(完整word版)(最终版)北师大版八年级上册数学复习知识点和例题相结合

合集下载

(完整)2019北师大版八年级数学上册知识点总结复习,推荐文档

(完整)2019北师大版八年级数学上册知识点总结复习,推荐文档

八年级上第一章 勾股定理1、勾股定理:在直角三角形中两直角边的平方和等于斜边的平方。

a 2+b 2=c 2(a 、b 为直角边,c 为斜边)2、勾股定理逆定理:如果三角形的三边a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

(a 、b 为直角边,c 为斜边)3、会利用勾股定理解题第二章 实数1、有理数,无理数概念: 有理数:任何有限小数和无限循环小数都是有理数。

无理数:无限不循环小数叫做无理数。

正有理数 有理数零有限小数和无限循环小数实数负有理数 正无理数无理数无限不循环小数负无理数2、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“”。

a3、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“”。

a 正数和零的算术平方根都只有一个,零的算术平方根是零。

(0)a a ≥0≥a;注意的双重非负性:==a a 2a -(<0) 0a a a ≥4、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:,这说明三次根号内的负号可以移到根号外面。

33a a -=-5、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

6、科学记数法:把一个数写做的形式,其中,n 是整数,这种记数法n a 10⨯±101<≤a 叫做科学记数法。

7、二次根式的计算法则:(1))0()(2≥=a a a)0(≥a a (2)==a a 2)0(<-a a (3))0,0(≥≥∙=b a b a ab(4))0,0(≥≥=b a ba b a 注:计算时应化为最简二次根式,也就是不能再开根为止。

八年级数学上册 7.5.1 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数

八年级数学上册 7.5.1 三角形内角和定理教案 (新版)北师大版-(新版)北师大版初中八年级上册数

课题:三角形内角和定理教学目标:1.掌握“三角形内角和定理”,理解三角形内角和定理的证明方法及证明过程.2.灵活运用三角形内角和定理解决相关问题.3.通过猜想、推理等数学活动,探究三角形内角和定理的证明思路和过程,初步体会辅助线在证明中的作用.教学重点与难点:重点:三角形内角和定理及其证明.难点:三角形内角和定理的证明及灵活应用解决相关问题.课前准备:多媒体课件、三角形纸板等 .一、创设情境,复习引入问题1:平行线的性质?问题2:证明一个命题有哪些步骤?问题3: 关于三角形的知识,你都知道哪些呢?问题4:如图,按规定,一块模板中AB、CD的延长线应相交成85°角.因交点不在板上,不便测量,工人师傅连接AC,测得∠BAC=32°,∠DCA=65°,此时AB、C D的延长线相交所成的角是不是符合规定?为什么?处理方式:教师出示题目,学生回答问题,问题的设置不仅起到复习的目的,也为新课的引入做了铺垫.预设学生回答.1.两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角相等.2.证明一个命题的一般步骤:(1)分清命题的条件和结论,根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.3.三角形两边之和大于第三边;三角形具有稳定性;三角形按角分为直角三角形,锐角三角形和钝角三角形;三角形按边分为不等边三角形、等边三角形和等腰三角形;三角形三个内角和为180°......4.不符合规定.延长AB、CD交于点O,∵△AOC中,∠BAC=32°,∠DCA=65°,∴∠AOC=180°-∠BAC-∠DCA=180°-32°-65°=83°<80°,∴模板不符合规定.师导语:三角形的内角和从小学就开始学习,七年级又有了新的认识,这一节课我们将进一步通过动手操作、观察、合作、交流探究等方法来验证这一定理,并通过这一定理来解决有关问题.设计意图:设置问题情景,与学生前面所学知识紧密相连,在教学过程设计上从学生熟悉的知识创设情境,让学生简单地对三角形内角和的知识加以回忆,激发学生探究三角形内角和的兴趣.二、情境再现,探究新知(一)探索三角形内角和等于180°我们知道,三角形内角和等于180°.1.你还记得这个结论的探索过程吗?2.如图,如果我们只把∠A移到∠1的位置,你能说明这个结论吗?如果不移动∠A,那么你还有什么方法可以达到同样的效果?处理方式:对于第一个问题教师引导学生可以用量角器测量,用准备好的三角形纸片或三角形纸板进行折叠或剪拼,完成后小组讨论并展示结果.对于第二个问题,教师结合学生的完成情况,让学生代表说出结论和思路,针对学生的回答教师给予肯定和补充.预设学生回答:1.(1)用测量的方法:由于误差原因,有时可能不是180°.(2)用折纸的方法:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行,然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合,最后得图示的结果.(3)用剪拼(撕纸)的方法:剪三个角,拼成一个平角;剪两个角,也是拼成一个平角;剪一个角,构造平行线,利用平行线判定和性质说明.2.构造平行线,可得同样效果.设计意图:在回忆中学习,在学习中探索,在探索中验证,通过学生亲身经历的探索活动,让学生进一步理解验证三角形内角和等于180°,不仅调动小组愉快的合作学习,也激发学生的学习兴趣.(二)证明三角形内角和等于180°根据前面给出的基本事实和定理,你能用自己的语言说说“三角形内角和等于180°”这一结论的证明思路吗?处理方式:结合探索三角形内角和,引导学生小组完成问题,学生发言后教师总结并板书证明过程及三角形内角和定理.已知:如图,△ABC.求证:∠A+∠B+∠C=180°。

北师大版数学八年级上册教材最新目录

北师大版数学八年级上册教材最新目录

北师大版数学八年级上册教材最新目录第一章勾股定理
1、索勾股定理
2、一定是直角三角形吗
3、勾股定理的应用
第二章实数
1、认识无理数
2、平方根
3、立方根
4、估算
5、用计算器开方
6、实数
7、二次根式
第三章位置与坐标
1、确定位置
2、平面直角坐标系
3、轴对称与坐标变换
第四章一次函数
1、函数
2、一次函数与正比例函数
3、一次函数的图像
4、一次函数的应用
第五章二元一次方程组
1、认识二元一次方程组
2、求解二元一次方程组
3、应用二元一次方程组——鸡兔同笼
4、应用二元一次方程组——增收节支
5、应用二元一次方程组——里程碑上的数
6、二元一次方程与一次函数
7、用二元一次方程组确定一次函数表达式
8、三元一次方程组
第六章数据的分析
1、平均数
2、中位数与众数
3、从统计图分析数据的集中趋势
4、数据的离散程度
第七章平行线的证明
1、为什么要证明
2、定义与命题
3、平行线的判定
4、平行线的性质
5、三角形内角和定理。

北师大版八年级数学上册完全复习知识点+典型例题

北师大版八年级数学上册完全复习知识点+典型例题

八年级数学上册复习 第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。

满足222a b c +=的三个正整数称为勾股数。

第二章 实数1.平方根和算术平方根的概念及其性质: (1)概念:如果2x a =,那么x 是a 的平方根,记作:a 的算术平方根。

(2)性质:①当a ≥00;当a无意义;②2=aa=。

2.立方根的概念及其性质:(1)概念:若3x a =,那么x 是a 的立方根,记作:(2a =;②3a=3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成 立。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

5.算术平方根的运算律: (a ≥0,b ≥0); (a ≥0,b >0)。

第三章 图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这点定点称为旋转中心,转动的角称为旋转角。

旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成=ab a b=的角都是旋转角;对应点到旋转中心的距离相等。

第一章勾股定理 复习测试 2021-2022学年北师大版八年级数学上册(word版含答案)

第一章勾股定理  复习测试  2021-2022学年北师大版八年级数学上册(word版含答案)

北师大版八年级数学上册第一章勾股定理复习测试一.选择题1.下列各组数中,是勾股数的是().A.6,9,12B.﹣9,40,41C.52,122,132D.7,24,25 2.已知一个Rt△的两边长分别为3和4,则第三边长的平方是().A.25B.14,C.7D.7或253.如图由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是().A.16B.25C.144D.1694.同学们都学习过“赵爽弦图”,如图所示,若大正方形的面积为5,小正方形的面积为1,则每个直角三角形的两直角边的乘积为().A.1B.2C.D.5.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的个数为().A.1B.2C.3D.46.如图,某公园内的一块草坪是长方形ABCD,已知AB=8m,BC=6m,公园管理处为了方便群众,沿AC修了一条近道,一个人从A到C走A﹣B﹣C比直接走AC多走了().A.2米B.4米C.6米D.8米7.如图有一个水池,水面BE的宽为16尺,在水池的中央有一根芦苇,它高出水面2尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个芦苇的高度是().A.26尺B.24尺C.17尺D.15尺8.如图,在△ABD中,△D=90°,CD=6,AD=8,△ACD=2△B,则BD的长是().A.12B.14C.16D.189.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于().A.1.2米B.1.5米C.2.0米D.2.5米10.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为hcm,则h的取值范围是().A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24二.填空题11.一直角三角形的一条直角边长是6,另一条直角边与斜边长的和是18,则直角三角形的面积是12.在正方形网格中,A、B、C、D均为格点,则△BAC﹣△DAE=.13.如图,一株荷叶高出水面1m,一阵风吹过来,荷叶被风吹的贴着水面,这时它偏离原来位置有3m远,则荷叶原来的高度是.14.如图△ABC中,△C=90°,AD平分△BAC,AB=5,AC=3,则BD的长是.15.如图,台阶阶梯每一层高20cm,宽40cm,长50cm.一只蚂蚁从A点爬到B点,最短路程是.16.在Rt△ABC中,△C=90°,AC=9,BC=12,则点C到斜边AB的距离是.17.如图,OP=1,过点P作PP1△OP且PP1=1,得OP1=;再过点P1作P1P2△OP1且P1P2=1,得OP2=;又过点P2作P2P3△OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=A.B.C.D.18.如图,在Rt△ABC中,△C=90°,BE,AF分别是△ABC,△CAB平分线,BE,AF交于点O,OM△AB,AB=10,AC=8,则OM=.三.解答题19.已知在中,,,.(1)判断△ABC的形状,并说明理由;(2)试在下面的方格纸上补全△ABC,使它的顶点都在方格的顶点上。

北师大版八年级数学上册2 7二次根式 解答专项 练习题 (word版 含答案)

北师大版八年级数学上册2 7二次根式 解答专项 练习题  (word版 含答案)

2022-2023学年北师大版八年级数学上册《2.7二次根式》解答专项练习题(附答案)1.计算:(1)9﹣7+5;(2)÷﹣×+.2.计算题:(1)(4﹣6+3)÷2;(2)(﹣1)2+(2+)(2﹣).3.定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.4.已知y=++,求的值.5.学习二次根式后,小王认为:当x=m时,3﹣有最大值,且最大值为n,你知道m,n的值分别为多少吗?6.实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.7.已知.求﹣x﹣3y的立方根.8.已知|2022﹣a|+=a,求a﹣20222的值.9.实数a,b在数轴上对应点的位置如图所示,化简.10.把下列二次根式化简最简二次根式:(1);(2);(3);(4).11.先阅读下列解答过程,然后再解答:形如的化简,只要我们找到两个正数a,b,使a+b=m,ab=n,使得=m,,那么便有:(a>b).例如:化简:解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即:=7,,所以.问题:(1)填空:=,=;(2)化简:(请写出计算过程);(3)化简:.12.先化简,再求值:(+)﹣(+),其中x=,y=27.13.已知一个三角形的三边长分别为、6、2x.(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.14.阅读下列解题过程:===﹣=﹣2;===2+2;请解答下列问题:(1)观察上面解题过程,计算;(2)请直接写出的结果.(n≥1)(3)利用上面的解法,请化简:+++…++.15.已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?16.若a,b都是正整数,且a<b,与是可以合并的二次根式,是否存在a,b,使+=?若存在,请求出a,b的值;若不存在,请说明理由.17.计算:.18.(1)计算:.(2)因式分解:5x2﹣5y2.19.已知a=.(1)求a2﹣4a+4的值;(2)化简并求值:.20.“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位km),观测者能看到的最远距离为d(单位km),则d≈,其中R是地球半径,通常取6400km.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度h为20m,她观测到远处一艘船刚露出海平面,求此时d的值.(2)判断下面说法是否正确,并说明理由;泰山海拔约为1500m,泰山到海边的最小距离约230km,天气晴朗时站在泰山之巅可以看到大海.21.在解决问题“已知a=,求3a2﹣6a﹣1的值”时,小明是这样分析与解答的:∵a===+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2,∴a2﹣2a=1,∴3a2﹣6a=3,3a2﹣6a﹣1=2.请你根据小明的分析过程,解决如下问题:(1)化简:.(2)若a=,求2a2﹣12a+1的值.参考答案1.解:(1)原式=9﹣14+20=15;(2)原式=﹣+2=4﹣+2=4+.2.解:(1)原式=4÷2﹣6÷2+3÷2=2﹣1+3=4;(2)原式=﹣+1+4﹣3=﹣.3.解:(1)∵a与2是关于6的共轭二次根式,∴2a=6,∴a==,故答案为:;(2)∵4+与8﹣m是关于26的共轭二次根式,∴(4+)(8﹣m)=26,∴8﹣m===8﹣2,∴m=2.4.解:∵x﹣2≥0,2﹣x≥0,∴x=2,∴y=,∴===.5.解:=0时,即m=x=1时,3﹣有最大值,n最大=3,m=1.6.解:(1)由图可知:2<a<3,∴a﹣<0,2﹣a<0,∴b=|a﹣|+|2﹣a|==;(2)∵b+2=,,∴b+2的小数部分是﹣3,∴m=﹣3,∵8﹣b=8﹣(﹣3,)=11﹣,7<11﹣<8,∴11﹣的小数部分是11﹣﹣7=4﹣,∴n=4﹣,∴2m+2n+1=2﹣6+8﹣2+1=3,∴2m+2n+1的平方根为±.7.解:∵,∴,解得x=3,∴y=8,∴﹣x﹣3y=﹣3﹣24=﹣27,∴﹣x﹣3y的立方根﹣3.8.解:∵a﹣2023≥0,∴a≥2023,∴2022﹣a<0,∴a﹣2022+=a,∴=2022,∴a﹣2023=20222,∴a﹣20222=2023.9.解:由数轴可知,﹣2<a<﹣1,1<b<2,则a+1<0,b﹣1>0,所以=﹣a+[﹣(a+1)]﹣(b﹣1)=﹣a﹣a﹣1﹣b+1=﹣2a﹣b.10.解:(1)==4;(2)==2;(3)===;(4)==.11.解:(1)原式===;原式===;故答案为:;;(2)原式===;(3)原式=++++=1++2﹣+﹣2+=﹣1.12.解:原式=6x×+×y﹣4y×﹣6=6+3﹣4﹣6=﹣,当x=,y=27时,原式=﹣=﹣=﹣3.13.解:(1)周长=+6+2x=2+3+2=7.(2)当x=4时,周长=7×=14.(答案不唯一).14.解:(1)原式==+;(2)归纳总结得:=﹣(n≥1);(3)原式=﹣1+﹣+﹣+…+﹣+﹣=10﹣1=9.15.解:根据题意得:,解得:,∴=,∵2x﹣4≥0,∴x≥2.16.解:存在,理由:∵与是可以合并的二次根式,+=,∴+==5,∴当a=3,则b=48,当a=12,则b=27.17.解:原式=+﹣+2=3﹣.18.解:(1)原式=2+3﹣﹣3=;(2)原式=5(x2﹣y2)=5(x+y)(x﹣y).19.解:(1)a===2﹣,a2﹣4a+4=(a﹣2)2,将a=2﹣代入(a﹣2)2得(﹣)2=3.(2),=﹣=(a﹣1)﹣,∵a=2﹣,∴a﹣1=1﹣<0,∴原式=a﹣1+=2﹣﹣1+2+=3.20.解:(1)由R=6400km,h=0.02km,得d===16(km),答:此时d的值为16km;(2)说法是错误,理由:站在泰山之巅,人的身高忽略不计,此时,h=1.5km,则d2=2×1.5×6400=19200,2302=52900,∵19200<52900,∴d<230,∴天气晴朗时站在泰山之巅看不到大海.21.解:(1)===3+;(2)∵a====3﹣2,∴a﹣3=﹣2,∴(a﹣3)2=8,即a2﹣6a+9=8,∴a2﹣6a=﹣1,∴2a2﹣12a=﹣2,则2a2﹣12a+1=﹣2+1=﹣1.。

8年级数学北师大上册知识点

8年级数学北师大上册知识点

8年级数学北师大上册知识点
八年级数学北师大上册的知识点主要包括以下几部分:
1. 函数及其相关概念:包括变量与常量的定义,函数解析式的概念,以及函数的三种表示法及其优缺点(解析法、列表法和图像法)。

2. 绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

绝对值是非负的。

3. 倒数:如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

4. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。

画数轴时,要注意上述规定的三要素缺一不可。

5. 平方根、算数平方根和立方根:算术平方根、平方根和立方根的定义以及性质。

以上知识点是对八年级数学北师大上册的一个概括,如果需要更详细的内容,可以参考教材或者教辅资料。

完整word版八年级数学上册重点知识点总结北师大版

完整word版八年级数学上册重点知识点总结北师大版

《数学》(八年级上册)知识点总结(北师大版)第一章勾股定理1、勾股定理-----已知直角三角形,得边的关系直角三角形两直角边a,b的平方和等于斜边c的平方,即2、勾股定理的逆定理-----由边的关系,判断直角三角形如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。

3、勾股数:满足的三个正整数a,b,c,称为勾股数。

常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)……规律:(1)、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两边之和是短直角边的平方。

即当a为奇数且a<b时,如果,那么a,b,c就是一组勾股数.如:(3,4,5)(5,12,,13)(7,24,25)(9,40,41)……(2)大于2的任意偶数,2n(n>1)都可构成一组勾股数分别是:如:(6,8,10)(8,15,17)(10,24,26)……4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积……(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度//斜边上的高线/周长/面积……(3)判定三角形形状:锐角三角形,直角三角形,钝角三角形判定直角三角形a..找最长边;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状第二章实数1. 无理数的引入。

无理数的定义无限不循环小数。

一、实数的概念及分类12/ 11、实数的分类2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等根号a(a为非完全平方数或非立方数)。

(2)有特定意义的数,如圆周率π(π=3.14159265…),或化简后含有π的数,如+8等;(3)有特定结构的数,如0.1010010001…;0.585885888588885……(相邻两个5之间8的个数逐次加1等;等;(4)某些三角函数值,如二、实数的倒数、相反数和绝对值、相反数1,从o sin60数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零)a=a+b=0,a与b互为相反数,则有轴上看,互为相反数的两个数所对应的点关于原点对称,如果 b,反之亦成立。

(完整word版)北师大版数学八年级上册全套精品学案,导学案

(完整word版)北师大版数学八年级上册全套精品学案,导学案

第一章 勾股定理 1.1探索勾股定理一、问题引入:(1)观察下面下图,若每个小正方形的面积为1,则第①个图中,A S = ,B S = ,C S = . 第②个图中,A S = ,B S = ,C S = .三个正方形A 、B 、C 的面积之间有什么关系?以上结论与三角形三边有什么关系? 通过这种关系你发现了什么?勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么 即直角三角形 的平方和等于 的平方. 二、基础训练:1、如图(1),图中的数字代表正方形的面积,则正方形A 的面积为 .(1) (2)2、如图(2),三角形中未知边x 与y 的长度分别是x = ,y = .3、在Rt△ABC 中,∠C=90°,若AC =6,BC =8,则AB 的长为( )A.6B.8C.10D.12ABCCBA257三、例题展示:例1:在△ABC 中,∠C=90°,(1)若a =3,b=4,则c=_____________; (2)若a =9,c=15,则b=______________;例2:如图,一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,旗杆折断前有多高?(提示:用数学符号去表示线段的长)四、课堂检测:1、在Rt △ABC 中,∠C =90°,若AB =13,BC =5,则AC 的长为( )A.5B.12C.13D.182、已知Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( )A.24cm 2B.36cm 2C.48cm 2D.60cm 23、若△ABC 中,∠C=90°,(1)若a =5,b =12,则c = ;(2)若a =6,c =10,则b = ;(3)若a ∶b =3∶4, c =10,则a= ,b = .4、如图,阴影部分是一个半圆,则阴影部分的面积为 . (π不取近似值)第4题图5、一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长.6、(选做题)一个长为10m为梯子斜靠在墙上,梯子的顶端距地面的垂直高度为8m,梯子的顶端下滑2m后,底端向外滑动了多少米?第一章勾股定理1.2 一定是直角三角形吗一、问题引入:1、分别以下列每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?(1)3, 4, 5 (2)6, 8, 102、以上每组数的三边平方存在什么关系?结合上题你能得到什么结论?3、如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.4、满足a2+b2=c2的三个,称为勾股数.二、基础训练:1、在下列长度的各组线段中,能组成直角三角形的是()A. 5,6,7B. 1,4,9C. 5,12,13D. 5,11,122、下列几组数中,为勾股数的是()A. 4,5,6B. 12,16,20C. 10,24,26D. 2.4,4.5,5.13、若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是()A.42B.52C.7D.52或74、将直角三角形的三边扩大同样的倍数,得到的三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .都有可能三、例题展示:例1:一个零件的形状如下左图所示,按规定这个零件中∠A和∠DBC都是直角,工人师傅量得某个零件各边尺寸如下右图所示,这个零件符合要求吗?例2:如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形?请说出你的判断理由.四、课堂检测:1、三角形的三边分别等于下列各组数,所代表的三角形是直角三角形的是()A. 7,8,10B. 7,24,25C. 12,35,37D. 13,11,102、若△ABC的三边a、b、c满足(a-b)(2a+2b-2c)=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形3、满足下列条件的△ABC,不是直角三角形的是()A. b2 =c2-a2B. a∶b∶c=3∶4∶5C.∠C =∠A+∠BD.∠A∶∠B∶∠C =2∶3∶44、若三角形的三边之比为3﹕4﹕5,则此三角形为三角形.5、已知一个三角形的三边长分别是12cm,16cm,20cm,则这个三角形的面积为 .6、如图所示,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,∠B与∠C相等吗?为什么?7、(选做题)若△ABC的三边长为a,b,c满足a2+b2+c2+200=12a+16b+20c根据条件判断△ABC的形状.第一章勾股定理1.3 勾股定理的应用一、问题引入:1、勾股定理:直角三角形两直角边的 等于 .如果用a ,b 和c 表示直角三角形的两直角边和斜边,那么 .2、勾股定理逆定理:如果三角形三边长a ,b ,c 满足 ,那么这个三角形是直角三角形. 二、基础训练:1、在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15cm ,则△ABC 的面积等于( )A.108cm 2B.90cm 2C.180cm 2D.54cm 22、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)三、例题展示:例1:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,沿圆柱侧面爬行的最短路程是多少?π的值取3)。

八年级数学上册知识点北师大版(汇集4篇)

八年级数学上册知识点北师大版(汇集4篇)

八年级数学上册知识点北师大版(汇集4篇)八年级数学上册知识点北师大版(1)全等三角形一、知识框架:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.八年级数学上册知识点北师大版(2)三角形一、知识框架二、知识概念:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的内角:多边形相邻两边组成的角叫做它的内角.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.八年级数学上册知识点北师大版(3)三角形一、知识框架二、知识概念:三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的内角:多边形相邻两边组成的角叫做它的内角.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线.八年级数学上册知识点北师大版(4)全等三角形一、知识框架:二、知识概念:基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.。

(完整word)部编版八年级上册数学文学常识(整理版)

(完整word)部编版八年级上册数学文学常识(整理版)

(完整word)部编版八年级上册数学文学常识(整理版)一、数学文学常识1. 数学与文学的关系数学是一门抽象、逻辑严密的学科,而文学则强感、想象力和表达能力。

尽管它们在形式上看起来截然不同,但数学与文学之间有着密切的联系。

数学与文学的共同点:- 创造力:数学家和作家都需要发挥创造力,在解决问题或创作作品时思维灵活。

- 逻辑性:数学要求逻辑严密,而文学也需要有一定的逻辑性,以保证故事情节和角色发展合理。

- 表达能力:数学家通过公式和符号表达数学概念,作家则通过文字表达情感和思想。

数学与文学的不同点:- 目的:数学的目的是解决问题和研究规律,而文学的目的是表达情感和传达思想。

- 形式:数学是一门抽象和符号化的学科,而文学则通过故事、诗歌和戏剧等形式来表达。

2. 数学中的文学元素尽管数学强调逻辑和严密性,但也包含了一些文学元素,例如:- 比喻和隐喻:在数学中,比喻和隐喻被用来解释抽象概念,帮助读者更好地理解数学原理。

- 故事性:一些数学问题可以通过设定情景和角色的方式进行解释和解答,增加了问题的趣味性和可理解性。

- 表达方式:数学的表达方式可以丰富多样,可以使用文字、图形、符号等来表达数学概念。

二、总结数学和文学虽然在形式和目的上有所不同,但它们之间存在着密切的联系和共同点。

数学可以通过一些文学元素来更好地传达和表达数学概念,增加研究的趣味性和理解性。

在研究数学的过程中,我们也可以借鉴文学的思维方式和表达技巧,培养创造力和逻辑思维。

注:以上内容为个人总结,不保证完全准确,具体内容请参考相关教材和资料。

---This document provides a brief overview of the relationship between mathematics and literature, highlighting their similarities and differences. It also explores the presence of literary elements within mathematics and the potential benefits of integrating the two disciplines. The content above is a summarized version and the accuracy is not guaranteed. For more detailed information, please refer to relevant textbooks and resources.。

(完整word版)(最终版)北师大版八年级上册数学复习知识点和例题相结合,推荐文档

(完整word版)(最终版)北师大版八年级上册数学复习知识点和例题相结合,推荐文档

北师大版数学八年级上册知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+例 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )12例 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为( ).(A )6 (B )8.5 (C )1320 (D )13602、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

例 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是 (A )锐角三角形 (B )钝角三角形(C )等腰直角三角形(D )直角三角形3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

例 下列各组中,不能构成直角三角形的是( ).(A )9,12,15 (B )15,32,39 (C )16,30,34 (D )9,40,41第二章 实数一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等例 下列命题中,正确的是( )。

A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。

(完整word版)北师大--数学-八年级上册-知识点总结(良心出品必属精品)

(完整word版)北师大--数学-八年级上册-知识点总结(良心出品必属精品)

---------------------------------------------------------------最新资料推荐------------------------------------------------------/ 191 北师大数学 八年级上册 知识点总结)(无限不循环小数负有理数正有理数无理数)32,21()()3, 2, 1()3, 2, 1, 0 (无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、实数第一章 勾股定理 一、勾股定理:直角三角形两直角边 a , b 的平方和等于斜边 c 的平方, 即二、 勾股定理的逆定理:如果三角形的三边长 a , b , c 有关系 直角三角形。

三、 勾股数:满足的三个正整数, 称为勾股数。

常见的勾股数组有:(3, 4, 5); (5, 12, 13); (8, 15, 17); (7, 24,25); (20, 21, 29); (9, 40, 41);(这些勾股数组的倍数仍是勾股数) , 那么这个三角形是 222 第二章实数 一、 实数的概念及分类 1、 实数的分类 2、 无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住无限不循环这一时之,归纳起来有四类:32, 7等;(2)有特定意义的数,如圆周率,或化简后含有的数,如3(3)有特定结构的数,如 0.1010010001等;(4)某些三角函数值,如 sin60o等(1)开方开不尽的数,如+8 等;二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版数学八年级上册知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+例 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).(A )6 (B )8 (C )10 (D )12例 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为( ).(A )6 (B )8.5 (C )1320 (D )13602、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

例 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(22=-+,则此三角形是 (A )锐角三角形 (B )钝角三角形(C )等腰直角三角形(D )直角三角形3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

例 下列各组中,不能构成直角三角形的是( ).(A )9,12,15 (B )15,32,39 (C )16,30,34 (D )9,40,41第二章 实数一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等例 下列命题中,正确的是( )。

A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数是一对数(只有符号不同的两个数互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= - b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。

例 绝对值小于π的整数有__________。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥0例 若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。

A 、0 B 、 21C 、2D 、不能确定3、立方根一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

例 38-=________,38-=_________。

例 下列说法中,错误的是( )。

A 、4的算术平方根是2B 、81的平方根是±3C 、8的立方根是±2D 、立方根等于-1的实数是-1例 代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。

A 、1个 B 、2个 C 、3个 D 、4个例 有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。

A 、-1 B 、1 C 、0 D 、±1四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a 必须是非负数。

2、性质:(1))0()(2≥=a a a )0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥∙=b a b a ab ()0,0(≥≥=∙b a ab b a ) (4))0,0(>≥=b a bab a ()0,0(>≥=b a baba ) 3、运算结果若含有“a ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式例 计算33841627-+-+的值是( )。

A 、1 B 、±1 C 、2 D 、7六、实数的运算(1)六种运算:加、减、乘、除、乘方、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab = 乘法对加法的分配律 ac ab c b a +=+)(例 已知052522=--+-xx x y ,求7(x +y )-20的立方根。

例 若13223+-+-=x x y ,求3x +y 的值。

第三章 位置的确定一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;x 轴和y 轴统称坐标轴。

它们的公共原点O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念对于平面内任意一点P,过点P 分别x 轴、y 轴向作垂线,垂足在上x 轴、y 轴对应的数a ,b 分别叫做点P 的横坐标、纵坐标,有序数对(a ,b )叫做点P 的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

例点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则M 点的坐标为()A. (5,3)B. (-5,3)或(5,3)C. (3,5)D. (-3,5)或(3,5)4、不同位置的点的坐标的特征(1)各象限内点的坐标的特征点P(x,y)在第一象限0,0>⇔yx>点P(x,y)在第二象限0x⇔y,0><点P(x,y)在第三象限0x⇔y<,0<点P(x,y)在第四象限0⇔yx>,0<(2)坐标轴上的点的特征点P(x,y)在x轴上0=⇔y,x为任意实数点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)即原点(3)两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x)上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数(4)和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)关于x轴、y轴或原点对称的点的坐标的特征点P与点P’关于x轴对称⇔横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)点P 与点P’关于y 轴对称⇔纵坐标相等,横坐标互为相反数,即点P (x ,y )关于y 轴的对称点为P’(-x ,y )点P 与点P’关于原点对称⇔横、纵坐标均互为相反数,即点P (x ,y )关于原点的对称点为P’(-x ,-y )(6)点到坐标轴及原点的距离 点P(x,y)到坐标轴及原点的距离: (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +例 设点A (m ,n )在x 轴上,位于原点的左侧,则下列结论正确的是( )A. m=0,n 为一切数B. m=0,n<0C. m 为一切数,n=0D. m<0,n=0例 在坐标轴上与点M (3,-4)距离等于5的点共有( )A. 2个B. 3个C.4个D. 1个例 如图,坐标平面内一点A (2,-1),O 是原点,P 是x 轴上一个动点,如果以点P 、O 、A 为顶点的等腰三角形,那么符合条件的动点P 的个数为A .2B . 3C .4D .5例 如图所示,四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴,y 轴_ P_y_x_ A_ O的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是()A.102B.10C.4D.6三、坐标变化与图形变化的规律:坐标(x,y)的变化图形的变化x × a或y × a 横向或纵向拉长(压缩)为原来的a倍x × a,y × a 放大(缩小)为原来的a倍x ×(-1)或y ×(-1) 关于y 轴或x 轴对称x ×(-1),y ×(-1) 关于原点成中心对称x +a或y+ a 沿x 轴或y 轴平移a个单位x +a,y+ a 沿x 轴平移a个单位,再沿y 轴平移a个单位例在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A、向右平移了3个单位长度B、向左平移了3个单位长度C、向上平移了3个单位长度D、向下平移了3个单位长度第四章一次函数一、函数:一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

相关文档
最新文档