行为金融学文献26hedge funds and the technology bubble
行为金融学文献23JFE 2012The Secondary Market for Hedge Funds and the Closed Hedge Fund Premium [2]
The Secondary Market for Hedge Funds and the ClosedHedge Fund PremiumJournal of Finance,forthcoming.Tarun RamadoraiAugust3,2010AbstractRational theories of the closed-end fund premium puzzle highlight fund share and asset illiquidity,managerial ability and compensation,and fees as important determinants of thepremium.Several of these attributes are di¢cult to measure for mutual funds,and easier tomeasure for hedge funds.This paper employs new data from a secondary market for hedgefunds,discovers a closed hedge fund premium which is highly correlated over time with theclosed-end mutual fund premium,and shows that the closed hedge fund premium is well-explained by variables suggested by the rational theories.Sentiment-based explanations donot…nd support in the data.Said Business School,Oxford-Man Institute of Quantitative Finance,and CEPR.The author thanks the Oxford-Man Institute for Quantitative Finance and the BNP Paribas Hedge Fund Centre at LBS for…nancial support;Prilla Chandra,Vesa-Heikki Soini,Esteban Ortiz-Ospina,Edmund Miao and Sushant Vale for able and dedicated research assistance;Andrew Ang,John Campbell,Mike Chernov,Campbell Harvey(the editor),Terrence Hendershott,Ravi Jagannathan,Brandon Julio,Bing Liang,Narayan Naik,Andrew Patton,Ludovic Phalippou,Ronnie Sadka,Neil Shephard,Kevin Sheppard,Charles Trzcinka,Russ Wermers,Joshua White,Mungo Wilson,Je¤Wurgler,and two anonymous referees for useful discussions and comments;and seminar participants at WFA2008,SBS,OMI,LBS, Imperial College,Darden,and UNC Chapel Hill for comments.A very special thanks to Jared Herman,Elias Tueta and Hedgebay Trading Corporation for the data and for many useful conversations.The closed-end fund premium puzzle is one of the best known in…nancial economics:Although the secondary market price of a closed-end mutual fund and its net asset value(NA V)are both claims to exactly the same set of underlying cash-‡ows,their levels are very di¤erent,and this di¤erence–the premium–‡uctuates greatly over time.Recently,two promising solutions to this puzzle have been advanced.Berk and Stanton(2007),in the tradition of models by Boudreaux(1973),Gemmill and Thomas(2002)and Ross(2002),conjecture that the closed-end fund premium is driven by the trade-o¤between expectations about fund managers’ability to generate performance,and the fees paid to managers.Cherkes,Sagi and Stanton(2009)point out that investments in closed-end funds grant investors indirect access to illiquid underlying assets with high expected returns.In their model,as investors dynamically weigh the bene…ts of this access against the illiquidity of the fund’s own shares and the fees paid to fund managers,the premium‡uctuates.These recent theories move us towards a resolution of the puzzle.However,while they may be correct,testing their predictions on mutual fund data is di¢cult for at least three reasons.First, measures of mutual fund share and asset liquidity are inferred with measurement error.Second, researchers have been hard-pressed to…nd evidence of positive risk-adjusted performance in mutual funds.This makes empirical inference about how ability is related to premiums virtually impossible.1 Third,Berk and Stanton acknowledge the paucity of evidence in mutual funds for a crucial ingredient of their model,namely,pay for performance.2These three di¢culties combine to create yet another: It is unclear how the liquidity-based explanation and the ability-based explanation interact,as they have yet to be tested simultaneously.If fund liquidity,asset liquidity and fund performance are correlated with each other,omitting any of these determinants could result in incorrect inferences about the true drivers of the premium.3This paper adopts a new approach to resolve this conundrum,testing the rational theories in a setting which seems better suited to evaluating their predictions.Closed-end structures exist1Of course,the lack of observable risk-adjusted performance is not inconsistent with the existence of managerial ability in a competitive market for capital provision to mutual funds(see Berk and Green(2004)).Nevertheless, as Berk and Stanton point out,it has empirically“proved so di¢cult for researchers to…nd convincing evidence of managerial ability that many,such as Jensen(1968)and Carhart(1997),have concluded that it does not exist.”2As performance-linked pay structures are not prevalent in the mutual fund industry,the relationship between pay and performance is often inferred indirectly,e.g.,from the‡ow-performance relationship(see Sirri and Tufano (1998)).3See Edelen(1999),Nanda,Narayanan and Warther(2000)and Chen,Hong,Huang and Kubik(2004)for analysis of these relationships in mutual funds and Aragon(2005)for evidence from hedge funds.in hedge funds,close relatives of actively managed mutual funds.Hedge funds often close to new investments to avoid the negative impact of capacity constraints,and simultaneously impose lockup and redemption notice periods,e¤ectively closing funds for the period when these constraints bind.4 There is extensive evidence that the risk-adjusted performance of hedge funds is signi…cantly di¤er-ent from zero,and that it varies both in the cross-section of funds and over time(see Kosowski,Naik and Teo(2007),Fung,Hsieh,Naik and Ramadorai(2008),and Jagannathan,Malakhov and Novikov (2010)).Share illiquidity in hedge funds is very easy to measure–detailed data on fund-imposed restrictions on the timing and amount of capital in‡ows and withdrawals are readily available from hedge fund databases.Finally,unlike in mutual funds,hedge fund manager pay is explicitly linked to performance.Hedge funds employ incentive fees,hurdle rate and high-water mark provisions that combine to create option-like compensation for their managers.The‘delta’of these options,and the manager’s ownership fraction in the fund have recently been computed and found to predict future hedge fund returns(see Agarwal,Daniel and Naik(2009)).To measure closed hedge fund premiums,this paper analyzes all completed transactions from Hedgebay,the longest running secondary market for hedge funds.5Transactions on this market occur in funds that restrict in‡ows and out‡ows,and existing investors of the funds trade stakes with one another at premiums and discounts to the end-of-month NA V reported by funds.These premiums and discounts are conceptually similar to those on closed-end mutual funds.However, they also di¤er in several respects.Closed-end mutual funds and the shares held in their portfolios are both traded on public exchanges.In contrast,hedge funds hold and trade a wide variety of assets,including currencies,commodities and bonds,and Hedgebay is an over-the-counter(OTC) market,rather than a public exchange.Moreover,when hedge funds are traded on Hedgebay,they are closed to new investments and withdrawals–but for a shorter duration than closed-end mutual funds,which only rarely accept additional capital after their initial establishment by means of rights issues(see Khorana,Wahal and Zenner(2002)),and do not normally(apart from distributions or liquidations)repatriate capital to investors over their lifetimes.6Finally,the investors in hedge4For evidence on hedge fund capacity constraints see Naik,Ramadorai and Stromqvist(2007),Fung,Hsieh,Naik and Ramadorai(2008),Zhong(2008),Teo(2009)and Ramadorai(2009).5See“How hedge funds are bought and sold online”,The Economist,August4,2005;and“All locked-up”,The Economist,August2,2007.6See Bradley,Brav,Goldstein and Jiang(2010)for evidence that takeovers and liquidations of closed-end funds became more prevalent following important SEC reforms in1992.funds that transact on Hedgebay are primarily institutional investors such as funds-of-funds,pension funds,endowments,family o¢ces and banks,or wealthy individuals,rather than the small investors identi…ed as the primary clientele for closed-end mutual funds(Lee,Shleifer and Thaler(1991)). This creates the presumption that sentiment,a frequently-cited explanation for the behavior of the closed-end fund premium,is less likely to drive the closed hedge fund premium.While these di¤erences are important,they don’t appear to invalidate the testing on hedge fund data of theories…rst formulated to explain closed-end mutual fund premiums.Indeed,despite these di¤erences,the closed-end mutual fund premium and the closed hedge fund premium strongly co-move.The correlation between the closed hedge fund premium and the closed-end mutual fund premium is around40%in monthly data between1998and2008.This relationship is in part driven by the tendency for both series to co-move with the short-term interest rate.7Perhaps surprisingly, however,over the sample period,neither the closed-end mutual fund premium nor the closed hedge fund premium are related to commonly employed proxies for investor sentiment(the University of Michigan index and Baker and Wurgler’s(2007)index).In the cross-section of closed hedge fund premiums,both the Cherkes et al.model and the Berk and Stanton model receive strong support.Premiums are negatively related to the share illiquidity of hedge funds.Premiums are also signi…cantly related to measures of the ability of hedge funds such as past performance,fund size,and fund age.These…ndings are particularly important since the evidence from mutual funds on the relationship between closed-end fund premiums and performance is mixed at best.Premiums also help to predict future hedge fund performance.The sign of this predictive relationship depends on the level of the premium,and on whether past performance is included as a conditioning variable.8Measures of the alignment of incentives between hedge fund managers and their outside in-vestors are also important for explaining the closed hedge fund premium.High levels of managerial investment in the fund,and in some speci…cations,the presence of a hurdle rate or a high water7This is not the sole driver of the relationship,however–the correlation between the cylical components of the closed-hedge fund premium and the closed-end mutual fund premium is a statistically signi…cant14%.8This result is similar to those of Chay and Trzcinka(1999)and Wu and Xia(2001),who…nd that closed-end mutual fund premiums forecast future NAV returns.One rationale for the relatively strong results for hedge funds is provided by Glode and Green(2009),who point out that performance persistence is more likely in hedge funds than in mutual funds,because hedge funds have incentives to share information rents with investors to prevent them from disclosing information about proprietary strategies to potential new entrants.mark in a fund,are positively associated with higher premiums.There is also weak evidence that the square of managerial investment is negatively related to the closed hedge fund premium in some speci…cations.This suggests that moderate levels of managerial ownership are interpreted positively by investors,whereas they seem to value very high levels of managerial ownership somewhat less, justifying the Berk and Stanton assumption that managers are entrenched.Finally,ceterus paribus, premiums are consistently lower for funds with high management fees.Both Cherkes et al.and Berk and Stanton emphasize fees as an important driver of premiums,as do Gemmill and Thomas (2002)and Ross(2002).All these results are robust to correction for potential selection bias using a…rst stage probit regression,which seeks to explain the determinants of a fund being traded on Hedgebay.In this probit exercise,the sample of hedge funds traded on Hedgebay is compared with the entire universe of hedge funds and funds-of-funds in the consolidated TASS,HFR,CISDM and MSCI database.Taken together,the results represent signi…cant evidence in support of the rational theoretical models advanced to explain closed-end fund premiums.The use of hedge fund data to evaluate these theories constitutes an out of sample test,which is useful in light of concerns about data-snooping biases that arise from the extensive empirical literature on closed-end mutual funds.It is worth reiterating that until quite recently,explanations for the closed-end fund puzzle have relied heavily on investor sentiment.9Older rational theories of the puzzle have also emphasized taxes (Malkiel(1977),Brickley,Manaster and Schallheim(1991),fund holdings of restricted stock(Lee, Shleifer,and Thaler(1991))and private bene…ts of managerial control(Barclay,Holderness and Ponti¤(1993)).The organization of the paper is as follows.Section I describes the data.Section II presents facts about the behavior of the closed hedge fund premium in time-series,and describes the measurement of variables predicted by the theories.Section III discusses estimation and the correction for selection bias.Section IV describes the results from estimation,and Section V concludes.9A partial list of papers exploring the role of sentiment in closed-end fund premia includes Zweig(1973),Brauer (1988),DeLong,Shleifer,Summers and Waldmann(1990),Lee,Shleifer,and Thaler(1991),Chopra,Lee,Shleifer, and Thaler(1993),Bodurtha,Kim,and Lee(1995),Ponti¤(1996),and Baker and Wurgler(2006,2007).Dimson and Minio-Kozerski(1999)provide a comprehensive survey of the closed-end fund literature.I.DataA.Secondary Market TransactionsThe secondary market data come from Hedgebay,the longest-running trading venue for hedge funds. The investors transacting via Hedgebay are primarily institutional investors,domiciled in over40 countries,with investment pools sourced mainly from the US and Europe.Over the sample period, transactions almost exclusively occurred in closed share classes of funds,i.e.,either the funds were closed to new investments,or fund managers were not issuing additional shares in the speci…c share classes that were transacted on Hedgebay.While transactions are conducted throughout the month, they are settled during the last few days of the month,immediately following the report of the fund’s NA V at the end of each month.Thus,these are technically short-dated forward contracts entered into during the month,which are legally binding between counterparties once approval of the fund manager has been obtained.More details on the trading process can be found in Appendix A.A.1.The Closed-Hedge Fund PremiumI denote by P REM the percentage premium in excess of NA V agreed on between the buyer and the seller of a fund in a given transaction.P REM excludes trading costs on Hedgebay,and T OT P REM includes these trading costs measured as a percentage of NA V.10The speci…cations estimated in the paper explain both T OT P REM and P REM,to ensure that the results are not just driven by changes in trading costs.The data comprise1;005transactions in a total of225funds,between August1998and August 2008.11There has been considerable growth in the market–in1999,the value of the average transaction was around600;000U.S.dollars,and by2008,this number was up to4:6million dollars per transaction.Table I reports transaction amounts as percentages of fund AUM,and shows that these transactions represent a non-trivial and growing fraction of total AUM,from10The trading costs series includes Hedgebay’s trading commission,which over the sample period is charged to buyers on transactions occurring at premiums,and to sellers on transactions occurring at discounts.These costs vary between30and70basis points on average per annum as can be seen from the di¤erence between T OT P REM and P REM in Table I.11This excludes54transactions which are‘junk asset’trades undertaken by limited partners who have not received the proceeds of liquidation in bankrupt funds,pending the completion of the legal process.These are transactions on bankruptcy claims rather than on going concerns,and occur post-liquidation.around30basis points of AUM in1999to approximately1:2%of AUM in2008.These percentages are AUM-weighted across all funds each year,so the observed growth is not being driven by trades in small funds.[TABLE I HERE]The premiums demonstrate interesting time-series variation:In the period up until2005,the average premium is positive for all but one year,and the fraction of transactions occurring at a discount is less than a third.(The fact that almost every one of these early transactions occurs between pre-existing investors in the fund partly assuages concerns that asymmetric information should generate discounts to compensate buyers against adverse selection risk.)In2007and2008, in contrast,the average transactions premium is large and negative,and by2008,over half of the transactions occur at discounts.Two factors appear to drive this time variation:First,both the premium and the cross-sectional standard deviation of premiums appear to re‡ect conditions in the broader economy.Second,transaction numbers and the amounts transacted in funds experiencing liquidations,frauds,or the sudden imposition of gates(bans on withdrawals)have grown appreciably since the inception of the marketplace in1998.This may re‡ect the increasing public awareness of Hedgebay as a venue for such types of transactions.B.Matching to Hedge Fund DataThe funds with transactions on Hedgebay are matched to a combined database of9;305live and dead hedge funds and funds-of-funds from HFR,CISDM,TASS and MSCI.The matching procedure results in a…nal sample of522transactions in126funds.12(Internet Appendix Table II presents some descriptive statistics at the fund level for the126matched funds).[TABLE II HERE]Table II shows summary statistics for the matched transactions.While the percentage of these transactions for which the premium is negative has roughly the same time pattern as in Table 12The Internet Appendix contains details about the procedures followed to match funds,and discusses the creation of the combined database.Internet Appendix Table I presents descriptive statistics on the combined database, including on the mapping from funds’detailed strategies to nine strategies from the variety of vendor classi…cations. These nine strategies are:Security Selection,Global Macro,Relative Value,Directional Traders,Funds of Funds, Multi-Process,Emerging Markets,Fixed Income,and Other.I(rising through the sample period,largest in2008),the transactions with the largest negative premiums are clearly absent from the matched sample.This con…rms the…ndings of prior research on hedge funds(Fung and Hsieh(2000),Liang(2000)),that the non-response bias documented in much hedge fund research is likely greatest in funds that generate low performance.Collectively, the di¢culties in matching transactions to the databases add to the possibility that selection bias a¤ects the results of this study,a possibility for which I attempt to correct later in the analysis.II.Explaining the Hedge Fund PremiumA.Stylized Facts in the Time SeriesClosed-end mutual fund premiums have been found to vary over the business cycle,and to co-move with aggregate stock and bond returns.For example,Brickley,Manaster and Schallheim (1991)…nd that premiums on17closed-end funds over the1969to1978period are pro-cyclical,and attribute this cyclicality to the tax-timing option value of closed-end funds.Lee,Shleifer and Thaler (1991)document that premiums are positively correlated with contemporaneous stock returns,and interpret this as evidence of sentiment driving both equity returns and closed-end fund premiums; and Cherkes,Sagi and Stanton(2009)document that premiums are negatively correlated with the short-term risk-free rate,interpreting this as evidence of the leverage service provided by closed-end funds to their investors.These prior…ndings suggest that the aggregate variation in the closed hedge fund premium may be related to movements in stock returns,bond returns,aggregate illiquidity and sentiment.As a…rst step,therefore,I compute the average value-weighted closed hedge fund premium V W T OT P REM t across all funds(i)in each month(t):V W T OT P REM t=N tX =1w i;t 1T OT P REM i;t;(1)where w i;t 1=AUM i;t 1P I t i=1AUM i;t 1and I t is the number of funds in which transactions occur in month t.13 I then estimate the correlation coe¢cients of V W T OT P REM with a number of monthly variables 13When multiple transactions occur for any fund in the same month,these are used as independent observations, and weighted accordingly.Premia are winsorized at the5and95percentile points of the time-series cross-sectional distribution to mitigate the impact of extreme transactions,only in the time-series analysis in this section and inmotivated by theory and prior empirical evidence.As many of these aggregate variables are persis-tent,I conduct an augmented Dickey-Fuller(ADF)test of the residuals from the regression used to compute the correlation estimate in each case,to check that the correlations are not spurious(see Engle and Granger(1987)).I then estimate the correlations of the…rst di¤erences of T OT P REM with the…rst di¤erences of each of the monthly variables;and the correlations after de-trending each variable using the Hodrick-Prescott…lter(neither of these is estimated for the S&P500returns). Newey-West(1987)standard errors,robust to heteroskedasticity and autocorrelation,are computed for all estimated correlations.[TABLE III HERE]Table III shows the results of this exercise.First,the correlations of V W T OT P REM with the sentiment measures are statistically insigni…cant.14This is similar to the results of Lemmon and Portniaguina(2006),Qiu and Welch(2006)and Cherkes,Sagi and Stanton(2009).Indirect evidence of the lack of explanatory power of sentiment is also o¤ered by the correlation of de-trended V W T OT P REM with de-trended VIX,which is a statistically signi…cant8%.The sentiment-based theories would predict that VIX,the market’s‘fear gauge’(Whaley(2000))has a negative relationship with the premium(the higher the fear,the lower the premium),while microstructure based theory and empirical evidence suggest that volatility should be positively associated with higher spreads in asset markets(see Cherkes et al.(2009)),and thus that V W T OT P REM will be positively correlated with VIX(assuming secondary market illiquidity is less responsive to volatility than the illiquidity of underlying hedge fund assets).[FIGURE1HERE]The relationship between V W T OT P REM and the risk-free rate is strongly negative over the period.Figure1plots the one-month risk-free rate,V W T OT P REM and the Hodrick-Prescott trend of V W T OT P REM over the1998to2008period.While the risk-free rate is highly persistent, the residual from the regression of V W T OT P REM on the rate is stationary,suggesting that thethe…gures.Online Appendix Figure1plots the equal-weighted premium,and Internet Appendix Table III estimates Table III using the equal-weighted premium.14Internet Appendix Table IV shows the correlation matrix of all the covariates.Online Appendix Figure2plots the closed-end mutual fund premium,V W T OT P REM and the Michigan consumer sentiment index.relationship is not spurious(the ADF t-statistic is 8:4,rejecting the null of a unit root at the1% level of con…dence).This adds support to the Cherkes et al.hypothesis on the liquidity-service-amplifying impacts of leverage.15[FIGURE2HERE]The closed hedge fund premium is also highly correlated with the closed-end mutual fund pre-mium over time.The correlation coe¢cient between the two series in levels is39%,and14% between the de-trended components of the two series.16Figure2plots both series over the sample period.One plausible interpretation of this relationship,given that both premiums co-move with the risk-free rate,is that the cost of leverage drives their common variation.Another possible in-terpretation has to do with the cyclicality of the two premiums–the T-bill rate is a state variable that has often been linked to variation in the business cycle(see Ferson and Harvey(1991)and Hodrick and Prescott(1997)).Extrapolating from the Berk and Stanton model,if investors expect that active managers have better investment opportunities in booms than in recessions,then we would see lower premiums on both hedge funds and mutual funds when the T-bill rate is high and vice versa.B.The Cross-Section of Hedge Fund PremiumsThis subsection presents empirical measures of the variables employed in the theoretical models that explain the premium,and discusses the predictions of these models for the signs of the regressors employed in the cross-sectional speci…cations.B.1.AbilityBerk and Stanton’s model predicts that at moderate levels of managerial ability,premiums will be linearly and positively related to demonstrated performance,as investors update their expectations15A low risk-free rate implies that leverage is less costly for closed-end funds(complementing investments in illiquid assets),and consequently a greater liquidity service to outside investors who may be relatively leverage-constrained. This aspect of their theory should apply strongly to hedge funds–which are more reliant on the use of leverage than mutual funds.Internet Appendix Figure3shows this relationship between the closed-end mutual fund premium and the one-month T-bill rate over the1965to2008period.16Also,the…rst di¤erence of the equal-weighted closed-hedge fund premium is statistically signi…cantly related to the…rst di¤erence of the closed-hedge fund premium,see Internet Appendix Table III.of the manager’s ability.As demonstrated performance rises,the inferred ability of the manager rises,and so does the likelihood that the manager will demand a pay increase.This generates a predicted non-linearity in their model,with reductions in premiums at very high levels of perfor-mance.In the empirical speci…cations,the…rst measure of risk-adjusted hedge fund performance is estimated from factor models of the form:r i;t r f;t= i+X j i;j F j;t+"i;t(2)If a transaction occurs for fund i in period h,(2)is estimated using returns r for the fund from h 12(or h 24)to h 1to obtain past risk-adjusted performance,and from h+1to h+12(or h+24)to obtain future risk-adjusted performance.Three di¤erent factor models are employed:A single-factor market model,in which F is the excess return on the CRSP value-weighted portfolio; Carhart’s(1997)four factor model,comprising the three Fama-French factors(Rm Rf,SMB and HML),and the momentum portfolio(UMD);and Fung and Hsieh’s(2004)seven-factor model.From(2),t(^ i)=^ iis computed and used as the performance measure.This measureihas been employed for mutual fund and hedge fund performance evaluation in recent papers by Kosowski,Timmerman,Wermers and White(2006),Kosowski,Naik and Teo(2007),and Fung, Hsieh,Naik and Ramadorai(2008).These authors prefer t(^ )to^ ,since over short periods in which alphas are estimated with less precision,there is the potential for outliers in^ .By normalizing^ by its precision,t(^ )provides a correction for these potentially spurious outliers.17In the regression context,with the premium on the left-hand side,the Berk and Stanton model predicts a positive sign on t(^ ),and a negative sign on(t(^ ))2.The other two performance measures employed in the paper are the size of the fund and the age of the fund.Both these variables are measured as(time-varying)ranks relative to all other funds in the universe to avoid concerns of non-stationarity,and lagged one month to avoid any mechanical association.Fund size is employed on account of the extensive evidence on capacity 17t( i)is closely related to the“information ratio”of a fund(Treynor and Black(1973)),a commonly used performance measure in the investment management industry.I have also replaced t(^ )with raw returns,alpha measured using other factor models,and the t(^ )measured using other factor models,with very similar results(see Internet Appendix Tables V and VI).Of course,to the extent that there are omitted factors in the model,such as liquidity,the^ measured in this fashion admits other interpretations.I attempt to control for these other sources of variation in the speci…cations.。
行为金融学研究综述
行为金融学研究综述行为金融学研究综述引言行为金融学是一门相对较新的学科领域,它通过关注人们在金融决策中的行为模式和倾向,揭示了金融市场中的很多现象和问题。
本文旨在对行为金融学的研究进行综述,从理论基础、主要研究领域、方法论及对金融市场的影响等方面进行分析和总结。
一、理论基础行为金融学的理论基础主要源于心理学和经济学的交叉研究,尤其是关于人们决策行为的相关理论和观点。
在心理学领域中,行为金融学主要借鉴了认知心理学和实验心理学的研究成果。
其中,认知心理学关注人们决策过程中的认知偏差和限制,实验心理学则通过实验证据揭示人们在特定条件下的行为倾向。
经济学对行为金融学的理论构建和分析也起到了重要作用。
传统的经济学理论通常假设理性决策者在面对信息不完全和风险时,能够做出最佳的经济决策。
然而,行为金融学的出现质疑了这种假设,认为人们在实际决策过程中往往受到情绪、心理偏差和社会因素的影响,从而导致非理性的决策。
二、主要研究领域行为金融学的研究范围广泛,主要包括以下几个领域:1. 决策心理学:研究人们决策的认知过程、心理偏差和风险态度。
其中,前景理论和期望效用理论是行为金融学中的两个重要理论模型。
前景理论认为人们在面对风险时,存在着风险规避和风险寻求的不对称行为。
期望效用理论则主要研究人们决策时对效用的感知与评估。
2. 资产定价:研究资本市场中价格波动的原因和特征。
传统的资产定价模型通常基于理性投资者的假设,认为市场价格会自动回归到公允价值。
然而,行为金融学认为投资者情绪和心理偏差会导致市场价格与真实价值之间的偏离,并产生价格泡沫和过度买卖等现象。
3. 市场行为:研究投资者的行为动机、交易行为和市场交易的影响因素。
行为金融学研究发现,投资者情绪和心理偏差往往会影响他们对市场中的股票或资产的决策和操作行为,从而导致市场交易的不稳定和非理性。
4. 金融风险管理:研究金融市场中的风险管理策略和决策行为。
行为金融学认为,投资者往往根据过去的经验和情绪倾向来评估风险和制定风险管理策略,而不仅仅是基于理性的决策。
行为金融理论文献综述
行为金融理论文献综述行为金融理论文献综述相对于现代金融理论,行为金融学的发展历史并不很长。
从20世纪90年代,学术界开始形成了研究行为金融的热潮,大量的学者投身于行为金融方面的研究。
行为金融定义的讨论行为金融作为一个新兴的研究领城,虽然己经有了20多年的发展历史,但至今还没有一个为学术界所公认的严格定义。
Thaler(1993)认为行为金融就是“思路开放式金融研究”(open-minded 'finance),只要是对现实世界关注,考虑经济系统中的人有可能不是完全理性的,就可以认为是研究行为金融。
Lintner(1998)把行为金融学研究定义为“研先人类如何解释以及根据信息、做出决策”。
Olsen(1998)声称“行为金融学并不是试图去定义‘理性’的行为或者把决策打上偏差或错误的标记;行为金融学是寻求理解并预测进行市场心理决策过程的系统含义”。
Statman(1999)则认为金融学从来就未离开过心理学,一切行为均是基于心理考虑的结果,行为金融学与标准金融学的不同在于对心理、行为的观点有所不同。
Sheinn(2000)认为,行为金融是将行为科学、心理学和认知科学上的成果运用到金融市场中产生的学科,其主要研究方法,是基于心理学实验结果提出投资者决策时的心理特征假设来研究投资者的实际投资决策行为。
Russell (2000)对行为金融是这样定义的:(1)行为金融理论是传统经济学、传统金融理论、心理学研究以及决策科学的综合体。
(2)行为金融理论试图解释实证研究发现的与传统金融理论不一致的异常之处。
(3)行为金融理论研究投资者在做出判断时是怎样出错的,或者说是研究投资者是如何在判断中发生系统性的错误的。
从上述行为金融学家定义的行为金融概念可以得出如下结论,行为金融研究考虑到了人的不完全理性的本性,其研究需要运用行为科学和心理学知识,其研究对象是金融领域的相关现象及其本质。
行为金融的发展历史通常把行为金融的研究历史划分为三个阶段:1.早期行为金融研究。
《2024年行为金融学研究综述》范文
《行为金融学研究综述》篇一一、引言行为金融学是一门结合心理学、行为科学和金融学的交叉学科,它致力于研究金融市场中投资者行为及其对资产定价、市场波动和投资决策的影响。
随着金融市场的日益复杂化和投资者行为的多样化,行为金融学逐渐成为金融学领域的研究热点。
本文将对行为金融学的研究进行综述,以期为未来的研究提供参考。
二、行为金融学的基本理论行为金融学基于心理学和行为科学的理论,提出了与传统金融学不同的观点。
它认为,投资者的决策过程并非完全理性,而是受到心理、情感、认知等因素的影响。
因此,行为金融学强调研究投资者行为、市场情绪、心理偏差等因素对金融市场的影响。
三、行为金融学的主要研究领域1. 投资者行为研究:这是行为金融学最核心的研究领域,主要探讨投资者的心理特征、决策过程以及这些因素如何影响投资者的投资行为。
2. 资产定价与市场波动:研究心理偏差和市场情绪如何影响资产定价和市场的波动性,为投资者提供更为准确的投资策略。
3. 金融市场异象:针对金融市场中的一些异常现象,如封闭式基金折价、IPO溢价等,探讨其背后的行为因素。
4. 行为资产组合理论:研究投资者在投资组合选择过程中的心理和行为特征,以及这些特征如何影响投资者的资产配置。
四、行为金融学的研究方法行为金融学的研究方法主要包括实验法、调查法和实证分析法。
实验法通过设计实验环境,观察投资者在特定情境下的行为;调查法则是通过收集和分析数据来研究投资者行为的规律;实证分析法则通过运用统计分析等手段来检验理论和模型的有效性。
五、行为金融学的研究成果自行为金融学诞生以来,其在金融领域取得了丰富的研究成果。
首先,许多学者对投资者的心理偏差进行了深入研究,如过度自信、损失厌恶、锚定效应等。
这些研究揭示了投资者在决策过程中的心理特征和行为模式。
其次,行为金融学对资产定价和市场波动的解释也得到了越来越多的实证支持。
此外,行为金融学还为金融市场监管提供了新的思路和方法。
行为金融学基础文献
真正经典的行为金融学基础文献没有包括进啊,我这里有个单子,供大家参考行为金融学基础文献1、Barberis, N., M. Huang, and T. Santos , 2001 , ―Prospect Theory and Asset Prices,‖ Quarterly Journal of Economics, Vol.116, pp. 1-53.2、Barberis, N., A. Shleifer , and R. Vishny, 1998 , ―A Model of Investor Sentiment,‖ Journal of Financial Economics 49 , 307 -343.3、Campbell, J., 1999 ,―Asset Prices, Consumption, and the Business Cycle,‖ in J.B. Taylor and M. Woodford eds. Handbook of Macroeconomics Vol. 1, North–Holland, Amsterdam, 1231–1303.4、Daniel, K., Hirshleifer, D., and Subrahmanyam, A., 1998 , ―Investor Psychology and Security Market under-and Overreactions,‖ Journal of Finance, Vol.53 pp.1839-1886.5、De Long, J.B., Shleifer, A., Summers, L., Waldmann, R., 1990a, ―Positive Feedback Investment Strategies and Destabilising Rational Speculation,‖ Journal of Finance 45, 375–395.6、De Long, J.B., Shleifer, A., Summers, L., Waldmann, R., 1990b, ―Noise Trader Risk in Financial Markets,‖ J ournal of Political Economy 98, 703–738.7、Hong, H., and J., Stein , 1999 , ―A Unified Theory of Underreaction, Momentum Trading and Overreaction in Asset Markets,‖ Journal of Finance, 54: 2143-2184.8、Kahneman, D., and A., Tversky, 1979 , ―Prospect Theory: An Analysis of Decision under Risk,‖ Econometrica, Vol. 47, No. 2., pp. 263-292.9、Le Roy, S., and R., Porter, 1981 , ―The Present-Value Relation: Tests Based on Implied Variance Bounds,‖ Econometrica, Vol. 49, No. 3, pp. 555-574.10、Mehra, R. and E. Pre scott, 1985, ―The Equity Premium: A Puzzle,‖ Journal of Monetary Economics, Vol15, pp.145-161.11、Shiller, R., 1981 , ―Do Stock Prices Move too much to be justified by Subsequent Changes in Dividends?‖ American Economic Review, Vol.71, pp. 421-436.12、Tver sky, A., D., Kahneman, 1974 , ―Judgment under Uncertainty: Heuristics and Biases,‖ Science, New Series, Vol. 185, No. 4157, pp. 1124-1131.13、Jegadeesh and Titman,―momentum‖.相关书籍:1、金融异象与投资者心理胡昌生2、投资心理学(The Psychology of Investing)Nofsinger3、金融心理学拉斯.特维德4、并非有效的市场——行为金融学导论Shleifer5、乌合之众勒庞。
行为金融学理论综述
行为金融学理论综述在金融领域,传统金融学理论长期占据主导地位,其基于理性经济人和有效市场假说,认为投资者能够做出理性决策,市场能够迅速准确地反映所有信息。
然而,随着金融市场的不断发展和实践中的诸多现象难以用传统理论解释,行为金融学应运而生。
行为金融学将心理学、社会学等学科的研究成果引入金融领域,试图更真实地描绘投资者的决策行为和金融市场的运行规律。
一、行为金融学的起源与发展行为金融学的起源可以追溯到 20 世纪 50 年代。
当时,一些学者开始关注投资者的心理和行为对金融决策的影响,但在当时并未形成系统的理论体系。
直到 20 世纪 80 年代,随着认知心理学的发展,行为金融学逐渐崭露头角。
1985 年,德邦特和塞勒发表了《股票市场过度反应了吗?》一文,通过实证研究发现股票市场存在过度反应的现象,这一研究成果标志着行为金融学的正式诞生。
此后,越来越多的学者投身于行为金融学的研究,不断丰富和完善其理论体系。
在发展过程中,行为金融学逐渐形成了多个重要的分支,如认知偏差理论、有限理性理论、羊群行为理论等。
这些理论从不同角度揭示了投资者在金融决策中的非理性行为和市场的异常现象。
二、行为金融学的核心概念(一)认知偏差认知偏差是指投资者在信息处理和决策过程中产生的系统性错误。
常见的认知偏差包括过度自信、代表性偏差、锚定效应等。
过度自信使得投资者高估自己的能力和判断,从而导致过度交易和错误决策。
代表性偏差则是指投资者根据事物的表面特征或典型案例进行判断,而忽略了其他重要信息。
锚定效应是指投资者在决策时过分依赖初始信息,即使后续有新的信息出现,也难以改变最初的判断。
(二)有限理性有限理性认为,投资者在决策时由于受到信息获取能力、计算能力和时间等因素的限制,无法做到完全理性。
他们往往采用简单的启发式方法进行决策,这些方法虽然能够节省时间和精力,但可能导致决策偏差。
(三)羊群行为羊群行为是指投资者在信息不确定的情况下,模仿他人的决策,从而导致市场中的群体行为。
《2024年行为金融学研究综述》范文
《行为金融学研究综述》篇一一、引言行为金融学是近年来新兴的金融学分支,主要探讨投资者行为在金融市场的表现及影响。
传统的金融学理论,如有效市场假说和理性人假设,虽为金融领域提供了理论基础,但在实际金融市场应用中存在一些无法解释的现象。
因此,行为金融学在考虑人的心理、情感和行为对金融市场影响的基础上,试图对这些问题进行解答。
本文将对行为金融学的研究现状、方法、结论及其局限性进行综合述评。
二、行为金融学的基本理念与起源行为金融学主要源于对传统金融学理论的质疑与反思。
传统金融学强调市场理性与效率,但人们在实际金融市场中的决策行为却往往偏离理性。
行为金融学认为,人的心理、情感和行为在金融市场决策中起着重要作用。
其基本理念包括:投资者并非完全理性,市场也非完全有效;投资者在决策过程中存在认知偏差、情绪波动等心理因素;金融市场存在信息不对称现象等。
三、行为金融学的主要研究领域与方法1. 研究领域(1)投资者行为研究:关注投资者在金融市场中的实际决策过程及其心理机制。
(2)市场异象研究:对金融市场中的一些异常现象进行研究,如股票溢价之谜、股票交易量之谜等。
(3)资产定价研究:研究投资者行为如何影响资产价格及其波动性。
(4)公司治理与决策研究:探讨公司治理结构、管理层决策等对投资者行为的影响。
2. 研究方法(1)实证研究:通过对金融市场数据的实证分析,检验投资者行为的规律与特征。
(2)实验研究:利用实验方法,模拟金融市场环境,观察投资者在不同条件下的决策行为。
(3)心理分析:通过心理分析方法,研究投资者在决策过程中的认知偏差与情绪波动等心理因素。
四、行为金融学的主要研究成果与结论1. 投资者行为研究(1)投资者的心理账户:人们倾向于将不同来源的资金或投资放在不同的心理账户中,这会影响投资者的风险偏好和决策过程。
(2)过度自信现象:投资者往往过于自信地评估自己的能力和预测能力,导致过度交易和投资决策失误。
(3)羊群效应:投资者容易受到他人行为的影响,形成羊群效应,导致市场出现群体性非理性行为。
行为金融学文献综述
行为金融学文献综述行为金融学,就是将心理学尤其是行为科学的理论融入到金融学中,从微观个体行为以及产生这种行为的更深层次的心理、社会等动因来解释、研究和预测资本市场的现象和问题。
自1980年代以来,随着金融市场的发展和研究的深入,人们发现了金融市场中存在很多不能被传统金融学所解释的现象,比如股权滋价之谜、波动率之谜、封闭式基金之谜、股利之谜、小公司现象、一月份效应、价格反转、反应过度和羊群行为等等。
学者们将这些违背有效市场假说,传统金融学理论无法给出合理解释的现象称之为“异象”或“未解之谜”。
金融市场中存在的大“异象”对传统金融学产生了巨大冲击,尤其向有效市场假说提出严峻挑战。
因此,人们开始重新审视“完美的”传统金融学理论。
传统金融学理论把人看作是理性人,即人们在从事经济活动时总是理性的,追求收益最大化和成本最小化人们的估计是无偏的,满足贝叶斯过程。
因为人的假设与现实中人的决策行为有一定差异,所以人们开始关注人类行为及心理在决策中的作用,运用心理学的研究方法来研究金融问题,行为金融学应运而生。
从而金融学的研究焦点开始从“市场”研究转向“人类行为”研究。
心理因素在投资决策中的作用方面的研究可以追溯至1936年凯恩斯的“空中楼阁理论”,该理论认为投资者是非理性的,证券的价格取决于投资者共同的心理预期。
然而,真正意义上的行为金融学是由美国奥瑞格大学教授Burrel和Bauman(1951年)提出来的。
他们认为在对投资者的决策研究仅仅依赖于化的模型是不够的,还应该考虑投资者的某些相对固定的行为模式对决策的影响。
心理学Slovic(1972)教授从行为学角度研究了投资者的投资决策过程。
随后,Tversky 和Kahneman在1974年和1979年分别对投资者的决策行为进行了行为金融学研究,分别讨论了直觉驱动偏差和框架依赖的问题,从而奠定了行为金融学研究的基础。
20世纪80年代,金融市场中的大量“异象”被发现,推动了行为金融学的发展。
行为金融学经典文献(英文版)(pdf 47页)
THE JOURNAL OF FINANCE • VOL. Байду номын сангаасIII, NO. 6 • DECEMBER 1998
Investor Psychology and Security Market Under- and Overreactions
KENT DANIEL, DAVID HIRSHLEIFER, and AVANIDHAR SUBRAHMANYAM*
*Daniel is at Northwestern University and NBER, Hirshleifer is at the University of Michigan, Ann Arbor, and Subrahmanyam is at the University of California at Los Angeles. We thank two anonymous referees, the editor ~René Stulz!, Michael Brennan, Steve Buser, Werner DeBondt, Eugene Fama, Simon Gervais, Robert Jones, Blake LeBaron, Tim Opler, Canice Prendergast, Andrei Shleifer, Matt Spiegel, Siew Hong Teoh, and Sheridan Titman for helpful comments and discussions, Robert Noah for excellent research assistance, and participants in the National Bureau of Economic Research 1996 Asset Pricing Meeting, and 1997 Behavioral Finance Meeting, the 1997 Western Finance Association Meetings, the 1997 University of Chicago Economics of Uncertainty Workshop, and finance workshops at the Securities and Exchange Commission and the following universities: University of California at Berkeley, University of California at Los Angeles, Columbia University, University of Florida, University of Houston, University of Michigan, London Business School, London School of Economics, Northwestern University, Ohio State University, Stanford University, and Washington University at St. Louis for helpful comments. Hirshleifer thanks the Nippon Telephone and Telegraph Program of Asian Finance and Economics for financial support.
行为金融学及其应用文献综述
(四)完善法律监管体系,提高客户风险意识。
银行应根据国家相关的法律法规及时调整自身的规章制度,规范互联网下第三方支付结算流程,增强对大额资金支付和对账的监控。
另外,对同第三方银行支付结算的违规问题早早着手,对该问题相关制度进行完善和更新,规范工作人员操作,强化工作人员的法律意识减少内部人员渎职违法行为。
此外,银行应对加入第三方支付的客户提示和预警支付信息泄露、伪造支付界面等高发风险,并且利用营业网点媒体宣传、手机银行或短信推送、官网公告等多种方式宣传防诈骗知识、安全防范措施和支付知识,引导并提高客户的风险防范意识,信息保护意识,预防欺诈,减少法律风险的产生。
(五)招募和培养复合型人才。
一方面商业银行需要大力招募具备金融相关知识和互联网信息技术的复合型人才以备足够的人才储备;另一方面要有针对性地培养在职老员工,例如对互联网技术员工定期开设金融知识课程培训,对精通金融知识的员工定期开设互联网技术课程培训,减少员工因专业能力不足而导致的不当操作,提升自身专业知识和技术水平,从员工自身层面上降低风险。
另外,为了调动员工的学习积极性,可以设立合理的奖励机制。
根据互联网环境和第三方业务需求制定人才培养方案,提高工作人员的素质和风险应对能力。
合理的银行人力资本结构将有利于银行有效地进行风险规避。
五、结论随着互联网第三方支付的发展,我国传统商业银行受到了极大的冲击,商业银行应正视其对支付结算风险造成的影响,寻求积极应对措施应对技术、信用、内控、法律和人才匮乏风险。
商业银行需要加大技术投入、强化技术保障,贯彻“断直连”、优化账户管理,加强内部控制、提高道德意识,完善法律监管体系、增强客户风险意识,招募和培养所需复合型人才,以降低支付结算风险,保障客户信息、账户资金安全,为自身发展注入了活力。
主要参考文献:[1]严凌.第三方支付对商业银行支付结算业务的影响[J].武汉金融,2019(1).[2]孙勇军,肖培连.互联网视角下第三方支付对商业银行支付结算的影响研究[J].财经界(学术版),2016(6).[3]郭跃碧.互联网环境下的银行支付结算风险及对策[J].时代金融,2018(35).[4]提云霞.互联网环境下的银行支付结算风险及对策[J].金融经济,2017(12).[5]孙茹亭.互联网环境下的银行支付结算风险及对策[J].会计师,2019(17).一、引言行为金融学,就是将心理学尤其是行为科学的理论融入到金融学中,从微观个体行为以及产生这种行为的更深层次的心理、社会等动因来解释、研究和预测资本市场的现象和问题。
行为金融学实验报告(A股H股溢价分析,心理账户,过度自信)
行为金融学实验报告(A股H股溢价分析,心理账户,过度自信)行为金融学实习报告摘要行为金融学就是将心理学尤其是行为科学的理论融入到金融学之中,是一门新兴边缘学科,它和演化证券学一道,是当前金融投资理论最引人注目的两大重点研究领域。
行为金融学从微观个体行为以及产生这种行为的心理等动因来解释、研究和预测金融市场的发展。
这一研究视角通过分析金融市场主体在市场行为中的偏差和反常,来寻求不同市场主体在不同环境下的经营理念及决策行为特征,力求建立一种能正确反映市场主体实际决策行为和市场运行状况的描述性模型。
通过三个板块来说明行为金融学:心理账户、过度自信、A股H股溢价分析让我们能够直观的了解行为金融学的基本状况,通过对理论与实践的结合,有利于我们更好的理解行为金融学的知识。
总之,通过实习,我们对行为金融学有了更深层次地理解。
本次实习报告从实习目的和意义、工作方法、取得的成果及经验、收获及体会来具体说明下实习的过程。
关键词:行为金融学心理账户过度自信A股H股溢价分析1 行为金融学实习报告目录论文总页数:14页 1 2 3 4 实习的目的............................................................... . (3)实习的时间............................................................... . (3)实习的地点............................................................... . (3)实习内容............................................................... .................................................................... 3A、H股溢价问.......................................... 3 A股与H 股的价差能说明内地和中国香港地区市场中有一个市场不是有效的吗?为什么?........................................................... ..................................................................... ... 3 你认为导致A 、H股价差的原因有哪些?........................................................... .. 3心理账户............................................................... (5)概况............................................................... . (5)实验............................................................... . (5)实验一——成本与损失的不等价实验............................................................... ............................ 5 实验二——赌场资金效应实........................................ 6 实验三——沉没成本效应实验............................................................... ........................................ 8 过度自信............................................................... (9)概况............................................................... . (9)实验............................................................... . (9)实验一——打折和邮购返券............................................................... ............................................ 9 实验二——创业............................................................... .. (10)5 实习心得体会............................................................... .......................................................... 12 6教师评语............................................................... ..................................................................13 2 行为金融学实习报告 1 实习的目的通过行为金融学实习,让我们增加了对行为金融学的了解,同时对行为金融学的研究成果有一个初步的认识,并通过不同的心理账户和过度自信的案例分析,熟悉理论发展,感受消费者决策时的自身心理变化。
行为金融学理论及其在金融市场中的应用研究
行为金融学理论及其在金融市场中的应用研究近年来,随着消费者金融行业的兴起和金融市场的发展,行为金融学理论的研究也逐渐受到了重视。
行为金融学理论主要研究投资者的认知偏差和行为习惯等因素对金融市场的影响,这对投资者和金融从业者都有很大的意义。
第一部分:行为金融学理论概述行为金融学理论是由美国经济学家理查德·塞勒在20世纪70年代中期提出的,它主要关注投资者的心理因素对投资决策的影响。
与传统金融学理论不同,行为金融学理论认为投资者往往不是完全理性的,经常会因为情感波动、心理计量学问题等因素而做出错误的决策。
行为金融学理论中比较重要的一个概念是代表性启发(Representativeness Heuristic),它是指人们常常根据已有的信息来做出判断,而不愿意和外部信息对比,这种行为会导致人们的认知偏差。
此外,行为金融学理论还研究了投资者的情感因素、注意力偏差、过度自信等问题对金融市场的影响。
第二部分:行为金融学理论的应用行为金融学理论对金融市场的应用主要体现在以下几个方面:1.风险管理与投资组合优化传统的风险管理和投资组合优化方法主要是基于平均回报率和风险标准差等指标。
然而,由于投资者的认知偏差和行为习惯等因素的影响,这些指标可能无法反映真实的风险和收益。
行为金融学理论提供了更为细致全面的投资分析方法,可以让投资者更好地应对风险和波动。
2.金融产品开发行为金融学理论的研究成果可以为金融产品的开发提供指导。
例如,通过了解消费者的心理偏好和情感需求,银行可以推出更符合人们喜好的理财产品,从而获得更多的收益。
3.行为金融学教育行为金融学理论的研究和教育也可以为投资者提供更好的投资决策帮助。
通过教育,人们可以了解到自己可能存在的认知偏差和习惯问题,更好地调整投资策略。
第三部分:行为金融学理论在当前金融市场中的应用随着时代的发展,金融市场也在不断地发展和创新。
在当前金融市场中,行为金融学的应用非常广泛,具有很大的实用价值。
行为金融学论文
行为金融学论文行为金融学就是将心理学尤其是行为科学的理论融入到金融学之中,是一门新兴边缘学科。
下文是店铺为大家整理的关于行为金融学论文的范文,希望能对大家有所帮助,欢迎大家阅读参考!行为金融学论文篇1浅谈行为金融学摘要:行为金融学是伴随着金融市场的发展而兴起的一门新的学科,与传统金融学理论一起,两者构成了金融学的理论体系。
先从行为金融学产生的历史背景谈起,指出行为金融学是历史创造出来的。
随后介绍了行为金融学的理论基础和理论体系,并介绍了行为金融学的几个投资策略。
关键词:行为金融学;理论体系;投资策略一、历史背景自20世纪80年代以来,随着金融市场的迅速发展和研究的深入,出现了许多不能被传统金融学所解释的现象,比如,利好兑现现象、传闻效应、小盘股现象、星期五现象、反应过度和羊群效应等。
这些传统金融理论无法合理的给出解释的现象被称为金融市场中的“异象”,金融市场里出现的大量的异象对传统金融理论造成了巨大的冲击,特别是有效市场假说。
因此,人们开始重新审视传统的金融学理论,随之产生了新的理论――行为金融学。
行为金融理论的研究可以追溯到20世纪50年代。
Burrel在1951年发表的《投资研究实验方法的可能性》中主张把心理学和金融学研究结合起来,提议用构建实验室的方法来验证理论的必要性,认为将行为方法和定量投资模型相结合具有重要意义。
1972 年Slovie发表了一篇启发性的论文《人类判断的心理学研究对投资决策的影响》,自此,行为金融学已现雏形。
然而当时认识心理学尚处于形成阶段,行为决策理论也还没发展成熟,传统金融理论又比较完美,所以这一主张并没引起足够重视,甚至将行为金融理论视为异端邪说。
1979 年Kahneman和Tversky提出了对行为金融理论有重大影响的期望理论,该理论是行为金融学的核心内容和代表学说,是行为金融理论研究的奠基理论。
20世纪90年代,Lars Tvede 出版了《金融心理学》,并创办了《金融分析家杂志》,在1999年该杂志最后一期以专辑形式专题研究了行为金融学。
行为金融学文献综述
行为金融学文献综述安徽大学08金融刘秀达学号:I00814009导言:在传统的经典金融理论中,理性人假设是所有理论的基石。
在这一假设下的投资者具有理性预期和效用最大化的特点。
然而,随着金融市场突飞猛进的发展,大量的实证研究和观察结果表明,金融市场上存在着投资者行为“异常”与价格偏离现象,这些现象无法用理性人假说和已有的定价模型来解释,被称为“异象”,如“股利之谜”、“股权溢价之谜”、“波动率之谜”、“周末效应”等等。
在对学科进行审视和反思的过程中,发端于20世纪50年代,并在20世纪80年代以后迅速发展起来的行为金融学成为了学术界的关注点,并开始动摇经典金融理论的权威地位。
基于此,本文对行为金融学的理论进行系统阐述,并总结目前行为金融学的研究现状及其不足,在此基础上探讨行为金融学的发展前景以及对我国的借鉴意义。
关键字:行为金融,投资者,偏好一、行为金融学的概念和理论框架行为金融学, 就是将心理学尤其是行为科学的理论融入到金融学中,从微观个体行为以及产生这种行为的更深层次的心理、社会等动因来解释、研究和预测资本市场的现象和问题,是运用心理学、行为学和社会学等研究成果与研究方式来分析金融活动中人们决策行为的一门新兴学科。
行为金融学以真实市场中普通的正常的投资者为理论基石代替经典金融理论的理性人原则,其基本观点是: 第一,投资者不是完美理性人,而是普通的正常人。
由于投资者在信息处理时存在认知偏差, 因而他们对市场的未来不可能做出无偏差估计;第二,投资者不具有同质期望性。
投资者由于个体认知方式及情感判断的不同, 导致偏好与行为方式不同,因而对未来的估计也有所不同;第三, 投资者不是风险回避型的,而是损失回避型的。
投资者面临确定性收益时表现为风险回避,而面临确定性损失时则表现为风险追求;第四,投资者在不同选择环境下,面对不同资产的效用判断是不一致的,其风险偏好倾向于多样化,并且随着选择的框架的改变而改变。
行为金融学的理论与应用◆文献综述
行为金融学的理论与应用摘要:近期的实证金融文献常常涉及潜在的来自心理学、社会学、人类学的行为原则――行为金融学。
行为金融学围绕一系列对理性投资者在有效市场追求预期效用最大化的挑战展开研究。
认知心理学和套利限制构成了行为金融的两大根基。
对行为金融研究的迅速升温源于传统理论框架在众多实证中的解释力匮乏。
本文含四部分,一是标准金融理论面临的挑战与行为金融的兴起;二是行为金融学的理论架构;三是行为金融学的现有缺陷及发展前景;四是行为金融学在中国的应用进展及前景。
关键词:行为金融学;非理性;心理学;市场效率一、标准金融理论面临的挑战与行为金融的兴起Haugen(1999)将金融理论的发展划为三阶段:旧金融学(old finance)、现代金融学(modern finance)以及新金融学(new finance)。
标准金融理论系由1960年兴起的现代金融学为主要依托。
而自1980年以来发展起来的新金融学则以行为金融学为代表,并对标准金融理论发起了强有力的冲击。
(一)首遭冲击的是有效市场假说(EMH)Shleifer(2000)指出,有效市场假说基于三个假说:①投资者是理性的,能理性的评估证券价格。
②即使投资者不理性,但由于交易的随机性,故而能抵消各自对价格的影响。
③市场的“套利”机制可以使价格回归理性。
Kahneman and Riepe(1998)提出参考点(reference point)的概念,认为投资者面对决策时受参考点不同的影响。
Kahneman and Tversky(1973)提出“框定”(frame)的概念,认为框架方式影响决策。
以上两个概念共同质疑了假设①。
Shiller(1984)基于投资者非理性的社会化驳斥了假设②提到的随机性。
不久,Mullainathan and Thaler(2000)提出学习效应,对交易的随机性进行了进一步的批判。
对于假设③,Thaler(1999)等提出了套利的限制,Shleifer and Vishny (1997)进一步将其定义为套利的极限(limits of arbitrage)。
行为金融学英文文献读后感
行为金融学英文文献读后感Behavioral Finance: A Reflection on the LiteratureThe field of behavioral finance has gained significant traction in the past few decades, challenging the traditional assumptions of rational decision-making in the realm of finance. By incorporating insights from psychology and cognitive science, behavioral finance seeks to understand the complex and often irrational behaviors that influence financial decision-making. As an avid reader of the literature in this domain, I have been captivated by the insights and implications that this field has to offer.One of the core tenets of behavioral finance is the acknowledgment that individuals do not always act in a purely rational manner when it comes to financial decisions. The concept of bounded rationality, as proposed by Herbert Simon, suggests that our cognitive abilities are limited, and we often rely on heuristics, or mental shortcuts, to make decisions. These heuristics can lead to systematic biases and errors in judgment, such as the availability bias, where we tend to give more weight to information that is easily accessible, or the anchoring bias, where we heavily rely on initial information when making decisions.The work of Daniel Kahneman and Amos Tversky, pioneers in the field of behavioral economics, has been instrumental in understanding these biases and their impact on financial decision-making. Their prospect theory, for instance, challenges the traditional expected utility theory by demonstrating that individuals tend to be more averse to losses than they are attracted to gains of the same magnitude. This loss aversion can lead to suboptimal investment decisions, such as the reluctance to sell losing stocks in order to avoid realizing a loss.Another important aspect of behavioral finance is the role of emotions in financial decision-making. Emotions such as fear, greed, and overconfidence can significantly influence how individuals perceive and respond to market conditions. The herd mentality, where investors blindly follow the actions of others, is a prime example of how emotions can lead to irrational investment decisions. The fear of missing out (FOMO) can drive investors to jump on bandwagons, often at the expense of sound investment strategies.The implications of behavioral finance extend beyond the individual investor level. Researchers have also explored the impact of behavioral biases on financial markets as a whole. The concept of market inefficiency, where asset prices do not fully reflect all available information, is closely linked to the behavioral biases of market participants. The phenomenon of asset bubbles and crashes,for instance, can be better understood through the lens of behavioral finance, as investors may succumb to the herd mentality or overreact to new information.Moreover, the insights from behavioral finance have important implications for the field of finance education and practitioner training. By understanding the cognitive biases and emotional factors that influence financial decision-making, educators and practitioners can develop strategies to mitigate these biases and improve investment outcomes. This includes promoting financial literacy, developing debiasing techniques, and incorporating behavioral finance principles into investment decision-making processes.Despite the significant progress made in the field of behavioral finance, there are still many avenues for further research and exploration. One area of interest is the cross-cultural and demographic differences in financial decision-making behaviors. As the global financial landscape becomes increasingly interconnected, understanding how cultural and individual factors shape financial decision-making will be crucial for developing more inclusive and effective financial policies and practices.Additionally, the rapid technological advancements in the financial industry, such as the rise of algorithmic trading and the increasinguse of artificial intelligence, present new challenges and opportunities for behavioral finance researchers. Exploring the interplay between human decision-making and technological innovations in finance will be a crucial area of study in the years to come.In conclusion, the field of behavioral finance has provided a valuable lens through which we can better understand the complex and often irrational nature of financial decision-making. By incorporating insights from psychology and cognitive science, behavioral finance has challenged the traditional assumptions of rational decision-making and has offered important implications for individual investors, financial markets, and the broader financial industry. As the field continues to evolve, I remain excited to see the new insights and practical applications that will emerge, ultimately contributing to a more comprehensive understanding of human behavior in the realm of finance.。
行为金融学分析范文
行为金融学分析范文行为金融学是一门研究人类在金融决策中所表现出的心理和行为特征的学科。
通过分析人们的行为模式、心理偏差和错误决策,行为金融学试图解释金融市场的非理性行为和价格波动。
本文将从行为金融学的基本原理、应用领域和影响等方面进行分析。
行为金融学的基本原理在于人类的决策行为往往受到情绪、直觉和认知偏差的影响。
与传统的经济学理论假设人们是理性决策者不同,行为金融学认为人们在金融决策中往往被恐惧、贪婪和羊群效应所影响。
例如,人们在面临损失时会更加谨慎,而面临收益时会更加冒险。
这种非理性的反应导致了市场的过度买卖和价格波动,形成了所谓的“牛市”和“熊市”。
行为金融学的应用领域广泛。
首先,行为金融学可以帮助投资者更好地理解市场行为和价格波动,从而做出更明智的投资决策。
其次,行为金融学可以对金融市场的制度设计和监管政策提出建议。
例如,为了减少羊群效应和过度交易,可以采取一些措施,如限制杠杆交易和增加交易费用。
最后,行为金融学还可以用于解释其他领域的决策行为,如消费决策、借贷决策和退休规划等。
行为金融学的研究对金融市场产生了广泛的影响。
首先,行为金融学的理论发现改变了人们对市场行为的认识,使得传统的经济学理论不再被接受为唯一的解释。
其次,行为金融学的研究促进了金融市场的完善和监管政策的改进。
例如,对于投资者的信息不对称问题,可以通过加强监管和信息披露来解决。
此外,行为金融学还为投资者提供了一些实用的建议,如定期投资、分散投资和避免过度交易等。
然而,行为金融学也存在一些争议。
首先,行为金融学往往被指责过度强调了投资者的情感和认知偏差,忽略了理性决策的可能性。
其次,行为金融学的实证研究往往受到样本和数据选择的限制,可能不具有普遍性。
最后,行为金融学的应用也需要谨慎。
虽然行为金融学可以提供一些关于决策行为的见解,但并不意味着每个人都会受到相同的影响,每个时期和市场也会有所不同。
综上所述,行为金融学是一门研究人类在金融决策中所表现出的心理和行为特征的学科。
《2024年行为金融学研究综述》范文
《行为金融学研究综述》篇一一、引言行为金融学,作为金融学与心理学的交叉学科,旨在研究投资者在金融市场中的实际决策过程及其影响因素。
与传统的金融理论相比,行为金融学更注重人的心理和行为对金融市场的影响,提供了对金融市场现象的全新解释。
本文将对行为金融学的研究进行综述,探讨其发展历程、主要理论、实证研究及未来研究方向。
二、行为金融学的发展历程行为金融学的起源可以追溯到20世纪50年代,当时一些学者开始质疑传统金融理论的假设是否与现实相符。
随着心理学在金融领域的应用,行为金融学逐渐形成并发展。
其发展大致可分为三个阶段:初步形成阶段、理论体系构建阶段和实证研究阶段。
三、行为金融学的主要理论1. 心理账户理论:指个体在心理上将财富划分为不同的账户,并对不同账户的资金进行不同的处理。
这种心理账户的存在导致投资者在决策时可能出现偏差。
2. 损失厌恶理论:指人们面对同等数量的收益和损失时,往往更加重视损失。
这一心理特征导致投资者在面对风险时表现出过度保守或过度冒险的行为。
3. 过度自信理论:指投资者往往对自己的判断过于自信,忽视市场中的不确定性,导致过度交易和过度反应。
四、行为金融学的实证研究行为金融学通过大量的实证研究验证了其理论的正确性。
例如,学者们通过研究股票市场、房地产市场等金融市场的数据,发现投资者的实际决策过程往往受到心理和行为因素的影响,而非传统金融理论所假设的完全理性。
此外,行为金融学还研究了投资者在投资过程中的情绪、认知和决策过程等因素对投资结果的影响。
五、行为金融学的应用行为金融学的应用领域十分广泛,包括金融市场分析、投资策略制定、风险管理等。
在金融市场分析方面,行为金融学可以帮助我们更好地理解市场中的异常现象和波动;在投资策略制定方面,行为金融学可以帮助投资者制定更加合理的投资策略,避免过度交易和过度反应;在风险管理方面,行为金融学可以帮助金融机构更好地评估和管理风险。
六、未来研究方向尽管行为金融学已经取得了较大的发展,但仍有许多问题需要进一步研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ii
Technology stocks on Nasdaq rose to unprecedented levels during the two years leading up to March 2000. Ofek and Richardson (2002) estimate that at the peak, the entire internet sector, comprising several hundred stocks, was priced as if the average future earnings growth rate across all these firms would exceed the growth rates experienced by some of the fastest growing individual firms in the past, and, at the same time, the required rate of return would be 0% for the next few decades. By almost any standard, these valuation levels are so extreme that this period appears to be another episode in the history of asset price bubbles. Shiller (2000) argues that the stock price increase was driven by irrational euphoria among individual investors, fed by an emphatic media, which maximized TV ratings and catered to investor demand for pseudo-news. Of course, only few economists doubt that there are both rational and irrational market participants. However, there are two opposing views about whether rational traders correct the price impact of behavioral traders. Proponents of the efficient markets hypothesis (Friedman 1953 and Fama 1965) argue that rational speculative activity would eliminate not only riskless arbitrage opportunities, but also other forms of mispricing whose exploitation may require imperfectly hedged and therefore risky trades. The latter case clearly applies to the technology bubble, as there does not exist a close substitute that could be used to hedge a short position in the technology sector. In contrast, the literature on limits to arbitrage points out that various factors such as noise trader risk, agency problems, and synchronization risk may constrain arbitrageurs and allow mispricing to persist. Moreover, some models indicate that rational investors might find it optimal to ride bubbles for a while before attacking them, making the actions of rational investors destabilizing rather than stabilizing. To shed some light on these issues, we examine empirically the response of hedge funds to the growth of the technology bubble. Hedge funds are among the most sophisticated investors— probably closer to the ideal of “rational arbitrageurs” than any other class of investors. Our aim is to find out whether sophisticated speculators were indeed a correcting force during the bubble period. Our study is unusual in that we look directly at hedge fund holdings. In general, data on 1
Richard Brealey, Smita Brunnermeier, Elroy Dimson, Bill Fung, Rick Green (the editor), Martin Gruber, Tim Johnson, Jon Lewellen, Andrew Lo, Burt Malkiel, Narayan Naik, Aureo de Paula, Lukasz Pomorski, Jeff Wurgler, two anonymous referees, participants at the European Finance Association Meetings, the Fall 2002 NBER Behavioral Finance Meetings, and in seminars at the Board of Governors of the Federal Reserve System, London Business School, MIT, and Princeton University for useful comments. Part of this research was undertaken while both authors were visiting the Sloan School of Management at MIT and while Nagel was a doctoral student at London Business School. Brunnermeier acknowledges research support from the National Science Foundation (NSF-Grant #021-4445). Nagel is grateful for financial support from the ESRC, the Lloyd’s Tercentenary Foundation, the Kaplanis Fellowship, and the Centre for Hedge Fund Research and Education at London Business School.
hedge funds are difficult to obtain, because hedge funds are not regulated by the SEC. However, like other institutional investors, hedge funds with large holdings in U.S. equities do have to report their quarterly equity long positions to the SEC on Form 13F. We extract hedge fund holdings from these data, including those of well-known managers such as Soros, Tiger, Tudor, and others. To the best of our knowledge, our paper is the first to use holdings data to analyze the trading activities of hedge funds. To assess the effect of short positions and derivatives, we also look at the returns of hedge funds. This empirical investigation yields several interesting results. First, our analysis indicates that hedge funds were riding the technology bubble. Over our sample period 1998 to 2000, hedge fund portfolios were heavily tilted towards highly priced technology stocks. The proportion of their overall stock holdings devoted to this segment was higher than the corresponding weight of technology stocks in the market portfolio. Relative to market portfolio weights, the technology exposure of hedge funds peaked in September 1999, about six months before the peak of the bubble. Hedge fund returns data reveal that this exposure on the long side was not offset by short positions or derivatives. Second, we find that that the hedge funds in our sample skillfully anticipated price peaks of individual technology stocks. On a stock-by-stock basis, they started to cut back their holdings before prices collapsed, switching to technology stocks that still experienced rising prices. As a result, hedge fund managers captured the upturn, but avoided much of the downturn. This is reflected in the fact that hedge funds earned substantial excess returns in the technology segment of the Nasdaq. A portfolio that mimics their holdings exhibits abnormal returns of around 4.5% per quarter relative to a characteristics-matched benchmark, which controls for size, value, and momentum effects. Interestingly, this outperformance is confined to the technology sector; it does not show up in other market segments. This is consistent with the view that hedge fund managers were able to predict some of the investor sentiment that was arguably behind the wild fluctuations