6真空中的静电场
大学物理a习题选解
第六章 真空中的静电场习题选解6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。
为使每个负电荷受力为零,Q 之值应为多大?解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为由12f f =,得3Q q =。
6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。
试问:(1)作用在α粒子上的力为多大?(2)α粒子的加速度为多大?解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 Th 离子带90个单位正电荷,即它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:(2)α粒子的质量为:由牛顿第二定律得:6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。
求作用在第3个点电荷上的力。
解:由图可知,第3个电荷与其它各电荷等距,均为2r m =。
各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。
由库仑定律,作用于电荷3的力为题6-3 图题6-3 图力的方向沿第1电荷指向第3电荷,与x 轴成45角。
6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-⨯=,B 点放置点电荷C q 92108.4-⨯-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。
解:A 点电荷在C 点产生的场强为1E ,方向向下B 点电荷在C 点产生的场强为2E ,方向向右题6-4图根据场强叠加原理,C 点场强设E 与CB 夹角为θ,21tan E E =θ6-5 如图所示的电荷分布为电四极子,它由两个相同的电偶极子组成。
大学物理第6章真空中的静电场课后习题及答案
⼤学物理第6章真空中的静电场课后习题及答案第6章真空中的静电场习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
⼀试验电荷置于x 轴上何处,它受到的合⼒等于零?解:根据两个点电荷对试验电荷的库仑⼒的⼤⼩及⽅向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合⼒才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε故 223+=x2. 电量都是q 的三个点电荷,分别放在正三⾓形的三个顶点。
试问:(1)在这三⾓形的中⼼放⼀个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑⼒之和都为零)?(2)这种平衡与三⾓形的边长有⽆关系?解:(1) 以A 处点电荷为研究对象,由⼒平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q aq'=εε故 q q 3='(2)与三⾓形边长⽆关。
3. 如图所⽰,半径为R 、电荷线密度为1λ的⼀个均匀带电圆环,在其轴线上放⼀长为l 、电荷线密度为2λ的均匀带电直线段,该线段的⼀端处于圆环中⼼处。
求该直线段受到的电场⼒。
解:先求均匀带电圆环在其轴线上产⽣的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产⽣的场强⼤⼩为)(4220R x dq dE +=πε根据电荷分布的对称性知,0==z y E E2322)(41 cos R x xdq dE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹⾓。
+=23220)(4dq R x xE x πε232210(24R x R x +?=πλπε232201)(2R x xR+=ελ下⾯求直线段受到的电场⼒。
在直线段上取dx dq 2λ=,dq 受到的电场⼒⼤⼩为dq E dF x =dx R x xR 232221)(2+=ελλ⽅向沿x 轴正⽅向。
真空中静电场(高斯定理)
QR
电场方向、大小
Q P
o
r
E
S
dS
• 选取合适的高斯面(闭合面)
E dS EdS E dS E4 r 2
S
S
S
• 再根据高斯定理解方程
qi内
E4r 2 i 0
E 1
4 0
qi
i
r2
E 1
4 0
qi
ir2ຫໍສະໝຸດ ds E
ds
E ds
S
侧面
两底面
E2rl 0
利用高斯定理解出 E
ds r
l
Eds
E 2rl l 0
E 1 2 0 r
例三. 无限大均匀带电平面的电场分布
分析:无限大带电面两侧电场分布对称
作高斯面如图示:
e
E dS
例四. 金属导体静电平衡时,体内场强处处为0 求证: 体内处处不带电
证明:
在导体内任取体积元 dV
由高斯定理
E dS 0
qi内 内dV 0
S
i
V
体积元任取
内 0
证毕
作业
习题P321-322
7-15,7-17,7-18,7-21
讨论
Q P
Ro r
E
S
dS
r R qi 0
i
r R qi Q
i
rR E0
rR
E
1
4 0
Q r2
如何理解面内场强为0 ?
dE1 dE2
P
高中物理真空中的静电场
真空中的静电场一、基本要求1、掌握库仑定律,确切理解电场强度概念,明确电场强度的矢量性,迭加性;2、确切理解电势和电势差的概念,明确电势是标量及它的迭加性、相对性;3、在已知电荷分布的情况下,掌握计算电场强度和电势的各种方法;4、确切理解电通量概念,掌握表征静电场性质的两条基本定理--高斯定理和环路定理。
必须明确:两条定理各自反映了静电场的一个侧面,只有两者结合起来,才能全面地反映静电场的性质。
5、掌握导体静电平衡条件和在静电平衡时导体的电特性,并能熟练地求出几何形状比较规则的导体内外的场强和电势;6、掌握电容器的储能公式,了解电场能量和能量密度概念。
二、基本概念和规律1、库仑定律在真空中,两点电荷之间的作用力满足:12312021124→→=r r q q F πε式中12→r 是从q 1看出,点电荷q 1的位置矢量,12→F 表示q 1作用于q 2的力。
同理21321012214→→=r r q q F πε应该指出:1)库仑定律只有在真空中,对于两个点电荷成立。
亦即只有q 1、q 2的本身线度与它们之间的距离相比很小时,库仑定律成立。
2)注意库仑定律的矢量性。
当q 1、q 2为同号电荷,即q 1 q 2 >0时,表示12→F 与12→r ,21→F 与21→r 同向,即同号电荷相斥;当q 1 q 2 <0时,表示12→F 与12→r ,21→F 与21→r 反向,即异号电荷相吸。
3)静电力的迭加原理如果有q 0、q 1、q 2 ……q n 个电荷组成的点电荷系,从q 0看,各点电荷的矢径分别等于n r r r →→→K 21,,则点电荷q 0受到的静电力为i ni r q q r F i i→=→∑=14300πε上式称为静电力的迭加原理,即在点电荷系中,任意一点电荷所受的静电力应等于每个点电荷单独存在时对该点电荷所作用静电力的矢量和。
带电体(体积为V )作用于点电荷q 0的静电力→→⎰=r F r dq q V3004πε4)库仑定律仅适用于求相对于观察者静止的两点电荷之间的相互作用力,或者放宽一点,亦适用于求相对于观察者静止的点电荷作用于运动的点电荷力的情形。
5大学物理讲稿第5章真空中的静电场
第5章 真空中的静电场§ 物质的电结构实验证明,自然界中存在两种电荷,分别称为正电荷和负电荷.它们之间存在相互作用力,同种电荷相互排斥,异种电荷相互吸引.物体所带电荷的多少称为电量,用q 或Q 表示,电量的单位取库仑(C ).实验还表明,在自然界中,存在着最小的电荷基本单元e,任何带电体所带的电量只能是这个基本单元的整数倍,即),,( 21 n ne Q电荷的这一特性称为电荷的量子性.实验测得这基本单元的电量为).()(.C C e 19191060211049602177331 近似为由于e 的量值非常小,在宏观现象中不易观察到电荷的量子性,常将电量Q 看成是可以连续变化的物理量,它在带电体上的分布也看成是连续的.由物质的电结构可知,原子中一个电子带一个单位负电荷,一个质子带一个单位正电荷,其量值就是C e 19106021 .,原子失去电子带正电,原子得到电子带负电.随着人们对物质结构的认识,1964年盖尔曼(M ·Gell-Mann )等人提出了夸克模型,认为夸克粒子是物质结构的基本单元,强子(质子、中子等)是由夸克组成的,而不同类型的夸克带有不同的电量,分别为e 31 或e 32 .截止1995年,核子的6个夸克已全部被实验发现,可靠的依据也证明了分数电荷的存在.但到目前为止还没有发现自由状态存在的夸克 .我们已经知道,在正常情况下物体不带电,呈电中性,即物体上正、负电荷的代数和为零.当物体呈带电状态时,是由于电子转移或电子重新分配的结果,在电子转移或重新分配的过程中,正、负电荷的代数和并不改变.大量实验表明,把参与相互作用的几个物体或粒子作为一个系统,若整个系统与外界没有电荷交换,则不管在系统中发生什么变化过程,整个系统电荷量的代数和将始终保持不变.这一结论称为电荷守恒定律,它是自然界中一条基本定律.实验还发现,一切宏观的、微观的,物理的、化学的、生物的等过程都遵守电荷守恒定律.§ 库仑定律实验表明,带电体之间的相互作用与带电体之间的距离和所带电量有关,也与带电体的大小、形状、电荷在带电体上的分布情形以及周围介质的性质有关.所以在通常情况下,两个带电体之间的相互作用表现出与多种因素有关的复杂情形.当带电体的线度与带电体之间的距离相比小得多时,带电体的大小、形状对所研究问题的影响可以忽略,这样的带电体称为点电荷.显然,点电荷的概念与质点、刚体等概念一样,是对实际情况的抽象,是一种理想化的物理模型.一个带电体能否看成点电荷,必须根据具体情况来决定.一般的带电体不能看成点电荷,但总可以把它看成是许多点电荷的集合体,从而能由点电荷所遵从的规律出发,得出我们所要寻找的结论.本节我们讨论真空中点电荷间的相互作用.两点电荷之间的相互作用是库仑—1806)通过扭称实验于1785年总结出来的,其内容为:真空中两静止点电荷之间的相互作用力的大小与它们所带电量的乘积成正比 ,与它们之间距离的平方成反比;作用力的方向沿着两电荷的连线,同号电荷相斥(为正),异号电荷相吸(为负),这一结论称为库仑定律.其数学表达式为 r r q q k F ˆ221( ) k 为比例系数,在SI 单位制中,实验测得其数值为2222C m N C m N 991091098755188.k为使由库仑定律导出的其它公式具有较简单的形式,通常将库仑定律中的比例系数写为41 k ( ) 其中ε0为真空的电容率(或真空中的介电常数),于是库仑定律又可写为r r q q F ˆ20214 图(a)表示两个同号电荷的作用力是排斥力;图(b)表示两个异号电荷的作用力是吸引力.值得指出的是,库仑定律只适用于描述两个相对于观察者为静止的点电荷之的相互作用,这种静止电荷的作用力称为静电力(或库仑力).空气对电荷之间的作用影响较小,可看成是真空.例题 三个点电荷21q q 、和 Q 所处的位置如图 所示,它们所带的电量分别为C q q 6211002 . ,C Q 61004 ..求21q q 和对Q 的作用力.解:本问题一般是先利用库仑定律求出21q q 、分别对 Q 的作用力 F 和F ',然后求出它们的合力.由本问题的对称性可知 F 和 F '的 y 分量大小相等,方向相反,因而互相抵消.Q 所受21q q 、之合力方向沿 x轴正向.由库仑定律得1q 对Q 的作用力大小为N 290403010041002109984226692101...... r Q q F N 2305040290....cos F F x 所以Q 所受21q q 、之合力大小为N 46023022..cos ' F F F F f x x x作业(P120):§ 电场和电场强度一、静电场关于电荷之间如何进行相互作用,历史上曾经有过两种不同的观点.一种观点认为这种相互作用不需要媒质,也不需要时间,而是直接从一个带电体作用到另一个带电体上的.即电荷之间的的相互作用是一种“超距作用”.这种作用方式可表示为电荷电荷另一种观点认为,任一电荷都在自己的周围空间产生电场,并通过电场对其它电荷施加作用力,这种作用方式可表示为电荷电场电荷大量事实证明,电场的观点是正确的.电场是一种客观存在的特殊物质,与由分子、原子组成的物质一样,它也具有能量、质量和动量.二、电场强度不同的带电体系具有不同的电场,同一电荷体系的电场在空间具有一定的分布.为了定量的描述电场中各点电场的性质,引入一新的物理量——电场强度. 电场的一个重要性质,就是对置于其中的电荷施加作用力.为此,在电场中引入电量为0q 的试探电荷来研究电场的性质.所谓试探电荷是这样一种电荷,首先它所带的电量要非常小,一致由于它的引入使原电场发生的改变可以忽略;其次它的几何尺寸亦必须非常小,一致可以看作点电荷.实验证明,在给定的场点处,试探电荷0q 所受的电场力F 与0q 之比为一常矢量,与0q 的大小无关;不同的场点,比值不同.可见比值F/0q 揭示了电场的性质,所以我们可将这一比值定义为电场强度,简称电场,用E 表示,即q F E 上式说明,静电场中任意一点的电场强度其大小等于单位试探电荷在该点所受到的电场力,其方向与正电荷在该点的受力方向相同.通常E 是空间坐标的函数.若E 的大小和方向均与空间坐标无关,这种电场称为匀强电场.在SI 单位制中.电场强度的单位为牛顿/库仑(N ·C -1),或伏特/米(V ·m -1)三、叠加原理和电场强度的计算1. 单个点电荷产生的电场考虑真空中的静电场是由电量为 q 的点电荷产生的,试探电荷0q 在其中的P 点所受的电场力可由库仑定律式()得r rq q F ˆ2004 式中r 是点P 相对于点电荷的位置矢量,r 是这位置矢量的大小,由电场强度的定义式()则得P 点处的电场强度为r rq r r q q F E 3020044 ˆ 上式表示,点电荷在空间任一点P 所产生的电场强度E 的大小,决定于这个点电荷的电量和点P 到该点电荷的距离.电场强度E 的方向与这个点电荷的符号有关,q 为正,电场强度E 的方向与位置矢量r 的方向相同;q 为负,电场强度E 的方向与位置矢量r 的方向相反.电场强度在空间呈球对称分布.2. 场强的叠加原理 多个点电荷的电场强度考虑空间存在n 个点电荷.实验证明,在它们的电场中任一点P 处,试探电荷0q 所受的电场力F 等于各点电荷分别单独存在时0q 所受电场力的矢量和,并利用电场强度的定义得:i q F E i E E F F 0/定义上式表明,在点电荷系的电场中,任意一点的电场强度等于每个点电荷单独存在时在该点所产生的电场强度的矢量和,这一结论称为场强的叠加原理.i i ii r r q E 3041进一步可表示为 3. 任意带电体产生的电场任意带电体的电荷可以看成是很多极小的电荷元dq 的集合,每一个电荷元dq 在空间任意一点P 所产生的电场强度,与点电荷在同一点产生的电场强度相同.整个带电体在P 点产生的电场强度就等于带电体上所有电荷元在P 点场强的矢量和.如果点P 相对于电荷元dq 的位置矢量为r ,则电荷元dq 在P 点产生的电场强度,进而整个带电体在P 点产生的电场强度为:r r dq E r r dq E d 30304141求积分 ).().().(135411254111541303030线分布面分布体分布r rdl r r dS r r dV E 应该注意,式— 都为矢量式.实际应用中多用标量式(投影式) ,如E 沿X 轴的投影式为cos 204r dq dE E x x 式中 表示r 与X 轴的夹角.例题 如图所示,有两个电量相等而符号相反的点电荷 + q 和 - q,相距l . 求在两点电荷的中垂面上任一点P 的电场强度.解:以l 的中点为原点建立坐标系,如图设点P 到点O 的距离为r .电荷 + q 和- q在点P 产生的电场强度分别用 E E 和表示 ,它们的大小相等为441220/l r q E E它们的方向如图所示.点P 的电场强度E 为 E E 和的矢量和,即 E E E E 的x 分量为23220x x x x 441cos cos /)/(l r ql E E E E EE 的y 分量为0sin sin y y y E E E E E所以,点P 的电场强度大小为负方向方向沿X l r ql E E x 23220441/)/(当l r 时,这样一对电量相等、符号相反的点电荷所组成的系统,称为电偶极子.从负电荷到正电荷所引的有向线段 l 称为电偶极子的轴 .电量q 与电偶极子的轴 l 的乘积,定义为电偶极子的电矩,用表示,即l q p由于l r ,故有323224r l r /)/(,所以在电偶极子轴的中垂面上任意一点的电场强度可表示为304rp E 电偶极子是一个很重要的物理模型,在研究电介质极化,电磁波的发射和吸收等问题中都要用到该模型.例题 有一均匀带电细直棒,长为L,所带总电量为q .直棒外一点P 到直棒的距离为a ,求点P 的电场强度.解:如图所示,设直棒两端至点P 的连线与x 轴正向间的夹角分别为21 和,考虑棒上x 处的元段dx ,其带电量dx Lq dx dq ,它在P 点产生的电场强度大小为204d ldx E 其中 l 是微元dx 到P 点的距离, d E 的方向如图所示.计算其沿x 轴和y 轴的分量分别积分得:cos 204l dx dE E x x )sin (sin 1204 aLq2104d a cos )cos (cos sin 21004421 aLq d a E y 讨论 1) 对于半无限长均匀带电细棒( 2121220,//,或)则有a E x 04 ;aE y 04 2) 对于无限长均匀带电细棒( 210,)则有aE E y x 020 , 作业(P120):,§ 高斯定理一、电力线(电场线)为了对电场有一个比较直观的了解,可用图示的方法形象地描绘电场中的电场强度分布状况.为此在电场中作一系列有向曲线,使曲线上每一点的切线方向与该点的场强方向一致,这些有向曲线称为电力线(又称电场线),简称E 线. 为了使电力线不仅能表示出电场中各点场强的方向,而且还能表示出场强的大小,我们规定:电场中任一点场强的大小等于在该点附近垂直通过单位面积的电力线数,即)(电场线密度EdS dN 按此规定,电场强度的大小E 就等于电力线密度,电力线的疏密描述了电场强度的大小分布,电力线稠密处电场强,电力线稀疏处电场弱.匀强电场的电力线是一些方向一致,距离相等的平行线.静电场的电力线具有以下特点:(1)电力线起自正电荷(或来自无穷远),终止负电荷(或伸向无穷远),但不会在无电荷的地方中断,也不会形成闭合线.(2)因为静电场中的任一点,只有一个确定的场强方向,所以任何两条电力线都不可能相交.二、电通量通过电场中某一个曲面的电力线数称为通过该曲面的电通量。
第10章 真空中的静电场
尚未找到自由状态的夸克。但无论今后实验上是否能发现自由夸克,均不改变电荷的量 子性这一基本性质。
10.1.2 电荷守恒定律
大量实验证明,在一个与外界没有电荷交换的系统内,无论其内部发生怎样的物理过 程,系统内正负电荷量的代数和保持不变,即孤立系统内的电荷是守恒的。电荷守恒定律 说明,电荷既不能被创造,也不能被消灭,它只能从一个物体转移到另一个物体,或者从 物体的一个部分转移到另一个部分。
3
Fi F1i F2i
Fni
n
F ji
j 1
n j 1
qiq j 4π 0 rj2i
r joi
ji
ji
式中 F ji 是第 j 个点电荷 q j 对 qi 的静电力, Fi 是点电荷 qi 受到的总静电力。
(10.4)
§10.2 电场 电场强度
10.2.1 电场
实验指出,电荷与电荷之间存在相互作用力。那么这种作用力是通过什么途径传递 的呢?历史上关于这个问题曾长期有两种不同的观点。一种观点认为:电荷与电荷之间 的相互作用不需要任何中间物质来传递,也不需要时间,这称为“超距作用”观点。另一 种观点认为:电荷与电荷之间的相互作用是通过一种特殊的物质----电场(electric field) 来传递的。根据这种观点,任何电荷的周围都存在着电场,当一个电荷处于另一个电荷 产生的电场中时,它就会受到另一个电荷通过电场对它的作用力。因此这种观点可形象 地表示为
(dipole moment)。 电偶极子是一个重要的物理模型。电介质中的原子或分子都有正、负电荷中心,如
§10.1 库仑定律
10.1.1 电荷的量子性
人类认识电现象,是从摩擦起电开始的,比如,毛皮摩擦过的橡胶棒(或梳子)、 丝绸摩擦过的玻璃棒,可以吸引纸屑、羽毛等轻小物体,这是因为橡胶棒、玻璃棒带上 了电荷。这一现象至今仍在催生一些新奇的应用,如在静电复印机和激光打印机中,带 上静电荷的纸张可以吸附细微的墨粉。带有较强静电的陶瓷片还能用作静电吸盘,吸住 大面积的晶圆(硅片)。
真空中的静电场
r x R
dq( xi R) dE 4 0 ( x 2 R2 )3 / 2
R R(cos j sin k )
x E i 2 2 3/ 2 4 0 ( x R )
•若
Q
y
o
x R
Q E 2 4 0 x Q 2 4 0r
x
x
z
qi
fi q
f E q
i 1
n
fi
E Ei
E
i 1
q
i 1
n
ir
q
i n
或:
4 0ri
qi
3
ri
—场强叠加原理!
3. 任意带电体的场强
若为电荷连续分布的带电体,如图示
可以把带电体切割成无穷多个电荷 元,每个电荷元可看
在一个和外界没有电荷交换的系统内,正负电荷的代 数和在任何物理过程中保持不变。 讨论
q const.
i i
•电荷守恒定律是物理学 中普遍的基本定律 •电荷可以成对产生或湮 灭,保持代数和不变
-e +e
-e
+e
•电中性-物体带等量的正 负电荷 •物质的原子构成与带电 —原子的电中性、离子等
1. 点电荷的场强
根据库仑定律和场强的定义
q
Q r
er
Qq f e 2 r 4 0r
球对称
f E q E
Q 4 0r
e 2 r
E( x, y, z) E(r )
E(r)
const. r c
2. 点电荷系的场强 如果带电体由 n 个点电荷组 成,如图 由电力叠加原理:
真空中的静电场
dq
1 dq ˆ E dE r 2 4 0 r
r
以下的问题是如何选出合适的坐标, 给出具体的表达式和实施计算。
球坐标和柱坐标
e lim
V 0
q dq V dV
电荷的体密度 电荷的面密度 电荷的线密度
q dq e lim dS V 0 S q dq e lim dl V 0 l
p E 3 4 0 r
E
从
1 4
0
r
3
pr 的推导 p 3r
r q 出发 r
P
E
由 图
l r r 2
4 0 r2 4 0 r2 q r r E 3 3 4 0 r r r q
体电荷分布的带电体的场强
面电荷分布的带电体的场强
线电荷分布的带电体的场强
e dS ˆ E r 2 4 E
e dl ˆ r 2 4 0 r l
例题1:求电偶极子的场强 等量异号电荷 q 、 q ,相距为 l ,它相对 于求场点很小,称该带电体系为电偶极子。
电磁相互作用和电磁场
Electromagnetic field
四种基本相互作用
电磁 引力 强 弱
电磁相互作用
重要 清楚
通过电磁场说明 场的 基本性质 基本特征 基本方法 场论
内容:
一.静电场及基本性质
二.稳恒电流的电场、磁场及基本性质 三.电磁感应现象及规律 四.Maxwell 电磁场方程组 电磁场的统一性 物质性 电磁场量的相对论变换 五.引力场
1)如果关系式中除K以外,其它物理量的单位已 经确定
真空中的静电场
2019/9/24
P.10/11
绪论
五.静电力叠加原理
设空间中有n个点电荷q1、q2 、q3 … qn
实验表明,qi受到的总静电力等于其
它各点电荷单独存在时作用于qi上静
电力的矢量和,即
Fi
n
j 1 ji
F ij
n
j1 ji
1
4 0
qi q j rij 2
rijo
1
40
ql
r3
1
4 0
pe r3
方向沿x负方向
即
EB
1
40
pe r3
与电矩的方向相反
2019/9/24
P.27/11
绪论
【例5-2】求电偶极子在均匀电场中受到的力偶矩。
解 FqE FqE
q
F
相对于O点的力矩:
MF1 2lsinF1 2lsinF
q O q
P.25/11
绪论
在 y 方向上,E和 E的分量相互抵消
E BE cosE c os2Ecos
cos l/2
r2 (l/2)2
EB410
ql r2(l/2)2
3/2
2019/9/24
P.26/11
绪论
当 r>>l 时
EB
-----静电力叠加原理
2019/9/24
P.11/11
绪论
§5-2 电场 电场强度
一.电场
历史上的两种观点:
超距的观点:电荷 电场的观点: 电荷
电荷 场 电荷
近代物理的观点认为:凡是有电荷存 在的地方,其周围空间便存在电场
真空中的静电场
这是一条在一切已发现的宏观过程和微观过程中 都普遍遵守的规律。
库仑定律(coulomb law)
表述:实验表明,真空中两个静止点电荷间作用力的大小与 两电量的乘积成正比,与两电荷之间距离的平方成反比; 作用力的方向沿着两电荷的连线,同号相斥,异号相吸。
q1q2 r12 F12 F21 k 2 r r 12 12
E q 4 0 x 2
O x P E x
5、均匀带电无限大平面两侧的场强
E 2 0
电场线(electric field line )
• 形象地描述场强在空间的分布情形,使电场有 一个比较直观的图像。
1.画法:在电场中画出许多电场线: (1)为描述电场中场强的方向分布,使电场线上每一点的 切线方向表示该点场强的方向; (2)为描述电场中场强的大小分布,引入电场线数密度的 概念(通过垂直于E的单位面积的电场线的条数) ΔN/ΔS⊥,并使电场中任一点的电场线的数密度正比于 该点 E 的大小,这样,电场线的疏密分布就反映了电 场中场强大小的分布情况,电场线密处场强大,电场线 稀处场强小。
电场强度 (electric field intensity)
由
F E q0
q0 + F q0 E
_
F q0 E
E
q0
电场强度的计算
(1)点电荷的场强
欲求点电荷q(源电荷)在p点(场点)产生的电场,在p点
放一试探电荷q0,则由库仑定律和电场强度定义, 其受力为
1 qq0 r F 2 4 0 r r
的。电荷之间的相互作用,是通过其中一个电荷所激发的 电场对另一个电荷的作用来传递的。这种传递虽然很快 (约为3×108m/s),单仍需要时间。
真空中静电场的微分方程
真空中静电场的微分方程一、引言静电场是物理学中非常重要的概念之一,它是指由电荷所产生的电场。
在真空中,静电场的微分方程可以用麦克斯韦方程组来描述。
本文将详细介绍真空中静电场的微分方程。
二、麦克斯韦方程组麦克斯韦方程组是描述电磁场的基本方程组,包括四个方程式:高斯定律、法拉第定律、安培定律和位移定理。
其中高斯定律和安培定律分别描述了静电场和恒定磁场,而法拉第定律和位移定理则描述了变化磁场和变化电场。
三、高斯定律高斯定律描述了静电荷在空间内所产生的电场。
它可以写成如下形式:∇·E = ρ/ε0其中E为电场强度,ρ为空间内的自由电荷密度,ε0为真空介质中的介电常数。
四、安培定律安培定律描述了恒定磁场对于导体内部运动带来的影响。
它可以写成如下形式:∇×B = μ0J其中B为磁场强度,J为电流密度,μ0为真空中的磁导率。
五、静电场的微分方程在真空中,静电场不存在磁场和电流。
因此,安培定律可以简化为0=0,而高斯定律则可以写成:∇·E = ρ/ε0结合两个方程式可以得到:∇×E = 0这个式子表示在真空中,静电场的旋度为零。
由于旋度是一个向量运算符,它只有在有旋转的情况下才会不为零。
因此,在真空中静电场不存在旋转。
另外,根据向量分析中的基本定理可以得到:∇·(∇×E) = 0这个式子表示在真空中静电场的散度也必须为零。
因此,在真空中静电场不能有任何源或汇。
六、总结本文介绍了麦克斯韦方程组以及其中描述静电场的高斯定律和安培定律。
通过推导可以得到,在真空中静电场的微分方程是∇·E = ρ/ε0和∇×E = 0,并且这个微分方程组表明了在真空中静电场不存在旋转和源或汇。
这些结论对于理解静电场的本质和应用都有重要意义。
真空中静电场方程及其物理意义
真空中静电场方程及其物理意义
真空中静电场高斯定理:在真空静电场中,通过任意的闭合曲面电通量等于该闭合曲面内所包围的电荷的代数和除以真空介电常量。
电通量Φ所代表的物理含义是通过电场中某一给定曲面的电场线的总条数。
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。
高斯定律表明在闭合曲面内的电荷分布与产生的电场之间的关系。
高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。
因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
第1页共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 几种带电体的场强
(1)电偶极子
E
y
如图已知:q、-q、 r>>l, 电偶极矩 p ql
EB B E
r
E
l l
r
A
EA E
x
轴线的延长线上A点
E
y
EB B E
r
E
l l
r E 和 E
q
A
q之比为 F q ,是大于、小于、还是等于P点的 E 0
Q
P E0
F E0 q
P
Q
q
2. 点电荷的电场
1 q E r0 2 4 0 r F 1 qq0 1 q F r E r 2 0 2 0 4 0 r q0 4 0 r
Ey 0
无限长均匀带 电直线的场强
E Ex 2 0 a
当 0, E 0, E 方向垂直带电导体向外, x 当 0, E 0, E 方向垂直带电导体向里。 x
E 2 0 a
课堂练习 求均匀带电细杆延长线上一点的场强。已知 q ,L,a
O
x
dq dl q dl 2 a
dq r a
y p
x
d E//
dq dE 4 0 r 2
z d E
x dE
dE/ / dEi
dE dE y j dEz k
当dq位置发生变化时,它所激发的电场 矢量构成了一个圆锥面。
dq
y
.
a z
由对称性 E y Ez 0
dE 0 dx
a x 2
E Emax
a q 2 2 a 32 2 4 0 (a ) 2
E
(3)当
xq 4 0 ( x a )
2 2
2 2 2
3
i
2
x a 时,以把带电圆环看作一个点电荷 这正反映了点电荷概念的相对性
因而可将电子、质子看成点电荷。
电子与质子之间静电力(库仑力)为吸引力
e2 FE
4 0 R
2
8.2 108
牛
电子与质子之间的万有引力为
忽略!
FE 2.3 1039
FG GmM
R
3.6 1047 N 2
FG
所以库仑力与万有引力数值之比为
6-2 电场
一.静电场
电荷
电场
电荷
方程说明1排斥2
库仑定律包含同性相斥,异性相吸这一结果。
F12
r0
q1 0 q1 0 q2 0 q2 0
F21
斥力
1 q1q2 F21 r0 2 4 0 r (b)q1和q2异性,则q1 q2<0, F21和 r0 反向,
方程说明1吸引2
r0 F12
L
dx
P
a
dE X
dq dE 2 4 0 ( L a x)
dx 1 1 E ( ) 2 4 0 ( L a x) 4 0 a L a 0
L
qL q 4 0 aL( L a) 4 0 a( L a)
(3) 求一均匀带电圆环轴线上任一点 x处的电场。 已知: q 、a 、 x。
x
dE
E d E/ / d E cos
a
dq r
y p
x
d E//
cos x r r (a x )
2 2 12
z d E
dE
x
1 q q dl cos E cos 2 4 0 r 4 0 2 a r 2 2 a
1
qx 2 2 32 4 0 (a x )
dE y
1
q
dE x
O
y
a
r
y
4. 建立坐标,将 dE 投影到坐标轴上
1 dy dE 4 0 r 2
2
dy
dEx dE sin dEy dE cos 5. 选择积分变量 r , , y 均为变量,选一个积分变量
选θ作为积分变量
y actg ( ) actg
q1 0 q1 0
F21
q2 0 q2 0
引力
1 q1q2 1 q1q2 F21 r0 r 2 3 4 0 r 4 0 r
注意:只适用两 个点电荷之间
静电力的叠加原理 作用于某电荷上的总静电力等于其他点电荷单独 存在时作用于该电荷的静电力的矢量和。 数学表达式
q( 0)
P
E
r0
q( 0)
E P
r0
3、场强叠加原理
点电荷系
N F Fi
r10
E2
r20
E
E1
q1
P
F Fi E Ei q0 q0
连续带电体
i 1
q2
qi 4 r 2 ri 0 i 0 i 1
d y a csc2 d
r a y
2 2 2 2
2 2 2
dEx dE dE y O
x
y
2
a a ctg a csc
2
1
sin
2
a
r
y
dEx
1
dy
q
4 0 r 2
dy
a csc d sin sin d 2 2 4 0 a csc 4 0 a
r0 dq
E dE
dE
P
矢量积分如何求 ?
选电荷元dq
dq dl
dq dS
dq dV
分解
dE
dq r 2 0 4 0 r
x
E x dE
E y dE
y
E z dE
z
E Ex i E y j Ez k
二、真空中的库仑定律
真空中两个静止的点电荷之间的作用力(静电力), 与它们所带电量的乘积成正比,与它们之间的距离的平 方成反比,作用力沿着这两个点电荷的连线。
q1q2 F21 F12 k 2 r0 r
k 1 4 0
q1 ro
r
q2
F21 ——电荷q1作用于电荷q2的力。
第二篇
电 磁 学
电能是应用最广泛的能源; 电磁波的传播实现了信息传递; 电磁学与工程技术各个领域有十分密切的联系; 电磁学的研究在理论方面也很重要。
公元前600年
1820年 奥斯特发现 电流对磁针的作用
1831年 法拉第发现 电磁感应
古希腊泰勒斯 第一次记载电现象
1865年麦克斯韦提出 电磁场理论
1 q 中垂线上B点: E E 4 ( r 2 l 2 4) 0
E x E x E x 2 E x
2E cos
E y E y E y 0
EB 2 E cos 1 4 0 ql l 2 32 (r 2 ) 4
1
E
xq 4 0 ( x a )
2 2 3 2
i
E
xq 4 0 ( x a )
2 2 3 2
i
讨论(1)当 q 0, E的方向沿x轴正向 当 q 0, E 的方向沿x轴负向 (2)当x=0,即在圆环中心处, 0 E 当 x E 0
2.求均匀带电一细圆弧圆心处的场强,已知 ,,R
dl 取电荷元dq则 dE 4 0 R 2
课堂练习:
1.求均匀带电半圆环圆心处的 E ,已知 R、
电荷元dq产生的场
根据对称性
dE
dq dE 2 4 0 R
0
Y
dq
y
Rd E dEx dE sin sin 2 4 0 R 0
d
o
X dE
R
( cos ) 2 2 0 R 4 0 R 0
F2
F
离散状态
N F Fi i 1
r10
q
q2
F 1
Fi
连续分布
qqi 4 0 ri
2
ri 0
dF
q1
r20
F dF
qdq r 2 0 4 0 r
例:在氢原子中,电子与质子的距离为5.310-11米,试求 静电力及万有引力,并比较这两个力的数量关系。 解:由于电子与质子之间距离约为它们自身直径的105倍,
E E( x, y, z)
F E q0
q0
q
场源 电荷
试验 电荷
F
F 1.由 E 是否能说, 与 F 成正比,与 q0成反比? E q0
2.一总电量为Q>0的金属球,在它附近P点产生的场强 为 E0。将一点电荷q>0引入P点,测得q实际受力 F 与
讨论
E
y
EB B E
r
l l
r
E A E E
A
x
结论
E p
1 E 3 r
(2) 均匀带电直线在O点的电场。 x 已知: q 、 a 、1、2、。
步骤 1. 选电荷元 dq dy
3.确定 dE 的大小
dE
2.确定 dE 的方向
1 dy dE y cos cos d 2 4 0 r 4 0 a