Optimal resource allocation for OFDM multiuser channels

合集下载

基于Kuhn-munkres最优匹配的D2D资源分配算法设计

基于Kuhn-munkres最优匹配的D2D资源分配算法设计
优先出版
计 算 机 应 用 研 究
第 32 卷
基于 Kuhn-munkres 最优匹配的 D2D 资源分配算法设计 *
黄俊伟,刘晓江
(重庆邮电大学 通信与信息工程学院,重庆 400065) 摘 要:由于资源复用,D2D 链路与蜂窝链路之间会产生同频干扰。为了抑制这种干扰, 提出了一种基于 Kuhn-munkres
0 引言
随着移动多媒体业务的不断发展,人们对移动通信系统中 的吞吐量,用户传输速率和用户体验提出了更高的要求。蜂窝移 动通信终端直通通信 (Device-to-Device)是移动通信领域中的一 个研究热点。D2D 是指相邻的终端可以在近距离范围内通过直 连链路进行数据传输,而不需要通过中心节点(即基站)进行 转发。 由于 D2D 复用蜂窝用户的无线资源进行通信, 因此在提高 频谱利用率和提高系统吞吐量方面占据着巨大优势。 除此之外, D2D 通信技术还能通过适当的功率控制来降低终端发射功率, 从而提高终端电池的使用年限。 但是,由于资源复用的引入,在蜂窝小区内 D2D 链路和蜂 窝通信链路之间就会产生一定的同频干扰。为了最大的抑制这 种干扰, 小区内的无线资源管理和 D2D 用户的功率控制在 D2D 通信中显得尤为重要。文献[1]中提出了一种基于干扰感知的无 线资源分配方案。 但是该方案只允许一对 D2D 用户复用一个蜂 窝用户的资源。文献[2]中提出了一种基于不同 Qos 需求的资源
--------------------------------
1 LTE 系统中的 D2D 模型
1.1 D2D 通信模型 如图 1.1,在允许 D2D 通信的蜂窝网络中,考虑单小区模 式。一个小区内包括 N 个蜂窝用户(Ce_UE),M 对 D2D 通信用 户(D_UE)和一个位于小区中心的基站(eNB)。N 个蜂窝用户组 成集合 C Ce _ UE1 , Ce _ UE2 组成一个集合 D D 2D1 , D 2 D2

Source time scale and optimal bufferbandwidth trade-off for regulated traffic in an atm nod

Source time scale and optimal bufferbandwidth trade-off for regulated traffic in an atm nod

Source Time Scale and Optimal Buffer/Bandwidth Trade-off for Regulated Traffic in an ATM NodeFrancesco Lo PrestiDip.di Informatica,Sistemi e Produzione Universit`a di Roma“Tor Vergata”00133Roma,Italy Zhi-Li Zhang,Don Towsley and Jim Kurose Computer Science DepartmentUniversity of MassachusettsAmherst,MA01003,USATo appear inProceedings of IEEE INFOCOM,Kobe Japan,1997AbstractIn this paper,we study the problem of resource allo-cation and control for an ATM node with regulated traf-fic.Both guaranteed lossless service and statistical ser-vice with small loss probability are considered.We inves-tigate the relationship between source characteristics andthe buffer/bandwidth trade-off under both services.Our contributions are the following.For guaranteedlossless service,wefind that the optimal resource alloca-tion scheme suggests a time scale separation of sourcessharing an ATM node withfinite bandwidth and bufferspace,with the optimal buffer/bandwidth trade-off is de-termined by the sources’time scale.For statistical ser-vice with a small loss probability,we present a new ap-proach for estimating the loss probability in a shared buffermultiplexor with the so called“extremal”on-off,periodicsources.Under this approach,the optimal resource al-location for statistical service is achieved by maximizingboth the benefits of buffering sharing and bandwidth shar-ing.The optimal buffer/bandwidth trade-off is again deter-mined by time scale separation.Besides their obvious application to resource allocationand call admission control,our results have many other im-plications in network design and control such as networkdimensioning and traffic shaping.1IntroductionResource allocation is an extremely challenging and im-portant problem in the design and control of high-speednetworks such as ATM networks.The problem is particu-larly complicated by the need to support Quality-of-Servicescale separation.Sources are classified as having either “fast”or“slow”time scales,reflecting the efficacy of either buffer sharing or bandwidth sharing among the sources.For statistical service where a small loss probabil-ity is allowed,we derive a new approach to estimate the loss probability using our results for the optimal buffer/bandwidth trade-off obtained for lossless service. By giving a new interpretation to the virtual trunk/buffer systems introduced in[9],we are able to transform the two-resource allocation problem into two independent single-resource allocation problems.The best buffer/bandwidth separation is explored by optimizing resource alloca-tion along the optimal buffer/bandwidth trade-off curve. Through numerical examples,we demonstrate that source time scales also have a major impact on the optimal re-source allocation under statistical service,and the optimal buffer/bandwidth trade-off is again reflected by the source time scale separation.Our work differs from[9]in several aspects.First,our perspectives on resource allocation and control problems are somewhat different.The authors in[9]are primarily interested in call admission control.This is reflected in theirfixing the system bandwidth and buffer space. Resource allocation to each source is independent of the sources’characteristics.In our approach,wefix one re-source(bandwidth)andfind the optimal allocation of the other resource(buffer space).Furthermore,resource allocation is made according to the time scale separation of the system and the source’own time scale.Due to this difference in perspectives,we are able to study the role of source time scale and investigate optimal buffer/bandwidth trade-off for both lossless service and statistical service with a given loss probability.We are also able to explore the maximal benefits of both buffer sharing and bandwidth sharing.This is important,as the efficacy of buffer sharing and that of bandwidth sharing for sources with different time scales are quite different.Numerical examples in-dicate that our approach provides a better estimate of the system loss probability than[9].The remainder of this paper is organized as follows. We start with the optimal resource allocation problem for guaranteed lossless service in Section2,and demonstrate the relationship between source time scale and optimal buffer/bandwidth trade-off.In Section3,we study the opti-mal resource allocation problem for statistical service with small loss probability.We present a new approach to es-timate the system loss probability by maximizing the ef-ficacy of buffer and bandwidth sharing.In Section4,nu-merical examples are presented to illustrate the relationship between source time scale and buffer/bandwidth trade-off. The effectiveness of our approach is demonstrated and comparison with the results in[9]is also made.The pa-per is concluded in Section5.2Guaranteed Lossless ServiceThe starting point of our study is the analysis of the op-timal resource allocation scheme for guaranteed lossless service.Consider an ATM node with a total amount of bandwidth and buffer space.Suppose there are virtual circuits sharing the node.Each virtual circuit is associated with a traffic source that is leaky bucket regu-lated[1,18].We consider the following two scenarios.In thefirst scenario,each virtual circuit is allocated afixed portion of the total bandwidth and buffer space with no resource sharing among the virtual circuits.We call this system lossless segregated system.In the second scenario, the resources are shared among the virtual circuits.We call such a system lossless multiplexing system.We are inter-ested in optimal resource allocation schemes that,for given bandwidth,minimize the buffer requirement while en-suring that no virtual circuits ever incur losses in the above scenarios.We show that for guaranteed lossless service, the optimal resource allocation schemes for both systems are the same.Hence in terms of resource requirements,the lossless multiplexing system is effectively equivalent to the lossless segregated system.First,we describe the regulated traffic sources.A leaky bucket regulator is characterized by three pa-rameters:the token rate,the token bucket size and the peak rate,where.Let denote the amount of traffic passing through the regulator in the time interval.Then(1) where is called the minimum envelope process for the regulated source[5].It bounds the amount of traffic depart-ing from the regulator during any time interval of length.Let denote the maximum length of a peak rate burst, i.e.,2.1Lossless Segregated SystemWefirst consider the optimal resource allocation prob-lem for the lossless segregated system(Figure??).Wefix the total bandwidth for the system,and consider alloca-tion schemes that minimize the total buffer space required to ensure that no virtual circuits incur any losses.For,suppose each source in class is al-located bandwidth and buffer space.Letdenote the total amount of bandwidth allocated to class sources.The stability condition requires that for each.In order to ensure that no losses occur for any vir-tual circuit,the amount of buffer space allocated to a class source is determined by the maximum queue length for each segregated virtual circuit,i.e.,(2) The overall buffer space required to ensure that no virtual circuits encounter losses is thus.This determines the buffer requirement under the segregated al-location scheme.Given the linearity of(2),the optimal buffer allocation problem can be formulated as the following Linear Pro-gramming(LP)problem:Problem Minimizesubject to:It is clear that the objective function decreases whenever bandwidth is taken from classes with smaller and is allocated to classes with larger.As a consequence, the optimal allocation scheme consists of allocating peak rate to as many classes with large as possible without violating the constraint,while allocating only average rate to classes with small.Formally,letbe the smallest index such that(3) Then the optimal resource allocation scheme that results in the minimum buffer requirement for the given bandwidth is as follows:.This observation provides the fol-lowing interesting interpretation as to how the system re-sources are optimally shared among the regulated sources in the lossless multiplexing system.Specifically,when re-sources are optimally allocated in the lossless multiplex-ing system,the virtual circuits behave as if each of them was allocatedfixed bandwidth andfixed buffer space, just as in the lossless segregated system.Hence the loss-less multiplexing system can be effectively treated as if it were the lossless segregated system.This observation pro-vides a motivation for the approach we take in Section3 for studying resource allocation schemes under statistical multiplexing with small loss probability.2.3Source Time Scale and Optimal Buffer/Bandwidth Trade-off CurveThis far we have studied the resource allocation prob-lem byfixing the bandwidth.Now we consider the buffer/bandwidth trade-off for lossless service with a given set of regulated sources.For any bandwidth such that,the index defined in(3)is determined solely by the regulated source parameters and plays a key role in determining the minimal buffer requirement (see(6)).Hence in order to study the buffer/bandwidth trade-off,it suffices to study as a function of.From (3),we see that is non-decreasing in:when,and when.As a consequence,from(4)and(5),we have that the allocated bandwidth to class sources is a non-decreasing func-tion of,whereas the buffer space allocated to these sources is a non-increasing function of.Therefore,the buffer requirement is a decreasing function of. Moreover,from(4)and(5),we obtain thatPT T offa(t)onTtFigure 2:Extremal on-off,periodic curve.u(t)ctbT on T offv(t)tTD onFigure 3:Buffer/bandwidth separation.of [7,13,19,20,21].In particular,such processes account for the worst-case statistical behavior in a bufferless mul-tiplexor in the sense that they maximize the average loss rate [21]and the loss probability estimated by the Cher-noff bound [13,21].Let denote an extremal on-off,periodic departure process from a leaky bucket regulator with parametersas shown in Figure 2.Then the lengths of the onand off periods are .The source period is .Let denote the total amount of data generated during the on period.Then3.2Estimating Loss Probability for StatisticalServiceRecall that we are assuming that the system resources are not sufficient to support lossless service,i.e.,lies below the buffer/bandwidth trade-off curve in Fig-ure4.In this section,we present a new approach for es-timating the system loss probability in such cases.This approach exploits the buffer/bandwidth separation deter-mined by a virtual buffer/trunk system and exploits the op-timal buffer/bandwidth trade-off curve for lossless service.Consider a lossless segregated system with a totalamount of bandwidth and buffer space where lies on the buffer/bandwidth trade-off curve.Be-cause the system resource pair lies below thebuffer/bandwidth trade-off curve,we must have either or or both.We call such a system a virtual lossless segregated system.In the virtual loss-less segregated system,each source of class,,,has a trunk offixed bandwidth and a buffer offixed size such that,,and the resources and are al-located to each virtual buffer/trunk system according to the optimal resource allocation scheme described in Sec-tion2.1.Hence no sources suffer any losses in the virtual buffer/trunk systems.Let and denote the utilized bandwidth and the buffer contents of source in the virtual buffer/trunk system,where and are two pe-riodic processes synchronized with source(i.e.,they all have the same phase).Interpreting the virtual buffer/trunk system as a“resource separator”,thenand represent,respectively,the bandwidth and buffer consumed by source at time.Thus at any time, the total bandwidth requirement of all sources is,while the total buffer requirement of all sources is.The virtual loss-less segregated system separates the bandwidth and buffer requirements of the sources,thus enabling us to treat them separately.By imagining that the traffic sources go through a vir-tual lossless segregated system that separates their band-width and buffer requirements,we reduce the difficult task of estimating the system loss probability in a buffered mul-tiplexor withfinite resources into that for two simpler sys-tems:a trunk with bandwidth(but no buffer)and a storage system with buffer space(but no server).At any time,the sources demand a total amount of band-width from the trunk and a total amount of buffer space from the storage system.The sources will in-cur losses if either or.Therefore, we can use the probability that either event occurs as anC’(C ,B )v v(C,B)BandwidthBufferFigure4:Relationship between and the buffer/bandwidth trade-off curve .upper bound on the loss probability of the real sys-tem.(This buffer/bandwidth separation approach for esti-mating the system loss probability is justified and made rigorous in[12].)By choosing different resource pairs along the buffer/bandwidth trade-off curve,the virtual lossless segregate system“regulates”the sources’bandwidth and buffer requirements,thus providing a trade-off between them.The rest of this section is devoted to the determination of the resource pair that optimizes the system loss probability estimate.Let and be two random variables that represent respectively the instantaneous bandwidth requirement and buffer requirement of source at a random time.Then is a Bernoulli random variable taking value with probability,.Moreover,,,,are all independent,as are,,.Define and.From the above discussion it follows thator(10)Since(10)is valid for any choice of a resource pair on the buffer/bandwidth trade-off curve,we have(11)The minimization problem on the right hand side of(11) reveals an interesting trade-off between buffer and band-width in the virtual buffer/trunk systems.Intuitively,the resource pair that minimizes the probability on the right hand side of(11)represents the“best”separa-tion of bandwidth and buffer requirements of the resources.6This separation is obtained by optimizing the resource allo-cation along the optimal buffer/bandwidth trade-off curve.For any,and can be estimated using the Chernoff bound.For, let and de-note the moment generating functions of and.Define andwhere,(15)Actually we can show(see[12])that the choice of can be restricted to the segment of the buffer/bandwidth trade-off curve where and (the highlighted segment on the buffer/bandwidth trade-off curve in Figure4).Sinceis an increasing in,the above optimization can be solved in a straightforward manner[12].Let de-note the solution to the optimization problem,then the loss probability can be estimated by.This estimate can be further refined by adding a prefactor that represents an asymptotic correction term for the Chernoff bound[4].4Numerical ExamplesIn this section,we present numerical examples to il-lustrate the results of the previous sections.Our focus is on the relationship between source time scale and the optimal buffer/bandwidth trade-off,and on the effect of this buffer/bandwidth trade-off on admissible regions un-der both deterministic lossless service and statistical ser-vice with small loss probabilities.In comparison to pre-vious works that consider multiplexing of periodic on-off sources[9,10,11,14,15,16],an important contribution50001000015000200002500030000350004000045000500001520253035404550 BufferSize(cells)Bandwidth (Mbps)S=125S=250S=500Figure5:Buffer/bandwidth trade-off for a single class ().of our present work lies in exploiting the different sources times scales existing in heterogeneous traffic sources.In particular,we show how the buffer/bandwidth trade-off is determined by the source time scale separation and that the boundary of the admissible region for heterogeneous sources can be severely non linear if the sources have very different time scales.In the following examples,we describe regulated sources using the token rate,the peak rate,and the burst-size in place of the usual token bucket size. can be obtained from from the identity2000400060008000100001200050100150200250300350B u f f e r S i z e (c e l l s )Bandwidth (Mbps)L=0L=10e-9Figure 6:Buffer/bandwidth trade-off for two classes.class 11.5700.152550100150200050100150200K 2K1L=0L=10e-9L=10e-7L=10e-5Figure 8:Admissible region:.is maximized.Because,the utilization istimal buffer/bandwidth trade-off is again determined by the time scale separation and reflects the efficacy of buffer sharing and bandwidth sharing among sources with differ-ent time scales.Through numerical investigations,we il-lustrated the relationship of source time scale and the op-timal buffer/bandwidth tradeoff and discussed the implica-tions of our results in resource allocation and call admis-sion control.Our results have many other implications in network de-sign and control such as network dimensioning and traffic shaping,in addition to resource allocation and call admis-sion control in an ATM node.This will be the subject of future research.References[1]ATM Forum,Technical Committee.Traffic Management Specifi-cation Version4.0,atmf95-0013R6.[2]V.Benes.General Stochastic Processes in the Theory of Queues.Reading,MA:Addison Wesley,1963.[3]P.Billingsley.Probability and Measures,2nd ed.New York:Wi-ley,1986.[4]R.Bahadur and R.Rao.On deviations of the sample mean.Ann.Math.Statis.,V ol.31,pp.1015-1027,1960.[5] C.S.Chang.Stability,Queue Length and Delay of Deterministicand Stochastic Queueing Networks,IEEE Transaction on Auto-matic Control,V ol.39,No.5,pp.913-931,May1994.[6] E.Coffman,B.Igelnik and Y.Kogan.Controlled Stochastic Modelof a Communication System with Multiple Sources,IEEE Trans.on Information Theory,V ol.37,No.5,pp.1379-1397,May1991.[7] B.Doshi.Deterministic Rule Based Traffic Descriptors for Broad-band ISDN:Worst Case Behavior and Connection Acceptance Control,Proceedings of IEEE INFOCOM93,pp.1759-1764, San Francisco,March1993.[8] A.Elwalid and D.Mitra.Analysis,Approximation and AdmissionControl of a Multi-Service Multiplexing System with Priorities, Proceedings of IEEE INFOCOM95,pp.463-472,Boston,April 1995.[9] A.Elwalid,D.Mitra and R.Wentworth.A New Approach for Allo-cating Buffer and Bandwidth to Heterogeneous,Regulated Traffic in an ATM Node,IEEE Journal on Selected Area in Communica-tions,V ol.13,No.6,pp.1115-1127,August1995.[10]J.Garcia,J.Barcelo and O.Casals.An Exact Model for the Multi-plexing of Worst Case Traffic Sources,Data Communications and Their Perfomance,S.Faida and R.Onvural,Eds.:Chapman& Hall,pp.3-17,1995.[11]K.Kvols and S.Blaabjerg.Bounds and Approximations for thePeriodic on/off Queue with Applications to ATM Traffic control, Proceedings of IEEE INFOCOM92,pp.487-494,Florence,May 1992.[12] F.Lo Presti,Z.Zhang,D.Towsley and J.Kurose.Source TimeScale and Optimal Buffer/Bandwidth Trade-off for Regulated Traf-fic in an ATM Node,Technical Report UM-CS-96-38,Computer Science Department,University of Massachusetts,June1996.[13] D.Mitra and J.Morrison.Multiple Time Scale Regulation andWorst Case Processes for ATM Network Control,Proceedings ofthe34th Conference on Decision and Control,pp.353-358,NewOrleans,December1995.[14]I.Norros,J.Roberts,A.Simonian and J.Virtamo.The Superposi-tion of Variable Bit Rate Sources in an ATM Multiplexer,IEEEJournal on Selected Area in Communications,V ol.9,No.3,pp.378-387,April1991.[15]J.Roberts and J.Virtamo.Evaluating Buffer Requirements in anATM Multiplexer,Proceedings of GLOBECOM89,pp.1473-1477,1989.[16]J.Roberts and J.Virtamo.The Superposition of Periodic Cell Ar-rival Streams in an ATM Multiplexer,IEEE Trans.on Communi-cations,V ol.39,No.2,pp.298-303,February1991.[17] A.Simonian and rge Deviations Approximation forFluid Queues fed by a large number of on/off sources,Proc.ITC-14,betoulle and J.Roberts,Eds.New York:Elsevier,1994,pp.1013-1022.[18]J.Turner.New Directions in Communications(or Which Way tothe Information Age?),IEEE Comm.Mag.,October1986.[19]T.Worster.Modeling Deterministic Queues:the Leaky Bucket asan Arrival Process,Proc.ITC-14,betoulle and J.Roberts,Eds.New York:Elsevier,1994,pp.581-590.[20]N.Yamanaka,Y.Sato and K.Sato.Performance Limitations ofLeaky Bucket Algorithm for Usage Parameter Control of Band-width Allocation Methods,IEICE mun.,V ol.E75-B.No.2,pp82-86,1992.[21]Z.Zhang,J.Kurose,J.Salehi and D.Towsley.Smoothing,Statis-tical Multiplexing and Call Admission Control for Stored Video,Technical Report UM-CS-96-29,Computer Science Department,University of Massachusetts,Febraury1996.A revised version toappear in IEEE Journal of Selected Areas in Communications,Spe-cial Issue on“Real-Time Video Services in Multimedia Networks”. 10。

提名国家自然科学奖项目公示

提名国家自然科学奖项目公示

提名国家自然科学奖项目公示提名国家自然科学奖项目公示项目名称移动终端协作通信基础理论研究提名单位教育部项目简介:未来无线数据流量增长将超出网络负载能力,由于“固定基础设施数量以及接入信道”的限制,传统通过密集部署提升网络容量的方案受到严峻挑战。

因此,要从进一步提高无线频谱资源利用的有效性,需要改进现有的无线通信体系框架,引入新的“通信自由度”,这是一个挑战性的问题,解决该问题将为蜂窝网络发展提供重要科学支撑。

该项目在国家自然基金委优秀青年基金和青年973等项目的持续支持下,在传统蜂窝网络中增加“移动终端直通协作层”,揭示了通过终端复用提升网络容量机理,建立了协作信道模型,提出了高效传输和优化方案。

主要科学发现如下:1. 揭示了移动终端复用提升网络容量机理:发现了移动接入点数量和网络容量指数递增的规律,首次提出了通过在蜂窝网络中引入终端通信自由度提升网络容量的方法,建立终端直通局域网络架构和优化理论,逼近了蜂窝网络容量极限。

2. 建立了移动终端间协作通信信道模型:提出了基于动态散射体密度的终端间直通几何统计信道建模方法,首次给出了区域散射体密度的概念,建立了一套完整的终端间协作信道模型,已被广泛作为无线终端间协作通信技术理论研究的统一信道平台。

3. 提出了移动终端网络安全传输和优化方法:阐明了动态拓扑结构的多跳终端协作系统中路径选择对网络性能的影响,剖析了移动中继信道安全容量,提出了自适应无线网络安全编码,大幅度提升无线中继系统的鲁棒性。

8篇代表性论文被SCI 论文他引700余次,其中5篇入选ESI高被引用论文, 1篇获IEEE ComSoc的伦纳德•亚伯拉罕奖(Leonard G. Abraham Prize,IEEE JSAC最佳论文奖)。

共发表SCI 论文50 余篇,相关工作获得专利8 项,5项联合提案被第四代移动通信国际标准规范采纳(3GPP LTE)。

第一完成人是杰青以及首届青年973项目负责人,第二完成人是获得国家自然基金委优秀青年基金和IEEE亚太地区杰出科学家奖。

多用户大规模MIMO系统能效资源分配算法

多用户大规模MIMO系统能效资源分配算法

多用户大规模MIMO系统能效资源分配算法佚名【摘要】该文针对多用户大规模多输入多输出(MIMO)移动通信上行系统,提出一种基于能效优化的资源分配算法。

所提方法在采用最大比合并(MRC)接收情况下,满足用户数据速率和可容忍的干扰水平约束条件下,以最大化系统能效下界为准则建立优化模型。

根据分数规划的性质,把原始的分数最优化问题转换成减式的形式,进而采用凸优化的方法,通过联合调整基站端的发射天线数和用户的发射功率来优化能效函数。

仿真结果表明,所提算法与穷举算法在能效上的差距不足9%,并且有较好的系统频谱效率性能,同时算法复杂度得到了显著降低。

%An energy-efficient resource allocation scheme is proposed for multi-user massive MIMO mobile communication uplink system. A mathematical formulationof optimization issue is provided with the objective of maximizing system energy efficiency lower bound under the data rate of user and tolerable interference level constraint, meanwhile the Base Station (BS) uses a Maximum-Ratio Combining (MRC) receiver. By transforming the originally fractional optimization problem into an equivalent subtractive form using the properties of fractional programming, then convex optimization is adopted to maximize the energy efficiency. Specifically, both the numbers of antenna arrays at the BS and the transmit data rate at the user are adjusted. Simulation results show that the energy-efficiency difference between the proposed algorithm and the exhaustive algorithm is less than 9%, at the same time, the performance of spectral-efficiency of the proposed algorithm is very well and the complexity is significantly reduced.【期刊名称】《电子与信息学报》【年(卷),期】2015(000)009【总页数】6页(P2198-2203)【关键词】无线通信;大规模多输入多输出;多用户;资源分配;上行系统;能效【正文语种】中文【中图分类】TN921 引言随着无线通信设备的能量消耗急剧增加和对全球变暖问题的高度关注,绿色通信逐渐成为一种趋势。

南京邮电大学开题报告模板

南京邮电大学开题报告模板

南京邮电大学毕业设计(论文)开题报告题目学生姓名班级学号专业提纲(开题报告2000字以上):1.对指导教师下达的课题任务的学习与理解随着无线通信业务需求量急剧增长,有限的频谱资源显得越来越紧张。

未来物联网与无线通信网的融合更将占用频谱资源的范围扩展到世上万物。

由于多数频谱资源被分配作授权频段,可灵活使用的非授权频段十分有限,而相当数量的授权频谱资源利用率非常低。

目前,为提高频谱资源利用率,大部分研究都集中在编码调制等集中式静态频谱分配策略上,并不能灵活地完成时间空间上已分配频谱的动态复用。

为解决这一矛盾,Joseph Mitola博士最早于1999年提出了认知无线电(Cognitive Radio)的概念。

认知无线电的基本出发点是:为提高频谱利用率,具有认知功能的无线通信设备可以按照某种“伺机(Opportunistic Way)”的方式工作在已授权频段内。

实现这一动态频谱复用的前提是必须保证非授权用户不会影响到已授权用户的通信,其核心是通过动态频谱感知来探测未使用的频段,合理占用其中的合适频段,并动态地根据感知环境信息改变频段、发射功率及调制方式等参数。

由此,认知无线电必须具备对环境的感知能力、对环境变化的学习能力和自适应性、通信质量的高可靠性、对频谱资源的充分利用和系统功能模块的可重构性,具体来说分三个功能:对无线环境场景分析(包括空间电磁环境中干扰温度的估计和频谱空穴的检测)、信道状态估计及其容量预测(如信道状态信息估计,信道容量测试等)、功率控制和动态频谱管理(通过空间射频激励来分析电磁环境,寻找满足干扰温度要求的频段,启动通信过程)。

目前的多载波调制技术中,正交频分复用技术(OFDM)具有便于自适应调整参数的子载波结构,其接收端的快速傅里叶变换模块也可同时用于频谱感知,因此成为实现认知无线电系统的理想技术之一。

OFDM系统的主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。

子梯度法算法介绍

子梯度法算法介绍
“In many bands, spectrum access is a more significant problem than physical scarcity of spectrum, in large part due to legacy command-and-control regulation that limits the ability of potential spectrum users to obtain such access.”
Duy T. Ngo, Student Member, IEEE, Chintha Tellambura, Senior Member, IEEE, and Ha H. Nguyen, Senior Member, IEEE
Abstract—This paper considers the primary user activity or the subchannel availability in optimally distributing the available resources for an orthogonal frequency-division multiple-access (OFDMA) cognitive radio multicast network. For this purpose, a risk-return model is presented, and a general rate-loss function, which gives a reduction in the attainable throughput whenever primary users reoccupy the temporarily accessible subchannels, is introduced. Taking the maximization of the expected sum rate of secondary multicast groups as the design objective, an efficient joint subcarrier and power-allocation scheme is proposed. Specifically, the design problem is solved via a dual optimization method under constraints on the tolerable interference thresholds at individual primary user’s frequency bands. It is shown that as the number of subcarriers gets large (which is often the case in practice), the dual-domain solution becomes globally optimum with regard to the primal problem. More attractively, the “practically optimal” performance of this approach is achieved with a substantially lower complexity, which is only linear in the total number of subcarriers as opposed to exponential complexity typically required by a direct search method. Our proposed design is valid for unicast and multicast transmissions and is applicable for a wide range of rate-loss functions, among which, the linear function is a special case. The superiority of the dual scheme is thoroughly verified by numerical examples.

Optimal Resource Allocation - Home

Optimal Resource Allocation - Home
• The size of the tax gap to be addressed • The noncompliance rate in each activity • Average “yield” in each activity • Average benefit/cost in each activity • Direct enforcement results only • “No-change” rates • Rules of thumb • Vague perceptions of noncompliance
• Weights
Late payments vs. timely payments
▪ Apply a discount rate
Enforcement refunds vs. enforced assessments Private compliance costs vs. government costs
A Framework for Optimal Resource Allocation
for the IRS
Alan Plumley International Conference on Institutional Taxation Analysis
21 September 2009
The Most Crucial Question
• What is the “best” allocation of IRS resources? Is there one right answer?
Enforcement vs. Service? Audit vs. Collection? In-person vs. Internet Services? Individuals vs. Businesses? IRS vs. Private costs?

非理想条件下OFDMA系统物理层安全的资源分配算法

非理想条件下OFDMA系统物理层安全的资源分配算法

非理想条件下OFDMA系统物理层安全的资源分配算法作者:张存侠来源:《微型电脑应用》2020年第03期摘要:针对OFDMA系统中用户QoS需求的差异性,提出了一种非理想状态下不同用户的资源分配算法,即求取用户携带比特数和发射功率最优解问题。

基于自适应功率分配增益较小的情况,通过进行功率的平均分配来降低算法复杂度,基于吞吐量最大化原则,将剩余未分配的子载波分配给能获得最大传输速率的用户,提升系统的整体吞吐量水平。

仿真结果表明:相对于其他传统资源分配算法,这个算法能够保证不同混合用户的最小传输速率要求的同时,有效提升算法的公平性。

关键词:OFDMA系统; 资源分配; 发射功率中图分类号: TG409文献标志码: AAbstract:In view of the difference of user QoS requirements in OFDMA system, a resource allocation algorithm for different users in non-ideal state is proposed. The algorithm is to find the optimal solution of user carry bit number and transmit power. Based on the small adaptive power allocation gain, the complexity of the algorithm is reduced by the average power allocation. Based on the principle of throughput maximization, the remaining unallocated subcarriers are allocated such that users can obtain the maximum transmission rate, and the overall throughput level of the system is improved. The simulation results show that compared with other traditional resource allocation algorithms, the proposed algorithm can ensure the minimum transmission rate of different hybrid users. At the same time, the fairness of the algorithm is improved effectively.Key words:OFDMA system; Resource allocation; Transmiting rate0 引言OFDM(基于正交頻分多址)技术因为具有良好的高频谱利用率和抗多径干扰能力,被广泛应用于物理层传输技术中[1]。

基于粒子群算法的多用户OFDM系统自适应资源分配

基于粒子群算法的多用户OFDM系统自适应资源分配

基于粒子群算法的多用户OFDM系统自适应资源分配杨金凤【摘要】Based on the analysis of multi-user OFDM system model, we obtain the objective function of the adaptive resource allocation and then optimise it using particle swarm optimisation (PSO). In order to accelerate the convergence speed of global search ability of PSO, we introduce tabu search strategy and mutation operation into PSO. Simulation results show that the improved particle swarm optimisation can very effectively solve the adaptive resource allocation issue in multi-user OFDM system.%在分析多用户OFDM系统模型的基础上,得出多用户OFDM系统的自适应资源分配的目标函数,然后利用粒子群优化算法对其进行了优化.为了提高粒子群优化算法的全局收敛性的收敛速度,将禁忌搜索策略和变异操作引入到基本粒子群优化算法之中.仿真结果表明,改进的粒子群优化算法可以非常有效地解决多用户OFDM系统自适应资源分配问题.【期刊名称】《计算机应用与软件》【年(卷),期】2011(028)004【总页数】3页(P252-253,263)【关键词】改进粒子群优化算法;禁忌搜索;变异操作;自适应资源分配【作者】杨金凤【作者单位】中国石油大学(华东)计算机与通信工程学院,山东,东营,257061【正文语种】中文0 引言OFDM技术是一种多载波传输技术,将高速数据分成并行的低速数据,然后在一组正交的子载波上传输,N个子载波把整个信道分割成N个子信道,N个子信道并行传输信息。

OFDMA系统中容量最大化的资源分配算法

OFDMA系统中容量最大化的资源分配算法

————————————基金项目:国家自然科学基金资助项目(60902011);浙江省自然科学基金资助项目(Y1090935);东南大学移动通信国家重点实验室开放课题基金资助项目(2011D18)。

作者简介:李 君(1977-),男,副教授、博士,主研方向:无线通信,时空编码调制技术;叶兰兰,硕士研究生;金 宁,教授;李正权,研究员、博士。

收稿日期:2013-04-02 修回日期:2013-05-30 E-mail :*****************OFDMA 系统中容量最大化的资源分配算法李 君1,叶兰兰1,金 宁1,李正权1,2(1. 中国计量学院信息工程学院,杭州 310018;2. 东南大学移动通信国家重点实验室,南京 210096)摘 要:为最大化OFDMA 系统容量,提出一种信道容量最小子载波优先分配算法。

在每次迭代注水过程中,假设所有子载波只能分配给一个用户,计算该用户对应于不同子载波所具有的信道容量,并对具有最小信道容量的用户优先分配子载波,以避免将信道容量差的子载波分配给用户。

仿真结果表明,该算法解决了采用传统等功率方式计算子载波分配容量时准确率低的问题,相比WUF 算法和WSA 算法,在不同信噪比的情况下系统容量提高近15.7%和12.2%,达到最大化系统容量的目的。

关键词:系统容量;信道容量;迭代注水;子载波分配;功率分配Resource Allocation Algorithm for Capacity Maximization in OFDMA SystemLI Jun 1, YE Lan-lan 1, JIN Ning 1, LI Zheng-quan 1,2(1. College of Information Engineering, China Jiliang University, Hangzhou 310018, China; 2. State Key Laboratory of Mobile Communications, Southeast University, Nanjing 210096, China)【Abstract 】In order to maximize Orthogonal Frequency Division Multiple Access(OFDMA) system capacity, this paper proposes a smallest channel capacity first subcarrier allocation algorithm. The algorithm assumes that all subcarriers can be assigned only to a user to calculate the capacity during the process of iterative water-filling, and assigns subcarrier to the user who has minimum capacity to avoid assigning the subcarriers which have the worst channel capacity to users. Simulation results show that this algorithm avoids the inaccuracy by using equal power to allocate subcarriers, and under the different Signal Noise Ratio(SNR) improves 15.7%, 12.2%, compared to Worst User First(WUF) allocation algorithm and Worst Subcarrier Avoiding(WSA) allocation algorithm, the system capacity has significantly improved.【Key words 】system capacity; channel capacity; iterative water-filling; subcarrier allocation; power allocation DOI: 10.3969/j.issn.1000-3428.2014.06.012计 算 机 工 程 Computer Engineering 第40卷 第6期 V ol.40 No.6 2014年6月June 2014·移动互联与通信技术· 文章编号:1000-3428(2014)06-0049-04 文献标识码:A中图分类号:TN9111 概述正交频分多址接入[1-2](Orthogonal Frequency DivisionMultiple Access, OFDMA)技术是在正交频分复用[3-4](Ortho- gonal Frequency Division Multiplexing, OFDM)技术的基础上发展起来的一种多用户接入技术[5-6],该技术具有对抗多径衰落能力强、频谱利用率高等优点。

多媒体DS-CDMA系统中基于效用函数的无线资源优化策略

多媒体DS-CDMA系统中基于效用函数的无线资源优化策略

多媒体DS-CDMA 系统中基于效用函数的无线资源优化策略牛志升,王兰,段翔(微波与数字通信国家重点实验室,清华大学电子工程系,北京100084)摘要:本文提出了一种DS-CDMA 系统上行链路中基于效用函数(utiiity function )的无线资源分配策略.在该模型的框架下,我们提出了两种基于效用函数的无线资源分配算法:URRA-EA (Utiiity-based Radio Resource Aiiocation-Effi-ciency Focused )和URRA-UF (Utiiity-based Radio Resource Aiiocation-User Focused ).URRA-EF 旨在追求系统资源的全局最优化,而相比之下URRA-UF 在用户公平性方面更有优势.为避免非线性优化带来的过高的计算复杂度,我们将基于效用函数的无线资源分配问题转换为一个市场模型,这样资源的最优配置将以分布式的模式获得,因此计算复杂度将大大降低.仿真结果表明,该策略与传统方式相比能够更灵活有效的配置无线多媒体DS-CDMA 系统中的无线资源,其性能提高是显著的.关键词:无线资源优化;DS-CDMA ;效用;市场;均衡中图分类号:TM15文献标识码:A文章编号:0372-2112(2004)10-1594-06Utility-based Radio Resource Optimization for MultimediaDS-CDMA SystemsNIU Zhi-sheng ,WANG Lan ,DUAN Xiang(State Key Lab on Microwaoe and Digital Commun ,Dept.of Electronic Engineering ,Tsinghua Unioersity ,Beijing 100084,China )Abstract :We present a modei based on utiiity functions for radio resource aiiocation (RRA )in muitimedia DS-CDMA sys-tems.We proposed two utiiity-based RRA aigorithm ,URRA-EF (Utiiity-based Radio Resource Aiiocation-Efficiency Focused )and URRA-UF(Utiiity-based Radio Resource Aiiocation-User Focused ).The goai of URRA-UF is to achieve the resource optimization which maximizes the system overaii utiiities ,whiie URRA-UF has its advantages on providing fairness to users.To avoid high computa-tionai compiexity of soiving noniinear optimization probiems ,we reformuiate the utiiity-based RRA probiem as a market modei so that the optimai resource aiiocation can be achieved in a distributed manner.Simuiation resuits show that our aigorithm is fiexibie and effi-cient for mobiie muitimedia DS-CDMA systems ,and the improvement of performance is significant.Key words :radio resource optimization ;DS-CDMA ,utiiity ;market ;eguiiibrium!引言未来无线通信系统所面临的一个基本课题就是如何向有着日益增长的需求的多媒体业务提供服务质量(OoS :Ouaiity-of-Service )保证.虽然很多文献将OoS 描述为一些客观的技术参数,如带宽,延时和丢失率等[1].服务质量实际上是用户的一种“感觉”.因此一些研究者提出了基于效用函数的OoS 研究构架.效用(utiiity )在经济学中是指当一个消费者消费一件商品或服务时他所获得的福利(weifare )[2].在此处效用衡量用户或上层应用网络提供的服务的满意程度[3].在基于效用函数的构架中,用户或各种业务的OoS 要求就被翻译成“软”目标,即效用.这样,OoS 要求就可以根据网络的负载和信道状况动态的调整.然而由于大多数效用函数都是非线性的,解决基于效用函数的OoS 问题通常都需要较高的计算复杂度.在无线通信系统中,由于无线系统的带宽资源有限,且存在信道状况不稳定,信道增益随时间和位置变化等特点,无线资源分配(RRA :Radio resource aiiocation )被认为是无线网络向多媒体业务提供服务质量保证的一个关键手段.而在CDMA 网络中,功率控制技术被认为是RRA 向用户提供OoS 保证的主要技术,因此近年来一些文献中提出了CDMA 中基于效用的功率控制算法.(Mandayam )等人在文[3]中基于非合作博弈模型提出一种分式的功率控制算法,但这种算法并不是帕累托有效率的(Pareto efficient )[2].文献[4]通过引入成本(cost )改进了该算法,提高了帕累托效率.在文[5]中,作者提出了一种基于效用的上行链路功率控制算法,而在文[6]中,作者提出了一种部分合作模式的下行链路CDMA 系统的功率控制.在上述文献中,网络提供的OoS 是用接收信干比(SIR :signai-to-interference ratio )来衡量的.换言之,在这些文献中RRA 问题仅收稿日期:2003-06-09;修回日期:2004-07-08基金项目:国家自然科学基金(No.60272021);教育部优秀青年教师计划第10期2004年10月电子学报ACTA ELECTRONICA SINICA Voi.32No.10Oct.2004被考虑为功率控制问题.而在直序列扩频CDMA (DS-CDMA )系统中,用户的发送速率可以通过改变扩频比的方式调整,因此也应视为可以控制和分配的无线资源.[7]就讨论了基于效用的速率控制策略,但仅适用于TMDA 系统.因此目前对于DS-CDMA 系统中基于效用函数的无线资源优比策略研究还很欠缺.文章提出了一种多媒体DS-CDMA 系统中基于效用函数无线资源分配(URRA :utiIity-basedf radio resource aIIocation )策略,该策略采用发射功率和发送速率联合分配的方式.在该模型的框架下,我们给出了两种基于效用函数的无线资源分配算法:URRA-EA(UtiIity-based Radio Resource AIIocation-Efficiency Focused )和URRA-UF (UtiIity-based Radio Resource AIIocation-Us-er Focused ).URRA-EF 旨在追求系统资源的全局最优化(即最大化系统总效用),而相比之下URRA-UF 在用户公平性方面更有优势.为避免非线性优化问题带来的高计算复杂度,我们将基于效用函数的无线资源分配问题转换为一个市场模型,其中无线资源被看做是一种商品.由于市场将收敛于均衡价格,即商品供给等于需求.该均衡满足激励相容约束,这就是说,通过每个用户各自最大化自己的收益(效用减支代价)就能够得到最大化的系统总效用.这样,通过动态调整资源价格(Price ),最优的资源配置就能够以分布式的方式获得,从而大大降低算法的复杂度.本文的结构安排如下:在第2节中,我们将描述效用函数和系统模型;第3节中我们将URRA 问题转换为一个市场模型,从而最优资源配置能够以分布式的方式获得;第4节中综合上面几节的讨论,给出两种URRA 算法的详细描述;仿真的数值结果在第5节中给出;最后,我们在第6节里简单的总结图l一些典型的语音、数据和多媒体业务的效用函数全文.!基于效用函数的无线资源分配问题系统模型我们假设多媒体业务为“弹性”业务,即用户对于网络提供的OoS 的满意程度是通过吞吐量来衡量的.因此,用户的效用函数可以用U i (R i )来表示,其中R i 为分配给用户i 的发送速率.U i (·)的形式必须经过仔细选择才能正确的反映满意程度的特性,如文献[5,6]中指出:U i (0)=0,U i ( )=U i max <+ ,且为R i 的单调非降函数.其中,函数的最大值U i max 是用户i 能够获得的最大效用,它取决于用户i 的服务类型、支付的价格或优先级以及其它的因素.一般来说,语音、数据和多媒体业务的效用函数的形式应该是不同的,如图l 所示.对于语音业务,我们使用一个阶跃函数来表示它“硬”性的OoS 要求.而数据业务的吞吐量越高用户的满意程度就越高,因此,我们可以采用一个单调增的凹函数来表示.多媒体业务介于两者之间,采用S 型函数(如Sigmoid 型函数[5])较为合适.为了数学处理的方便,对于语音业务我们用陡峭的S 型函数来代替阶跃函数(见图l 中语音业务的曲线).需要说明的是,我们的策略并不仅限于上面提到的几种效用函数的形式.我们考虑一个有N 个用户的典型多媒体DS-CDMA 峰窝系统的小区.这里我们先考虑上行链路,实际上该模型通过简单的修改就可以应用于DS-CDMA 系统的下行链路.R i 表示第i 个用户发送数据速率,P I i 表示传输功率,h i 表示信道增益.设!={R l ,R 2,…,R N },"I ={P I l ,P I 2,…,P I N }.同时,W 表示系统带宽,I 0表示基站处接收到的背景噪声和干扰.根据[l ],基站接收端关于用户i 的SIR 值为:SIR i =WR i h i P I i !j "i h j P I j +I 0,(i =l ,2,…,N )设P I i max 是约定的用户i 的传输功率上限,!i 是该用户希望通过功率控制达到的目标SIR 值.这样,无线资源优化问题就可以用如下通过选择"I 和!获取最大系统总效用的优化问题来描述:(A ):max "I,!!Ni =lU i (R i )S .I .SIR i =!i0#P I i #P I i max ,(i =l ,2,…,N {)(l )显然,问题(A )是一个有着2N 个决策变量(!和"I )非线性最优化问题.我们称问题(A )的最优解,也就是系统总效用的最优值,为系统最优资源配置.根据文献[9]中的结论,我们可知问题(A )中的约束条件与下式等价:!Ni =lg i (R i )#min i{l -g i I 0h i P I i max其中g i 是功率因子[l ],它是R i 的函数:g i =g i (R i )$l WR i !i()+l ,(i =l ,2,…,N )(2)这样,问题(A )转换为如下问题:(B ):max !!Ni =lU i (R i )S .I .!Ni =lg i (R i )#T (3)此处T =min i l -g i I 0h i P I i {}max问题(B )是与问题(A )的等价的系统模型,它有N 个独立的决策变量(!).一般来说,对于这样一个非线性优化问题,通过一般的算法(例如,最速下降法或梯度投影法[8]找到最优解,计算将非常繁琐,通常需要数百次的迭代,因此不适合于实际系统实现.为了降低计算的复杂度,我们进一步将问题(B )转化为它的对偶问题,并用经济学的市场模型来描述.由于市场模型能够以分布式的方式收敛到最优化的资源分595l 第l0期牛志升:多媒体DS-CDMA 系统中基于效用函数的无线资源优化策略配,这样就能够大大降低计算的复杂度,减小系统开销.!市场模型:通过分布式的模式获取最优资源配置首先我们引用如下引理[8],该引理告诉了我们一般最优化问题的最优化条件:引理"设f 和h 为任意R N R 的任意函数.我们定义拉格朗日函数为:!(!,!)=f (!)-!h (!)并定义拉格朗日最大化问题为:"!(!)=arg max !!(!,!)其中,!=(x l ,x 2,…,x N )T.这样,拉格朗日最大化问题的解"!(!)是下述最优化问题的全局最优解:max !f (!)S .t .h (!) h ("!(!))在我们的问题中,我们设f (#)= N i =lU i (R i ),h (#)= N i =lg i (R i )那么,拉格朗日函数可以表示为:!(#,!)= N i =lU i (R i )-! N i =lg i (R i )= N i =l{U i (R i )-!g i }(4)据引理l ,对于任意的! 0,设"#(!)=argmax #!(#,!),那么它就是下述问题的最优解:max #Ni =lU i (R i )S .t . N i =lg i (R i ) Ni =lg i (^R i (!))因此,如果能找到一个! 使得Ni =lg i (^R i (! ))=T ,即得问题(B )的最优解.如果该"#(!)使得T - Ni =lg i (^R i (! ))足够小,那么它就是问题(B )的解的一个良好近似.下面仔细研究一下拉格朗日最大化问题max #!(#,!).由式(4)我们可将该问题分解为如下N 个子问题:max Ri{U i (R i )-!g i },(i =l ,2,…,N )(5)这表示问题(B )可以转化为它的对偶问题:(C ):min !F (!)=min !T - Ni =lg i (^R i (!))s.t.^R i (!)=arg max Ri{U i (R i )-!g i }(6)因为问题(C )是问题(B )的对偶问题,而(B )和(A )是等价的,因此,问题(C )的最优解就是(A )的最优解,即最优的资源配置.由于功率因子g i 表示用户i 占有的无线资源的份额[l ],如果将无线资源看作一种商品,而!看作这个商品的价格,问题(C )就可以用经济学中的市场模型来表示.其中,T 表示了能够分配给用户的最大份额的资源,可以看作商品的供给;另一方面,g !=Ni =lg i (R i )表示用户占有的总资源,表示商品的需求.问题(C )的最优解!满足F (!)=I T -Ni =lg i(^R i (! ))I =0,也就是需求等于供给,此时商品的价格即为市场均衡价格,因此,问题(C )的最优解正是市场均衡.根据文献[2],市场能够通过分布式的模式收敛到均衡价格.类似的,对于我们这里转化为市场模型的URRA 问题,最优资源配置可以通过每个用户追求各自收益的最大化来分布式的获得.具体过程是这样的:在问题C )中,!指单位资源的价格,因此,!g i指的是用户i 消费资源g i 的代价.而式(5)可以看作用户追求自己的收益(效用减去代价)最大化.这样,问题(C )的最优解,也就是最优资源配置,将通过各个用户分别追求各自的收益最大化的过程得到.通过文献[8]我们知道,式(5)的唯一最优解即可通过一阶条件I U i (R i )-!g i I '=0得到,即U'i (R i )=!g'i (R i ).如果我们定义用户i 的特征函数f !i (R i )为:f !i (x )=U'i (x )g'i (x )那么式(5)的解就可以表示为!=f !i (R i ),或R i =f -l!i (!),(i =l ,2,…,N )(7)其中f -l!i (·)是f !i (·)的反函数.而要取得拉格朗日最大化问题的解,我们还要考虑如下约束:引理#定义:!i res =max RiU i (R i )g i ,R i res =arg max R i U i (R i )g i 则对于任意的数据速率向量#,我们考虑 #:R i =R i ,! !i res0{,其余那么就有!( #,!)>!(#,!).事实上,引理2给出了对(5)最优解的一个约束:当资源太贵的时候(!>!i res )用户i 将不被分配任何资源,或者说,资源的价格已经高于用户能够承受的能力,用户将选择不消耗资源.我们称!i res 为用户i 的保留价格,它表示用户i 使用无线资源时能接受的最大价格.这样,子问题(5)的唯一最优解可以通过下式得到:^R i (!)=f -l!i (!),! !i res 0{,其余(8)图2一些典型的语音、数据和多媒体业务的特征函数图2给出了图l 中各个业务类型对应的效用函数的特征函数f !i (R i )以及它们的!i res 和相应的R i res .695l 电子学报2004年基于上述讨论,我们可以提出一种基于效用函数的无线资源分配(URRA )算法.上式表示算法追求系统效用的最大化,我们称为侧重于系统效率(EF :effciency-focused )的URRA 算法,简称为URRA-EF .注意在实际系统实现时URRA-EF 算法将带来如下问题:由于存在最大发射功率限制,有时当用户遇到非常恶劣的信道条件时,为保证其他用户资源的正常配置,算法将自动提高资源价格使之超过部分用户的保留价格来切断用户(即用户将得到0发送速率).而当网络正处于重负载时,由于资源价格过高而导致用户无法接受而被切断的情况就有可能加剧.因此,部分用户可能会经历到“资源饥荒”状态,即常常得到0发送速率.为解决这种情况,我们提出另外一种改进的算法,旨在避免用户“资源饥荒”状态的过度发生.这种算法称为侧重用户(UF :user-focused )的URRA 算法,简称URRA-UF .在URRA-UF 中,子问题(5)的解将由下式给出:^R i (!)=f -1!i (!),!!!i reg R i reg {,其余(9)其中,R i reg 是用户i 事先约定的最小发送速率,!i reg 是其对应的资源价格,如图2所示!.注意上式虽然不是式(5)是的最优解(不满足引理2),但上式保证了无论在什么情况下,用户i 总可以分配到一个最小资源份额R i reg ,这有效的避免了用户“资源饥荒”状态的发生.此时,必须引入接入控制策略(CAC :caII admission controI )以保证系统能够承受所有的被接入用户的最小资源份额.这里我们用g "res ="Ni =1g i res 作为系统负载的量度,因为如果用户i 被接入,那么需要的是小资源份额就是g i res .由于CAC 问题已超出本文的范围,故在此不再讨论.表!仿真系统中四种业务的参数业务类型语音数据多媒体1多媒体3"i (dB )######################3533U i max######################1.54710R i res (Kbps)######################13.229.4780.00200.9!i res ######################278.6663.44204.08114.04g i res5.2e -36.0e ######################-30.0290.074R i reg (Kbps)######################12.06.3156.19145.68!i reg 2.84e ######################+363.50412.6210.30g i reg4.8e -34.0e -30.0220.055"基于效用函数的无线资源分配策略算法在本节中,我们将根据前面的讨论,详细的描述在称动多媒体DS-CDMA 系统中针对上行链路的URRA 算法.首先,当有一个连接请求接入时,如果该连接被接入,则下列参数必须已知或在初始化过程中计算好:效用函数U i (·)的形式、接收SIR 的目标"i 和传输功率限制P t i max 、保留价格!i res 及对应的R i res (对于URRA-UF 来说,则是!i reg 和R i reg ).然后下述过程将在每个RRA 周期性的工作点上调用以进行无线资源分配:(1)[初始化]设m 为迭代步数,初始化设m =1,并给定^!和!.令!(1)=0.5(^!+!).(2)[更新R i ]对于URRA-EF 算法,根据式(8)计算R (m )i ;对于URRA-UF 算法,根据式(9)计算R (m )i.(3)[更新g i 和T ]计算g (m )i =g i (R (m )i ),g (m )#=#N i =1g (m )i,且计算T(m )=min i 1-g (m )i I 0h i P t i {}max (4)[调整资源价格!]采用折半查找法[8],如果g (m )"<T (m ),则让$!=!(m );否则令!=!(m ).然后更新资源价格为!(m +1)=0.5($!+!)(5)[中止条件]如果m =M 或者$!-!!$,则停止;否则令m =m +1并转到2.这里$是搜索精度[8],M 是最大迭代次数.根据仿真结果,M =6就足够以使我们的算法收敛.(6)[资源分配归一化]计算资源归一化后分配给用户i的份额:g i =g i(m )g "(m )+g k (m )I 0h k P t k ()max 此外k =arg min i 1-g i(m )I 0h i P ti {}max 通过归一化,下式得到满足:g "=min i 1-g i I 0h i P t i {}max,并且用户的最大传输功率将调整到P t i max .这样,既没有浪费系统资源,又满足了传输功率的限制.(7)[功率和速率分配]通过分配给用户的系统资源份额计算用户i 发送速率和发射功率分别为:R i =W"i1g i()-1,P t i =g i h i (1-g ")I 0根据引理1-2和及前面的讨论,可以得出下面的结论:定理!本文中提出的适用于多媒体DS-CDMA 系统的基于效用函数的无线资源分配策略的URRA-EF 算法理论上能够收敛到最优资源配置.如果采用一般的最优化算法则需要上百次的迭代过程才能收敛,而我们的算法可以通过分布式的调整资源价格!,并获得最优的资源分配.和前者相比,计算复杂度就大大降低.对于URRA-UF 算法,虽不能从理论上保证能够收敛到系统最优配置,但仿真结果显示它也能获得一个较高的系统总效用,而且与URRA-EF 相比在用户公平性方面会更有优势.#仿真结果我们仿真的DS-CDMA 系统蜂窝小区半径为1千米,拥有全向天线的基站位于小区的中心.数十个移动用户在小区中移动,移动速度服从1米/秒到30米/秒的均匀分布.他们的初始位置和运动方向是独立随机产生的.每个用户每隔一段7951第10期牛志升:多媒体DS-CDMA 系统中基于效用函数的无线资源优化策略!这里我们取R i reg 为特征函数取到最大值的点,即!i reg =max Rif !i (R i ),或R i reg =arg max R if !i (R i ).时间随机的改变运动方向,这段时间服从均值为6秒的负指数分布.这里我们不考虑越区切换的问题,当用户到达小区边界时,假设他们将被自动弹回.我们考虑四种类型的业务:语音、数据和两种多媒体业务,它们的效用函数及特征函数分别如图l 和图2所示.表l 给出了这些业务的参数.假设系统带宽W 设为5.0Mhz ,背景干扰 0设为2.5>l0-6W ,用户终端的传输功率限制为0.2W .物理层采用的技术为:OPSK 调制,(5ll ,l75,46)的BCh 编码,简单ABO 重传方案.图3采用URRA-EF 算法时系统负载和相应资源价格!变化我们仿真的实际时间是60秒.图3清楚的显示了采用URRA-EF 算法时系统负载和动态调整的资源价格!之间的关系,并给出了归一化之前的资源配置情况(即g (m )!+(l -T (m ))).从图中我们可以得到如下结论":!资源价格!随用户信道状况变化而变化.图中资源价格变化非常剧烈,充分显示了无线信道的不稳定性.当用户的信道条件相对来说较好的时候,用来对抗背景干扰的资源消耗的比较少.从市场的观点来看,资源的供给增加了.因此,为了让用户消费更多的资源,!就降低了.而当无线链路容量恶化时,供给减少,资源价格上升,用户则消费较少的资源.!资源价格!随系统负载的变化而变化.当系统负载增加时,在有限的无线资源条件下,系统为了同时为所有的用户提供服务,不得不通过提高资源价格的方式使每个用户减少资源的消费.因此,随着系统负载(用g !reS 标识)的加重,!也有增长的趋势.!第三个子图显示了归一化之前的资源分配,他表明无论在任何系统负载或用户信道条件下,URRA-EF 算法都能够进行动态的自我调整,以获得合理的资源配置.该图充分说明对于URRA 算法,迭代次数M =6基本上就可以收敛.图4则详细显示了采用URRA-EF 和URRA-UF 算法时四种不同业务的用户在一次仿真过程中获得的效用轨迹,其中实线表示URRA-EF 算法,虚线表示URRA-EA 算法.从该图中我们可以得到以下结论:!当系统负载低时,所有业务的效用水平都接近它们能达到的最大效用U i max .然而,如果系统处于重载情况,各种业务的差别就比较明显了.语音业务所获的效用水平基本保持不变,同时两种多媒体业务也保持在一个较高的水平上,而数据业务达到的性能则相去甚远,因为当系统负载增加时,它的图4采用两种URRA 算法时四种业务分别获得的效用值的仿真轨迹效用几乎没有机会接近U i max .!当系统负载较大时,URRA-EF 算法将提高资源价格来迫使部分用户不使用无线资源,特别是对资源需求比较大的多媒体用户更容易经历“资源饥荒”.只有这样,才能保证获得资源最优配置,即总效用最大化.而URRA-UF 算法虽然不能保证获得最优的资源配置,但很明显用户被切断的机会要小许多.与URRA-EF 算法相比,URRA-UF 算法更好的保证了用户的公平性.下面我们来看在DS-CDMA 系统中,我们所提出的两种URRA 算法和CDMA 系统中的WRR 算法(简称CDMA-WRR )算法:wireieSS round robin )及最优的全局迭代算法的性能比较.CDMA-WRR 采用的资源分配方式是:无论用户的信道状况如何,各用户均按照他所需求的发送速率发送数据.显然CD-MA-WRR 算法没有考虑各个用户的信道状况和系统的负载情况.而一般的最优化全局迭代算法是我们提出的算法的性能上界,但是其计算复杂度非常高,需要的迭代时间很长且不可控.图5显示了几次仿真试验中采用几种算法所获得的系统总效用.我们看到,两种URRA 算法均比CDMA-WRR 算法获图5两种URRA 算法和CDMA-WRR 算法所获得的系统总效用的比较得多达30-40%的系统总效用,这说明我们的算法能显著提高系统性能.同时,两种算法获得的效用和最优的全局迭代算法相差很小,尤其是UR-RA-EF 算法,可以说是很接近最优算法的性能:而URRA-EF 虽然比URRA-UF 获得更多的系统总效用,但两者差距并不是很大,这说明URRA-UF 以较小的系统总效用的代价换取了用户的公平性,895l 电子学报2004年"对于URRA-EF 算法,曲线略有不同,但结论是相似的.图6两种URRA 算法和CDMA-WRR 算法中不同用户业务获得的效用值的比较这是非常值得的!图6显示了各种类型的用户采用这几种RRA 算法所获得的平均效用,该图同样显示了URRA-EF 和URRA-UF 算法与最优算法获得的平均效用相差很小;而在CDMA-WRR 算法相比,各种业务的用户所获得的效用均有所提高!尤其是数据用户,采用CDMA-WRR 算法仅能获得很少量的资源,这对它们来说是极不公平的!!结语在本文中,我们针对移动多媒体DS-CDMA 网络提出了一种基于效用函数的无线资源分配(URRA )策略.在效用函数的框架下,我们将资源分配问题描述为一个优化模型,其目标是在发射功率受限且用户接收SIR 满足要求的情况下,最大化系统的总效用,决策变量即为用户的发射功率和发送速率.我们提出了两种基于效用函数的无线资源分配算法URRA-EA 和URRA-UF.URRA-EF 旨在追求系统资源最大化,而URRA-UF 则改进了URRA-EF 算法在用户公平性方面的性能.为了避免非线性最优化问题带来的高复杂度,我们进一步将原始URRA 问题转化为其对偶问题,即市场模型,该市场模型的均衡点即为系统资源的最优配置.通过每个用户最大化各自收益,市场达到均衡.因此,算法可以通过分布式的方式得到资源的最优化配置,这样就大大降低了计算的复杂度.仿真结果显示,对于移动多媒体DS-CDMA 系统,我们提出的URRA-EF 和URRA-UF 算法能够根据用户的OoS 要求、信道状况和当前的系统负载,灵活有效地为用户动态的分配无线资源.两种算法均以较小的复杂度和较短的运算时间获得了接近最优全局迭代算法的性能,尤其是URRA-EF 算法,获得的性能与最优算法相差无几.另外,两种算法获得的性能远远胜于CDMA-WRR 算法,而URRA-UF 算法则以较小的系统总效用的代价换得了更好的用户公平性.参考文献:[1]M A Arad ,A Leon-Garcia.Scheduied CDMA :A Hybrid Muitipie Ac-cess for Wireiess ATM Networks [A ].In Proc.7th IEEE int.Symposium on Personai ,indoor and Mobiie Radio Commun.(PIMC ’96)[C ].Taipei ,Taiwan ,1996.[2]〔美〕H.范里安,费方域等译.微观经济学:现代观点[M ].上海人民出版社,1994.[3]V Shah ,N B Mandayam ,D J Goodman.Power Controi for Wireiess Database on Utiiity and Pricing [A ].In Proc.Ninth IEEE Int.Symposium onPersonai ,indoor and Mobiie Radio Commun.(PIMRC ’98)[C ].Voi.3,1998.1427-1432.[4]D J Goodman ,N B Mandayam.Power controi for wireiess data [J ].IEEE Personai Commun.Feb.2000,7:48-54[5]M Xiao ,N B Shroff ,E Chong.A utiiity-based power-controi scheme inwireiess ceiiuiar systems [J ].in IEEE /ACM working ,Aprii 2003,11(2):210-221[6]J W Lee ,R R Mazumdar ,N B Shroff.Downiink Power Aiiocation forMuiti-ciass DS-CDMA Wireiess Networks [A ].in Proc.Thirteen annuai Joint Conf.IEEE Compu.and Commun.Soc.(INFOCOM ’2002)[C ].2002.[7]H Lin ,W Wu ,Y Ren ,X Shan.A Time-scaie Decomposition Approachto Optimize Wireiess Packet Resource Aiiocation and Scheduiing [A ].in Proc.2002Wireiess Commun.and Networking Conf.(WCNC ’2002)[C ].Voi.2.Mar.2002.699-705[8]《现代应用数学手册》编辑委员会,现代应用数学手册:运筹学与最优化理论卷[M ].清华大学出版社,1998.[9]X Duan ,Z Niu ,J Zheng.Capacity Anaiysis of Upink and Downiink inMuitimedia DS-CDMA Systems Based On Constraint Modeis [A ].To be appeared in Proc.IEEE mun.(ICC ’2003)[C ].Aiaska ,USA ,May.2003.作者简介:牛志升男,1964年7月出生,清华大学电子工程系微波与数学通信国家重点实验室教授,博士生导师,北方交通大学兼职教授,1985年毕业于北方交通大学通信与控制系,1986年国家公派赴日留学,并分别于1989年和1992年获日本丰桥技术科学大学的工学硕士和工学博士学位,1992~1994年就职于日本富士通研究所,1994年回清华大学任教至今,其间1997—1998访问日立中央研究所,主要研究方向包括:宽带通信网络及其流量控制技术、宽带无线接入及其资源优化管理技术、移动因特网技术、以及平流层通信技术.王兰女,1979年3月出生于湖北省武汉市,大学本科就读于华中科技大学,并于2001年获得学士学位,此后于清华大学电子工程系通信与信息系统专业攻读博士学位,目前的主要研究方向包括:移动网络的服务质量控制,无线网络的资源分配与调度、功率控制,多用户OFDM 系统的资源分配与管理等.段翔男,1979年12月出生于湖南省长沙市,大学本科就读于西安交通大学信息与通信工程系,并于1999年获得学士学位,此后于清华大学电子工程系通信与信息系统专业攻读博士学位,目前的主要研究方向包括:无线网络中的资源管理,调度算法,功率控制,拥塞控制,无线ad hoc 网络等.9951第10期牛志升:多媒体DS-CDMA 系统中基于效用函数的无线资源优化策略。

基于粒子群遗传混合优化算法在OFDMA中自适应资源分配应用

基于粒子群遗传混合优化算法在OFDMA中自适应资源分配应用

长春理工大学学报(自然科学版)Journal of Changchun University of Science and Technology (Natural Science Edition )Vol.44No.3Jun.2021第44卷第3期2021年6月收稿日期:2020-04-01基金项目:吉林省科技厅项目(20200403151SF )作者简介:荣国成(1997-),男,硕士研究生,E-mail :*****************通讯作者:王昊(1980-),男,博士,副教授,E-mail :****************基于粒子群遗传混合优化算法在OFDMA 中自适应资源分配应用荣国成1,王昊1,沙莎2(1.长春理工大学电子信息工程学院,长春130022;2.长春电子科技学院电子工程学院,长春130114)摘要:针对正交频分多址技术(OFDMA )在无线通信系统中资源分配不均衡导致无法满足用户服务质量问题,将OFDMA 资源分配问题转化为函数优化问题,分别对子载波分配与功率分配进行研究,在传统粒子群算法与遗传算法基础上引用一种混合自适应算法对目标函数求取最佳解,对资源分配问题进行研究,目的在保证用户比例公平性的条件下提高有效资源利用率,最大化系统吞吐量。

通过仿真分析表明,与其他算法相比,混合优化算法在系统公平性与吞吐量方面具有有效提高。

关键词:无线通信;资源分配;吞吐量;粒子群算法;优化算法中图分类号:TN925文献标志码:A文章编号:1672-9870(2021)03-0096-06Application of Particle Swarm Genetic Hybrid Optimization Algorithm in Adaptive Resource Allocation in OFDMARONG Guo-cheng 1,WANG Hao 1,SHA Sha 2(1.School of Electronics and Information Engineering ,Changchun University of Science and Technology ,Changchun 130022;2.School of Electronic Engineering ,Changchun College of Electronic Technology ,Changchun 130114)Abstract :For Orthogonal Frequency Division Multiple Access (OFDMA ),the imbalanced resource allocation in wireless communication systems led to the inability to meet user service quality issues.In this paper ,the OFDMA resource alloca-tion problem was transformed into a function optimization problem ;sub-carrier allocation and power allocation separately was studied based on traditional particle swarm optimization and genetic algorithm.A hybrid adaptive algorithm was used to find the best solution to the objective function ,and the resource allocation problem is studied.The purpose was to improve the effective resource utilization and maximize the system throughput under the condition of ensuring the fairness of the us-er's proportion.Simulation analysis showed that compared with other algorithms ,the hybrid optimization algorithm had an effective improvement in system fairness and throughput.Key words :wireless communication ;resource allocation ;throughput ;particle swarm optimization ;optimization在下一代无线接入网络中,由于通信系统应具备严谨的用户应用和测试用例的需求,以及服务和功能的高度异构性,因此服务质量(QoS )供应更具挑战性[1]。

OFDMA中继系统中基于QoS保证的资源分配算法

OFDMA中继系统中基于QoS保证的资源分配算法

OFDMA中继系统中基于QoS保证的资源分配算法赵翠茹;李有明【摘要】研究了OFDMA中继下行链路通信系统中的动态资源分配问题,提出了一种可以保证用户最低QoS需求的资源分配算法.首先在简化资源优化问题的过程中,采用等功率分配方法以降低算法复杂度,然后通过拉格朗日松弛优化方法推导出了子载波分配和中继选择最优解,并在此基础上引入用户速率权衡因子,根据速率权衡因子越大的用户,越具有选择子载波和中继的优先权这一准则进行子载波分配和中继选择.仿真结果表明:新算法能够获得较高的系统容量,同时也能很好地保证不同用户的最低速率需求.%The problem of dynamic resource allocation for downlink orthogonal frequency-division multiple-access (OFDMA) relay systems is studied, and a new resource allocation with quality of service (QoS) constraints is proposed in this paper. Firstly, in order to reduce the complexity, the algorithm uses equal power allocation in the process of simplifying resources optimization problem. Then, the subcarrier allocation and relay selection scheme is derived through Lagrangian relaxation optimization method, based on which each user is assigned a weight factor. The users with higher weight are given higher priority to select their best subcarriers and relays. The simulation re:ults demonstrate that the algorithm can not only obtain high system capacity, but also guarantee the minimum rate requirements of different users.【期刊名称】《宁波大学学报(理工版)》【年(卷),期】2012(025)004【总页数】5页(P20-24)【关键词】中继通信技术;中继选择;正交频分多址接入;服务质量;动态资源分配【作者】赵翠茹;李有明【作者单位】宁波大学通信技术研究所,浙江宁波315211;宁波大学通信技术研究所,浙江宁波315211【正文语种】中文【中图分类】TN92正交频分多址接入(Orthogonal Frequency Division Multiple Access,OFDMA)系统将传输带宽划分成相互正交而且交错重叠的许多子载波,将不同的子载波分配给不同的用户实现多址. 由于其具有传输速率高、资源分配灵活、能同时支持多个用户以及能对抗频率选择性衰落等优点,被认为是下一代宽带无线接入方式的关键技术[1]. 另外,作为无线通信关键技术之一的中继技术近来备受关注,将中继引入到传统OFDMA系统中能获得更高的峰值数据速率、频谱利用率、更好的小区边缘用户性能,所以开展OFDMA技术和中继技术相结合的研究成为广大研究人员关注的焦点[2-3]. 而OFDMA中继系统中的资源分配问题也逐渐成为现阶段的研究热点.OFDMA中继系统性能的优劣在很大程度上依赖于在有限系统资源条件下,如何为用户提供高速数据传输和良好的QoS保证. 传统OFDMA蜂窝系统中基于保证不同用户服务质量需求的资源分配算法已有深入研究[4-6]. 然而,在传统OFDMA蜂窝系统中引入中继,使得无线资源分配变得更加复杂. 在OFDMA中继系统中,合理的资源分配不仅包括如何最优地为每个用户分配子载波、功率、比特等无线资源,而且还包括为每个用户选择最合适的中继. 因此传统OFDMA蜂窝系统中基于保证不同用户服务质量需求的资源分配算法并不能简单地应用到 OFDMA 中继系统中. 文献[7]考虑了一种次最优资源分配策略,首先在等功率分配条件下进行子载波分配和中继选择,然后进行子载波上的功率分配. 采用该算法能够明显改善系统性能,但却忽略了用户间公平性原则. 文献[8]提出了一种上行链路 OFDMA中继系统中带有公平性约束的资源分配算法,通过给用户分配相同的子载波数目来实现用户间的公平性需求,并按照等效信道增益来完成子载波的分配和中继选择.然而,在无线通信系统中,不同用户对速率的需求往往是不同的,那么所要求分配到的子载波数目也是不同的,因此,文献[8]中的资源分配算法限制了其在实际中的广泛应用.在提出的新算法中,用户的 QoS通过最低速率需求来衡量,首先给出了简化后的资源优化问题,消除了问题中的非线性约束,以降低算法复杂度,然后由一阶 KKT必要条件推导出子载波分配和中继选择最优解,并在此基础上引入用户速率权衡因子,根据速率权衡因子越大的用户,越优先选择子载波和中继这一准则进行子载波分配和中继选择. 分析结果显示,新算法在获得较高系统容量的同时能保证不同用户的最低速率需求.1 系统模型图1是1个单蜂窝OFDMA两跳中继下行链路通信系统的示意图. 假设系统中有1个位于中心的基站 BS,有K个中继 RS和M个用户,系统总的可用带宽为B,并且,整个频段被划分成N个正交子载波. 假设基站和用户之间不存在直传链路,当基站向用户发送信息时,需要通过中继转发给用户,其中,中继采取解码转发策略,且各链路的信道状态信息完全已知. 数据传输可看作是通过 2个时隙来完成的: 第一时隙,基站向每个中继发送信息; 第二时隙,中继将接收到的信息解码转发给用户.图1 单蜂窝OFDMA两跳中继下行链路通信系统假设表示中继链路S−k在子载波n上的发送功率和信道增益.表示在接入链路k−j在第n个子载波上的发送功率和信道增益. 则用户j通过中继k在子载波n上的瞬时速率可表示为:文中 OFDMA中继系统采用的资源分配模型是在发送功率一定的条件下,最大化系统总容量,同时还加入了不同用户最低速率要求约束,此时的资源优化问题为:使得其中,C1为基站处发送功率约束; C2为各中继站的发送功率约束; ρk,j,n为子载波中继分配因子,表示子载波n和中继k分配给用户j,否则表示子载波n和中继k未被用户 j占用; C3,C4表示1个子载波最多只能被1个中继用户对占用;C 5表示不同用户的最低速率需求.为最大化系统总容量,需满足以下等式:由此可计算出中继链路的等效信道增益为:此时(1)式可变换成:2 资源分配算法2.1 优化问题简化及推导考虑到(2)式是一个含整型变量的非线性优化问题,得其最优解需要很高的复杂度. 为此提出将整型因子ρk,j,n松弛为一个在[0,1]之间的实变量,并采用等功率分配方法来降低算法复杂度. 此时,资源优化问题可简化为:使得构造相关的拉格朗日方程如下:其中,β, ,δ μ为约束条件D1~D3的拉格朗日算子.将对ρk,j,n进行求导,得到相应的一阶KKT必要条件为:由(6b)式可得到:由(6a)式可得到:根据(7)式和(8)式可推出:因此,对于 1个特定的用户j,要为它分配最好的子载波 n*和选择最合适的中继 k*,此时 k*,n*应满足:根据(1)式、(3)式和(4)式推出(10)式等效为:为得到最优解,还需找到最优的拉格朗日算子jμ,可通过迭代搜索方法得到最优的jμ,但这种方法的计算复杂度较高. 在此,可由上面推导出的一阶KKT必要条件来获取. 由(6c)式可得到:从(12)式可看出,当满足最低速率时,该用户对应的μj值大于0,否则μj等于0; 在此基础上引入用户速率权衡变量wj,其中wj =Qj −Rj,表示各用户所要达到的最低速率与现有实际速率的差值. wj的值越大,该用户 j越优先选择子载波和中继.2.2 新算法具体实现流程新算法中子载波分配和中继选择的具体实现流程如下.2.2.1 初始化设置设置子载波集合ΩN = { 1,2,…,N }; 用户集合ΩM = { 1,2,…,M }; 中继集合ΩK = { 1,2,…,K }; 每个子载波上分配的平均功率大小为 p =PT /N,其中 PT为发送总功率; 用户实际速率为Rj,令Rj=0; 子载波和中继分配因子ρk,j,n,令ρk,j,n = 0 .2.2.2 为各用户分配子载波通过下式为用户 j从所有中继中找出能获得信道增益最大的子载波 n*和相对应的中继 k*.将子载波 n*分配给用户j,并将该子载波从子载波集ΩN中删去,同时更新用户速率Rj. 即:2.2.3 剩余子载波分配(1) 根据公式 j* =argmax wj 找出所要达到的最低速率和实际速率差值最大的用户j*,然后判断相应的 wj* 是否大于 0,若 wj* > 0,执行(2); 否则,跳转到(3).(2) 对于找到了的用户 j*,找出满足 ( k*,n*)=的子载波 n*和相应的中继 k*. 将子载波 n*分配给用户 j*,并将该子载波从子载波集ΩN中删去,同时更新用户速率Rj* . 令然后执行(4).(3) 将剩余的子载波分配给各个用户: 对于剩余的子载波,分别找出信道增益最大的用户. 根据为特定的子载波n找出信道增益最大的用户 j*和相应的中继 k*. 将该子载波n分配给用户 j*,并将该子载波从子载波集ΩN中删去,同时更新用户速率 Rj* . 令然后执行(4).(4) 判断NΩ是否为空集,若NΩ为非空集,返回执行步骤(1),直到为空集,子载波分配和中继选择结束.3 仿真结果及分析仿真环境选择单蜂窝5个中继的OFDMA下行链路通信系统模型. 仿真信道采用6径频率选择性瑞利衰落信道,假设最大的多普勒频谱偏移为30Hz,系统总的可用带宽为 1MHz,且整个频段被分成256个正交子载波,高斯白噪声功率谱密度为N0= 1 0−8. 以下则是从系统容量、用户获得的速率与最低速率需求之间的比较来分析提出算法的性能.Proposed: 子载波和中继按照笔者提出的新算法进行分配和选择.Static: 即静态资源分配算法,每个用户分配固定的子载波数目,并按照就近原则进行中继选择.Greedy: 将子载波分别分配给信道增益最大的用户-中继对.图2是3种算法关于系统总容量的比较. 由图可看出,本算法获得较静态资源分配算法更高的系统容量,较 Greedy算法略微小的系统容量. 这是由于本算法是一种自适应的动态资源分配算法,且考虑了不同用户的最低速率需求.图3和图4是关于用户所获得的速率和所要求达到的最低速率的比较,其中Q-Rmin为设定的不同用户最低速率需求值. 为凸显本算法的优越性,分别考虑了不同用户数目下用户所获速率与所要达到的最低速率的比较情况. 仿真结果是经过1000次重复试验得到的平均值. 从图中可以看到,新算法能够使各用户达到其最低速率的需求,而greedy算法和静态资源分配算法只能使个别用户达到所要求的速率.图2 系统总容量随平均信噪比的变化关系(用户数为6)图3 用户获得速率与最低速率要求的比较(用户数为6,中继数为5,系统平均信噪比为20 dB)图4 用户获得速率与最低速率要求的比较(用户数为10,中继数为5,系统平均信噪比为25 dB)4 结语提出了一种OFDMA中继系统中基于QoS保证的资源分配算法. 首先在简化资源优化问题的过程中采用了等功率分配方法,有效降低了算法复杂度,然后通过拉格朗日松弛优化方法推导出了子载波分配和中继选择最优解,在此基础上引入用户速率权衡因子,根据速率权衡因子越大的用户,越优先选择子载波和中继这一准则进行子载波分配和中继选择. 仿真结果表明,本算法在获得较高系统容量的同时能保证不同用户的最低速率需求,即保证各用户的QoS.参考文献:[1]Rappaport T S,Annamalai A,Buehrer R M,et al.Wireless communications: Past events and a future perspective[J]. IEEE Communication Magazine,2002,40:148-161.[2]Genc V,Murphy S,Yu Y,et al. IEEE 802.16j relay-based wireless access networks: A novel view[J]. IEEE Wireless Comm,2008,15:56-65.[3]Pabst R,Walke B,Schultz D,et al. Relay-based deployment concepts for wireless and mobile broadband radio[J]. IEEE CommMagazine,2004,42(9):80-89.[4]Ergen M,Coleri S,Varaiya P. QoS aware adaptive resource allocation techniques for fair scheduling in OFDMA based broadband wireless accesssystems[J].IEEE Trans Broadcasting,2003,49(4):362-370.[5]Shen Z,Andrews J G,Evans B L. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints[J]. IEEE Trans Wireless Comm,2005,4(6):2726-2737.[6]Pischella M,Belfiore J C. Resource allocation for QoS-aware OFDMA using distributed network coordination[J].IEEE Trans on Vehicular Technology,2009,58(4):1766-1775.[7]Huang Lei,Rong Mengtian,Wang Lan,et al. Resource allocation for OFDMA based relay enhanced cellular networks[C]. VTC April IEEE65th,2007:3160-3164.[8]You Lei,Song Mei,Song Junde. Uplink resource allocation in OFDMA relay-assisted cellular network with fairness[C]. IET Conference on Mobile and Sensor Networks,2007:24-27.。

基于公平度和惩罚函数的OFDMA自适应资源分配

基于公平度和惩罚函数的OFDMA自适应资源分配

基于公平度和惩罚函数的OFDMA自适应资源分配袁建国;张芳;王竟鑫;王永;林金朝;庞宇【摘要】In order to solve the problems of system capacity and user fairness in orthogonal frequency division multiple access adaptive resource allocation at the base of rate adaption,a scheme which adopts the two steps of the subcarrier allocation and the power allocation is presented.This scheme is mainly achieved by the subcarrier allocation algorithm based on fairness and the power allocation algorithm based on penalty function.In the subcarrier allocation algorithm,the capacity of the system can be improved when the fairness constraint is satisfied,otherwise the fairness of the user can be improved.However,the system capacity and user fairness cannot be better balanced after the subcarrier allocation.In view of this problem,a power optimization strategy based on penalty function is proposed in the power allocation algorithm,and this strategy takes advantage of the improved artificial bee colony algorithm based on the simulated annealing to achieve the tradeoff between the system capacity and the user fairness.The simulation results show that the proposed scheme cannot only improve the system capacity effectively but also achieve a given fairness constraint.Therefore,the effectiveness of the proposed scheme is proved.%针对基于速率自适应准则的正交频分多址自适应资源分配中系统容量和用户公平度的问题,提出了一种采用子载波分配和功率分配两步来解决该问题的新方案.该方案主要通过基于公平度的子载波分配算法和基于惩罚函数的功率分配算法来实现.在子载波分配算法中,当满足公平度约束时就提高系统的容量,否则就提升用户的公平度.而子载波分配后,并不能较好地兼顾系统容量和用户公平度.所以,在功率分配算法中,又基于惩罚函数提出了一种新的功率寻优策略,并且该策略利用基于模拟退火思想的改进人工蜂群算法来实现系统容量和用户公平度的折中.仿真结果表明所提出的方案不仅可以有效地提升系统容量,同时也可以实现给定的公平度约束,进而证明所提方案的有效性.【期刊名称】《系统工程与电子技术》【年(卷),期】2018(040)002【总页数】8页(P427-434)【关键词】正交频分多址;自适应资源分配;子载波分配;功率分配【作者】袁建国;张芳;王竟鑫;王永;林金朝;庞宇【作者单位】重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065;重庆邮电大学光通信与网络重点实验室,重庆400065;重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065;重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065;重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065;重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065;重庆邮电大学光电信息感测与传输技术重庆市重点实验室,重庆400065【正文语种】中文【中图分类】TN929.50 引言正交频分多址(orthogonal frequency division multiple access, OFDMA)技术[1-3]可以利用各个子信道的信道信息将不同的频带资源动态地分配给不同的用户来实现多址接入,并以此提高系统资源的综合利用率。

OFDMA用户容量最大化的子载波分配优化算法

OFDMA用户容量最大化的子载波分配优化算法

OFDMA用户容量最大化的子载波分配优化算法刘叶;葛万成【摘要】Resources optimization of OFDMA system, involving many aspects such as subcarrier allocation and power allocation, can greatly improve the performance of OFDMA system. Several existing resource optimization algorithms, supposing that these subcarriers are equal-gain conditions and are of no same resource allocation conditions as in reality, usually have certain defects. On account of this, a novel subcarrier allocation algorithm based on optimal channel capacity is proposed, this algorithm, on the premise of known channel state information and with water-injection algorithm, calculates the channel capacity of each user's corresponding subcarrier, and then performs preferential allocation to the subcarriers with the best channel capacity. The simulation results indicate that the proposed algorithm could remedy the defects of the existing algorithms and remarkably improve the total capacity of the system.%对OFDMA系统的资源进行优化,如子载波分配、功率分配等,可显著提高OFDMA系统的性能.现有的几种资源优化算法,由于假定了子载波为等增益条件,与现实中的资源分配条件并不相同,存在一定的缺陷.因此,提出了一种新的基于信道容量最好子载波优先分配(BCCF)算法,即在已知信道状态信息的前提下,通过注水算法计算每个用户对应子载波的信道容量,然后对具有最好信道容量的子载波优先分配.仿真结果表明,所设计的算法对现有算法存在的缺陷有一定补偿,且明显改善了系统总容量.【期刊名称】《通信技术》【年(卷),期】2017(050)008【总页数】4页(P1638-1641)【关键词】OFDMA;子载波分配;功率分配;用户容量最大化【作者】刘叶;葛万成【作者单位】同济大学中德学院,上海 200092;同济大学中德学院,上海 200092【正文语种】中文【中图分类】TN91在单用户的资源分配中,由于仅有一个用户,所有的子载波都可以被该用户调用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DRAFT
depends very much on the requirements of the subscribers and the operator: The objective is to maximize a benefit (or minimize a cost) function such as throughput (or sum power) under certain constraints, which might be power, delay or other Quality of Service (QoS) constraints imposed by the system and the users’ services. For example, a well known objective function is the weighted rate-sum, constrained by a given power budget. Choosing the weights to be the buffer sizes is closely related to the stability of the system [3], [4], but in principle the choice of the weights might be of any kind. On the other hand sum power is an important cost function, and fairness or target rates are common constraints [5]–[8]. These problems seem isolated and the connection between them - if any - remains unclear. Especially the first optimization problem is considered, when multiuser capacity regions are characterized: For the flat fading case, the delay limited and ergodic capacity regions of the multiple access channel (MAC) have been studied in [9], [10] using the weighted sum rateapproach. The equivalent broadcast channel (BC) was treated in [11], [12]. A general duality between MAC and BC for perfect channel state information was established in [13], allowing to translate results from one multiuser channel to the other. Since OFDM has been implemented in promising standards such as digital audio/video broadcasting (DAB, DVB), wireless local area networking (WLAN), and it emerged that OFDM is becoming a key technology in future 4G systems, resource allocation for OFDM has been investigated intensively [14]–[18]. Using the weighted-sum rate approach it was shown that frequency division multiple access (FDMA) is optimal to achieve the maximum sum rate for a sum power constraint [14] and for individual power constraints [17]. This is not the case for any weighted rate sum optimization problem, i.e. for other points on the boundary of the capacity region. The sum power minimization problem was studied in [7], leading to a nonconvex formulation. The general problem in finding the minimum sum power is, that the OFDM channel is a non-degraded channel: this makes it extremely complicated to determine the optimal decoding order. The problem does not affect the maximization of a weighted ratesum, since the decoding order can be found exploiting the polymatroid structure of the capacity region. In this paper, we find the minimum sum power of the OFDM multiuser channel for required rates. We show, that a wide class of problems can be formulated in a unifying framework embedded in a higher dimensional space based on Lagrangian theory. This establishes a connec-
tion between the optimization problems. Being aware of the coherence, we can derive efficient algorithms for all of these problems. Furthermore, we can combine the two antagonistic views of minimum rates and weighted rate sum-maximization to a more sophisticated problem, taking into account both necessities similar to [19], but for the frequency selective case. Furthermore, the resulting vector of Lagrangian parameters reveals the optimal decoding (encoding) order. The remainder of this paper is organized as follows: Section II describes the system model and Section III states the problem formulation. In Sections IV-VI the solutions to the specific problems are derived and the connections among them are depicted. Finally, we conclude with Section VIII. II. S YSTEM M ODEL In this paper, we use the following notation: Vectors and matrices are written bold face and sets are written in calligraphic letters. The notation A = diagK k =1 {ak } denotes the K × K diagonal matrix with the entries Ak,k = ak on its main diagonal. E{·} is the expectation operator and |.|1 the l1 -norm. A circularly symmetric Gaussian random variable Z = X + jY ∼ CN (0, σ 2 ) is a random variable with i.i.d. real variables X, Y ∼ N (0, σ 2/2) and all logarithms are to the base e. We assume an OFDM system with K subcarriers, a base station and M users. Further, we suppose perfect channel state information at both sides. The set of users will be denoted by M = {1, ..., M } in the following. The channel between the base station and any user m ∈ M is modeled as a frequency selective channel with Lm taps. Denoting the lth tap of the channel impulse response of user m as hm [l], the channel on carrier k can be written as
相关文档
最新文档