初二培优典型难题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.

(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;

(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.

2.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点N,连接BM,DN.

(1)求证:四边形BMDN是菱形;

(2)若AB=4,AD=8,求MD的长.

3.某数学兴趣小组开展了一次活动,过程如下:

如图1,在等腰△ABC中,AB=AC,∠BAC=90º,小敏将一块三角板中含45º角的顶点放在点A处,

从AB边开始绕点A顺时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.

(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠MAB,则AE也平

分∠MAC.请你证明小敏发现的结论;

(2)当0º<α≤45º时,小敏在旋转的过程中发现线段BD、CE、DE之间存在如下等量

关系:BD2+CE2=DE2.同组的小颖和小亮随后想出了两种不同的方法进行解决:

小颖的方法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);

小亮的方法:将△ABD绕点A逆时针旋转90º得到△ACG,连接EG(如图3).

请你从中任选一种方法进行证明;

(3)小敏继续旋转三角板,在探究中得出:当45º<α≤135º且α≠90º时,等量关

系BD2+CE2=DE2仍然成立.现请你继续探究:当135º<α<180º时(如图4),等量关系BD2+CE2=DE2是否仍然成立?若成立,给出证明:若不成立,说明理由.

4. (1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.

①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;

②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.

(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段B D、CE在(1)中的位置关系仍然成立?不必说明理由.

甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.

5.已知△ABC是等边三角形.

(1)将△ABC绕点A逆时针旋转角θ(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O.

①如图a,当θ=20°时,△ABD与△ACE是否全等?(填“是”或“否”),∠BOE=度;

②当△ABC旋转到如图b所在位置时,求∠BOE的度数;

(2)如图c,在AB和AC上分别截取点B′和C′,使连接B′C′,将△AB′C′绕点A逆时针旋转角(0°<θ<180°),得到△ADE,BD和EC所在直线相交于点O,请利用图c探索∠BOE的度数,直接写出结果,不必说明理由.

6..已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D

不与B、C重合).以AD为边作正方形ADEF,连接CF.

(1)如图1,当点D在线段BC上时,求证:①BD⊥CF. ② CF=BC-CD.

(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;

(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.

②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.

7.如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.(1)探究1:小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了.(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E 是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E 是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.

相关文档
最新文档