9个,最多11个; (3)见解析.【分析】(1)由主视图可得,俯视图中最右边一个正方形处有3个小立方体,中间一列两个正方形处各有1个小立方体;(2)依据d ,e ,f 处,有一处为2个小立方体,其余两处各有1个小立方体,则该几何体最少有9个小立方体搭成;d ,e ,f 处,各有2个小立方体,则该几何体最多有11个小立方体搭成;(3)依据d =1,e =2,f =1,以及a =3,b =1,c =1,即可得到几何体的左视图.【详解】解:(1)由主视图可得,俯视图中最右边一正方形处有3个小立方体,中间一列两个正方形处各有1个小立方体,∴a =3,b =1,c =1;(2)若d ,e ,f 处,有一处为2个小立方体,其余两处各有1个小立方体,则该几何体最少有9个小立方体搭成;若d ,e ,f 处,各有2个小立方体,则该几何体最多有11个小立方体搭成;(3)当d =1,e =2,f =1时,几何体的左视图为:【点睛】此题主要考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形;俯视图决定底层立方块的个数,易错点是由主视图得到其余层数里最少的立方块个数和最多的立方块个数.25.见解析【分析】观察图形可知,从正面看到的图形是3列,从左往右正方形个数依次是1,3,2;从左面看到的图形是2列,从左往右正方形个数依次是3,1;从上面看到的图形是3列,从左往右正方形个数依次是1,2,1;据此即可画图.【详解】如图所示:【点睛】此题考查几何体的三视图画法.解题关键在于掌握作图法则.26.(1)详见解析;(2)体积是:34a ,表面积是:218a .【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:344a a a a ⨯⨯⨯=,表面积是:21818a a a ⨯⨯=.【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.。
人教版初中数学九年级数学下册第四单元《投影与视图》测试(含答案解析)(2)
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.123.下面几何体的左视图是( )A.B.C.D.4.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.5.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.36.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A.3个B.4个C.5个D.6个7.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.8.如图所示的几何体,它的左视图是()A.B.C.D.9.如图,水杯的俯视图是()A.B.C.D.10.如图,路灯距地面8m,身高1.6m的小明从点A处沿AO所在的直线行走14m 到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 11.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.12.如图,丁轩同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行20 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部,已知丁轩同学的身高是1.5 m,两个路灯的高度都是9 m,则两路灯之间的距离是()A.24 m B.25 m C.28 m D.30 m二、填空题13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.15.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.16.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.17.如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于__.18.一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b=_____.19.如图,把14个棱长为1cm的正方体木块,在地面上堆成如图所示的立体图形,然后向露出的表面部分喷漆,若1cm2需用漆2g,那么共需用漆___g.20.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题21.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有 个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加 个小正方体.22.如图,AB 是某公园的一个圆形桌面的主视图,MN 是该桌面在一路灯下的影子,CD 是一个圆形凳面的主视图.(桌面、凳面均与地面平行)(1)请标出路灯O 的位置,并画出CD 在该路灯下的影子PQ ;(保留画图痕迹,光线用虚线表示)(2)若桌面直径和桌面与地面的距离均为1.2m ,并测得影子2MN m ,求路灯O 与地面的距离.23.从上面看由一些大小相同的小立方体组成的简单几何体,得到的图形如图所示,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从左面和正面看到的图形.24.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).25.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图①,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸图②中分别画出这个几何体的主视图和左视图.(2)根据三视图,这个组合几何体的表面积为多少个平方单位?(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,如图③,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大(包括底面积)仿照图①,将数字填写在图③的正方形中.26.画图,探究:(1)一个正方体组合图形的主视图、左视图(如图1)所示.①这个几何体可能是(图2)甲、乙中的;②这个几何体最多可由个小正方体构成,请在图3中画出符合最多情况的一个俯视图.(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.①画线段AB,射线AD;②找一点M,使M点即在射线AD上,又在直线BC上;③找一点N,使N到A、B、C、D四个点的距离和最短.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.3.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.4.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.5.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.6.B解析:B【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【详解】解:根据主视图和左视图可得:搭这样的几何体最少需要4个小正方体;故选:B.【点睛】此题考查三视图,解题关键在于掌握其定义.7.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.8.D解析:D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.9.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.10.C解析:C【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【详解】解:设小明在A处时影长为x,AO长为a,在B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MA OP MO ,BD BNOP ON,则1.68xx a,1.6148yy a∴x=14a,y=14a-3.5,∴x−y=3.5,故变短了3.5米.故选:C.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出相似三角形,再利用相似三角形的对应边成比例求解是解答此题的关键.11.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D .【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.12.D解析:D【解析】由题意可得:EP ∥BD ,所以△AEP ∽△ADB ,所以AP EP AP PQ BQ BD=++,因为EP =1.5,BD =9,所以1.59220AP AP =+,解得:AP =5,因为AP=BQ ,PQ =20,所以AB=AP+BQ+PQ =5+5+20=30,故选D. 点睛:本题主要考查相似三角形的对应边成比例在解决实际问题中的应用,应用相似三角形可以间接地计算一些不易直接测量的物体的高度和宽度,解题时关键是找出相似三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.二、填空题13.左视图【分析】根据立体图形作出三视图求出面积即可【详解】解:如图该几何体正视图是由5个小正方形组成左视图是由3个小正方形组成俯视图是由5个小正方形组成故三种视图面积最小的是左视图故答案为左视图【点睛 解析:左视图【分析】根据立体图形作出三视图,求出面积即可.【详解】解:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为左视图【点睛】本题考查了图形的三视图,属于简单题,画出三视图是解题关键.14.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的解析:2【解析】考点:由三视图判断几何体.分析:由主视图可得长方体的高和底面正方形的对角线长,利用勾股定理即可求得长方体的底面边长.解答:解:∵主视图的长为22,俯视图为正方形,∴长方体的底面边长为22÷2=2,∵主视图的高就是几何体的高,∴这个长方体的高和底面边长分别是3,2.点评:用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.15.(90)【详解】根据位似图形的定义连接A′AB′B并延长交于(90)所以位似中心的坐标为(90)故答案为:(90)解析:(9,0)【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).16.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA==,,DE AB220解得OA=16.故答案为16.17.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π解析:【解析】易得此几何体为圆柱,底面直径为1,高为2.圆柱侧面积=底面周长×高,代入相应数值求解即可.解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×1×2=2π.故答案为2π.18.12【分析】结合主视图和俯视图分别求出ab的值随之即可解答【详解】解:结合主视图和俯视图可知左边后排最多有3个左边前排最多有3个右边只有一层且只有1个所以图中的小正方体最多7块结合主视图和俯视图可知解析:12【分析】结合主视图和俯视图分别求出a,b的值,随之即可解答.【详解】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,所以a+b=12.【点睛】本题考查组合体的三视图,熟悉掌握根据图像获取信息是解题关键.19.66【分析】分别求出各层的总面积进而可得答案【详解】最上层侧面积为4上表面面积为1总面积为4+1=5中间一层侧面积为2×4=8上表面面积为4﹣1=3总面积为8+3=11最下层侧面积为3×4=12上表解析:66【分析】分别求出各层的总面积,进而可得答案【详解】最上层,侧面积为4,上表面面积为1,总面积为4+1=5,中间一层,侧面积为2×4=8,上表面面积为4﹣1=3,总面积为8+3=11,最下层,侧面积为3×4=12,上表面面积为9﹣4=5,总面积为12+5=17,∴露出的表面总面积为5+11+17=33,∴33×2=66(g).答:共需用漆66g.故答案为:66【点睛】此题考查的知识点是几何体的表面积,关键是明确各个面上喷漆的小正方体的面的总个数.20.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题21.(1)11;(2)见解析;(3)4【分析】(1)根据图形求解;(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(3)可在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,相加即可求解.【详解】解:(1)有图可得,图中共有11个小立方体故答案为:11(2)如图:(3)在第二层第二列第二行和第三行各加一个;第三层第二列第三行加一个,第三列第三行加1个,2+1+1=4(个).故最多可再添加4个小正方体.故答案为:4.【点睛】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.22.(1)见解析;(2)路灯O与地面的距离为3m【分析】(1)延长MA、NB,它们的交点即为路灯O的位置,然后再连结OC、OD,并延长交地面与P、Q点,则PQ为CD的影子;(2)作OF⊥MN交AB于E,如图,AB=1.2m,EF=1.2m,MN=2m,证明△OAB∽△OMN,利用相似比计算出OF即可得到路灯O与地面的距离.【详解】解:(1)如图,路灯O和线段PQ即为所画.(2)如图,过点O 作OF MN ⊥,交AB 于点E ,∵//AB MN ,∴OF AB ⊥,OAB OMN ∠=∠,OBA ONM ∠=∠.∴OAB ∽OMN , ∴AB OE MN OF =. ∵ 1.2AB =, 1.2EF =,2MN =,∴1.2 1.22OF OF-=, ∴3OF =. 答:路灯O 与地面的距离为3m .【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.也考查了相似三角形的判定与性质.23.见详解【分析】根据几何体的三视图的定义,即可得到几何体从左面和正面看到的图形.【详解】如图所示:主视图 左视图本题主要考查三视图的定义,掌握左视图和主视图的概念,是解题的关键.24.见解析【分析】认真观察实物,可得这个几何体的主视图和左视图都为长方形上面一个等腰三角形,俯视图为两个同心圆(中间有圆心).【详解】解:三视图如图所示:【点睛】本题考查简单组合体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.(1)见解析;(2)24;(3)1,4,1;1,1,4;4,1,1,见解析【分析】(1)从正面看到的图形是两列,第一列有两个正方形,第二列有三个正方形;从左面看有两列,第一列有三个正方形,第二列有一个正方形.(2)根据三视图可以求出表面积,(3)要使表面积最大,则需满足两正方体重合的最少,将其中的两个位置各放1个,其余都放在剩下的位置上即可.【详解】解:(1)这个几何体的主视图和左视图如图所示:(2)俯视图知:上面共有3个小正方形,下面共有3个小正方形;由左视图知:左面共有4个小正方形,右面共有4个正方形;由主视图知:前面共有5个小正方形,后面共有5个正方形,故可得表面积为:2×(3+4+5)=24;(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:考查简单几何体的三视图,从三个方向看物体的形状实际就是从三个方向的正投影所得到的图形.26.(1)①乙;②9;图见解析;(2)①见解析;② 见解析;③见解析;【分析】(1)①结合主视图和左视图对甲、乙逐一判断可得;②当第一层有6个,第二层有2个,第三层有1个时,小正方体个数最多;(2)根据要求用直尺画图即可.【详解】解:(1)①甲图的左视图不合题意,乙图符合题意;故答案为乙;②这个几何体最多可由9个小正方体构成,其俯视图如图所示:故答案为9;(2)①如图所示,线段AB,射线AD即为所求;②如图所示,点M即在射线AD上,又在直线BC上;③如图所示,点N到A、B、C、D四个点的距离和最短.【点睛】本题主要考查了三视图以及基本作图,由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.。
人教版初中数学九年级数学下册第四单元《投影与视图》测试(含答案解析)
一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.3.如图所示的几何体的俯视图是()A.B.C.D.4.如图,下面是由一些相同的小正方体构成的立体图形的三视图,这些相同的正方体的个数是()A.6 B.7 C.8 D.95.下列说法错误的是()A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长B.对角线互相垂直的四边形是菱形C.方程x2=x的根是x1=0,x2=1D.对角线相等的平行四边形是矩形6.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.7.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.8.如图所示是某几何体从三个方向看到的图形,则这个几何体是()A.三棱锥B.圆柱C.球D.圆锥9.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.10.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.11.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.12.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.二、填空题13.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.14.如图是由几个小立方块所搭成几何体的从上面、从正面看到的形状图.这样搭建的几何体最多需要__________个小立方块.15.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)16.一个用小立方块搭成的几何体的主视图和左视图都是图15,这个小几何体中小立方块最少有________块.17.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.18.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是_____.19.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.20.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.三、解答题21.晚上,小亮在广场乘凉,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯P 照射下的影子BC (请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m =,测得小亮影长2BC m =,小亮与灯杆的距离13BO m =,请求出灯杆的高PO .22.画出如图所示的几何体的主视图、左视图和俯视图.23.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.24.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体:(1)图中有_____个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图和左视图.25.如图1,是一个由正方体截成的几何体,请在图2的网格中依次画出这个几何体从正面、上面、和左面看到的几何体的平面图形.26.画图,探究:(1)一个正方体组合图形的主视图、左视图(如图1)所示.①这个几何体可能是(图2)甲、乙中的;②这个几何体最多可由个小正方体构成,请在图3中画出符合最多情况的一个俯视图.(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.①画线段AB,射线AD;②找一点M,使M点即在射线AD上,又在直线BC上;③找一点N,使N到A、B、C、D四个点的距离和最短.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.A解析:A【分析】根据几何体三视图的定义即可得.【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形,从上面看得到的平面图形是一个圆环,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.3.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.4.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【详解】由左视图知该立体图形有两层,由俯视图知,最底层有5个小正方体,结合三视图知,最上面一层有2个小正方体,故这些相同的小正方体共有7个,故选B.【点睛】本题主要考查由三视图判断几何体,利用三视图的定义得出几何体的形状是解题关键.5.B解析:B【分析】根据中心投影的性质、菱形的判定定理、矩形的判定定理及解一元二次方程的方法对各选项进行判断即可.【详解】A.高矮不同的两个人在同一盏路灯下同一时刻的影子有可能一样长,正确,不符合题意,B.对角线互相垂直且平分的四边形是菱形,故该选项错误,符合题意,C.方程x2=x的根是x1=0,x2=1,正确,不符合题意,D. 对角线相等的平行四边形是矩形,正确,不符合题意,故选B.【点睛】本题考查中心投影的性质、菱形和矩形的判定及解一元二次方程,熟练掌握相关性质及判定定理是解题关键.6.D解析:D【分析】根据主视图定义,得到从几何体正面看得到的平面图形即可.【详解】从正面看得到2列正方形的个数依次为2,1,故选D.【点睛】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.8.D解析:D【解析】试题∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选D.9.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.10.A解析:A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.11.D解析:D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.二、填空题13.8【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】由俯视图可知:底层最少有5个小立方体由主视图可知:第二层最少有2个小立方体第三层最少有1个小正方体∴搭成这个几何体的小正方体的个数最少解析:8【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.17【解析】【分析】易得这个几何体共有3层由俯视图可得第一层正方体的个数由主视图可得第二层和第三层最多的正方体的个数相加即可【详解】最多需要8+6+3=17个小正方体;故答案为:17【点睛】考查学生解析:17【解析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最多的正方体的个数,相加即可.【详解】最多需要8+6+3=17个小正方体;故答案为: 17.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.15.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.16.3【解析】试题解析:3【解析】试题易得此组合几何体只有一层,有3行,3列,当3行上的小立方块在不同的3列时可得这样的视图,故这个小几何体中小立方块最少有3块.17.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=618.5【解析】试题解析:5【解析】试题综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.19.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.20.54【解析】试题解析:54【解析】试题由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.三、解答题21.(1)见解析;(2)12m.【分析】(1)根据中心投影的规律画图即可;(2)根据三角形相似,列比例计算即可.【详解】(1)根据中心投影的基本规律,画图如下:(2)由题意可知CAB CPO△△∴AB BC PO OC=,∴1.62213 PO=+,∴12PO=m.【点睛】本题考查了中心投影的规律,基本作图和相似三角形,熟练掌握投影的基本规律,灵活运用三角形的相似是解题的关键.22.见解析.【分析】分别从正面、左面、上面看得到的图形即可.看到的棱用实线表示,实际存在但是被挡住看不见的棱用虚线表示.【详解】【点睛】本题考查了三视图的作图.23.(1)14个;(2)见解析;(3)33cm2【分析】(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;(2)主视图从上往下三行正方形的个数依次为1,2,3;(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.【详解】解:(1)该几何体中正方体的个数为9+4+1=14个;(2);(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,共有6×4+9=33个面所以,涂上颜色部分的总面积是:1×1×33=33(cm2).【点睛】考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.24.(1)7,(2)见解析.【分析】(1)根据几何体有2层,将2层的小正方体的个数相加即可;(2)主视图有3列,每列小正方数形数目分别为1,2,1;左视图有3列,每列小正方形数目分别为2,1,1;据此可画出图形.【详解】解:(1)由图可得,图中有7个小正方体;故答案为:7;(2)如图所示:【点睛】本题考查了三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.25.见解析【分析】根据三视图的定义,画出图形即可.【详解】解:【点睛】本题考查作图-三视图,解题的关键是理解题意,正确作出三视图,属于中考常考题型.26.(1)①乙;②9;图见解析;(2)①见解析;② 见解析;③见解析;【分析】(1)①结合主视图和左视图对甲、乙逐一判断可得;②当第一层有6个,第二层有2个,第三层有1个时,小正方体个数最多;(2)根据要求用直尺画图即可.【详解】解:(1)①甲图的左视图不合题意,乙图符合题意;故答案为乙;②这个几何体最多可由9个小正方体构成,其俯视图如图所示:故答案为9;(2)①如图所示,线段AB,射线AD即为所求;②如图所示,点M即在射线AD上,又在直线BC上;③如图所示,点N到A、B、C、D四个点的距离和最短.【点睛】本题主要考查了三视图以及基本作图,由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.。
合肥市九年级数学下册第四单元《投影与视图》检测(有答案解析)
一、选择题1.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图2.下面四个几何体中,俯视图为四边形的是()A.B.C.D.3.如图,是一个由若干个小正方体组成的几何体的主视图和左视图,则该几何体最多可由多少个小正方体组合而成?()A.12个B.13个C.14个D.15个4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A .78B .72C .54D .487.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变8.如图所示几何体的主视图是( )A .B .C .D . 9.下列命题是真命题的是( )A .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B .如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D .如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:910.路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A .6.75米B .7.75米C .8.25米D .10.75米 11.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( ) A . B . C . D . 12.如图所示的立体图形的主视图是( )A.B.C.D.二、填空题13.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.14.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.15.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.16.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为_____m.17.如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为_____.18.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.19.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.20.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)三、解答题21.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:22.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D 不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.23.如图,将一个大立方体挖去一个小立方体,请画出它的三种视图.24.在桌面上,有若千个完全相同的小正方体堆成的一个几何体A,每个小正方体的边长为acm,如图所示.()1请画出这个几何体A的三视图. (用黑色水笔描清楚);()2若将此几何体A的表面喷上红漆(放在桌面上的一面不喷),则几何体A上喷上红漆的cm(用含a的代数式表示);面积为2()3若现在你的手头还有这样的一些边长为acm的小正方体可添放在几何体A上,要保持主视图和左视图不变,则最多可以添加个小正方体.25.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图:(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体所有可能的左视图.26.如图是由几个小立方体所搭几何体的俯视图,小正方体的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的图形.(在所提供的方格内涂上相应的阴影即可)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.2.D解析:D【解析】A、圆柱的俯视图是圆;B、三棱锥的俯视图是三角形;C、球的俯视图是圆;D、正方体的俯视图是四边形.故选D.3.C【分析】根主视图和左视图可知,考虑俯视图的情况,得到每个位置最多可摆小正方体的个数,相加即可.【详解】由主视图和左视图可知,俯视图可为3×3正方形,每个位置上最多可摆正方体的个数如图所示:因此,最多可由14个正方体搭建而成,故选:C.【点睛】此题考查了几何体三视图的应用问题,根据三视图求几何体的小正方体最多或最少个数,解题的关键是根据三视图得出几何体结构特征.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.A解析:A根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是上下两个矩形,矩形的公共边是虚线.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 7.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.8.D解析:D【解析】【分析】主视图是正面看去所得图形.【详解】解:由图可知,该几何体的主视图为D选项所示图形,故选择D.【点睛】本题考查了立体图形三视图的概念.9.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.10.C解析:C【解析】【分析】延长AG 交DE 于N ,则四边形GNEF 为平行四边形,所以NE=GF=2,BN=11米,然后根据实际高度和影长成正比例列式求解即可.【详解】如图,延长AG 交BE 于N 点,则四边形GNEF 是平行四边形,故NE=GF=2,BN=5+4+4-2=11米, ∴AB DF BE DE =, ∴3114AB =, ∴AB=8.25米.故选C.【点睛】此题考查的平行投影及平行四边形的判定与性质,是较简单题目.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.11.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.12.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A.点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.二、填空题13.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.14.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r 计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l ,再根据圆锥侧面积公式S=πr l 计算即可.【详解】圆锥半径:r=8÷2=422345l =+=S=πr l =20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.15.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.16.4【解析】【分析】根据题意得△ABC∽△EDC相似三角形成比例得解【详解】∵△ABC∽△EDC∴CB=6BD=6-2=4故BD为4m【点睛】本题考查相似三角形解题的关键是清楚相似三角形的性质解析:4.【解析】【分析】根据题意得△ABC∽△EDC,相似三角形成比例得解.【详解】∵△ABC∽△EDC,∴ED CD=AB CB ,1.62=4.8CB,CB=6,BD=6-2=4.故BD为4m.【点睛】本题考查相似三角形,解题的关键是清楚相似三角形的性质.17.90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积再求出底面圆的面积为即可得出表面积【详解】解:∵如图所示可知圆锥的高为12底面圆的直径为10∴圆锥的母线为:13∴根据圆锥的侧面积公式:πrl=π解析:90π【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.【详解】解:∵如图所示可知,圆锥的高为12,底面圆的直径为10,∴圆锥的母线为:13,∴根据圆锥的侧面积公式:πrl=π×5×13=65π,底面圆的面积为:πr2=25π,∴该几何体的表面积为90π.故答案为90π.18.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=619.54【解析】试题解析:54【解析】试题由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.20.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的解析:长【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短三、解答题21.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.22.(1)证明见试题解析;(2)5;(3)5013. 【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x ,CD ,BD ,BO 用x 表示出来,所以可得BD 长.(3)同(2)原理,BD =B′D =x , AB′,B′O ,BO 用x 表示,利用等腰三角形求BD 长.试题(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x , ∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5. (3)∵点B 与点B′关于直线DO 对称,∴∠B =∠OB′D ,BO =B′O =45x ,BD =B′D =x , ∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB′D 是等腰三角形时,AB′=DB′,∵AB′+B′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =.②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4)④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)23.见解析【分析】直接利用三视图的观察角度分别得出视图即可.【详解】如图所示:.【点睛】此题考查几何体的三视图的画法,能会看几何体根据几何体得到各面的形状是解题的关键,注意不可见的棱线需要画成虚线.24.(1)画图见解析;(2)302a ;(3)4;【分析】(1)根据三视图的定义,画出三视图即可;(2)根据露出的小正方体的面数,可得几何体的喷上红漆的面积;(3)在第一层的第二排前面可以加一个小正方体,在第一层的第三列当中,前面可以加一个正方体,在第二层的第二列可以加一个正方体,所以最多可以添加的是三个小正方体;【详解】解:(1)如图所示:(2)露出表面的一共有30个,每个的面积都是2a 2cm ,则这个几何体的总面积为:()226+6+6+6+6a =30a 2cm ; (3)由题意可得,在第一层的第二排前面可以加一个小正方体,在第一层的第三列当中,前面可以加两个正方体,在第二层的第二列可以加一个正方体;即要保持主视图和左视图不变,最多可以添加四个小正方体;【点睛】本题主要考查了三视图,主视图、左视图、俯视图是分别从物体的正面,左面和上面看,所得到的图形,看到的用实线表示,看不到的用虚线表示,掌握三视图是解题的关键. 25.(1)详见解析;(2)详见解析.【分析】(1)左视图有两列,小正方形的个数分别是3,1;俯视图有两排,上面-排有4个小正方形,下面一排有2个小正方形;(2) 根据题意可得此正方体应该添加在前排第2个小正方体上,进而可得左视图.【详解】(1)如图所示;(2)添加后可得如图所示的几何体:左视图分别是:【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.26.见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,3,1;从左面看有4列,每列小正方形数目分别为3,1,3,1.据此可画出图形.【详解】解:【点睛】本题考查几何体的三视图画法.由几何体的从上面看得到的图形及小正方形内的数字,可知从正面看的列数与从上面看的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.从左面看的列数与从上面看的行数相同,且每列小正方形数目为从上面看中相应行中正方形数字中的最大数字.。
合肥市实验学校九年级数学下册第四单元《投影与视图》测试卷(有答案解析)
一、选择题1.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.52.下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A.1个B.2个C.3个D.4个3.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.4.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时刻,一根长为l米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.米B.12米C.米D.10米6.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A .B .C .D . 7.下列几何体各自的三视图中,有且仅有....两个视图相同的是( )A .①②B .②③C .①④D .②④ 8.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为( )A .4B .5C .6D .79.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 10.如图,路灯距地面 8m ,身高 1.6m 的小明从点 A 处沿 AO 所在的直线行走 14m 到点 B 时,人影长度 ()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 11.如图,用八个同样大小的小立方体粘成一个大正方体,得到的几何体从正面、从左面和从上面看到的形状图如图,若小明从八个小立方体中取走若干个,剩余小立方体保持位置不动,并使得到的新几何体从三个方向看到的形状图不变,则他取走的小立方体最多可以是()A.0个B.1个C.4个D.3个12.如图所示的几何体的俯视图为( )A.B.C.D.二、填空题13.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.14.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.15.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.16.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)17.已知一个物体由x个相同的正方体堆成,它的正视图和左视图如图所示,那么x的最大值是_____.18.一个用小立方块搭成的几何体的主视图和左视图都是图15,这个小几何体中小立方块最少有________块.19.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.20.一个几何体由几个大小相同的小正方体搭成,这个几何体的俯视图和左视图如图所示,则这个几何体中小正方体的个数最少是________个.三、解答题21.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.22.如图,画出该物体的三视图23.从上面看由一些大小相同的小立方体组成的简单几何体,得到的图形如图所示,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从左面和正面看到的图形.24.如图是由几个小立方体所搭几何体的俯视图,小正方体的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的图形.(在所提供的方格内涂上相应的阴影即可)25.如图是由6个相同的小正方体组成的几何体,请在指定的位置画出从正面、左面、上面看得到的这个几何体的形状图.26.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A .此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.2.B解析:B【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正方体的三种视图都是正方形,所以三视图全等;球的三种视图都是圆,所以球的三视图也全等.其他那几个几何体的三视图都不全等.故选:B.【点睛】此题考查了简单几何体的三视图,解题关键在于要熟练掌握,解答此题的关键是分别判断出每个几何体的三视图.3.C解析:C【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可作出判断.【详解】解:从左面看可得到从左到右分别是3,1个正方形.故选C.【点睛】查几何体的三视图.由几何体的俯视图及小正方形内的数字,可知左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.4.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.5.A解析:A解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质.【分析】延长AC交BF延长线于E点,则∠CFE=30°.作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°=23,在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4.∴BD=BF+EF+ED=12+23.∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt△ABD中,AB=BD=.故选A.6.B解析:B【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B.【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.7.D解析:D【分析】逐个分析几何体的三视图,作出解答.【详解】解:正方体的三个视图都是正方形,三棱台的三个视图都不同,所以①③都不满足题意;圆锥的正视图、左视图都是等腰三角形,俯视图是有圆心的圆,满足题意;正四棱锥正视图、侧视图都是等腰三角形,俯视图是正方形和两条对角线,满足题意.故选D本题考查几何体的三视图,掌握各立体图形的特点以及三视图的概念是解题的关键.8.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.9.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.10.C解析:C【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【详解】解:设小明在A处时影长为x,AO长为a,在B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MA OP MO ,BD BNOP ON,则1.68xx a,1.6148yy a∴x=14a,y=14a-3.5,∴x−y=3.5,故变短了3.5米.故选:C.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出相似三角形,再利用相似三角形的对应边成比例求解是解答此题的关键.11.C解析:C【解析】【分析】根据三视图不变,可知可以把1、4号小正方体下面的两个小正方体去掉,再把第二层的2、3号小正方体去掉,最多去掉四个.【详解】由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图不变,所以这个正方体可以把1、4号小正方体下面的两个小正方体去掉,再把2、3号小正方体去掉(或最底层2、3号小正方体下面的两个小正方体去掉,再把第二层的1、4号小正方体去掉),即可得取走的小立方体最多可以是4个.故选:C【点睛】本题考查了学生的观察能力和对几何体三种视图的空间想象能力,根据三视图确定几何体的形状是解决本题的关键.12.C解析:C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看外面是一个矩形,里面是一个圆形,故选C.【点睛】考查了简单组合体的三视图,从上边看得到的图形是俯视图.二、填空题13.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.14.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°解析:6【解析】【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC 交BF 延长线于D 点,则∠CFE =30°,作CE ⊥BD 于E .在Rt △CFE 中,∠CFE =30°,CF =4,∴CE =2,EF =23. 在Rt △CED 中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE =2,CE :DE =1:2,∴DE =4,∴BD =BF +EF +ED =12+23.在Rt △ABD 中,AB 12=BD 12=(12+23)=6+3. 故答案为(6+3)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB 的影长. 15.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.16.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.17.11【解析】综合正视图和左视图底面最多有3×3=9个小正方体第二层最多有2个小正方体那么x的最大值应该是9+2=11故答案为:11点睛:本题考查对三视图的理解应用及空间想象能力本题中虽然没有告诉俯视解析:11【解析】综合正视图和左视图,底面最多有3×3=9个小正方体,第二层最多有2个小正方体,那么x的最大值应该是9+2=11.故答案为:11.点睛:本题考查对三视图的理解应用及空间想象能力.本题中虽然没有告诉俯视图,但是说明了x取最大值也就间接的说明了俯视图的情况.18.3【解析】试题解析:3【解析】试题易得此组合几何体只有一层,有3行,3列,当3行上的小立方块在不同的3列时可得这样的视图,故这个小几何体中小立方块最少有3块.19.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体20.5【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由左视图可得第二层所须小正方体最少的个数相加即可得答案【详解】由俯视图和左视图可知此几何体有2层第一层有4个小正方体第二层最少有1个小正解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层所须小正方体最少的个数,相加即可得答案.【详解】由俯视图和左视图可知此几何体有2层,第一层有4个小正方体,第二层最少有1个小正方体,∴这个几何体中小正方体的个数最少是5个,故答案为:5【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题21.见解析【分析】根据几何体的三视图的性质作图即可.【详解】如图所示,即为所求.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.22.见详解【分析】根据三视图的画法要求结合所给的几何体画出对应的视图即可.【详解】解:三视图如下:【点睛】本题主要考查了三视图的画法,要注意主视图与左视图的高平齐,左视图与俯视图的宽相等,三视图位置规定:主视图在左上方,它的下方是俯视图,左视图坐落在右边.23.见详解【分析】根据几何体的三视图的定义,即可得到几何体从左面和正面看到的图形.【详解】如图所示:主视图左视图【点睛】本题主要考查三视图的定义,掌握左视图和主视图的概念,是解题的关键.24.见解析【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为2,3,1;从左面看有4列,每列小正方形数目分别为3,1,3,1.据此可画出图形.【详解】解:【点睛】本题考查几何体的三视图画法.由几何体的从上面看得到的图形及小正方形内的数字,可知从正面看的列数与从上面看的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.从左面看的列数与从上面看的行数相同,且每列小正方形数目为从上面看中相应行中正方形数字中的最大数字.25.见解析.【分析】根据三视图的定义画出图形即可.【详解】该几何体的三视图如图所示:【点睛】此题考查三视图的定义,解题的关键是学会观察和想象,再画它的三视图.26.(1)3a =,1b =,1c =;(2)最多由11个小立方体搭成;最少由9个小立方体搭成;(3)见解析.【解析】【分析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,那么b=1,c=1,a=3;(2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可;(3)左视图有3列,每列小正方形数目分别为3,1,2.【详解】(1)3a =,1b =,1c =;(2)62311++=(个),4239++=(个).这个几何体最多由11个小立方体搭成;最少由9个小立方体搭成.(3)如图所示.【点睛】本题考查由三视图判断几何体及作三视图,解题关键在于熟练掌握几何体的三视图的相关知识.。
最新人教版初中数学九年级数学下册第四单元《投影与视图》测试(含答案解析)(1)
一、选择题1.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm 2.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是( )A .B .C .D . 3.下面几何体的左视图是( )A .B .C .D . 4.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成( )A .12B .13C .14D .15 5.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个6.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.7.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)8.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个9.下列几何体各自的三视图中,有且仅有....两个视图相同的是()A.①②B.②③C.①④D.②④10.如图,路灯距地面8m,身高1.6m的小明从点A处沿AO所在的直线行走14m 到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m 11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.12.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是() A.B.C.D.二、填空题13.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.14.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.15.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.16.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=_____.17.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。
最新人教版初中数学九年级数学下册第四单元《投影与视图》检测卷(包含答案解析)
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.用大小和形状完全相同的小正方体木块搭成一-个几何体,使得它的正视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22个B.19个C.16个D.13个3.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如右图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶4.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12B.13C.14D.155.一个几何体由若干大小相同的小立方块搭成,从它的正面、左面看到的形状图完全相同(如下图所示),则组成该几何体的小立方块的个数至少有()A .3个B .4个C .5个D .6个6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.圆桌面(桌面中间有一个直径为1m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m ,桌面离地面1m ,若灯泡离地面2m ,则地面圆环形阴影的面积是( )A .2πm 2B .3πm 2C .6πm 2D .12πm 2 8.下列四个几何体中,主视图是三角形的是( )A .B .C .D . 9.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA10.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 11.如图的几何体由6个相同的小正方体搭成,它的主视图是( )A .B .C .D . 12.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )A .B .C .D .二、填空题13.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留π).14.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.15.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.16.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.AB CD,17.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,//=,点P到CD的距离为2.7m,则AB与CD间的距离是CD m1.5=, 4.5AB m________m.18.如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于___米.19.如图,墙角处有6个棱长为1分米的正方体纸盒,露在外面的面积之和是_____平方分米.20.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.三、解答题21.正方体是特殊的长方体,又称“立方体”、“正六面体”.(1)用一个平面去截一个正方体,截面可能是几边形?(写出至少两种情况)(2)下图是由几个小正方体所搭几何体的俯视图,小正方形中的数字表示该位置的小正方体的个数.请你画出这个几何体的主视图、左视图.22.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图①是从哪个方向看该几何体得到的平面图形?(将正确答案填入图①下面的空中)(2)请在给出的方格纸中分别画出从其它两个方向看得到的平面图形.23.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.24.在平整的地面上,有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如下图所示.(1)该几何体是由个小正方体组成,请画出它的主视图、左视图、俯视图(网格中所画的图形要画出各个正方形边框并涂上阴影).(2)如果在这个几何体露在外面的表面喷上黄色的漆,每平方厘米用2克,则共需克漆.(3)这个几何体上,再添加一些相同的小正方体并保持这个几何体的俯视图和左视图不变,那么最多可以再添加个小正方体.25.如图是由几个边长为1个单位的正方体搭成的几何体.(1)请画出这个几何体的三视图;(2)这个几何体的体积为______个立方单位;(3)若保持上述正方体搭成的几何体的俯视图不变,各位置的正方体个数可以改变(正方体的总数目不变),则搭成的几何体的表面积最大为_____个平方单位.26.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B .【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.D解析:D【分析】先根据俯视图判断出这个几何体的行列数,然后根据正视图推算每列小正方体的最少个数,最后将各列的小正方体个数求和即可得.【详解】由俯视图可得,这个几何体共有3行3列,其中左边一列有2行,中间一列有2行,右边一列有3行由正视图可得,左边一列2行中的最高层数为2,则这列小正方体最少有213+=个中间一列2行中的最高层数为3,则这列小正方体最少有314+=个右边一列3行中的最高层数为4,则这列小正方体最少有4116++=个因此,这个几何体的一种可能的摆放为2,3,41,1,10,0,1(数字表示所在位置小正方体的个数),小正方体最少有34613++=个故选:D.【点睛】本题考查了三视图(俯视图、正视图)的定义,根据俯视图和正视图得出几何体的实际可能摆放是解题关键.另一个重要概念是左视图,这是常考知识点,需掌握.3.A解析:A【分析】根据三视图得到层数及每层的桶数,即可得到答案.【详解】由图可知:共2层,最底层有3桶,最顶层有2桶,共5桶,故选:A.【点睛】此题考查三视图的实际应用,会看三视图的组成特点及分析得到层数,每层的数量是解题的关键.4.B解析:B【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【详解】解:综合主视图与左视图分析可知,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.【点睛】本题考查了几何体三视图,重点是考查学生的空间想象能力.掌握以下知识点:主视图反映长和高,左视图反映宽和高,俯视图反映长和宽.5.B解析:B【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【详解】解:根据主视图和左视图可得:搭这样的几何体最少需要4个小正方体;故选:B .【点睛】此题考查三视图,解题关键在于掌握其定义.6.D解析:D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D .【考点】简单组合体的三视图.7.B解析:B【解析】【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD , ∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠PAB≠∠PCA,∠PBA≠∠PAC,∴无法判定△PAB与△PCA相似,故A错误;同理,无法判定△PAB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=PA,AC=PA,AD=PA,BD=2PA,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.10.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.11.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.12.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题13.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm,高是6cm,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.14.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20先由勾股定理求出母线l ,再根据圆锥侧面积公式S=πr l 计算即可.【详解】圆锥半径:r=8÷2=45l ==S=πr l =20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.15.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多 解析:14 10【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体 故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.16.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.17.【分析】由AB∥CD得:△PAB∽△PCD由相似三角形对应高之比等于对应边之比列出方程求解【详解】∵AB∥CD∴△PAB∽△PCD假设CD到AB距离为x则:即x=18∴AB与CD间的距离是18m;故解析:1.8【分析】由AB∥CD得:△PAB∽△PCD,由相似三角形对应高之比等于对应边之比,列出方程求解.【详解】∵AB∥CD,∴△PAB∽△PCD,假设CD到AB距离为x,则:2.72.7AB xCD-=即1.52.74.5 2.7x-=,x=1.8,∴AB与CD间的距离是1.8m;故答案是:1.8.【点睛】考查了中心投影,用到的知识点是相似三角形的性质和判定,相似三角形对应高之比等于对应边之比.解此题的关键是把实际问题转化为数学问题(三角形相似问题).18.10【解析】试题解析:10【解析】试题如图所示,作DH⊥AB与H,则DH=BC=8 m,CD=BH=2 m,根据题意得∠ADH = 45°,所以△ADH为等腰直角三角形,所以AH=DH=8 m,所以AB=AH+BH=8+2=10 m.所以本题的正确答案应为10米.19.12【分析】观察图形知道露在外面的面:上面一层是3个下面一层是9个所以一共是3+9=12个由此根据正方形的面积公式S=a×a求出一个正方形的面积再乘12即可【详解】解:1×1×(3+9)=1×12=解析:12【分析】观察图形知道,露在外面的面:上面一层是3个,下面一层是9个,所以一共是3+9=12个,由此根据正方形的面积公式S=a×a,求出一个正方形的面积,再乘12即可.【详解】解:1×1×(3+9)=1×12=12(平方分米);∴露在外面的面积是:12平方分米.故答案为:12.【点睛】本题考查了求表面积,此题关键是正确数出露在外面的面有几个,再根据正方形的面积公式解决问题.20.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.三、解答题21.(1)截面可能是三角形,四边形,五边形,六边形;(2)图形见详解.【分析】(1)正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.由此截面可能为三角形、四边形(梯形,矩形,正方形)、五边形、六边形共有四种情况;(2)画出从正面,从左面看到的图形即可.主视图从左往右3列正方形的个数依次为3,4,2;左视图从左往右2列正方形的个数依次为4,2.【详解】解:(1)正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.截面可能是三角形,四边形,五边形,六边形;(2)这个几何体的主视图、左视图如图所示:【点睛】本题考查了正方体的基本构成、用一个面去截几何体、三视图等知识.锻炼学生的空间想象能力是解题的关键.22.(1)从左面看;(2)从正面、上面看,图见解析【分析】(1)根据几何体的三视图判断即可;(2)根据几何体的三视图画法即可求解.【详解】解:(1)(从左面看)(2)(从正面看)(从上面看)【点睛】此题主要考查几何体的三视图,提高空间想象能力是解题关键.23.见解析【分析】根据几何体的三视图的性质作图即可.【详解】如图所示,即为所求.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.24.(1)10,图详见解析;(2)64;(3)4【分析】(1)根据实物摆放可得该几何体是由10个小正方体组成;(2)根据视图的定义画图;(3)根据视图效果画图可得.【详解】(1)根据实物摆放可得该几何体是由10个小正方体组成;故答案为:10图如下:(2)需要漆:[(6+6)×2+6]×2=64(克)故答案为:64(3)由图可得:最多可放4块.【点睛】考核知识点:组合体视图.理解视图的定义是关键,注意空间想象力的发挥.25.(1)见解析;(2)7;(3)30【分析】(1)从正面看得到从左往右3列正方形的个数依次为3,2,1;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为2,1,1,依此画出图形即可;(2)找到小正方体的数目之和即为体积之和;(3)将中间1列上面的正方体改为第3列上面即可求解.【详解】(1)如图所示:(2)4+2+1=7(立方单位).故答案为:7;(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成的几何体的表面积最大为28+2=30个平方单位(包括底面积). 故答案为:30.【点睛】此题考查了作图-三视图,用到的知识点为:计算几何体的面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.26.(1)3a =,1b =,1c =;(2)最多由11个小立方体搭成;最少由9个小立方体搭成;(3)见解析.【解析】【分析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,那么b=1,c=1,a=3;(2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可;(3)左视图有3列,每列小正方形数目分别为3,1,2.【详解】(1)3a =,1b =,1c =;(2)62311++=(个),4239++=(个).这个几何体最多由11个小立方体搭成;最少由9个小立方体搭成.(3)如图所示.【点睛】本题考查由三视图判断几何体及作三视图,解题关键在于熟练掌握几何体的三视图的相关知识.。
合肥市寿春中学九年级数学下册第四单元《投影与视图》测试卷(答案解析)
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥3.如图是一个由多个相同小正方体搭成的几何体的俯视图,图中所标数字为该位置小正方体的个数,则这个几何体的主视图是()A.B.C.D.4.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形如右图所示,则这一堆方便面共有()A.5桶B.6桶C.9桶D.12桶5.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.66.下列四个几何体中,主视图是三角形的是()A.B.C.D.7.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个8.下面的三视图对应的物体是()A.B.C.D.9.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m10.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是().A.主视图的面积为4 B.左视图的面积为4C.俯视图的面积为3 D.三种视图的面积都是4二、填空题13.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.14.长方体的主视图与左视图如图所示,则这个长方体的表面积是________cm2.15.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由________个小正方体搭成.16.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要__个小立方块.17.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.18.几个相同的正方体叠合在一起,该组合体的主视图和俯视图如右图所示,那么组合体中正方体的个数至多有________个.19.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.20.如图,将19个棱长为a的正方体按如图摆放,则这个几何体的表面积是_____.三、解答题21.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有几块小正方体?(2)诸分别画出从正面看、从左面看和从上面看到的这个几何体的形状图.22.如图是某几何体从三个不同方向看到的形状图.(1)这个几何体的名称是;(2)若从正面看到的图形的宽为4cm,长为6cm,从左面看到的图为3cm,从上面看到的图形是直角三角形,其中斜边长为5m,求这个几何体的表面积为多少;它的体积为多少.23.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).(1)王乐站在P处时,在路灯B下的影子是哪条线段?(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.24.如图是由9个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.25.如图是由6个棱长都为1cm的小正方体搭成的几何体.(1)请在下面方格纸中分别画出它的左视图和俯视图;cm;(2)该几何体的表面积为___________2(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以添加___________个小正方体.26.如图,已知一个几何体的主视图与俯视图,求该几何体的体积.( 取3.14,单位: cm)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.B解析:B【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.3.C解析:C【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,3,2个正方形.【详解】由俯视图中的数字可得:主视图有3列,从左到右分别是1,3,2个正方形.故选:C.【点睛】此题考查几何体的三视图,解题关键在于掌握其定义.4.A解析:A【分析】根据三视图得到层数及每层的桶数,即可得到答案.【详解】由图可知:共2层,最底层有3桶,最顶层有2桶,共5桶,【点睛】此题考查三视图的实际应用,会看三视图的组成特点及分析得到层数,每层的数量是解题的关键.5.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.6.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.7.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.8.D解析:D【解析】解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D满足这两点.故选D.点睛:本题主要考查学生对图形的三视图的了解及学生的空间想象能力.9.A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 10.B解析:B【解析】试题根据俯视图而得出,第一行第一列有2个正方形,第二列有1个正方体,第二行第二列有1个正方体,共需正方体2+1+1=4.故选B.11.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C .【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.12.A解析:A【分析】根据三视图的绘制,首先画出三视图再计算其面积.【详解】解:A .主视图的面积为4,此选项正确;B .左视图的面积为3,此选项错误;C .俯视图的面积为4,此选项错误;D .由以上选项知此选项错误;故选A .【点睛】本题主要考查三视图的画法,关键在于正面方向.二、填空题13.8【分析】主视图俯视图是分别从物体正面上面看所得到的图形【详解】由俯视图可知:底层最少有5个小立方体由主视图可知:第二层最少有2个小立方体第三层最少有1个小正方体∴搭成这个几何体的小正方体的个数最少 解析:8【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.94【解析】【分析】由所给的视图判断出长方体的长宽高根据长方体的表面积公式计算即可【详解】由主视图可知这个长方体的长和高分别为5和3由左视图可知这个长方体的宽和高分别为4和3因此这个长方体的长宽高分 解析:94【解析】【分析】由所给的视图判断出长方体的长、宽、高,根据长方体的表面积公式计算即可.【详解】由主视图可知,这个长方体的长和高分别为5和3,由左视图可知,这个长方体的宽和高分别为4和3,因此这个长方体的长、宽、高分别为5、4、3,因此这个长方体的表面积为253243254294cm ⨯⨯+⨯⨯+⨯⨯=.故答案为:94.【点睛】本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.15.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少解析:4【解析】【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成,故答案为:4.【点睛】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,熟练掌握是关键.16.14【解析】试题解析:14【解析】试题根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为14.点睛:主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.17.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R解析:6【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.18.10【分析】由所给视图可得此几何体有3列3行2层分别找到第二层的最多个数加上第一层的正方体的个数即为所求答案【详解】解:第一层有1+2+3=6个正方体第二层最多有4个正方体所以这个几何体最多有6+4解析:10【分析】由所给视图可得此几何体有3列,3行,2层,分别找到第二层的最多个数,加上第一层的正方体的个数即为所求答案.【详解】解:第一层有1+2+3=6个正方体,第二层最多有4个正方体,所以这个几何体最多有6+4=10个正方体.故答案为:10.【点睛】本题是由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.20.54a2【分析】求这个几何体的表面积就要数出这个几何体中小正方体漏在外面的面的个数从前后左右上下方向上来数然后用一个面的面积乘面的个数即可【详解】解:从前后左右上下方向看到的面数分别为:101088解析:54a2【分析】求这个几何体的表面积,就要数出这个几何体中小正方体漏在外面的面的个数,从前、后、左、右、上、下方向上来数,然后用一个面的面积乘面的个数即可.【详解】解:从前、后、左、右、上、下方向看到的面数分别为:10,10,8,8,9,9所以表面积为(10+10+8+8+9+9 )a2=54a2,故答案为:54a2.【点睛】本题主要考查组合体的表面积,分析图形,掌握表面积的计算公式是解题的关键.三、解答题21.(1)图中有11块小正方体;(2)如图见解析.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【详解】解:(1)2×5+1=11(块).即图中有11块小正方体,(2)如图,【点睛】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.(1)直三棱柱;(2)284cm ;336cm .【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出表面积和体积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的表面积为:()21234463656842cm ⎛⎫⨯⨯⨯+⨯+⨯+⨯=⎪⎝⎭, 它的体积为:()31346362cm ⨯⨯⨯=. 【点睛】此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键. 23.(1)线段CP 为王乐在路灯B 下的影子;(2)王乐站在Q 处时,在路灯A 下的影长为1.5m ;(3)路灯A 的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt △CEP ∽Rt △CBD ,利用对应边成比例可得QD 长;(3)易得Rt △DFQ ∽Rt △DAC ,利用对应边成比例可得AC 长,也就是路灯A 的高度.【详解】解:(1)线段CP 为王乐在路灯B 下的影子.(2)由题意得Rt △CEP ∽Rt △CBD , ∴1.8292 6.5QD=++, 解得:QD =1.5m .所以王乐站在Q 处时,在路灯A 下的影长为1.5m(3)由题意得Rt △QDF ∽Rt △CDA , ∴FQ QD AC DC =, ∴1.8 1.510AC =, 解得:AC =12m .所以路灯A 的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.24.见解析【分析】根据主视图,左视图的定义画出图形即可.【详解】如图,主视图,左视图如图所示.【点睛】本题考查三视图,解题的关键是理解三视图的定义.25.(1)详见解析;(2)26;(3)2【分析】(1)左视图有三列,小正方形的个数分别是1,,2,1;俯视图有3列,小正方形的个数分别是3,1,1;(2)分别数出前后左右上下6个方向的正方形的个数,再乘以1个面的面积即可求解; (3)保持俯视图和左视图不变,可以在第2排的左边和中间这两个上面空余位置各放一个,即共添加2个小正方体.【详解】解:(1)如图所示:(2)(5×2+ 4×2+ 4×2)×(1×1)=26;(3)若保持这个几何体的左视图和俯视图不变,那么最多可以添加2个小正方体.【点睛】本题考查画三视图,解题关键是掌握在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.26.40048【分析】根据三视图得到几何体上半部分是圆柱,下半部分是长方体,分别计算体积相加即可解题.【详解】解:由几何体的主视图和俯视图,可以想象出该几何体由两部分组成:上部是一个圆柱,底面直径是20cm ,高是32cm ;下部是一个长方体,长、宽、高分别是30cm ,25cm ,40cm ,所以该几何体的体积为23203.14()3230254040048(cm )2⨯⨯+⨯⨯=. 【点睛】主视图是在物体正面从前向后观察物体得到的图形;俯视图是站在物体的正面从上向下观察物体得到的图形;左视图是在物体正面从左向右观察到的图形,掌握三视图的定义是解题关键.。
合肥琥珀中学九年级数学下册第四单元《投影与视图》测试题(有答案解析)
一、选择题1.如图,左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.2.如图是某几何体的三视图及相关数据,则下面判断正确的是()A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c23.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.34.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A.B.C.D.5.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.6.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午8时B.上午9时30分C.上午10时D.上午12时7.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m",CA=0.8m,则树的高度为()A.4.8m B.6.4m C.8m D.10m8.如图,水杯的俯视图是()A.B.C.D.9.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.10.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A .B .C .D . 11.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是( )A .12πB .6πC .12π+D .6π+ 12.从正面和左面看到长方体的图形如图所示(单位:cm ),则从其上面看到图形的面积是( )cm 2A .4B .6C .8D .12二、填空题13.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留π).14.用小立方体搭一个几何体,其主视图和俯视图如下图,搭这样的集合体最多需要__________个小立方体,最少需要__________个小立方体.15.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.16.如图是一个几何体的三视图,则这个几何体的侧面积是______.(结果保留 )17.一个用小立方块搭成的几何体的主视图和左视图都是图15,这个小几何体中小立方块最少有________块.18.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.19.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.20.由一些完全相同的小正方体组成的几何体,从正面看和左面看的图形如图所示,则组成这个几何体的小正方体的个数至少是_____个.三、解答题21.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:22.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到的这个几何体的形状图如图所示.请你画出从左面看到的这个几何体的形状图的可能结果(要求画出不少于三种形状图).23.如图是由几块小立方块所搭成的几何体从上面看到的图,小正方体中的数字表示该位置小立方块的个数,请画出从正面看到的图与从左面看到的图.24.如图为从三个方向看一个几何体的形状.(1)任意画出它的一种表面展开图;(2)若从正面看的长为10cm,从上面看正方形的边长为4cm,求这个几何体的表面积.25.把边长为2厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)试求出其表面积;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.26.如图是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)在小亮由B 沿OB 所在的方向行走的过程中,他在地面上的影子的变化情况为______;(2)请你在图中画出小亮站在AB 处的影子;(3)当小亮离开灯杆的距离 4.2OB m =时,身高(AB )为1.6m 的小亮的影长为1.6m ,问当小亮离开灯杆的距离6OD m =时,小亮的影长是多少m ?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据主视图的概念即可求解.【详解】A . 是左视图.故该选项错误;B . 不是主视图.故该选项错误;C.是俯视图.故该选项错误;D.是主视图.故该选项正确.故选:D【点睛】此题主要考查组合体的三视图,正确理解每种视图的概念是解题的关键.2.D解析:D【分析】由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.3.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.4.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.5.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形.故选B.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.6.A解析:A【分析】根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长可知.【详解】解:根据从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.可知影子最长的时刻为上午8时.故选A.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西-西北-北-东北-东,影长由长变短,再变长.7.C解析:C【解析】解:因为人和树均垂直于地面,所以和光线构成的两个直角三角形相似,设树高x米,则1.6ACAB x=,即0.8 1.60.8 3.2x=+∴x=8故选C.8.A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.9.A解析:A【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.10.D解析:D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.11.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.12.D解析:D【解析】根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为4宽为3的长方形,则从正面看到的形状图的面积是4×3=12;故答案为12.二、填空题13.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm 高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm ,高是6cm ,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.14.1410【分析】根据几何体三视图的性质分析即可【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形最少有3个正方形∵主视图第三层有1个正方形∴第三层最多 解析:14 10【分析】根据几何体三视图的性质分析即可.【详解】∵俯视图有6个正方形∴最底层有6个正方形∵主视图第二层有3个正方形∴第二层最多有6个正方形,最少有3个正方形∵主视图第三层有1个正方形∴第三层最多有2个正方形,最少有1个正方形∴搭这样的集合体最多需要66214++=个小立方体,最少需要63110++=个小立方体故答案为:14,10.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.15.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.【解析】【分析】易得圆锥的底面直径为2母线长为2根据圆锥的侧面积=π×底面半径×母线长把相应数值代入即可求解【详解】易得此几何体为圆锥底面直径为2母线长为2所以圆锥的侧面积=πrl=2×1π=2π故解析:2【解析】【分析】易得圆锥的底面直径为2,母线长为2,根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】易得此几何体为圆锥,底面直径为2,母线长为2,所以圆锥的侧面积=πrl=2×1π=2π,故答案为2π.【点睛】本题考查了由三视图判断几何体及圆锥的侧面积计算,解题的关键是确定几何体的形状,难度不大.17.3【解析】试题解析:3【解析】试题易得此组合几何体只有一层,有3行,3列,当3行上的小立方块在不同的3列时可得这样的视图,故这个小几何体中小立方块最少有3块.18.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体19.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R解析:6【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD=;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD=,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.20.4【分析】根据图示可知该几何体有2层由俯视图可得第一层小正方图的个数由主视图可得第二层小正方体的可能的个数即可解决问题【详解】由俯视图易得最底层有3个小正方体由主视图易得第二层最少有1个最多有2个小解析:4【分析】根据图示可知,该几何体有2层,由俯视图可得第一层小正方图的个数,由主视图可得第二层小正方体的可能的个数,即可解决问题.【详解】由俯视图易得,最底层有3个小正方体,由主视图易得,第二层最少有1个,最多有2个小正方体,那么搭成这个几何体的小正方体最少为3+1=4个,最多为3+2=5个故答案为:4【点睛】本题考查了从不同方向观察几何体,难度适中,熟练掌握根据主视图和俯视图确定小正方体的个数是解题关键.三、解答题21.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.22.见解析【分析】根据俯视图可得底面有5个小正方体,结合主视图可得第二层“田”字上可能有2个或3个或4个或5个,进而可得答案.【详解】解:可能有以下三种情况.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.23.详见解析.【分析】由已知条件可知,从正面看到的图有2列,每列小正方数形数目分别为2,3,从左面看到的图有2列,每列小正方形数目分别为3,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字可以确定每列小正方形数目.24.(1)见解析;(2)192(cm2)【分析】(1)根据三视图可得这个几何体是长方体,再把它展开即可;(2)根据长方体的表面积计算公式进行计算即可.【详解】解:(1)表面展开图如图所示:(2)这个几何体的表面积是:4×10×4+4×4×2=192(cm2).【点睛】本题考查了立体图形的三视图和展开图,根据三视图得出立体图形的形状是解决此题的关键.25.(1)见解析;(2)104平方厘米;(3)2【分析】(1)直接利用三视图的画法进而得出答案;(2)利用几何体的形状进而得出其表面积;(3)利用左视图和俯视图不变,得出可以添加的位置.解:(1)如图所示:(2)几何体表面积:2×2×5+2×2×4+2×2×5+2×2×12=104(平方厘米);(3)如图,可以在A和B的位置上各加一个小正方体,这个几何体的左视图和俯视图不变.所以最多可以再添加2个小正方体.故答案为:2.【点睛】此题主要考查了画三视图以及几何体的表面积,正确得出三视图是解题关键.26.(1)逐渐变短;(2)详见解析;(3)16 7【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短(2)连接PA并延长交直线BO于点E,则线段BE即为小亮站在AB处的影子(3)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可【详解】(1)因为光是沿直线传播的,所以当小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为变短;(2)如图所示,BE即为所求(3)先设OP=x,则当OB=4.2米时,BE=1.6米, ∴ 1.6 1.6, 4.2 1.6AB BE OP OE x ==+即 ∴x=5.8米当OD=6米时,设小亮的影长是y 米, ∴DF CD DF OD OP =+ ∴1.66 5.8y y =+ y=167(米) 即小亮的影长是167米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.如图所示的几何体的俯视图是()A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.34.如图,在平整的地面上,有若干个完全相同的边长为 2cm 的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是( )A.30cm2B.32cm2C.120cm2D.128cm25.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是( )A .78B .72C .54D .487.下列四个几何体中,主视图是三角形的是( )A .B .C .D . 8.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是( )A .B .C .D .9.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 10.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是( ).A .B .C .D . 11.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列说法正确的是( ).A .主视图的面积为4B .左视图的面积为4C .俯视图的面积为3D .三种视图的面积都是412.路边有一根电线杆AB 和一块长方形广告牌,有一天,小明突然发现在太阳光照射下,电线杆顶端A 的影子刚好落在长方形广告牌的上边中点G 处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知5BC =米,长方形广告牌的长4HF =米,高3HC =米,4DE =米,则电线杆AB 的高度是( )A .6.75米B .7.75米C .8.25米D .10.75米二、填空题13.一个几何体是由一些大小相同的小正方块摆成的,从正面看与从上面看得到的形状图如图所示,则组成这个几何体的小正方体的个数n 的所有可能值的和是______________14.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.15.由n个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的个数是________.16.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为_____m.17.甲同学的身高为1.5m,某一时刻它的影长为1m,此时一塔影长为20m,则该塔高为____________m。
18.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.19.张三和李四并排站立在阳光下,张三身高1.80米,他的影长2.0米,李四比张三矮9厘米,此时李四的影长是___米.20.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是_____.三、解答题21.如图是由7个棱长为1的小正方体搭成的几何体.(1)请分别面出这个几何体的主视图、左视图和俯视图;(2)这个几何体的表面积为___________(包括底面积);(3)用小正方体搭一几何体,使得它的俯视图和左视图与你在(1)中所画的图形一致,则搭这样的几何体最少要__________个小正方体.22.如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图①是从哪个方向看该几何体得到的平面图形?(将正确答案填入图①下面的空中)(2)请在给出的方格纸中分别画出从其它两个方向看得到的平面图形.23.如图所示.(V球=43πr3).(1)三个大小相同的球恰好放在一个圆柱形盒子里,三个球的体积占整个盒子容积的(几分之几);(2)若4个大小相同的球恰好放在一个圆柱形盒子里,4个球的体积占整个盒子容积的(几分之几);(3)m个大小相同的球恰好放在一个圆柱形盒子里,m个球的体积占整个盒子容积的(几分之几).24.如图是某几何体从三个不同方向看到的形状图.(1)这个几何体的名称是;(2)若从正面看到的图形的宽为4cm,长为6cm,从左面看到的图为3cm,从上面看到的图形是直角三角形,其中斜边长为5m,求这个几何体的表面积为多少;它的体积为多少.25.把棱长为1cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面)()1该几何体中有多少个小正方体?()2画出从正面看到的图形;()3写出涂上颜色部分的总面积.26.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据俯视图的概念逐一判断即可得.【详解】解:图中几何体的俯视图如图所示:故答案为:B.【点睛】本题考查简单几何体的三视图,解题的关键是掌握常见几何体的三视图.2.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.4.D解析:D【分析】根据露出的小正方体的面数,可得几何体的表面积.【详解】解:露出表面的面一共有32个,则这个几何体喷漆的面积为32×4=128cm2,故答案为:D.【点睛】本题考查了几何体的表面积,关键是观察出小正方体露出表面的面的个数.5.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A.【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征.6.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 7.B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.8.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线.9.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.10.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.11.A解析:A【分析】根据三视图的绘制,首先画出三视图再计算其面积.解:A .主视图的面积为4,此选项正确;B .左视图的面积为3,此选项错误;C .俯视图的面积为4,此选项错误;D .由以上选项知此选项错误;故选A .【点睛】本题主要考查三视图的画法,关键在于正面方向.12.C解析:C【解析】【分析】延长AG 交DE 于N ,则四边形GNEF 为平行四边形,所以NE=GF=2,BN=11米,然后根据实际高度和影长成正比例列式求解即可.【详解】如图,延长AG 交BE 于N 点,则四边形GNEF 是平行四边形,故NE=GF=2,BN=5+4+4-2=11米, ∴AB DF BE DE =, ∴3114AB =, ∴AB=8.25米.故选C.【点睛】此题考查的平行投影及平行四边形的判定与性质,是较简单题目.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.二、填空题13.11【分析】易得这个几何体共有2层由主视图和俯视图可得第一层最多正方体的个数为3块第二层最多正方体的个数为3块相加即可【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=55+6解析:11【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方体的个数有2+2+2=6或2+1+2=5,5+6=11,故答案为:11.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.14.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个解析:6 8【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为6,8.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状从主视图和左视图可以看出每一层小正方体的层数和个数从而算出总的个数【详解】综合三视图我们可得出这个几何体的底层应该有2+1=3个小正方体;解析:5【解析】【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】综合三视图,我们可得出,这个几何体的底层应该有2+1=3个小正方体;第二层应该有1个小正方体;第三层应有1个小正方体;因此搭成这个几何体的小正方体的个数是3+1+1=5个.故答案为5.【点睛】本题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.16.4【解析】【分析】根据题意得△ABC ∽△EDC 相似三角形成比例得解【详解】∵△ABC ∽△EDC ∴CB=6BD=6-2=4故BD 为4m 【点睛】本题考查相似三角形解题的关键是清楚相似三角形的性质解析:4.【解析】【分析】根据题意得△ABC ∽△EDC ,相似三角形成比例得解.【详解】∵△ABC ∽△EDC ,∴ED CD =AB CB ,1.62=4.8CB,CB=6,BD=6-2=4.故BD 为4m. 【点睛】本题考查相似三角形,解题的关键是清楚相似三角形的性质. 17.30【解析】试题解析:30【解析】试题设塔的高度为m,x 由同一时刻物体的长与其影长之比相等可得,1.5.120x = 解得30.x =所以塔高为30m.故答案为:30.点睛:同一时刻物体的长与其影长之比相等.18.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.19.19【分析】设李四的影长是x 米利用同一时刻影长与物体的高度成正比得到然后解方程即可【详解】解:设李四的影长是x 米根据题意得解得x=19答:李四的影长是19米故答案为:19【点睛】此题主要考查了平行投解析:1.9【分析】设李四的影长是x米,利用同一时刻影长与物体的高度成正比得到2.01.800.09 1.80x=-,然后解方程即可.【详解】解:设李四的影长是x米,根据题意得2.0 1.800.09 1.80x=-,解得x=1.9.答:李四的影长是1.9米.故答案为:1.9【点睛】此题主要考查了平行投影,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出的影长,体现了方程的思想.20.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是解析:圆柱.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【详解】解:俯视图是圆的有球、圆柱、圆锥,主视图是矩形的有正方体、圆柱,故答案为:圆柱.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.三、解答题21.(1)见详解;(2)30;(3)6.【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为2,1,3;左视图有2列,每列小正方形数目分别为3,1;俯视图由3列,每列小正方数形数目分别为1,2,1;据此可画出图形.(2)将俯视图、左视图和主视图面积相加,再乘以2,继而加上夹在中间的左右两个面的面积即可得.(3)保持俯视图和左视图不变,只能减少第一列上面一个小正方体,即可得到答案.【详解】解:(1)如图所示(2)几何体的表面积为:(644)2230++⨯+=;故答案为:30;(3)根据题意,保持俯视图和左视图不变,只能减少第一列上面一个小正方体.∴搭这样的几何体最少要6个小正方体.故答案为:6.【点睛】此题主要考查了三视图,正确掌握不同视图的观察角度是解题关键.22.(1)从左面看;(2)从正面、上面看,图见解析【分析】(1)根据几何体的三视图判断即可;(2)根据几何体的三视图画法即可求解.【详解】解:(1)(从左面看)(2)(从正面看)(从上面看)【点睛】此题主要考查几何体的三视图,提高空间想象能力是解题关键.23.(1)23;(2)23;(3)23【分析】(1)设球的半径为r,分别根据球体体积公式和圆柱体的体积公式求得各自的体积,再相除即可得解;(2)与(1)同理;(3)与(1)同理.【详解】解:(1)设球的半径为r ,根据题意得:三个球的体积之和=3×43πr 3=4πr 3, 圆柱体盒子容积=πr 2•6r =6πr 3, 所以3346r r =23. 即三个球的体积之和占整个盒子容积的23; (2)设球的半径为r ,根据题意得:四个球的体积之和=4×43πr 3=163πr 3, 圆柱体盒子容积=πr 2•8r =8πr 3, 所以331638r r =23. 即四个球的体积之和占整个盒子容积的为23; (3)设球的半径为r ,根据题意得:m 个球的体积之和=43m ⨯πr 3=43m πr 3, 圆柱体盒子容积=πr 2•2mr =2m πr 3, 所以33432m r m r ππ=23. 即m 个球的体积之和占整个盒子容积的23. 【点睛】本题主要考查球体积公式和圆柱体积公式的应用,熟练掌握公式是解题关键. 24.(1)直三棱柱;(2)284cm ;336cm .【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出表面积和体积.【详解】(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的表面积为:()21234463656842cm ⎛⎫⨯⨯⨯+⨯+⨯+⨯=⎪⎝⎭, 它的体积为:()31346362cm ⨯⨯⨯=. 【点睛】 此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键. 25.(1)14个;(2)见解析;(3)33cm 2【分析】(1)该几何体中正方体的个数为最底层的9个,加上第二层的4个,再加上第三层的1个;(2)主视图从上往下三行正方形的个数依次为1,2,3;(3)涂上颜色部分的总面积可分上面,前面,后面,左面,右面,相加即可.【详解】解:(1)该几何体中正方体的个数为9+4+1=14个;(2);(3)前面,后面,左面,右面分别有1+2+3=6个面,上面有1+3+5=9个面,共有6×4+9=33个面所以,涂上颜色部分的总面积是:1×1×33=33(cm 2).【点睛】考查几何体三视图的画法及有关计算;有规律的找到正方体的个数和计算露出部分的总面积是解决本题的关键.26.(1)126cm 2;(2)3n (n +1)cm 2.【分析】(1)由题意知,第4个图共有1+3+6+10=20个,从正面看有10个正方形,第5个图共有1+3+6+10+15=35个,从正面看有15个正方形,即可推出第6个图形的正方体和正面看到的正方形个数;(2)由题意知,从正面看有(1+2+3+4+…+n )个正方形,即可得出其表面积.【详解】(1)由题意可知,第6个图中,从正面看有1+2+3+4+5+6=21个正方形,表面积为:21×6=126cm 2;(2)由题意知,从正面看到的正方形个数有(1+2+3+4+…+n )=(1)2n n +个, 表面积为:(1)2n n +×6=3n (n +1)cm 2. 【点睛】本题主要考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.。