分数计算的技巧

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在做分数的计算题时,只要正确利用分数的基本性质和四则运算法则,一般都能得到正确结果。但有时按常规方法计算就显得相当麻烦。

下面我们来学习分数运算中的某些技巧,通过这些运算技巧的学习,可以达到简化计算的目的,从而提高同学们的计算速度。

一、阅读思考

想一想,你能很快说出下面每组式子的答案吗?

分析与解:3组中,每组2个式子的结果都相等,分别是21、61、20

1。 总结规律:如果一个分数的分子是1,分母是2个相邻自然数的乘积,那么这个分数就可以拆分成2个分数的差。

应用规律:在计算分数加、减法的时候,先将其中的一些分数适当拆分,使得有一部分分数可以相互抵消,从而使计算简化,我们把这种方法叫做裂项法(也叫拆项法)。

二、例题选讲

例1 :计算

211⨯+321⨯+ 431⨯+541⨯+6

51⨯

分析:本题按常规方法计算显然相当麻烦,并且不易算出正确结果.除了常规方法还有没有较简单的方法呢?下面我们来分析一下:

211⨯= 1-21= 321⨯ = 21-31= 541⨯= 41-5

1=

所以

例2:计算 42

13012011216121+++++

分析:观察发现题目中的分母都是可以看作是2个连续自然数的积,且分子都是1,将分母加以变形,再利用裂项法即可求出和。

解答:

7671171616151514141313121211761651541431321211=-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⨯+⨯+⨯+⨯+⨯+⨯=原式

例3:计算

分析:仔细观察每一个分数的特点,分子都是1,而分母分别是两个连续整数的乘积:1×2,2×3,3×4,4×5,5×6,6×7,7×8,8×9,9×10, 即原题就是计算:

解答:原式=(1-

21)+(21—31)+(31—41)+……+(91—101) =1-

101 =10

9 注意:1.裂项时,分数的形变,值不变。2.裂项后能达到简算的目的。

三、练一练

计算

13211101901721+++

答案:24

1

相关文档
最新文档