江苏省苏州市梁丰初级中学2018届年九年级数学中考模拟试卷(含解析)(一)
苏科版2018-2019学年度初三中考一模考试数学试卷附答案
2018-2019学年度初三中考一模考试数学试卷一.填空题(共12小题,满分24分,每小题2分)1.化简﹣(﹣)的结果是.2.已知x m=6,x n=3,则x m﹣n的值为.3.若二次根式在实数范围内有意义,则x的取值范围是.4.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2=°.5.分解因式:a3﹣a=.6.生命在于运动.运动渗透在生命中的每一个角落,运动的好处就在于让我们的身体保持在健康的状态.小明同学用手机软件记录了11月份每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,中位数是万步.7.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.8.若圆锥的底面半径是10,侧面展开图是一个半圆,则该圆锥的母线长为.9.如图,平行四边形ABCD的对角线AC,BD交于O,EF过点O与AD,BC分别交于E,F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长.10.如图,⊙O与正五边形ABCDE的两边AE、CD分别相切于A、C两点,则∠AOC的度数为.11.如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC=2,直线l的关系式为:y=﹣x﹣3.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为平方单位.12.已知:M,N两点关于y轴对称,点M的坐标为(a,b),且点M在双曲线y=上,点N在直线y=x+3上,则抛物线y=﹣abx2+(a+b)x的顶点坐标是.二.选择题(共5小题,满分15分,每小题3分)13.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108B.32.4×106C.3.24×107D.324×10814.如图所示的几何体的左视图是()A.B.C.D.15.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是()A.m≥2B.m>2 C.m<2 D.m≤216.如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6cm,现将右边细管绕A处顺时针旋转60°到AB位置,且左边细管位置不变,则此时“U”形装置左边细管内水柱的高度约为()A.4cm B.2cm C.3cm D.8cm17.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC 于点O,若OC=5cm,则CD的长为()A.6cm B.7cm C.8cm D.10cm三.解答题(共11小题,满分91分)18.(8分)(1)计算:3tan30°﹣|1﹣|+(2008﹣π)0(2)化简:÷(1+)19.(10分)(1)解方程:=2﹣(2)解不等式组:,并把解集在数轴上表示出来.20.(6分)在△ABC中,点D、E、F分别是BC、AB、AC边的中点.求证:△BED≌△DFC.21.(6分)在一个口袋中有3个完全相同的小球,把它们分别标号为1、2、3,随机地摸取一个小球后放回,再随机地摸出一个小球.求“两次取的小球的标号相同”的概率.请借助列表法或树形图说明理由.22.(14分)为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在的分数段中;这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?23.(8分)如图,四边形ABCD中,AB⊥BC,∠BCD=150°,∠BAD=60°,AB=4,BC=2,求CD的长.24.(7分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.(7分)如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.26.(7分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.27.(8分)已知抛物线y=x2+bx+c经过点(1,0)和点(0,3).(1)求此抛物线的解析式及顶点坐标;(2)当自变量x满足﹣1≤x≤3时,求函数值y的取值范围;(3)将此抛物线沿x轴平移m个单位后,当自变量x满足1≤x≤5时,y的最小值为5,求m的值.28.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F 分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD =80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF =75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)参考答案1..2.2.3.:x≥2019.4.57°.5.a(a+1)(a﹣1).6.1.3.7.﹣.8.20.9.解:∵四边形ABCD平行四边形,∴AB=CD=4,AD=BC=5,AO=OC,∠OAD=∠OCF,∠AOE=∠COF,∴△OAE≌△OCF,∴OF=OE=1.5,CF=AE,∴四边形EFCD的周长=ED+CD+CF+OF+OE=ED+AE+CD+OE+OF=AD+CD+OE+OF=4+5+1.5+1.5=12.10.144°.11.40解:∵y=﹣x﹣3.∴A(1,0),B(3,0),∴AB=2.∵∠ABC=90°,AC=2,∴BC=4,∴C(3,4).设平移后点A、C的对应点分别为A′、C′,当y=﹣x﹣3=4时,x=﹣7,∴C′(﹣7,4),∴CC′=10.∵线段AC扫过的四边形ACC′A′为平行四边形,∴S=CC′•BC=10×4=40.答:线段AC扫过的面积为40.12.(,)解:∵M、N关于y轴对称的点,∴纵坐标相同,横坐标互为相反数∴点M坐标为(a,b),点N坐标为(﹣a,b),∴由点M在双曲线y=上知b=,即ab=1;由点N在直线y=x+3上知b=﹣a+3,即a+b=3,则抛物线y=﹣abx2+(a+b)x=﹣x2+3x=﹣(x﹣)2+,∴抛物线y=﹣abx2+(a+b)x的顶点坐标为(,),二.选择题(共5小题,满分15分,每小题3分)CDCAC16.解:AB中水柱的长度为AC,CH为此时水柱的高,设CH=x,竖直放置时短软管的底面积为S,∵∠BAH=90°﹣60°=30°,∴AC=2CH=2x,∴细管绕A处顺时针方向旋转60°到AB位置时,底面积为2S,∵x•S+x•2S=6•S+6•S,解得x=4,∴CH=x=4,即此时“U”形装置左边细管内水柱的高度约为4cm.18.解:(1)原式=;(2)原式===.19.解:(1)去分母得:5(1﹣x)=20﹣2(x+2),5﹣5x=20﹣2x﹣4,﹣5x+2x=20﹣4﹣5,﹣3x=11,x=﹣;(2)∵解不等式①得:x>﹣2,解不等式②得:x≥0.6,∴不等式组的解集是x≥0.6,在数轴上表示为:.20.证明:∵点D、E分别是BC、AB的中点,∴ED∥AC,ED=AC,∴∠EDB=∠C.又∵F是AC边的中点,∴FC=AC,∴DE=FC,同理可得,∠B=∠FDC,在△EBD和△FDC中,∵,∴△BED≌△DFC(AAS).21.解:作树状图可得:(5分)“两次取的小球的标号相同”的概率为P=(9分)22.解(1)补全条形图如下:(2)∵被调查的总人数为2+6+9+18+15=50人,而第25、26个数据均落在80≤x<90,∴这次抽取的学生成绩的中位数在80≤x<90的分数段中,这次抽取的学生成绩在60≤x<70的分数段的人数占抽取人数的百分比是×100%=12%,∴80≤x<90,12%;(3).答:该年级参加这次比赛的学生中成绩“优”等的约有105人.23.解:分别延长AB、DC交于点E.∵∠BCD=150°°,∴∠BCE=30°.∵AB⊥BC,∠CBE=90°,∴∠AEC=60°.又∠BAD=60°.∴△AED是等边三角形,在Rt△BCE中,∵BC=2,∠BCE=30°,cos30=,EC=4,∴CD=2.24.解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.25.(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.26.解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB=S△AOC+S△BOC=.27.解:(1)把(1,0),(0,3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣4x+3;∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1);(2)当x=﹣1时,y=x2﹣4x+3=8,当x=3时,y=x2﹣4x+3=0,∴当﹣1≤x≤3时,函数值y的取值范围为﹣1≤x<8;(3)设此抛物线沿x轴向右平移m个单位后抛物线解析式为y=(x﹣2﹣m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2+m>5,即m>3,此时x=5时,y=5,即(5﹣2﹣m)2﹣1=5,解得m1=3+,m2=3﹣(舍去),设此抛物线沿x轴向左平移m个单位后抛物线解析式为y=(x﹣2+m)2﹣1,∵当自变量x满足1≤x≤5时,y的最小值为5,∴2﹣m<1,即m>1,此时x=1时,y=5,即(1﹣2﹣m)2﹣1=5,解得m1=1+,m2=1﹣(舍去),综上所述,m的值为3+或1+.28.解:如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.∴答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.。
江苏省梁丰初中2018-2019学年第二学期初三数学阶段测试
初三数学第一次课堂练习姓名 _______ 班级 ________ 准考证号 __________一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项 是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内...) 1. 下列整数中,小于 -3的整数是() A. -4B.—2 C. 2 D.32. 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000.用科学记数法可简洁表示为 () 8979A . 3. 386 X 10 B.0.3386 X 10C.33.86 X 10D.3.386 X 103. 下列计算正确的是( )A . 3a 4b=7abB .(ab 3)3=ab 6C . (a 2)^ a 2 4D .x 6 = x 64. 学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是 ()A . 9.70 , 9.60 B. 9.60 , 9.60 C . 9.60 , 9.70 D. 9.65 ,9.605. 一个圆锥的侧面展开图是半径为 6的半圆,则这个圆锥的底面半径为()A .1.5B .2C. 2.5D. 36. 某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占 林地面积的20%设把x 公顷旱地改为林地,则可列方程()A. 54-x=20% 108B. 54 - x 20% (108 x )C. 54 x =20% 162D.108 -x =20% (54 x )7. 如图,小岛在港口 P 的北偏西60°方向,距港口 56海里的A 处,货船从港口 P 出发,沿北偏东 45°方向匀速驶离港口 P , 4小时后货船在小岛的正东方向,则货船的航行速度是()A. 7,2海里/时B. 7、、3海里/时C. 7、、6海里/时D. 14、「2海里/时 8.在边长为1的小正方形组成的网格中,有如图所示的恰好能使VABC 的面积为1的概率为( )点P 所走过的路程为x ,则线段AP, AD 与平行四边形的边所围成的图形面积为y ,表示y 与x 的函数关系的图像大致如图 2,则AB 边上的高是()A . 3B. 4C. 5D. 610.在平面直角坐标系中, Rt △ AOB 的两条直角边 OA OB 分别在x 轴和y 轴上,OA=3 OB=4.把厶 AOB 绕点A 顺时针旋转120。
苏州市初三数学中考模拟试卷(一)含答案.pdf
苏州市初三数学中考模拟试卷(一)
(满分 130 分,考试时间 120 分钟) 一、选择题:本大题共 10 小题,每小题 3 分,共 30 分.在每小题给出的四个选项中,恰
有一项是符合题目要求的,请将正确选项前的字母代号填涂在答.题.卡.相.应.位.置.上. 1.如果向北走2km记作+2km,那么向南走3km记作
D. 1 a 2
二、填空题:本大题共 8 小题,每小题 3 分,共 24 分.不需写出解答过程,请把答案直接
学海无涯
填写在答.题.卡.相.应.位.置.上. 11. 计算: 32 2 = ▲ . 12. 函数 y = x 中,自变量 x 的取值范围是 ▲ .
x+5 13. 如图,AB∥CD,∠C=20o,∠A=55o,则∠E= ▲ o. 14. 若关于 x 的方程 x2 − x + a =0 有两个相等的实数根,则 a 的值为 ▲ . 15. 已知扇形的圆心角为 45o,半径为 2cm,则该扇形的面积为 ▲ cm2. 16. 如图,矩形 ABCD 沿着直线 BD 折叠,使点 C 落在 C1 处,BC1 交 AD 于点 E,AD=8,
例函数 y = 1 (x>0)的图象上移动时,B 点坐标满足的函数解析式为 ▲ . x
三、解答题:本大题共 10 小题,共计 76 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出 文字说明、证明过程或演算步骤.
19.(本小题满分 5 分)计算:
|
−3 |
+(−3)2
+
(6
−
)0
−
1 2
−1
A. x −2
B. x −2
C. x 2
D. x 3
10. 如图,边长为 2a 的等边三角形 ABC 中,M 是高 CH 所在直线上的一个动点,连接 MB,
【最新2018】2018年苏州市中考数学模拟试题及答案-word范文模板 (9页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==2018年苏州市中考数学模拟试题及答案在中考的复习备考过程中,模拟试题的积累是十分重要的,我们平时就要充分利用好,才能真正有效提高成绩。
以下是小编给你带来的最新模拟试题,希望能帮到你哈。
2018年苏州市中考数学模拟试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.2的相反数是A.2B.C.-2D.-【难度】★【考点分析】本题考查相反数的概念,中考第一题的常考题型,难度很小。
【解析】给2 添上一个负号即可,故选C。
2.有一组数据:3,5,5,6,7,这组数据的众数为A.3B.5C.6D.7【难度】★【考点分析】考查众数的概念,是中考必考题型,难度很小。
【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故选B。
3.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×105【难度】★【考点分析】考查科学记数法,是中考必考题型,难度很小。
【解析】科学记数法的表示结果应满足:a⨯10n(1≤ a <10)的要求,C,D 形式不满足,排除,通过数值大小(移小数点位置)可得A 正确,故选A。
4.若,则有A.0【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。
【解析】化简得:m = - 2 ,因为- 4 < - 2 < - 1(A+提示:注意负数比较大小不要弄错不等号方向),所以-2 < - 2 < -1。
故选C。
初中数学 江苏省张家港市梁丰初级中学九年级数学上学期期中考模拟试考试题考试卷 及答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:方程的解是()A. B.C.或 D.或试题2:用配方法解方程,此方程可变形为()A. B. C.D.试题3:关于x的一元二次方程有两个不相等的实数根,k的取值范围是( )A. B.C.且D.试题4:已知两圆半径分别为3和4,圆心距为8,那么这两个圆的位置关系为( )A.内切 B.相交C.外离D.外切试题5:⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为( )A.B.C. 2 D.2试题6:由二次函数,可知 ( )A.其图象的开口向下 B.其图象的顶点坐标为(-3,1)C.其图象的对称轴为直线 D.当x<3时,y随x的增大而减小试题7:若⊙P的半径长为11,圆心P的坐标为(6,8),则平面直角坐标系的原点O与⊙P位置关系是( )A.在圆内B.在圆外C.在圆上D.无法确定试题8:如图正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为()A.B. C.D.试题9:若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.试题10:抛物线向右平移2个单位长度,再向上平移1个单位长度可得.试题11:如图,⊙O的直径AB交弦CD于E,∠ACD = 60°,∠ADC = 50°,则∠CEB=_ _°.试题12:如图,AB 为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=3,则⊙O 的直径为.试题13:若二次函数y=x2-2x+k的图象经过点(x1,y1),(x2,y2),其中-1≤x1<3<x2,则y1 y2.试题14:某种火箭被竖直向上发射时,它的高度h(m)与时间t(s)的关系可以用公式表示,经过s,火箭达到它的最高点.试题15:用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为cm.试题16:PA、PB是⊙O的切线,切点分别为A、B两点,点C在⊙O上运动(与A、B两点不重合),如果∠P=46°,那么∠ACB的度数是.试题17:已知一个三角形的两边长是3和4,第三边的长是方程的一个根,若用一圆形纸片将此三角形完全覆盖,则该圆形纸片的最小半径是.试题18:如图,O1O2=7,⊙O1和⊙O2的半径分别为2和3,O1O2交⊙O2于点P.若将⊙O 1以每秒30°的速度绕点P顺时针方向旋转一周,则经过秒,⊙O1与⊙O2相切.试题19:如图,在平面直角坐标系中,过格点A,B,C作一圆弧.(1)画出圆弧所在圆的圆心P;(2)过点B画一条直线,使它与该圆弧相切;(3)连结AC,求线段AC和弧AC围成的图形的面积.试题20:已知:□ABCD的两边AB,AD的长是关于x的方程的两实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么□ABCD的周长是多少?试题21:已知:如图,∠PAC=300,在射线AC上顺次截取AB=3cm,DB=10cm,以DB为直径作⊙O交射线AP于 E、F两点,求圆心O 到AP的距离及EF的长.试题22:如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的直线,垂足为D,且AC平分∠BAD.(1)求证:CD是⊙O的切线:(2)若AC=,CD=2,求⊙O的直径.试题23:已知二次函数,(1)用列表描点法,在所给的如图坐标系中画出这个二次函数的图象;(2)根据图象写出当y为正数时x的取值范围.试题24:某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每提价1元出售,其销售量就减少20件。
2017-2018年江苏省苏州市张家港市梁丰中学九年级上学期期中数学试卷及参考答案
2017-2018学年江苏省苏州市张家港市梁丰中学九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知=,则的值为()A.B.C.D.2.(3分)一元二次方程x2﹣3x+k=0的一个根为x=2,则k的值为()A.1 B.2 C.3 D.43.(3分)若△ABC∽△DEF,面积比1:9,则△ABC与△DEF的相似比为()A.1:9 B.9:1 C.1:3 D.3:14.(3分)将二次函数y=的图象向左移1个单位,再向下移2个单位后所得函数的关系式为()A.y=﹣2 B.y=﹣2 C.y=+2 D.y=+2 5.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm26.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切7.(3分)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.8.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.(3分)在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q 运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共有8小题,每小题3分,共24分)11.(3分)函数y=(x﹣1)2+3的最小值为.12.(3分)已知(a,0)(b,0)是抛物线y=x2﹣3x﹣4与x轴的两个交点,则ab=.13.(3分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=54°,则∠BAC的度数等于.14.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为.15.(3分)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.17.(3分)二次函数y=ax2+bx+c的部分对应值如下表:二次函数y=ax2+bx+c图象的对称轴为x=,x=2对应的函数值y=.18.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(5,0),下列判断:①ac<0;②b2>4ac;③b+4a>0;④4a﹣2b+c<0.其中判断一定正确的序号是.三、解答题(本大题共有8小题,共76分)19.(8分)解方程(1)x2﹣6x﹣3=0;(2)x(x+2)=5x+10.20.(5分)先化简,再求值:,其中x满足x2+3x﹣4=0.21.(6分)已知抛物线y=x2+(m+1)x+m,根据下列条件,分别求出m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为直线x=2.22.(6分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)猜想线段EF与AB有怎样的位置关系,试说明理由.23.(6分)如图,二次函数的图象与x轴相交于A(﹣3,0),B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点.一次函数的图象过点B、D.(1)求D点的坐标.(2)求一次函数的表达式.(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.24.(9分)已知,函数y=(m+1)x2﹣(m﹣4)x+(m﹣5)的图象过点A(﹣6,7).(1)求此函数的关系式;(2)求该函数图象与x轴的两个交点B、C与顶点P所围成的△BPC面积是;(3)观察函数图象,指出当﹣3<x<1时y的取值范围是.(4)若A(m﹣1,y1),B(m+1,y2)两点都在该二次函数的图象上,试比较y1与y2的大小.25.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.26.(8分)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)写出该文具店每周销售这种纪念册所获得的利润为w元与销售单价x(元)的函数关系式;当销售单价x为何值时,利润最大?(3)试通过(2)中的函数关系式及其大致图象,帮助该文具店确定产品的销售单价范围,使利润不低于150元(请直接写出销售单价x的范围).27.(10分)如图,在平面直角坐标系中,点A的坐标是(8,0),点B的坐标是(0,6).点P从点O开始沿x轴向点A以1cm/s的速度移动,点Q从点B开始沿y轴向点O以相同的速度移动,若P、Q同时出发,移动时间为t(s)(0<t<6).(1)当PQ∥AB时,求t的值.(2)是否存在这样t的值,使得线段PQ将△AOB的面积分成1:5的两部分.若存在,求出t的值;若不存在,请说明理由.(3)当t=2时,试判断此时△POQ的外接圆与直线AB的位置关系,并说明理由.28.(10分)已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O 是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).在第四象限内的抛物线上有一动点D,过D作DE⊥x轴,垂足为E,交BC于点F.设点D 的横坐标为m.(1)求抛物线的函数表达式;(2)连接AC,AF,若∠ACB=∠FAB,求点F的坐标;(3)在直线DE上作点H,使点H与点D关于点F对称,以H为圆心,HD为半径作⊙H,当⊙H与其中一条坐标轴相切时,求m的值.2017-2018学年江苏省苏州市张家港市梁丰中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)已知=,则的值为()A.B.C.D.【解答】解:∵=,∴==.故选:C.2.(3分)一元二次方程x2﹣3x+k=0的一个根为x=2,则k的值为()A.1 B.2 C.3 D.4【解答】解:∵一元二次方程x2﹣3x+k=0的一个根为x=2,∴22﹣3×2+k=0,解得,k=2,故选:B.3.(3分)若△ABC∽△DEF,面积比1:9,则△ABC与△DEF的相似比为()A.1:9 B.9:1 C.1:3 D.3:1【解答】解:∵△ABC∽△DEF,面积比1:9,∴△ABC与△DEF的相似比为1:3.故选:C.4.(3分)将二次函数y=的图象向左移1个单位,再向下移2个单位后所得函数的关系式为()A.y=﹣2 B.y=﹣2 C.y=+2 D.y=+2【解答】解:∵抛物线y=x2向左移1个单位,再向下移2个单位长度,∴平移后的解析式为:y=(x+1)2﹣2.故选:A.5.(3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.6.(3分)在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选:A.7.(3分)在平行四边形ABCD中,点E是边AD上一点,且AE=2ED,EC交对角线BD于点F,则等于()A.B.C.D.【解答】解:如图,∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴=,设ED=k,则AE=2k,BC=3k;∴==,故选:A.8.(3分)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.9.(3分)在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.【解答】解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a >0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.10.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q 运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x ≤4),图象为:故选:A.二、填空题(本大题共有8小题,每小题3分,共24分)11.(3分)函数y=(x﹣1)2+3的最小值为3.【解答】解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2+3的最小值y等于3.故答案为:3.12.(3分)已知(a,0)(b,0)是抛物线y=x2﹣3x﹣4与x轴的两个交点,则ab=﹣4.【解答】解:∵(a,0)(b,0)是抛物线y=x2﹣3x﹣4与x轴的两个交点,∴a、b为方程x2﹣3x﹣4=0的两根,∴ab=﹣4.故答案为﹣4.13.(3分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=54°,则∠BAC的度数等于36°.【解答】解:∵∠ABC与∠ADC是所对的圆周角,∴∠ABC=∠ADC=54°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠ABC=90°﹣54°=36°.故答案为:36°.14.(3分)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.【解答】解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.15.(3分)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是30°或150°.【解答】解:连接OA、OB,∵AB=OB=OA,∴∠AOB=60°,∴∠C=30°,∴∠D=180°﹣30°=150°.故答案为:30°或150°.16.(3分)如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是.【解答】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.17.(3分)二次函数y=ax2+bx+c的部分对应值如下表:二次函数y=ax2+bx+c图象的对称轴为x=1,x=2对应的函数值y=﹣8.【解答】解:①∵x=﹣3和x=5时,y=7,∴对称轴x==1;②x=2的点关于对称轴x=1对称的点为x=0,∵x=0时,y=﹣8,∴x=2时,y=﹣8.18.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(5,0),下列判断:①ac<0;②b2>4ac;③b+4a>0;④4a﹣2b+c<0.其中判断一定正确的序号是①②.【解答】解:①正确,由函数图象开口向上可知,a>0,由图象与y轴的交点在y轴的负半轴可知,c<0,故ac<0;②正确,因为函数图象与x轴有两个交点,所以△=b2﹣4ac>0,即b2>4ac;③错误,因为抛物线与x轴交于点A(﹣1,0),B(5,0),所以x1+x2=﹣=4,b=﹣4a,故b+4a=0;④错误,由于抛物线与x轴交于点A(﹣1,0),B(5,0),所以x=﹣2在点A 的左边,把x=﹣2代入解析式得4a﹣2b+c>0.所以一定正确的序号是①②.故答案为:①②.三、解答题(本大题共有8小题,共76分)19.(8分)解方程(1)x2﹣6x﹣3=0;(2)x(x+2)=5x+10.【解答】解:(1)∵x2﹣6x=3,∴x2﹣6x+9=3+9,即(x﹣3)2=12,则x﹣3=±2,∴x=3±2;(2)∵x(x+2)=5(x+2),∴x(x+2)﹣5(x+2)=0,∴(x+2)(x﹣5)=0,则x+2=0或x﹣5=0,解得:x=﹣2或x=5.20.(5分)先化简,再求值:,其中x满足x2+3x﹣4=0.【解答】解:原式=•=﹣,由x2+3x﹣4=0,得到(x﹣1)(x+4)=0,解得:x=1(舍去)或x=﹣4,当x=﹣4时,原式=﹣.21.(6分)已知抛物线y=x2+(m+1)x+m,根据下列条件,分别求出m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为直线x=2.【解答】解:(1)∵抛物线过原点,∴0=02+(m+1)×0+m,解得m=0;(2)∵抛物线的顶点在x轴上.∴△=(m+1)2﹣4m=0.解得:m=1;(3)∵抛物线的对称轴是x=2,∴﹣=2.解得m=﹣5.22.(6分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB和△DCE的顶点都在格点上,ED的延长线交AB于点F.(1)求证:△ACB∽△DCE;(2)猜想线段EF与AB有怎样的位置关系,试说明理由.【解答】(1)证明:∵AC=3,CD=2,BC=6,CE=4,∴,,∴,又∵∠ACB=∠DCE=90°,∴△ACB∽△DCE;(2)猜想线段EF⊥AB,理由如下:∵△ACB∽△DCE,∴∠B=∠E,∵∠A+∠B=90°,∴∠A+∠E=90°,∴∠AFE=90°,即EF⊥AB.23.(6分)如图,二次函数的图象与x轴相交于A(﹣3,0),B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点.一次函数的图象过点B、D.(1)求D点的坐标.(2)求一次函数的表达式.(3)根据图象写出使一次函数值大于二次函数值的x的取值范围.【解答】解:(1)∵抛物线的对称轴是x=﹣1,而C、D关于直线x=﹣1对称∴D(﹣2,3)(2)设一次函数为y=kx+b∴解得,∴y=﹣x+1(3)x<﹣2或x>124.(9分)已知,函数y=(m+1)x2﹣(m﹣4)x+(m﹣5)的图象过点A(﹣6,7).(1)求此函数的关系式;(2)求该函数图象与x轴的两个交点B、C与顶点P所围成的△BPC面积是27;(3)观察函数图象,指出当﹣3<x<1时y的取值范围是﹣9≤y<0.(4)若A(m﹣1,y1),B(m+1,y2)两点都在该二次函数的图象上,试比较y1与y2的大小.【解答】解:(1)∵函数y=(m+1)x2﹣(m﹣4)x+(m﹣5)的图象过点A(﹣6,7),∴7=(m+1)×(﹣6)2﹣(m﹣4)×(﹣6)+(m﹣5),解得m=0,则此函数的关系式为y=x2+4x﹣5;(2)∵y=x2+4x﹣5,∴y=0时,x2+4x﹣5=0,解得x=﹣5或1,∴该函数图象与x轴的两个交点B、C的坐标为(﹣5,0),(1,0).∵y=x2+4x﹣5=(x+2)2﹣9,∴顶点P的坐标是(﹣2,﹣9),∴△BPC的面积是:×6×9=27;(3)∵y=x2+4x﹣5=(x+2)2﹣9,∴对称轴是x=﹣2,∴当﹣3<x<1时,y的最小值是﹣9,当x=1时,y的最大值是(1+2)2﹣9=0,∴当﹣3<x<1时y的取值范围是﹣9≤y<0;(4)∵m=0,∴A(﹣1,y1),B(1,y2),∵y=x2+4x﹣5的对称轴是x=﹣2,抛物线开口向上,∴当x>﹣2时,y随x的增大而增大,∵﹣2<﹣1<1,∴y1<y2.故答案为27;﹣9≤y<0.25.(8分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【解答】解:(1)MN 是⊙O 切线.理由:连接OC .∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A +∠OCA=2∠A ,∠BCM=2∠A ,∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC +∠BCO=90°,∴∠BCM +∠BCO=90°,∴OC ⊥MN ,∴MN 是⊙O 切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT △BCO 中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S 阴=S 扇形OAC ﹣S △OAC =﹣=﹣4.26.(8分)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y (本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式y=﹣2x+80;(2)写出该文具店每周销售这种纪念册所获得的利润为w元与销售单价x(元)的函数关系式;当销售单价x为何值时,利润最大?(3)试通过(2)中的函数关系式及其大致图象,帮助该文具店确定产品的销售单价范围,使利润不低于150元(请直接写出销售单价x的范围).【解答】解:(1)设y=kx+b,将x=22、y=36和x=24、y=32代入,得:,解得:,∴y=﹣2x+80,故答案为:y=﹣2x+80;(2)根据题意知,w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2x+80≥0,∴x≤40,∴当x=30时,w取得最大值200,答:当销售单价x=30时,利润最大;(3)当w=150时,﹣2(x﹣30)2+200=150,解得:x=35或x=25,如图,当y≥150时,25≤x≤35.27.(10分)如图,在平面直角坐标系中,点A的坐标是(8,0),点B的坐标是(0,6).点P从点O开始沿x轴向点A以1cm/s的速度移动,点Q从点B开始沿y轴向点O以相同的速度移动,若P、Q同时出发,移动时间为t(s)(0<t<6).(1)当PQ∥AB时,求t的值.(2)是否存在这样t的值,使得线段PQ将△AOB的面积分成1:5的两部分.若存在,求出t的值;若不存在,请说明理由.(3)当t=2时,试判断此时△POQ的外接圆与直线AB的位置关系,并说明理由.【解答】解:(1)∵PQ∥AB,∴△POQ∽△AOB∴,即=,∴t=;(2)假设存在.当△OPQ的面积是△AOB的面积的时,t(6﹣t)=×6×8×,解之,t=2或t=4;当△OPQ的面积是△AOB的面积的时,t(6﹣t)=×6×8×,即t2﹣6t+40=0,方程无解,此种情况不存在;综上可知,当t=2或t=4时,线段PQ将△AOB的面积分成1:5的两部分.(3)当t=2时,点P(2,0),Q(0,4)设△POQ的外接圆的圆心为M,则点M的坐标是(1,2),PQ=2,过点M,作MH⊥AB于H,连结AM,BM,OM利用面积法,×6×1+×8×2+×10×MH=×6×8,解之,MH=2.6,∵2.6>,∴△POQ的外接圆与直线AB相离.28.(10分)已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O 是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).在第四象限内的抛物线上有一动点D,过D作DE⊥x轴,垂足为E,交BC于点F.设点D 的横坐标为m.(1)求抛物线的函数表达式;(2)连接AC,AF,若∠ACB=∠FAB,求点F的坐标;(3)在直线DE上作点H,使点H与点D关于点F对称,以H为圆心,HD为半径作⊙H,当⊙H与其中一条坐标轴相切时,求m的值.【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3),∴解得,b=﹣2,c=﹣3,即抛物线的函数表达式是:y=x2﹣2x﹣3;(2)由x2﹣2x﹣3=0,得x1=﹣1,x2=3,∴点B的坐标为(3,0),∵点C的坐标是(0,﹣3),∴过点B、C的解析式为y=kx+m,则解得,k=1,m=﹣3,即直线BC的解析式为y=x﹣3,设点F的坐标为(m,m﹣3),∵∠ACB=∠FAB,∠ABC=∠FBA,∴△ABC∽△FBA,∴∵点B的坐标为(3,0),点A的坐标是(﹣1,0),点C的坐标是(0,﹣3),∴BA=3﹣(﹣1)=4,BC=,∴BF=,∵直线BC的解析式为y=x﹣3,点F的坐标为(m,m﹣3),∴∠EBF=45°,BE=3﹣m,∴sin45°=解得,m=,即点F的坐标是();(3)设点D的坐标为(m,m2﹣2m﹣3),点F的坐标为(m,m﹣3),则点H的坐标为(m,﹣m2+4m﹣3),∴DH=﹣2m2+6m,当⊙H与x轴相切时,﹣2m2+6m=﹣(﹣m2+4m﹣3)解得,(舍去);当⊙H与y轴相切时,﹣2m2+6m=m,解得,(舍去),由上可得,点m 的值为或.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2018年中考数学模拟试卷及答案(共五套)
2018年中考数学模拟试卷及答案(共五套)2018年中考数学模拟试卷及答案(一)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A .(x -y)2=x 2-y 2B .x 2·x 4=x 6C.(-3)2=-3 D .(2x 2)3=6x 63.下列二次根式中,与3是同类二次根式的是( ) A.13B.18C.24D.0.3 4.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n ,则n 等于( )A .10B .11C .12D .13图M2-25.如图M2-2,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A.34 B.43 C.35 D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎨⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a2a-3+93-a)÷a+3a=________.16.如图M2-6,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.图M2-617.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h时,两车相距350 km.图M2-718.若关于x的分式方程x+mx-2+2m2-x=3的解为正实数,则实数m的取值范围是________.19.如图M2-8,点A在双曲线y=5x上,点B在双曲线y=8x上,且AB∥x轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF 交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ︰S△BCM=2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D 处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=-x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M′,点H的坐标为(1,0).若四边形OM′NH的面积为53.求点H到OM′的距离d的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE , ∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a. 16.39217.32[解析] 由题意,得AC =BC =240 km ,甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ).∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为3 2 .20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x甲=7分,x乙=7分,x丙=6.3分,根据题意不难判断.(3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x甲=7分,x乙=7分,x丙=6.3分,∵x甲=x乙>x丙,s丙2>s甲2>s乙2,∴选乙运动员更合适.(3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14.22.解:过点D作DM⊥EC于点M,DN⊥BC于点N,设BC=h,在直角三角形DMA中,∵AD=6,∠DAE=30°,∴DM=3,AM=3 3,则CN=3,BN=h-3.在直角三角形BDN中,∵∠BDN=30°,∴DN=3BN=3(h-3);在直角三角形ABC中,∵∠BAC=48°,∴AC=htan48°,∵AM+AC=DN,∴3 3+htan48°=3(h-3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5. 过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C△ADB C△ACP =ADAC=35=12C△ACP,∴C△ACP=20.25.解:(1)相等平行[解析] ∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(2)成立.证明:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(3)仍然成立.[解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y=32x2-32x-3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141. 解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎨⎧32-b +c =0,6+2b +c =0,解得⎩⎨⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE, ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x. ∵点B 坐标为(2,0),∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3).设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3), ∴⎩⎨⎧2k +b 1=0,b 1=-3,解得⎩⎨⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎨⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎨⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m),∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1,∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413.∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.2018年中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22 C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( ) A .x ≠-3 B .x≥2 C .x >2 D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106 4.下列运算正确的是( ) A.a2+a3=a5B.(-2a2)3÷(a2)2=-16a4C.3a-1=13aD.(2 3a2-3a)2÷3a2=4a2-4a+1图M1-15.如图M1-1,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8 cm,CD=3 cm,则圆O的半径为( )A.256cm B.5 cmC.4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠28.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.3 32C.32D.不能确定9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a=b,则a2=b2;②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个 10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分)13.计算:8-312+2=________.14.不等式组⎩⎨⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________. 16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG⊥CA,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB ∶S四边形CBFG =1∶2;③∠ABC=∠ABF;④AD 2=FQ ·AC ,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图M1-9,老师测得升旗台前斜坡FC的坡比为iFC=1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35m(即CE=35 m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=37,升旗台高AF=1 m,小明身高CD=1.6 m,请帮小明计算出旗杆AB的高度.23.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上.若EF⊥HG 于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图-1126.(12分)如图M1-12,已知抛物线y =ax 2+bx +c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D7.B [解析] 因为方程有两个实数根,所以⎩⎨⎧m -2≠0,(-3-m )2-4×14(m -2)≥0,解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC是等边三角形,AB=3,点P是△ABC内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于H.则BH=32,AH=AB2-BH2=3 32.连接PA,PB,PC,则S△PAB +S△PBC+S△PCA=S△ABC.∴12AB·PD+12BC·PE+12CA·PF=12BC·AH.∴PD+PE+PF=AH=3 32.故选B.9.A 10.A11.A [解析] b*b-a*a=b(1-b)-a(1-a)=b-b2-a+a2,因为a,b为方程x2-x+14m=0的两根,所以a2-a+14m=0,化简得a2-a=-14m,同理b2-b=-14m,代入上式得原式=-(b2-b)+a2-a=14m+(-14m)=0.12.D13.32214.-3<x≤115.3 [解析] 如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为3.16.8317.16π318.1x+119.320.①②③④ [解析] ∵∠G=∠C =∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF ,∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m). 过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得 ⎩⎨⎧x +y =8,2x +3y =22,∴⎩⎨⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得 ⎩⎨⎧m +a +b =20,4m +2a +3b =72,∴⎩⎨⎧a =m -12,b =32-2m. (3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎨⎧m≥1,m -12≥1,32-2m≥1,∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w=10m+216中,w随m的增大而增大,当m=15时,w最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD.∵BC与⊙O相切于点D,∴OD⊥BC.又∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA.∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH.理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x.∵OH⊥AD,∴AD=2DH=2(1+x).∵∠DFG=∠DA F,∠FDG=∠ADF,∴△DFG∽△DAF,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF∥GE,∴∠GEC=∠P,∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得 ⎩⎨⎧a -b +2=0,16a +4b +2=0, 解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4,∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y), ∴AB BC =|y|455,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b , 由图像,得⎩⎨⎧2=b ,0=4k +b ,∴⎩⎨⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5.∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt△AOC,Rt△BOC中,由勾股定理,得AC=5,BC=2 5,∴AC2=5,BC2=20,AB2=25,∴AB2=AC2+BC2,∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=5,在Rt△BFD中,由勾股定理,得DF=5,∴DF=BF,∴∠ADB=45°.2018年中考数学模拟试卷及答案(三)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列各实数中最小的是( )A.- 2 B.-12 C.0 D.|-1|2.下列等式一定成立的是( )A.a2·a5=a10 B.a+b=a+ bC.(-a3)4=a12 D.a2=a3.估计7+1的值( )A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.3tan30°的值等于( )A. 3 B.3 3 C.33D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a+1的是( ) A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+17.正六边形的边心距为3,则该正六边形的边长是( )A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1)9.化简a 2-b 2ab -ab -b 2ab -a 2等于( )A.b aB.ab C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12; ③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题:①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①c>0;②若点B(-32,y1),C(-52,y2)为函数图象上的两点,则y1<y2;③2a-b=0;④4ac-b24a<0.其中,正确结论的个数是( )图M3-2 A.1 B.2C.3 D.4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.图M3-316.如图M3-4,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.图M3-518.若关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2满足x1+x2=-x1·x2,则k=________.19.如图M3-6,在平面直角坐标系中,矩形ABCD的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.图M3-620.如图M3-7,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF =2S△ABE.其中正确结论有________.图M3-7三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E 在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=⎩⎨⎧k1x(0≤x<600),k2x+b(600≤x≤1000),其图象如图M3-10所示;栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000 m2空地的绿化总费用为W(元),请写出W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用W的最小值.图M3-1024.(10分)如图M3-11,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.图M3-1125.(12分)如图M3-12,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm,点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB,AC,AD于点E,F,H.当点P到达点C时,点P与直线m同时停止运动,设运动时间为t(t>0)秒.(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时t的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A:原式=(a+1)(a-1),不符合题意;B:原式=a(a+1),不符合题意;C:原式=(a+2)(a-1),符合题意;228.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1),∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°, ∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DAF, ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7,∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b , 则⎩⎨⎧b =6,4k +b =8,解得:⎩⎨⎧k =12,b =6,联立①②得:⎩⎨⎧x =2,y =7或⎩⎨⎧x =-14,y =-1(舍去),∴点E 的坐标为(2,7).20.①②③⑤21.解:(1)这30天最高气温的平均数=14×8+18×6+22×10+26×2+30×430=20.4 (℃),中位数为22 ℃. (2)1630×90=48(天). 答:估计该地这个季度中最高气温超过(1)中平均数的天数为48天. (3)P =1230=25.22.解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°, ∴DE =12DC =2米.(2)过D 作DF⊥AB,交AB 于点F , ∵∠BFD =90°,∠BDF =45°, ∴∠DBF =45°,即△BFD 为等腰直角三角形, 设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米, 在Rt △ABC 中,∠ABC =30°, ∴BC =AB cos30°=x +232=2x +43=3(2x +4)3米,BD =2BF =2x 米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°, 在Rt △BCD 中,根据勾股定理得:BD 2=BC 2+CD 2, 即2x 2=(2x +4)23+16,解得:x =4+4 3或x =4-4 3(舍去), 则AB =(6+4 3)米.23.[解析] (1)利用待定系数法求解;(2)分0≤x<600和600≤x≤1000两种情况求出W 关于x 的函数关系式,分别求出两种情况下的最大值并进行比较;(3)先根据不等关系求出x 的取值范围,再结∵-0.01<0,W =-0.01(x -500)2+32500, ∴当x =500时,W 取最大值为32500元.当600≤x≤1000时,W =20x +6000+(-0.01x 2-20x +30000)=-0.01x 2+36000. ∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小. ∴当x =600时,W 取最大值为32400元. ∵32400<32500,∴W 的最大值为32500元. (3)由题意,1000-x≥100,解得x≤900. 又x≥700,∴700≤x ≤900.∵当700≤x≤900时,W 随x 的增大而减小. ∴当x =900时,W 取最小值为27900元. 24.解:(1)证明:∵∠ABC =90°, ∴∠ABD =90°-∠DBC, 由题意知:DE 是直径, ∴∠DBE =90°,∴∠E =90°-∠BDE, ∵BC =CD ,∴∠DBC =∠BDE, ∴∠ABD =∠E, ∵∠A =∠A, ∴△ABD ∽△AEB. (2)∵AB BC =43, ∴设AB =4k ,则BC =3k , ∴AC =AB 2+BC 2=5k , ∵BC =CD =3k ,∴AD =AC -CD =5k -3k =2k , 由(1)可知:△ABD∽△AEB, ∴AB AE =AD AB =BD BE, ∴AB 2=AD·AE, ∴(4k)2=2kAE , ∴AE =8k , 在Rt △DBE 中, tanE =BD BE =AB AE =4k 8k =12.(3)过点F 作FM⊥AE 于点M ,设AB =4x ,BC =3x ,由(2)可知:AE =8x ,AD =2x , ∴DE =AE -AD =6x , ∵AF 平分∠BAC, 可证BF EF =AB AE ,∴BF EF =4x 8x =12, ∵tanE =12,∴cosE =2 55,sinE =55,∴BE DE =2 55,∴BE =2 55DE =12 55x , ∴EF =23BE =8 55x ,∵sinE =MF EF =55,∴MF =85x ,∵tanE =12,∴ME =2MF =165x ,∴AM =AE -ME =245x , ∵AF 2=AM 2+MF 2, ∴4=(245x)2+(85x)2,解得x =108, ∴⊙C 的半径为3x =3 108. 25.解:(1)证明:当t =2时,DH =AH =4 cm , ∵AD ⊥BC ,AD ⊥EF ,∴EF ∥BC , ∴EH =12BD ,FH =12CD.又∵AB=AC ,AD ⊥BC ,∴BD =CD ,∴EH =FH ,∴EF 与AD 互相垂直平分, ∴四边形AEDF 为菱形.(2)依题意得DH =2t ,AH =8-2t ,BC =10 cm ,AD =8 cm , 由EF∥BC 知△AEF∽△ABC,即8-2t 8=EF10, 解得EF =10-52t ,∴S △PEF =12⎝ ⎛⎭⎪⎫10-52t ·2t=-52t 2+10t =-52(t -2)2+10,即当t =2秒时,△PEF 的面积存在最大值10 cm 2,此时BP =3×2=6(cm). (3)过E ,F 分别作EN⊥BC 于N ,FM ⊥BC 于M ,易知EF =MN =10-52t ,EN =FM ,由AB =AC 可知BN =CM =10-⎝⎛⎭⎪⎫10-52t 2=54t.在Rt △ACD 和Rt △FCM 中,由tanC =AD CD =FM CM ,即FM 54t =85, 解得FM =EN =2t ,又由BP =3t 知CP =10-3t , PN =3t -54t =74t ,PM =10-3t -54t =10-174t ,则EP 2=(2t)2+⎝ ⎛⎭⎪⎫74t 2=11316t 2,FP 2=(2t)2+⎝⎛⎭⎪⎫10-174t 2=353t 216-85t +100,EF 2=⎝⎛⎭⎪⎫10-52t 2=254t 2-50t +100.分三种情况讨论:①若∠EPF =90°,则EP 2+PF 2=EF 2,即11316t 2+35316t 2-85t +100=254t 2-50t +100,解得t 1=280183,t 2=0(舍去).②若∠EFP=90°,则EF 2+FP 2=EP 2,即254t 2-50t +100+35316t 2-85t +100=11316t 2,40。
最新江苏省苏州市梁丰2019年最新中考数学模拟试卷(一)及答案(已审阅)
苏州市梁丰初级中学2018届年九年级数学模拟试卷(一)2018.5本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.﹣ 的相反数是 A .3B .﹣3 C.D.﹣2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 3)4=a 12C .5a ﹣2a =3a 2D .(x +y )2=x 2+y 23.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是A.B.C.D.4.函数y=3x 中自变量x 的取值范围是A .x ≥3B .x ≥﹣3C .x ≠3D .x >0且x ≠35.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,则∠2等于A .70°B .75°C .80°D .85°12ba c)5(题第6.下列一元二次方程中,有两个相等实数根的是A .x 2﹣8=0B .2x 2﹣4x +3=0C .5x +2=3x 2D .9x 2+6x +1=07.抛物线223y x x =++的对称轴是A .直线x =1B .直线x = -1C .直线x =-2D .直线x =2 8.若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为 A .4 B .﹣4 C .16D .﹣169.如图△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( )A .2B .C .3D .210.如图点A 、B 在反比例函数y =(k >0,x >0)图象上,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为A .B .C .D .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.分解因式:29a -= ▲ .12.2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 ▲ .13.如图,等腰三角形ABC 的顶角为1200,底边BC 上的高AD= 4,则腰长为 ▲ .第13题 第14题 第15题14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 ▲ .15.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为 ▲ . 16.已知扇形的半径为6cm ,面积为10πcm 2,则该扇形的弧长等于▲ .17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为 ▲ 米(结果保留根号).第17题 第18题18.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:①∠AME =108°;②2AN AMAD =⋅;③MN=3;④1BE =-.其中正确结论的序号是 ▲ .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:22(π--+.20.(本题满分5分)解不等式组:()12221x x x ->⎧⎪⎨+≥-⎪⎩21.(本题满分6分)21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x1.OBCDA22.(本题满分6分)某校学生利用双休时间去距学校10 km 的天平山社会实践活动,一部分学生骑电瓶车先走,过了20 min 后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.(本题满分8分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE =CD ;(2)连接BF ,若BF ⊥AE ,∠BEA =60°,AB =4,求平行四边形ABCD 的面积.24.(本题满分8分)为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A ,B ,C ,D 四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息, 解答下列问题:(1)本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为 ▲ ; (2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y=(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =3, (1)求反比例函数y=的解析式; (2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.26(本题满分10分)如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长. 27.(本题满分10分)在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC上一第26题图BAE PO DC动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,①BC与CF的位置关系为:▲.②BC,CD,CF之间的数量关系为:▲;(将结论直接写在横线上)(2)如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论,再给予证明.(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.28.(本题满分10分)如图平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x 轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t 的值;若不存在请说明理由.数学参考答案及评分标准一、选择题(每小题3分,共30分)二、选择题(每小题3分,共24分) 11.(a + 3)(a - 3) 12.4.51×107 13.8 14.2915.60016.103∏ 17.418.①、②、③三、解答题(共11大题,共76分) 19.(本题共5分)解:原式= 3-2 + 1 ·············································································· 3分=2 ························································································· 5分20.(本题共5分)解:由①式得:x>3. ············································································ 2分由②式得:x 4≤. ·········································································· 4分 ∴不等式组的解集为: 34x <≤. ····················································· 5分21.(本题共6分) 解:原式=211x x x x ÷-- ··········································································· 1分 =1(1)(1)x x x x x-⋅+- ····································································· 2分=11x + ···················································································· 4分当x 1时,原式··································································· 5分. ·················································································· 6分22.(本题满分6分)解:设骑电瓶车学生的速度为x km /h ,汽车的速度为2x km /h ,可得:··········1分 10x =102x +2060, ···············································································3分解得x =15,······················································································4分 经检验,x =15是原方程的解,······························································5分 2x =2×15=30.答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h .·························6分 23.(本题共8分)(1)证明:∵四边形ABCD 为平行四边形∴AD∥BC,AB ∥C D ,AB=CD ,·····································································1分 ∴∠B+ ∠C=180°,∠AEB =∠DAE ,······························································2分 ∴AE 是∠BAD 的角平分线∴∠BAE =∠DAE , ∴∠BAE =∠DAE ,··················3分 ∴AB=BE,∴BE=CD ················································································4分 (2)解:∵AB=BE,∠BEA=60°, ∴△ABE 是等边三角形,∴AE=AB=4, ····························································································5分∵BF⊥AE, ∴AF=EF=2, ∴BF=········ ··················································6分 ∵AD∥BC, ∴∠D=∠ECF,∠DAF=∠E, 在△ADF 和△ECF 中,, ∴△ADF≌△ECF(AAS ), ········· ····································7分∴△ADF 的面积=△ECF 的面积, 12AEBF ······8分 24.(本题共8分)1)由题意可得,本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为:×100%=20%.··················································2分(2)由题意可得,选择C 的人数有:30÷﹣36﹣30﹣44=70(人)补全的图②柱状图正确·········································5分(3)由题意可得,全校选择此必唱歌曲共有:1260×=490(人),答:全校共有490名学生选择此必唱歌曲.········································8分25.(本题共8分)解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,···························1分解得:.·········2分∴反比例函数的解析式为y=.········································3分(2)∵m=1,∴点A的坐标为(4,4),········································4分∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.········································5分(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.·····7分∴经过C、D两点的一次函数解析式为y=﹣x+3.········································8分26.(本题共10分)证明:⑴如图,连接OC,∵P A切⊙O于A.∴∠P AO=90º. ····································································································· 1分∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB.∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP. ······························································································· 2分又∵OA=OC,OP=OP,∴△P AO≌△PCO (SAS).∴∠P AO=∠PCO=90 º,又∵OC是⊙O的半径,∴PC是⊙O的切线. ······························································································3分⑵解法不唯一. 解:由(1)得P A,PC都为圆的切线,∴P A=PC,OP平分∠APC,∠ADO=∠P AO=90 º,∴∠P AD+∠DAO=∠DAO+∠AOD,∴∠P AD =∠AOD,∴△ADO∽△PDA. ······························································································ 4分∴AD DOPD AD=,∴2AD PD DO=⋅,∵AC=8,PD=163,∴AD =12AC =4,OD =3,AO =5, 5分 由题意知OD 为△ABC 的中位线,∴BC =2OD =6,AB =10.∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭. 答:阴影部分的面积为22548cm 2π-. ······································································· 6分 (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M . ················································· 7分 ∴∠CMB =∠EMB =∠AEB =90º,又∵点E 是AB ︵的中点,∴∠ECB =∠CBM =∠ABE =45º,CM =MB =,BE =AB cos450 = ···························· 8分∴ EM ,∴CE =CM +EM =()cm .·······················9分答:CE 的长为. ······················································································· 10分27.(本题共10分)解:(1)①垂直; ································································································ 1分 ②BC =CF +CD ; ···························2分 (2)成立,∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,在△DAB 与△F AC 中,,∴△DAB ≌△F AC ,···························4分 ∴∠B =∠ACF ,CF =BD ∴∠ACB +∠ACF =90°,即CF ⊥BD ;∵BC =BD +CD , ∴BC =CF +CD ;···························6分 (3)解:过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,∵∠BAC =90°,AB =AC ,∴BC =AB =4,AH =BC =2,∴CD =BC =1,CH =BC =2,∴DH =3,···························7分 由(2)证得BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°, ∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,···························8分 ∴NE =CM ,EM =CN ,∵∠AHD =∠ADC =∠EMD =90°,∴∠ADH +∠EDM =∠EDM +∠DEM =90°, ∴∠ADH =∠DEM ,在△ADH 与△DEM 中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,···························9分∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.··························10分28.(本题共10分)解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;··························2分(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.·········3分设正方形OEFG边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).·························4分②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.··························5分综上所述:点F的坐标为(1,1);··························6分(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.··························7分①当DN=DM时,(﹣t+)2=t2﹣t+2,//// 解得t=;··························8分 ②当ND =NM 时,﹣t+==,解得t =3﹣;··························9分 ③当MN =MD 时,=t 2﹣t +2,解得t 1=1,t 2=3.∵0≤t ≤2,∴t =1.··························10分 综上所述:当△DMN 是等腰三角形时,t 的值为,3﹣或1.。
2018年江苏省中考模拟数学试卷及答案解析
绝密★启用前|
数
注意事项:
学 试 卷
试卷满分:120 分)
A.4π+2 3 C.
B.
(考试时间:120 分钟
16 π2 3 3
16 π–2 3 3
D.4π
6.如图,P 为正方形 ABCD 的对角线 BD 上任一点,过点 P 作 PE⊥BC 于点 E,PF⊥CD 于点 F,连接 EF.给出以 下 4 个结论:①△FPD 是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是
2a 2 a2 1 ,然后 a 在–1、1、2 三个数中任选一个合适的数代入求 ÷(a+1)+ 2 a 1 a 2a 1
23.(本小题满分 8 分)如图,一辆摩拜单车放在水平的地面上,车把头下方 A 处与坐垫下方 B 处在平行于地面的 水平线上,A、B 之间的距离约为 49cm,现测得 AC、BC 与 AB 的夹角分别为 45°与 68°,若点 C 到地面的距离 CD 为 28cm,坐垫中轴 E 处与点 B 的距离 BE 为 4cm,求点 E 到地面的距离(结果保留一位小数).(参考数 据:sin68°≈0.93,cos68°≈0.37,tan22°≈0.40)
Байду номын сангаас
(1)求 k 的值及点 E 的坐标; (2)若点 F 是 OC 边上一点,且△FBC∽△DEB,求直线 FB 的解析式. 22.(本小题满分 8 分)如图,已知△ABC 中,AB=AC,把△ABC 绕 A 点沿顺时针方向旋转得到△ADE,连接 BD, CE 交于点 F.21 教育名师原创作品 (1)求证:△AEC≌△ADB; 三、解答题(本大题共 11 小题,共 88 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分 7 分)计算:2cos30°+( 3 –2)–1+|– (2)若 AB=2,∠BAC=45°,当四边形 ADFC 是菱形时,求 BF 的长.
苏州市2018年中考数学全真模拟试题及答案
17、已知 αβ 都是锐角,且 sin α < sin β ,则下列关系中正确的是(
)
( A) α > β (B) tan α> tan β ( C) cos α > cos β ( D) cot α <tan β
r 之间的函数
二、(本题 21 分,每题各 7 分)
18、计算: 2 2 (1 tan 60 )0 ( 1 ) 2 3 64 | 1 3 |
2)中的抛物线的两个交点的横坐标之和等于
存在,求出这样的直线的解析式;若不存在,请说明理由。
y
2?若
C
E
D
H
P
A
O Bx
25、已知:如图矩形 ABCD中, AB=4m, BC=6m, E 为 BC 的中点,动点 P 以每秒 2m的速度从 A 出发,沿着△ AED 的边,按照从 A→ E→ D→ A 的顺序环行一周,设 P 从 A 出发经 x 秒后,△ ABP的面积为 ym2,求 y 与 x 的函数关系
2。
2
31
19、已知正数 m、 n 满足 m 4 mn 2 m 4 n 4n 3 ,求 m 2 n 8 的值。 m 2 n 2002
20、求不等式组
x 3 (2x 1) 4
2
的整数解。
1 3x 2x 1
2
三、(本题 10 分) 21、已知:如图,在直角梯形 求证: AD=ED。
ABCD中, AD//BC ,∠ A=90°, BC=CD, BE⊥ DC于点 E。
式。
10、两个相似三角形的面积比为 4:9 ,周长和是 20cm,则这两个三角形的周长分别是(
)
( A) 8cm和 12cm ( B) 7cm和 13cm ( C) 9cm和 11cm ( D) 6cm和 14cm
2018江苏中考数学模拟真题试卷【精编Word版可】.doc
2018江苏中考数学模拟真题试卷【精编Word 版可下载】由于格式问题,部分试题会存在乱码的现象,请考生点击全屏查看! 一、填空题:(本大题共有12小题,每小题2分,共计24分) 1.有理数2018-的相反数是 ▲ .2.计算:22a ()= ▲ . 3.计算:(4)(1)x x -+= ▲ .4.当x = ▲ 时,分式3xx -没有意义.5.如图,在ABC ∆中,40B ∠=︒,28C ∠=︒,点D 在BA 的延长线上,则CAD ∠的 大小为 ▲ .ABCDDAOBF EDACB(第5题) (第9题) (第10题) 6.任意掷一枚均匀的正方体骰子,“偶数点朝上”发生的概率为 ▲ .7.若关于x 的一元二次方程240x x m +=-没有实数根,则m 的取值范围是 ▲ . 8.已知圆锥的底面半径为3,它的母线长为4,则它的侧面积为 ▲ . 9.如图,AB 、AD 是O 的弦,30ABO ∠=︒,18ADO ∠=︒,则BOD ∠= ▲ °.10.如图,在Rt ABC ∆中,90ACB ∠=︒,点D 、E 、F 分别是边AB 、AC 、BC 的中点,连接CD 、EF .若5CD =,则EF 的长是 ▲ .x y ACB HP xy6213QO图(1) 图(2)(第12题)11. 若实数x 、y 满足1x y +=,且2220y x m --=,则m 的最小值是 ▲ 12.在ABC ∆中,AH BC ⊥于点H ,点P 从B 点出发沿BC 向C 点运动,设线段AP 的长为y ,线段BP 的长为x (如图1),而y 关于x 的函数图像如图2所示.(1,3)Q 是函数图像上的最低点.当ABP ∆为锐角三角形时x 的取值范围为 ▲ .二、选择题:(本大题共有5小题,每小题3分,共计15分,在每小题给出的四个选项中,恰有一项符合题目要求)13.中国移动数据中心IDC 项目近日在高新区正式开工建设,该项目规划建设规模12.6 万平方米,建成后将成为省最大的数据业务中心.其中126000用科学记数法表示应为(▲)61.2610A ⨯. 412.610B ⨯. 60.12610C ⨯. 51.2610D ⨯.14.如图,这是由5个大小相同的小正方体摆成的立体图形,它的俯视图是(▲)15.随机抽查某商场四月份5天的营业额分别如下(单位:万元)3.4,2.9,3.0,3.1,2.6,试估计这个商场四月份的营业额约是(▲)A . 3万元B . 15万元C . 90万元D . 450万元16.函数y kx b =+的图像经过(1,2) 和(1,2)a -.若1a >,则k b 、的取值范围是(▲)A . 0k b >,>2B .0k b <,<2C . 0k b >,<2D . 0k b <,>2 17.如图,AOB ∆的边OA OB 、分别落在x 轴、y 轴上,点P 在边AB 上,将AOP ∆沿OP 所在直线折叠,使点A 落在点A '的 位置.若(3,0)(0,4)A B -,,连接'BA ,当'BA 的长度最小时点P 的坐标为(▲)y xP BA'OAA .1212(,)77-B . 1111(,)77-C . 42(,)77-D .43(,)77- 三、解答题(本大题共有11小题,共计81分,解答时应写出必要的文字说明、证明过程或演算步骤.)18.(本题8分)计算或化简:(1)126230sin -︒++-﹣ (2)13(1)224m m m --÷--19.(本题10分)解方程、不等式组:(1) 3221123x x ++=- (2) 13(2)1221213x x x x ⎧+-≥⎪⎪⎨+⎪>-⎪⎩20.(本题6分)我市某学校组织了一次体育知识竞赛.每班选25名同学参加比赛,成绩分别为A 、B 、C 、D 四个等级,其中相应等级得分依次记为100分、90分、80分、70分.学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示.(1)把一班竞赛成绩统计图补充完整; (2)写出下表中a 、b 、c 的值:平均数(分) 中位数(分) 众数(分) 方差一班 ab 90 106.24二班 87.680 c 138.24(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析(说出一条即可). 21.(本题6分)一个不透明的口袋中装有形状大小相同的三个小球,每个小球上各标有一个数字,分别是、2、3,现规定从袋中任意取出一个小球,记录数字后放回,再取一个小球,记录其数字,用画树状图(或列表)的方法,求两次取出的小球上的数字之和大于4的概率.22.(本题6分)如图,点B F C E 、、、在同一直线上,AC DF 、相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AB DE =,BF CE =. (1)求证:ABC DEF ∆∆≌; (2)若65A ∠=︒,求AGF ∠的度数. GFDCBAE23.(本题6分)如图,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30︒,向楼前进50m到达B 点,又测得点C 的仰角为60︒,求这幢楼CD 的高度(结果保留根号).24.(本题6分)我市为加快美丽乡村建设,建设秀美幸福丹阳,对A B 、两类村庄进行了全面建设.根据预算,建设一个A 类美丽村庄和一个B 类美丽村庄共需资金300万元;甲镇建设了2个A 类美丽村庄和5个B 类美丽村庄共投入资金1140万元.(1)建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是多少万元? (2)乙镇建设3个A 类美丽村庄和4个B 类美丽村庄共需资金多少万元?25.(本题6分)如图:直线y x =与反比例函数(0)ky k x =>的图像在第一象限内交于点(2,)A m .(1)求m 、k 的值;(2)点B 在y 轴负半轴上,若AOB ∆的面积为2,求AB 所在直线的函数表达式;(3)将AOB ∆沿直线AB 向上平移,平移后A 、O 、B 的对应点分别为'''A O B 、、,当点'O 恰好落在反比例函数ky x =的图像上时,求点'A 的坐标.yO BAx26.(本题8分) 如图,AB 是O 的直径,弦CD AB ⊥,垂足为E ,连接OD .(1)过点C 作射线CF 交BA 的延长线于点F ,且使得ECF AOD ∠=∠;(要求尺规作图,不写作法)(2)求证:CF 是O 的切线;(3)若:1:2OE AE =,且6AF =,求O 的半径.BEDOAC27.(本题9分)如图(1),ABC ∆中,90ABC ∠=︒,3AB =,1BC =,将ABC ∆绕点A 逆时针旋转,旋转后B C 、的对应点分别为''B C 、.射线CD ∥AB ,射线'AC 、射线'AB 分别交射线CD 于点E F 、.(1)求证:2AE EF EC =⋅;(2)当435CE =时,求AE 、EF 的长;(3)设2AE y =,CE x =,求y 与x 的函数关系式,并求当ACE ∆是等腰三角形时EF 的长. F EC'DCABB'DCAB图(1) (备用图)28.(本题10分)如图(1),已知抛物线过点(3,0)A ,(1,0)B -,(0,3)C ,连接AC ,点M 是抛物线AC 段上的一个动点,设点M 的横坐标为,ACM ∆ 的面积为S . (1)求抛物线的解析式; (2)求S 关于的函数关系式; (3)如图(2),当CM ∥x 轴时, ①S = ▲ ;tan CAM ∠= ▲ ;②点P 是抛物线上不与M 重合的点,且CAP CAM ∠=∠,求点P 的坐标; ③点Q 在抛物线上,且BAQ CAM ∠=∠,求点Q 的坐标.xyx y MCAB B A CMOO图(1) 图(2)。
2018年江苏省苏州市中考数学试卷及答案解析
2018年江苏省苏州市初中毕业、升学考试数学学科一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(2018江苏苏州,1,3分)在下列四个实数中,最大的数是A.-3 B.0 C.32D.34【答案】C【解析】本题解答时要利用有理数大小比较的规则.根据正数大于零,零大于一切负数,可知最大的数为32,故选C.2.(2018江苏苏州,2,3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C【解析】本题解答时要确定好底数和10上的指数,384 000有6位整数,用科学记数法可表示成:53.8410⨯,故选C.3.(2018江苏苏州,3,3分)下列四个图案中,不是轴对称图案的是A.B.C.D.【答案】B【解析】本题解答时要找出图形的对称轴.A,C,D都是轴对称图形,只有B是中心对称图形,故选B. 4.(2018江苏苏州,4,3分)若2x+在实数范围内有意义,则x的取值范围在数轴上表示正确的是A.B.C.D.【答案】D【解析】本题解答时要利用二次根式有意义的概念进行解答.由二次根式的意义可知:20x+≥,解得2x≥-,故选D.5.(2018江苏苏州,5,3分)计算2121(1)x xx x+++÷的结果是A .x +1B .11x + C .1x x + D .1x x+ 【答案】B【解析】 本题解答时要利用分式的运算顺序和法则进行计算.原式=2111(1)x x x x x +⨯=++ ,故选B .6.(2018江苏苏州,6,3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是A .12B .13C .49D .59【答案】C【解析】 本题解答时要分别算出正方形的面积和阴影部分的面积,然后利用概率公式进行计算.设小正方形的边长为a ,则大正方形的面积为9a 2,阴影部分的面积为214242a a a ⨯⨯⨯=,则飞镖落在阴影部分的概率为:224499a a=,故选C .7.(2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是»AC 上的点.若∠BOC =40°,则∠D 的度数为A .100°B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .8.(2018江苏苏州,8,3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A 处时,测得岛屿P 恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P 在其北偏两30°方向,保持航向不变又航行2小时到达C 处,此时海监船与岛屿P 之问的距离(即PC 的长)为A .40海里B .60海里C .203海里D .403海里【答案】D【解析】本题解答时要利用直角三角形的边角关键和勾股定理来进行计算.由题意可知AB=20,∠APB=30゜,∴P A=203,∵BC=2⨯20=40,∴AC=60,∴PC=2222(203)60403PA AC+=+=(海里),故选D.9.(2018江苏苏州,9,3分)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为()A.3 B.4 C.23D.32【答案】B【解析】本题解答时要取AB的中点,然后利用三角形的中位线和平行四边形的判定和性质来解答.取AB的中点M,则ME∥BC,ME=12BC,∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=4,故选B.E FMBA10.(2018江苏苏州,10,3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.23C.6 D.12【答案】A【解析】本题解答时要把三角形函数数值化,用参数表示D的坐标,再求出E点的坐标,利用点在反比例函数上,得到方程,解这个方程即可求出k.设AD=3m,OA=4m,∵BC=AD,∴BC=3m,∵CE=2BE,∴BE=m,∴点E的坐标为(4m+4,m),∵点D,E都在反比例函数kyx=上,∴3m⨯4m=m(4m+4),解得m=12,∴k=3m⨯4m=3,故选A.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上.11.(2018江苏苏州,11,3分)计算:a4÷a=.【答案】a3【解析】本题解答时要利用同底数幂的除法法则.43a a a÷=.12.(2018江苏苏州,12,3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.【答案】8【解析】本题解答时要掌握众数的概念.在这组数据中,由8出现了3次为最多,所以这组数据的众数为8.13.(2018江苏苏州,13,3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=.【答案】-2【解析】本题解答时要把方程的解代入方程进行计算.把x=2代入方程有:4+2m+2n=0,∴m+n=-2.14.(2018江苏苏州,14,3分)若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.【答案】12【解析】本题解答时要把要求值的代数式进行因式分解变形,然后整体代入即可.22(1)(1)()(2)4312a b a b a b+--=+-+=⨯=.15.(2018江苏苏州,15,3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°.现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.【答案】80【解析】本题先用直角的性质求出∠CAF的度数,再利用平行线求出∠BDE的度数,最后利用三角形的内角和定理求出∠BED的度数.∵∠CAB=90゜,∠CAF=20゜,∴∠F AB=70゜,∵DE∥FA,∴∠BDE=∠F AD=70゜,∴∠BED=180゜-30゜-70゜=80゜.16.(2018江苏苏州,16,3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为.【答案】23【解析】 本题解答时要注意圆锥展开图是扇形,扇形的弧长是圆锥底面圆的周长.12180AOB rOA ππ∠=⨯,22180AOB r OB ππ∠=⨯,∴12r OA r OC = , ∵AB ∥CD ,∴4263OA AB OC CD ===,∴1223r OA r OC ==17.(2018江苏苏州,17,3分)如图,在Rt △ABC 中,∠B =90°,AB =25,BC =5.将△ABC 绕点A按逆时针方向旋转90°得到△AB C '',连接B C ',则sin ∠ACB '= .【答案】45【解析】 本题解答时要过B ’作B ’D ⊥AC 于D ,利用用等角的三角函数值相等中,旋转的性质,直角三角形三边的关系以及勾股定理来进行计算.过点B ’作B ’D ⊥AC 于D ,由旋转可知:∠B ’AB =90゜,AB ’=AB 5 ∴∠AB ’D +∠B ’AD =∠B ’AD +∠CAB ,∴∠AB ’D =∠CAB . ∵AB 5BC =5AC =5∴B ’D =AB ’sin 'AB D ∠ ==AB ’sin CAB ∠=5252=, ∴CD =5-2=3,∴B ’D 22(25)24-, ∴B ’C =5, ∴sin ∠ACB ’='4'5B D BC =.DC'B'CA18.(2018江苏苏州,18,3分)如图,已知AB =8,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE ,点P ,C ,E 在一条直线上,∠DAP =60°.M ,N 分别是对角线AC ,BE 的中点.当点P 在线段AB 上移动时,点M ,N 之问的距离最短为 (结果保留根号).【答案】3【解析】 本题解答时要连接MP ,PN ,利用菱形的性质,得出△PMN 为直角三角形,然后利用勾股定理,求出用PA 的长来表示的MN 的长,最后利用二次函数的性质求出MN 的最小值.连接PM ,PN ,∵四边形APCD ,PBFE 是菱形, ∴P A =PC ,∵AM =MC ,∴PM ⊥AC ,同理PN ⊥BE . ∴∠CPM +∠CPN =119022APC BPE ∠+∠=゜,∵∠DAP =60゜,∴∠CAP ==∠NPB =30゜, 设AP =x ,则PB =8-x , ∴PM =12x ,PN 3)x - NMCFD ABP∴2222213()[(8)](6)1222PM PN x x x ++--+∴当x =6时,MN 有最小值,最小值为23三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(2018江苏苏州,19,5分)(本题5分)计算:2129()22-+-. 【思路分析】 解答本题时要分别求出绝对值,二次根式,乘方的值,然后再做加减运算. 【解答过程】原式=12+3-12=3.20.(2018江苏苏州,20,5分)(本题5分)解不等式组:3242(21)x x x x ≥+⎧⎨+<-⎩.【思路分析】 解答本题时,先分别求出两个不等式的解集,然后再根据“同大取大,同小取小,大于小数小于大数取中间,大于大数小于小数无解”来求不等式组的解集.【解答过程】由3x >x +2,解得x ≥1,由x +4<2(2x -1),解得x >2, ∴不等式组的解集是x >2.21.(2018江苏苏州,21,6分)如图,点A ,F ,C ,D 在一条直线上,AB ∥DE ,AB =DE ,AF =DC .求证:BC ∥EF .【思路分析】 解答本题时,先根据边角边判定△ABC ≌△DEF ,再由全等三角形的性质得到∠BCA =∠EFC ,由此判别BC ∥EF .【解答过程】证明:∵AB ∥DE ,∴∠A =∠D .∵AF =DC ,∴AC =DF .在△ABC 和△DEF 中,AB =DE ,∠A =∠D ,AC =DF , ∴△ABC ≌△DEF (SAS ). ∴∠ACB =∠DFE , ∴BC ∥EF .22.(2018江苏苏州,22,6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3. (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为__________; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【思路分析】本题考查概率的应用.解答(1)时,这一小题是一步事件,直接应用概率公式进行计算;解答第(2)时,这一小题是二步事件,先用树状图或列表法找出所有的等可能事件,然后再找出满足题目条件的情况,最后利用公式进行计算.【解答过程】(1)23;(2)用“树状图”或利用表格列出所有可能的结果∴P(两个数字之和是3的倍数)=39=13.23.(2018江苏苏州,23,8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【思路分析】本题考查与条形统计图和扇形统计图相关的计算.(1)由乒乓球人数和所占的百分比求出样本容量,再利用样本容量和已知组的人数求出羽毛球的人数,再补全条形图;(2)求出篮球人数的百分比,乘以360゜即可;(3)用样本的百分率来估算总体.【解答过程】(1)1428%=50,答:参加这次调查的学生人数为50人,补全条形统计图如图所示:(2)1050×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)600×850=96.答:估计该校选择“足球”项目的学生有96人.24.(2018江苏苏州,24,8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多l台,那么该学校至多能购买多少台B型打印机?【思路分析】本题考查了二元一次方程组和不等式的应用.解答第(1)时,根据题意列出地二元一次方程组来解决问题;解答第(2)时,根据题目中的不等式关系列出不等式来解决问题.【解答过程】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得:25900229400x yx y+=⎧⎨+=⎩,解这个方程组,得x=3500,y=1200.答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元.(2)设学校购买胛台B型打印机,则购买A型电脑为(n-l)台,根据题意得:3500(n-1)+1200n≤20000,解这个不等式,得n≤5.答:该学校至多能购买5台B型打印机.25.(2018江苏苏州,25,8分)如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C 为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C '.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC '平行于直线AD ,求新抛物线对应的函数表达式.【思路分析】 本题本题考查二次函数与一元二次方程的关系.解答第(1)时,分别求出A ,D 两点的坐标,然后利用勾股定理可求出AD 的长;解答第(2)时,把二次函数配成顶点式,得到C ’点的坐标,再求出直线CC ’的解析式,最后把C ’点的坐标解入直线即可求出二次函数的解析式.【解答过程】 解:(1)由x 2-4=0解得x 1=2,x 2=-2.∵点A 位于点B 的左侧,∴A (-2,0). ∵直线y =x +m 经过点A ,∴-2+m =0, ∴m =2,∴D (0,2).∴AD 22OA OD +2(2)解法一:设新抛物线对应的函数表达式为y =x 2+bx +2,∴y =x 2+bx +2=(x +2b )2+2-24b .∵直线CC '平行于直线AD ,并且经过点C (0,-4),∴直线CC '的函数表达式为y =x -4.∴2-24b =-2b-4,整理得b 2-2b -24=0,解得b 1=-4,b 2=6.∴新抛物线对应的函数表达式为y =x 2-4x +2或y =x 2+6x +2. 解法二:∵直线CC '平行于直线AD ,并且经过点C (0,-4), ∴直线CC '的函数表达式为y =x -4.∵新抛物线的顶点C '在直线y =x -4上,∴设顶点C '的坐标为(n ,n -4), ∴新抛物线对应的函数表达式为y =(x -n )2+n -4. ∵新抛物线经过点D (0,2),∴n 2+n -4=2,解得n 1=-3,n 2=2.∴新抛物线对应的函数表达式为y =(x +3)2-7或y =(x -2)2-2.26.(2018江苏苏州,26,10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E .延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC . (1)求证:CD =CE ;(2)若AE =GE ,求证:△CEO 是等腰直角三角形.【思路分析】本题本题考查圆的切线的性质,圆的基本性质以及全等三角形的判定和性质等.(1)连接AC,BC,证明△CDA≌△CEA,即可得CD=CE;(2)利用(1)中的全等形,和直径所对的圆周是直角等性质求出∠AOC=2∠F=45゜,即可证明△CEO是等腰直角三角形.【解答过程】证明:(1)连接AC.∵CD为OO的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA和△CEA中,∵∠D=∠CEA,∠DAC=∠EAC,AC=AC,∴△CDA≌△CEA(AAS),∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG.∴∠ECA=∠ECG.∵AB是⊙O直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°.∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5.∴∠AOC=2∠F=45°.∴△CEO是等腰直角三角形,证法二:设∠F=x°.则∠AOC=2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠ECA+∠F=3x°.∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x°.义∵∠DAC+∠EAC+∠OAF=180°.∴3x°+3x°+2x°=180°.∴x=22.5,∴∠AOC=2x°=45°.∴△CEO是等腰直角三角形.27.(2018江苏苏州,27,10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.(1)当AD=3时,S S'=_______;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S'.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.【思路分析】本题考查相似三角形的性质以及三角形面积的计算.问1:(1)先求出△ADC的面积,再求出△CDE的面积与△ADC的面积的比,最后求出两三角形的面积比;(2)类比(1)中的方法进行求解;问题2:把梯形的问题转化为三角形的问题,仍然利用平行线截得线段成比例,相似三角形的面积比等于相似比的平方以及等式的性质来求解.【解答过程】解:问题1:(1)316;(2)解法一:∵AB=4,AD=m.∴BD=4-m.又∵CE∥BC,∴4CE BD mEA DA m-==,∴4DECADES mS m-=VV.又∵CE∥BC,∴△ADE∽△ABC,∴216ADEABCS mS=VV.∴22441616DEC DEC ADEABC ADE ABCS S S m m m mS S S m--+=⨯=⨯=V V VV V V.即2416S m mS-+=′.解法二:过点B作BH⊥AC,垂足为H,过点D作DF⊥AC,垂足为F.则DF∥BH,∴△ADF∽△ABH.∴4DF AD mBH AB==.∵DE∥BC,∴44CE BD mCA BA-==,∴21442144162DECABCCE DFS m m m mS CA BH⋅--+==⨯=⋅VV.即2416S m mS-+=′.问题2:解法一:分别延长BA,CD,相交于点D.∵AD∥BC,∴△OAD∽△OBC,∴12OA ADOB BC==.∴OA=AB=4,∴OB=8.∵AE=n,∴OE=4+n.∵EF∥BC.由问题1的解法可知24416()4864CEF CEF OEFOBC OEF OBCS S S n n nS S S n-+-=⨯=⨯=+V V VV V V,∵21()4OADABCDS OAS OB==VV.∴23()4ABCDOBCS OAS OB==V.∴22416163364484CEF CEFABCDOBCS S n nS S--==⨯=△△△,即SS=′21648n-.解法二:连接AC交EF于M.∵AD∥BC,且AD=12BC,∴12ADCABCSS=△△.∴S△ADC=13S,S△ABC=23S.由问题1的结论可知,EMCABCSS=VV2416n n-+.∴S△EMC=2416n n-+×23S=2424n nS-+.∵MF∥AD,∴△CFM∽△CDA,∴243()143CFM CFM CFM CDA S S S n S S S -==⨯=△△△△, ∴S △CFM =2(4)48n S -. ∴S △EFC =S △EMC +S △CFM =2424n n S -++2(4)48n S -=21648n S -, ∴S S=′21648n -.28.(2018江苏苏州,28,10分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向两走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE =x 米(其中x >0),GA =y 米.已知y 与x 之间的函数关系如图②所示.(1)求图②中线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG )是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.【思路分析】 本题考查一次函数的性质以及动点问题中等腰三角形存在性质的探究.(1)利用待定系数法坟出y 与x 之间的函数关系式;(2)用含x 的代数式来表示AE ,AG ,GD 的长度,然后分EF =FG ,FG =EG ,EF =EG 来进行讨论,利用勾股定理和相似三角形和性质来求x .【解答过程】解:(1)设线段MN 所在直线的函数表达式为y =kx +b .∵M ,N 两点的坐标分别为(30,230),(100,300),∴30230100300k b k b +=⎧⎨+=⎩,解这个方程组,得1200k b =⎧⎨=⎩. ∴线段MN 所在直线的函数表达式为y =x +200.(2)①第一种情况:考虑FE =FG 是否成立,连接EC .∵AE =x ,AD =100,GA =x +200,∴ED =GD =x +100.又∵CD ⊥EG ,∴CE =CG ,∴∠CGE =∠CEG ,∴∠FEG>∠CGE.∴FE≠FG.②第二种情况:考虑FG=EG是否成立,∵四边形ABCD是正方形,∴BC∥EG,∴△FBC≌△FEG.假设FG=EG成立,则FC=BC亦成立.∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,解这个方程,得x1=-100,x2=1003.∵x>0,∴x=1003.③第三种情况:考虑EF=EG是否成立.与②同理,假设EF=EG成立,则FB=BC亦成立.∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,解这个方程,得x1=0,x2=-4003(不合题意,均舍去).综上所述,当x=1003时,△EFG是一个等腰三角形.。
江苏省苏州市梁丰2018年最新中考数学模拟试卷(一)及答案
苏州市梁丰初级中学2018届年九年级数学模拟试卷(一)2018.5本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.﹣ 的相反数是 A .3B .﹣3 C.D.﹣2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 3)4=a 12C .5a ﹣2a =3a 2D .(x +y )2=x 2+y 23.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是A.B.C.D.4.函数y=3-x 中自变量x 的取值范围是A .x ≥3B .x ≥﹣3C .x ≠3D .x >0且x ≠35.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,则∠2等于A .70°B .75°C .80°D .85° 6.下列一元二次方程中,有两个相等实数根的是A .x 2﹣8=0B .2x 2﹣4x +3=0C .5x +2=3x 2D .9x 2+6x +1=07.抛物线223y x x =++的对称轴是A .直线x =1B .直线x = -1C .直线x =-2D .直线x =2 8.若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为A .4B .﹣4C .16D .﹣1612bac)5(题第9.如图△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( ) A .2B .C .3D .210.如图点A 、B 在反比例函数y =(k >0,x >0)图象上,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为A .B .C .D .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.分解因式:29a -= ▲ .12.2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 ▲ .13.如图,等腰三角形ABC 的顶角为1200,底边BC 上的高AD= 4,则腰长为 ▲ .第13题 第14题 第15题14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 ▲ .15.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为 ▲ . 16.已知扇形的半径为6cm ,面积为10πcm 2,则该扇形的弧长等于▲ .17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 ▲ 米(结果保留根号).OBCD A第17题 第18题18.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:①∠AME =108°;②2AN AM AD =⋅;③MN =3;④1BE =.其中正确结论的序号是 ▲ .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算:202(π--+.20.(本题满分5分)解不等式组:()12221x x x ->⎧⎪⎨+≥-⎪⎩21.(本题满分6分)21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 1. 22.(本题满分6分)某校学生利用双休时间去距学校10 km 的天平山社会实践活动,一部分学生骑电瓶车先走,过了20 min 后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.(本题满分8分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF ,若BF ⊥AE ,∠BEA =60°,AB =4,求平行四边形ABCD 的面积.24.(本题满分8分)为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A ,B ,C ,D 四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为 ▲ ; (2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y=(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =3, (1)求反比例函数y=的解析式; (2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.26(本题满分10分)如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长. 27.(本题满分10分)在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF . (1)如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为: ▲ .②BC ,CD ,CF 之间的数量关系为: ▲ ;(将结论直接写在横线上)(2)如图2,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论,再给予证明.(3)如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若已知AB=2,CD=BC ,请求出GE 的长.28.(本题满分10分)如图平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)经过△ABC 的三个顶点,与y 轴相交于(0,),点A 坐标为(﹣1,2),点B 是点A 关于y 轴的对称点,点C 在x轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F 为线段AC 上一动点,过F 作FE ⊥x 轴,FG ⊥y 轴,垂足分别为E 、G ,当四边形OEFG 为正方形时,求出F 点的坐标.第26题图BAE PO DC(3)将(2)中的正方形OEFG 沿OC 向右平移,记平移中的正方形OEFG 为正方形DEFG ,当点E 和点C 重合时停止运动,设平移的距离为t ,正方形的边EF 与AC 交于点M ,DG 所在的直线与AC 交于点N ,连接DM ,是否存在这样的t ,使△DMN 是等腰三角形?若存在,求t 的值;若不存在请说明理由.数学参考答案及评分标准一、选择题(每小题3分,共30分)二、选择题(每小题3分,共24分) 11.(a + 3)(a - 3) 12.4.51×107 13.8 14.2915.60016.103∏ 17.418.①、②、③三、解答题(共11大题,共76分) 19.(本题共5分) 解:原式= 3-2 + 1 ·············································································· 3分=2 ························································································· 5分20.(本题共5分)解:由①式得:x>3. ············································································ 2分由②式得:x 4≤. ·········································································· 4分∴不等式组的解集为: 34x <≤. ····················································· 5分21.(本题共6分) 解:原式=211x xx x ÷-- ··········································································· 1分 =1(1)(1)x x x x x-⋅+- ····································································· 2分=11x + ···················································································· 4分当x 1时,原式··································································· 5分·················································································· 6分22.(本题满分6分)解:设骑电瓶车学生的速度为x km /h ,汽车的速度为2x km /h ,可得:··········1分10x =102x +2060, ···············································································3分解得x =15,······················································································4分 经检验,x =15是原方程的解,······························································5分 2x =2×15=30.答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h .·························6分 23.(本题共8分)····1分 ····2分 ······3分 ·····4分 ·····5分 ·······6分 ,·······7分12AEBF ······8分 24.(本题共8分)1)由题意可得,本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为:×100%=20%.··················································2分(2)由题意可得,选择C 的人数有:30÷﹣36﹣30﹣44=70(人)补全的图②柱状图正确 ·········································5分(3)由题意可得,全校选择此必唱歌曲共有:1260×=490(人),答:全校共有490名学生选择此必唱歌曲.········································8分25.(本题共8分)解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,···························1分解得:.·········2分∴反比例函数的解析式为y=.········································3分(2)∵m=1,∴点A的坐标为(4,4),········································4分∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.········································5分(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.·····7分∴经过C、D两点的一次函数解析式为y=﹣x+3.········································8分26.(本题共10分)证明:⑴如图,连接OC,∵P A切⊙O于A.∴∠P AO=90º. ····································································································· 1分∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB.∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP. ······························································································· 2分又∵OA=OC,OP=OP,∴△P AO≌△PCO (SAS).∴∠P AO=∠PCO=90 º,又∵OC是⊙O的半径,∴PC是⊙O的切线. ······························································································3分⑵解法不唯一. 解:由(1)得P A,PC都为圆的切线,∴P A=PC,OP平分∠APC,∠ADO=∠P AO=90 º,∴∠P AD+∠DAO=∠DAO+∠AOD,∴∠P AD =∠AOD,∴△ADO∽△PDA. ······························································································ 4分∴AD DOPD AD=,∴2AD PD DO=⋅,∵AC=8,PD=163,∴AD=12AC=4,OD=3,AO=5,5分由题意知OD为△ABC的中位线,∴BC=2OD=6,AB=10.B∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭. 答:阴影部分的面积为22548cm 2π-. ······································································· 6分 (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M . ················································· 7分 ∴∠CMB =∠EMB =∠AEB =90º,又∵点E 是AB ︵的中点,∴∠ECB =∠CBM =∠ABE =45º,CM =MB =,BE =AB cos450 = ···························· 8分∴ EM CE =CM +EM =()cm .·······················9分答:CE 的长为. ······················································································· 10分27.(本题共10分)解:(1)①垂直; ································································································ 1分 ②BC =CF +CD ; ···························2分 (2)成立,∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,在△DAB 与△F AC 中,,∴△DAB ≌△F AC ,···························4分 ∴∠B =∠ACF ,CF =BD ∴∠ACB +∠ACF =90°,即CF ⊥BD ;∵BC =BD +CD , ∴BC =CF +CD ;···························6分 (3)解:过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,∵∠BAC =90°,AB =AC ,∴BC =AB =4,AH =BC =2,∴CD =BC =1,CH =BC =2,∴DH =3,···························7分 由(2)证得BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°, ∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,···························8分 ∴NE =CM ,EM =CN ,∵∠AHD =∠ADC =∠EMD =90°,∴∠ADH +∠EDM =∠EDM +∠DEM =90°, ∴∠ADH =∠DEM ,在△ADH 与△DEM 中,,∴△ADH ≌△DEM ,∴EM =DH =3,DM =AH =2, ∴CN =EM =3,EN =CM =3,···························9分 ∵∠ABC =45°,∴∠BGC =45°,∴△BCG 是等腰直角三角形,∴CG =BC =4,∴GN =1,∴EG ==.··························10分 28.(本题共10分)解:(1)∵点B 是点A 关于y 轴的对称点,∴抛物线的对称轴为y 轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y =ax 2+.∵A (﹣1,2)在抛物线y =ax 2+上,∴a +=2,解得a =﹣,∴抛物线的函数关系表达式为y =﹣x 2+;··························2分(2)①当点F 在第一象限时,如图1,令y =0得,﹣x 2+=0,解得:x 1=3,x 2=﹣3,∴点C 的坐标为(3,0).设直线AC 的解析式为y =mx +n ,则有,解得,∴直线AC 的解析式为y =﹣x +.·········3分设正方形OEFG 边长为p ,则F (p ,p ).∵点F (p ,p )在直线y =﹣x +上,∴﹣p +=p ,解得p =1,∴点F 的坐标为(1,1).·························4分②当点F 在第二象限时,同理可得:点F 的坐标为(﹣3,3), 此时点F 不在线段AC 上,故舍去.··························5分 综上所述:点F 的坐标为(1,1);··························6分 (3)过点M 作MH ⊥DN 于H ,如图2,则OD =t ,OE =t +1. ∵点E 和点C 重合时停止运动,∴0≤t ≤2.当x =t 时,y =﹣t +,则N (t ,﹣t +),DN =﹣t +.当x =t +1时,y =﹣(t +1)+=﹣t +1,则M (t +1,﹣t +1),ME =﹣t +1.在Rt △DEM 中,DM 2=12+(﹣t +1)2=t 2﹣t +2.在Rt △NHM 中,MH =1,NH =(﹣t +)﹣(﹣t +1)=,∴MN 2=12+()2=.··························7分①当DN =DM 时,(﹣t +)2=t 2﹣t +2,解得t =;··························8分 ②当ND =NM 时,﹣t+==,解得t=3﹣;··························9分③当MN=MD时,=t2﹣t+2,解得t1=1,t2=3.∵0≤t≤2,∴t=1.··························10分综上所述:当△DMN是等腰三角形时,t的值为,3﹣或1.。
【初三化学试题精选】2018年苏州市中考数学模拟试卷1(附答案和解释)
2018年苏州市中考数学模拟试卷1(附答案和解释)
2018年江苏省苏州市中考数学模拟试卷(一)
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)与﹣2的乘积为1的数是()
A.2B.﹣2C. D.﹣
2.(3分)下列运算中,正确的是()
A.x3+x3=x6B.x3 x9=x27C.(x2)3=x5D.x÷x2=x﹣1
3.(3分)据市统计局调查数据显示,我市目前常住人口约为4470000人,数据“4470000”用科学记数法可表示为()A.447×106B.447×107C.0447×107D.447×104
4.(3分)若一个多边形的内角和与它的外角和相等,则这个多边形是()
A.三角形B.四边形C.五边形D.六边形
5.(3分)如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()
A.50°B.60°C.120°D.130°
6.(3分)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲函数图象经过第一象限;乙函数图象经过第三象限;丙在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A.y=3xB. C. D.y=x2
7.(3分)初三(1)班12名同学练习定点投篮,每人各投10次,进球数统计如下
进球数(个)123457
人数(人)114231
这12名同学进球数的众数是()
A.375B.3C.35D.7
8.(3分)如图,为了测量某建筑物MN的高度,在平地上A处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏州市梁丰初级中学2018届年九年级数学中考模拟试卷(一)一、单选题1.﹣的相反数是=()A. 3B. ﹣3C.D. ﹣2.下列运算正确的是()A. a2•a3=a6B. (a3)4=a12C. 5a﹣2a=3a2D. (x+y)2=x2+y23.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A. B. C. D.4.函数y= 中自变量x的取值范围是()A. x≥3B. x≥﹣3C. x≠3D. x>0且x≠35.如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A. 70°B. 75°C. 80°D. 85°6.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 5x+2=3x2D. 9x2+6x+1=07.抛物线的对称轴是( )A. 直线x=1B. 直线x= -1C. 直线x=-2D. 直线x=28.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A. 4B. ﹣4C. 16D. ﹣169.如图△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为()A. 2B.C. 3D. 210.如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P 从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A. B. C. D.二、填空题11.分解因式:________.12. 2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为_ .13.如图,等腰三角形ABC的顶角为120°,底边BC上的高AD= 4,则腰长为________.14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是________.15.如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为________.16.已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于________.17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为________米(结果保留根号).18.如图,正五边形的边长为2,连接对角线AD,BE,CE,线段AD分别与BE和CE相交于点M,N,给出下列结论:①∠AME=108°;②;③MN= ;④.其中正确结论的序号是________.三、解答题19.计算:.20.解不等式组:21.,其中x=.22.某校学生利用双休时间去距学校10 km的天平山社会实践活动,一部分学生骑电瓶车先走,过了20 min 后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A,B,C,D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:(1)本次抽样调查中,选择曲目代号为A的学生占抽样总数的百分比为________;(2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3.(1)求反比例函数的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.26.如图,点P是⊙O 外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=cm,AC=8cm,求图中阴影部分的面积;(3)在(2)的条件下,若点E是弧AB的中点,连接CE,求CE的长.27.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:________.②BC,CD,CF之间的数量关系为:________;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2 ,CD= BC,请求出GE的长.江苏省苏州市梁丰初级中学2018届年九年级数学中考模拟试卷(一)一、单选题1.﹣的相反数是=()A. 3B. ﹣3C. D. ﹣【答案】C【考点】相反数及有理数的相反数【解析】【解答】解:﹣的相反数是.故答案为:C.【分析】只有符号不同的两个数叫做互为相反数。
2.下列运算正确的是()A. a2•a3=a6B. (a3)4=a12C. 5a﹣2a=3a2D. (x+y)2=x2+y2【答案】B【考点】整式的加减运算,同底数幂的乘法,幂的乘方与积的乘方,完全平方公式及运用【解析】【解答】解:A. ,不符合题意;B. , 符合题意;C. ,不符合题意;D. ,不符合题意.故答案为:B.【分析】同底数幂的乘法,底数不变指数相加;;合并同类项法则,只把系数相加减,字母和字母的指数都不变;完全平方公式的展开式,是一个三项式,首平方,尾平方,积的2倍放中央幂的乘方,底数不变,指数相乘;利用法则即可一一判断。
3.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是()A. B. C.D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:这个组合体左视图是两个竖着的正方形,主视图是上面一个正方形,下面三个正方形,俯视图是三个横着的正方形.故答案为:C【分析】A、是其左视图,B、是其俯视图,C、是主视图,D、不是该几何体的三视图。
4.函数y= 中自变量x的取值范围是()A. x≥3B. x≥﹣3C. x≠3D. x>0且x≠3【答案】A【考点】二次根式有意义的条件【解析】【解答】解:x-3 ,x 3.故答案为:A.【分析】根据二次根式的被开方数不能为负数列出不等式,求解即可。
5.如图,直线a,b被直线c所截,若a∥b,∠1=110°,则∠2等于()A. 70°B. 75°C. 80°D. 85°【答案】A【考点】平行线的性质【解析】【解答】如图,∵a∥b,∴∠1+∠3=180°,∴∠3=180°﹣∠1=70°,∴∠2=∠3=70°,故答案为:A【分析】根据平行线的性质求出∠3的度数,根据对顶角相等得到答案.6.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 5x+2=3x2D. 9x2+6x+1=0【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】解:A. x2﹣8=0 , Δ=0+4×8=32>0,两个不同的实数根,不符合题意;B. 2x2﹣4x+3=0 , 无解,不符合题意;C. 5x+2=3x2 , , 两个不同的实数根,不符合题意;D. 9x2+6x+1=0, ,有两个相同的实数根,符合题意。
故答案为:D.【分析】首先算出各个方程中根的判别式的值,再判断判别式的值与0的大小关系,如Δ>0,方程有两个不相等的实数根;Δ=0,方程有两个相等的实数根;Δ<0,方程没有实数根;即可一一判断。
7.抛物线的对称轴是( )A. 直线x=1B. 直线x= -1C. 直线x=-2D. 直线x=2【答案】B【考点】二次函数y=ax^2+bx+c的性质【解析】【解答】解:a=1,b=2,x= =-1.故答案为:B.【分析】根据抛物线的对称轴直线公式即可得出答案。
8.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A. 4B. ﹣4C.16 D. ﹣16【答案】D【考点】代数式求值【解析】【解答】解:∵x2﹣3y﹣5=0,∴x2﹣3y=5,则6y﹣2x2﹣6=﹣2(x2﹣3y)﹣6=﹣2×5﹣6=﹣16,故选:D.【分析】把(x2﹣3y)看作一个整体并求出其值,然后代入代数式进行计算即可得解.9.如图△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为()A. 2B.C. 3D. 2【答案】B【考点】勾股定理,旋转的性质【解析】【解答】解:在△ABC中, ∠C=90°, AC=4, BC=3,∴AB=5,∵△ABC绕点A逆时针旋转得到△AED,∴∠DEA=∠C=90°, , ,∴BE=AB-AE=5-4=1,连接BD,在中,由勾股定理可得,即B、D两点间的距离为,故答案为:B.【分析】首先根据勾股定理算出AB的长,根据旋转的性质得出∠DEA=∠C=90°, AE=AC=4 , DE=BC=3 ,故BE=AB-AE=5-4=1,连接BD,在Rt △BDE 中,由勾股定理可得BD。
10.如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P 从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为()A. B. C.D.【答案】A【考点】动点问题的函数图像【解析】【解答】设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S== a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故答案为:A.【分析】仔细阅读题目,设∠AOM=α,点P运动的速度为a,将沿O→A→B→C匀速运动分为三段进行分析;当点P在OA上运动时,先表示出OM和PM的长,根据三角形的面积公式可得S与t成二次函数关系;当点P在AB上运动时,根据反比例函数中比例系数k的几何意义即可判断;当点P在BC上运动时,S减小,S与t的关系为一次函数,接下来结合选项,即可完成解答.二、填空题11.分解因式:________.【答案】【考点】因式分解﹣运用公式法【解析】【解答】a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).【分析】观察此多项式的特点,没有公因式,符合平方差公式的特点,即可求解。