抛物线上因动点产生的平行四边形、梯形问题问题

合集下载

中考数学压轴题---因动点产生的梯形问题[含答案]

中考数学压轴题---因动点产生的梯形问题[含答案]

因动点产生的梯形问题例1(2011年北京市海淀区中考模拟第24题)已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx 的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN 的面积.备用图答案(1)抛物线的解析式为y=x2-2x,直线的解析式为y=2x.(2)如图1,当P为OA的中点时,PQ的长度取得最大值为4.(3)如图2,如果四边形AOMN是梯形,那么点N的坐标为(3,3),梯形AOMN的面积为9.图1 图2例2(2011年义乌市中考第24题)已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN 与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.图1 图2满分解答(1)设抛物线的解析式为2(4)y a x k =-+,代入A (2,0)、C (0,12) 两点,得40,1612.a k a k +=⎧⎨+=⎩ 解得1,4.a k =⎧⎨=-⎩所以二次函数的解析式为22(4)4812y x x x =--=-+,顶点P 的坐标为(4,-4). (2)由2812(2)(6)y x x x x =-+=--,知点B 的坐标为(6,0).假设在等腰梯形OPBD ,那么DP =OB =6.设点D 的坐标为(x ,2x ).由两点间的距离公式,得22(4)(24)36x x -++=.解得25x =或x =-2.如图3,当x =-2时,四边形ODPB 是平行四边形. 所以,当点D 的坐标为(52,54)时,四边形OPBD 为等腰梯形.图3 图4 图5(3)设△PMN 与△POB 的高分别为PH 、PG .在Rt △PMH 中,2PM t =,PH MH t ==.所以'24P G t =-.在Rt △PNH 中,PH t =,1122NH PH t ==.所以32MN t =.① 如图4,当0<t ≤2时,重叠部分的面积等于△PMN 的面积.此时2133224S t t t =⨯⋅=.②如图5,当2<t <4时,重叠部分是梯形,面积等于△PMN 的面积减去△P ′DC 的面积.由于2''P DC PMN S P G S PH ⎛⎫= ⎪⎝⎭△△,所以222'2433(24)44P DCt S t t t -⎛⎫=⨯=- ⎪⎝⎭△.此时222339(24)1212444S t t t t =--=-+-.考点伸展第(2)题最好的解题策略就是拿起尺、规画图:方法一,按照对角线相等画圆.以P 为圆心,OB 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.方法二,按照对边相等画圆.以B 为圆心,OP 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.例3(2010年杭州市中考第24题)如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1满分解答(1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2).(2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-.如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得15x =±.如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2. 因此自变量x 的取值范围是15x ≠±,且x ≠± 2的所有实数.图2 图3 图4②因为sin ∠QPH =sin ∠MCO ,所以HQ OMPQ CM=,即PQ HQ CM OM =. 当12PQ HQ CM OM ==时,112HQ OM ==.解方程21114x +=,得0x =(如图5).此时2t =-. 当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144x +=,得23x =±. 如图6,当23x =时,823t =-+;如图6,当23x =-时,823t =--.图5 图6 图7考点伸展本题情境下,以Q 为圆心、QM 为半径的动圆与x 轴有怎样的位置关系呢?设点Q 的坐标为21,14x x ⎛⎫+ ⎪⎝⎭,那么222222111144QM x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭.而点Q 到x 轴的距离为2114x +. 因此圆Q 的半径QM 等于圆心Q 到x 轴的距离,圆Q 与x 轴相切.例 4(2010年上海市奉贤区中考模拟第24题)已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.图1满分解答(1)因为BC //x 轴,点D 在BC 上,C (0,-2),所以点D 的纵坐标为-2.把y =-2代入x y 32-=,求得x =3.所以点D 的坐标为(3,-2).(2)由于抛物线与x 轴交于点O 、A (4,0),设抛物线的解析式为y =ax (x -4),代入D (3,-2),得23a =.所求的二次函数解析式为2228(4)333y x x x x =-=-. (3) 设点M 的坐标为228,33x x x ⎛⎫- ⎪⎝⎭. ①如图2,当OM //DA 时,作MN ⊥x 轴,DQ ⊥x 轴,垂足分别为N 、Q .由tan ∠MON =tan ∠DAQ ,得228332x x x-=.因为x =0时点M 与O 重合,因此28233x -=,解得x =7.此时点M 的坐标为(7,14).②如图3,当AM //OD 时,由tan ∠MAN =tan ∠DOQ ,得22823343x x x -=-. 因为x =4时点M 与A 重合,因此2233x -=,解得x =-1.此时点M 的坐标为10(1,)3-.③如图4,当DM //OA 时,点M 与点D 关于抛物线的对称轴对称,此时点M 的坐标为(1,-2).图2 图3 图4考点伸展第(3)题的①、②用几何法进行计算,依据是两直线平行,内错角的正切相等.如果用代数法进行,计算过程比较麻烦.以①为例,先求出直线AD 的解析式,再求出直线OM 的解析式,最后解由直线OM 和抛物线的解析式组成的二元二次方程组.例5(2009年广州市中考第25题)如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图1满分解答(1)因为OC =1,△ABC 的面积为45,所以AB =25. 设点A 的坐标为(a ,0),那么点B 的坐标为(a +25,0).设抛物线的解析式为)25)((---=a x a x y ,代入点C (0,-1),得1)25(-=+a a .解得21-=a 或2-=a .因为二次函数的解析式q px x y ++=2中,0<p ,所以抛物线的对称轴在y 轴右侧.因此点A 、B 的坐标分别为)0,21(-,)0,2(. 所以抛物线的解析式为123)2)(21(2--=-+=x x x x y . (2)如图2,因为1=⋅OB OA ,12=OC ,所以OBOC OC OA =.因此△AOC ∽△COB .所以△ABC 是以AB 为斜边的直角三角形,外接圆的直径为AB .因此m 的取值范围是45-≤m ≤45.图2 图3 图4(3)设点D 的坐标为))2)(21(,(-+x x x . ①如图3,过点A 作BC 的平行线交抛物线于D ,过点D 作DE ⊥x 轴于E .因为OBC DAB ∠=∠tan tan ,所以21==BO CO AE DE .因此2121)2)(21(=+-+x x x .解得25=x .此时点D 的坐标为)23,25(. 过点B 作AC 的平行线交抛物线于D ,过点D 作DF ⊥x 轴于F .因为CAO DBF ∠=∠tan tan ,所以2==AOCOBF DF .因此22)2)(21(=--+xx x .解得25-=x .此时点D 的坐标为)9,25(-. 综上所述,当D 的坐标为)23,25(或)9,25(-时,以A 、B 、C 、D 为顶点的四边形为直角梯形.考点伸展第(3)题可以用代数的方法这样解:例如图3,先求得直线BC 为121-=x y ,再根据AD //BC 求得直线AD 为4121+=x y ,由直线AD 和抛物线的解析式组成的方程组,得到点D 的坐标.例6(2009年河北省中考第26题)如图1,在Rt △ABC 中,∠C =90°,AC =3,AB =5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设P 、Q 运动的时间是t 秒(t >0).(1)当t =2时,AP =_____,点Q 到AC 的距离是________;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式(不必写出t 的取值范围);(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值;若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t的值.图1满分解答(1)1;85. (2)如图2,作QF ⊥AC 于F .在Rt △ABC 中,AC =3,AB =5,所以BC =4,4sin 5A =.在Rt △AQF 中,AQ =t ,4sin 5A =,所以45QF t =. 因此211426(3)22555S AP QF t t t t =⋅=-⨯=-+.(3)①如图3,当DE //QB 时,∠AQP =90°.在Rt △AQP 中,AP =3t -,AQ =t ,3cos 5QP A AP ==,所以335t t =-.解得98t =. ②如图4,当DE //BC 时,∠APQ =90°.在Rt △AQP 中,AP =3t -,AQ =t ,3cos 5AP A QP ==,所以335t t -=.解得158t =.图2 图3 图4(4)52t =或4514t =. 考点伸展第(4)题可以这样解:过点Q 作QG ⊥BC 于G ,那么2222223418(5)9555QC QG GC t t t t ⎡⎤⎛⎫=+=-+=-+ ⎪⎢⎥⎣⎦⎝⎭.①如图5,点P 由C 向A 运动,DE 经过点C ,此时PC =t .由22PC QC =,得221895t t t =-+.解得52t =.②如图6,点P 由A 向C 运动,DE 经过点C ,此时PC =6-t .由22PC QC =,得2218(6)95t t t -=-+.解得4514t =.情形①还可以用几何说理解答:由于CQ =CP =AQ ,所以∠QAC =∠QCA .根据等角的余角相等,因此∠B =∠BCQ .所以CQ =BQ .于是得到Q 是AB 的中点,52t =.图5 图6。

中考压轴题分类专题讲解4---因动点产生的平行四边形问题

中考压轴题分类专题讲解4---因动点产生的平行四边形问题
以点 M、N、M 、N 为顶点的四边形就是平行四边形 因为平行四边形的面积为 16,所以 MN 边对应的高 NN =4 那么以点 M、N、M 、N 为顶点的平行四边形有 4 种情况
抛物线 C 直接向右平移 4 个单位得到平行四边形 MNN M 如图 2); 抛物线 C 直接向左平移 4 个单位得到平行四边形 MNN M 如图 2); 抛物线 C 先向右平移 4 个单位,再向下平移 8 个单位得到平行四边形 MNM N 如图 3); 抛物线 C 先向左平移 4 个单位,再向下平移AOH
=
4 5
图2
所以 OH
=
3 5

BH
=
OB
OH
=
22 5
在 Rt△ABH 中, tan
ABO
=
AH BH
=
4 5
÷
22 5
=
2 11
3
直线
AB
的解析式为
y
=
1 2
x
+1
设点 M 的坐标为 (x,
x2
+
9 2
x
+
1)
,点
N
的坐标为
(
x,
1 2
x
+ 1)

那么 MN = (
x2
+
9 2
x
+ 1)
(
①如图 2,如果 AD 为矩形的边,那么 AD//QP,AD=QP,对角线 AP=QD
由 xD-xA=xP-xQ,得 xQ=-4 当 x=-4 时,y=a(x+1)(x-3)=21a 所以 Q(-4, 21a)
由 yD-yA=yP-yQ,得 yP=26a 所以 P(1, 26a) 由 AP2=QD2,得 22+(26a)2=82+(16a)2

中考压轴题 因动点产生的平行四边形问题 含答案

中考压轴题 因动点产生的平行四边形问题 含答案

因动点产生的平行四边形问题例1 2017年成都市中考第28题如图1,在平面直角坐标系中,抛物线y=ax2-2ax-3a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k、b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为54,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.图1 备用图例2 2017年陕西省中考第24题如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1例3 2018年上海市松江区中考模拟第24题如图1,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB 于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.图1例4 2017年福州市中考第21题如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD334y x =+32y x =334y x =+233y x =-+3a 4AC3a 4AC 5a 5a 3a 4a11()()22E A E C EF x x EF x x ---1()2C A EF x x -21(34)2ax ax a --21325()228a x a --258a -25584a -=25a =-5a21a 21a 26a 26a 26a 16a 7a 7a =-267(1)-,3a 8a 8a 5a 11a 4a 12a =-图1(14)-,AM DN MD NP =5553a n a -=-235a n a +=235(1,)a a +3(4,)a -3(4,)a -321a a=7a =-3a AG QKGQ KD =32335a a a-=--12a =-930,3.b c c --+=⎧⎨=⎩22m -22m x -=244m y =-+244m -2311(4)2248m m m m -=-1,164 3.c b c =⎧⎨-++=⎩92b =2912y x x =-++4sin sin 5AOH OBC ∠=∠=4sin 5AH OA AOH =⋅∠=35OH =225BH OB OH =-=4222tan 5511AH ABO BH ∠==÷=112y x =+29(,1)2x x x -++1(,1)2x x +2291(1)(1)422MN x x x x x=-++-+=-+9(1,)227x =±9(1,)211(3,)257(27,)--57(27,)++思路点拨1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P 运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径.满分解答(1)QB=8-2t,PD=43t.(2)如图3,作∠ABC的平分线交CA于P ,过点P作PQ//AB交BC于Q,那么四边形PDBQ是菱形.过点P作PE⊥AB,垂足为E,那么BE=BC=8.在Rt△ABC中,AC=6,BC=8,所以AB=10.在Rt△APE中,23cos5AEAAP t===,所以103t=.当PQ//AB时,CQ CPCB CA=,即106386CQ-=.解得329CQ=.所以点Q的运动速度为321016 9315÷=.(3)以C为原点建立直角坐标系.如图4,当t=0时,PQ的中点就是AC的中点E(3,0).如图5,当t=4时,PQ的中点就是PB的中点F(1,4).直线EF的解析式是y=-2x+6.如图6,PQ的中点M的坐标可以表示为(62t-,t).经验证,点M(62t-,t)在直线EF上.所以PQ的中点M的运动路径长就是线段EF的长,EF=25.图3图4 图5 图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t=2时,PQ的中点为(2,2).设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),得930,4,42 2.a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得a=0,b=-2,c=6.所以点M的运动路径的解析式为y=-2x+6.例5 2017年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.图1动感体验请打开几何画板文件名“12烟台26”,拖动点P 在AB 上运动,可以体验到,当P 在AB 的中点时,△ACG 的面积最大.观察右图,我们构造了和△CEQ 中心对称的△FQE 和△ECH ′,可以体验到,线段EQ 的垂直平分线可以经过点C 和F ,线段CE 的垂直平分线可以经过点Q 和H ′,因此以C 、Q 、E 、H 为顶点的菱形有2个.请打开超级画板文件名“12烟台26”,拖动点P 在AB 上运动,可以体验到,当P 在AB 的中点时,即t =2,△ACG 的面积取得最大值1.观察CQ ,EQ ,EC 的值,发现以C 、Q 、E 、H 为顶点的菱形有2个.点击动画按钮的左部和中部,可得菱形的两种准确位置。

初三数学专题动点问题

初三数学专题动点问题

因动点产生的平行四边形问题1、如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB 于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.2、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.3、已知平面直角坐标系xOy (如图),一次函数334y x =+的图象与y 轴交于点A ,点M 在正比例函数32y x =的图象上,且MO =MA .二次函数 y =x 2+bx +c 的图象经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+的图象上,且四边形ABCD 是菱形,求点C 的坐标.4、将抛物线c 1:233y x =-+沿x 轴翻折,得到抛物线c 2,如图所示.(1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .①当B 、D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.5、如图1,抛物线23y ax ax b =-+经过A (-1,0),C (3,2)两点,与y 轴交于点D ,与x 轴交于另一点B 。

二次函数-因动点产生的梯形问题典型例题

二次函数-因动点产生的梯形问题典型例题

二次函数-因动点产生的梯形问题【例1】已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形.①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积. 图1思路点拨1.这道题的最大障碍是画图,A 、B 、C 、D 四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了.2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D 、P 两点间的垂直距离等于7. 3.已知∠DPE 的正切值中的7的几何意义就是D 、P 两点间的垂直距离等于7,那么点P 向右平移到直线x =3时,就停止平移.满分解答(1)直线y =3x -3与x 轴的交点为A (1,0),与y 轴的交点为B (0,-3). 将A (1,0)、B (0,-3)分别代入y =ax 2+2x +c , 得20,3.a c c ++=⎧⎨=-⎩ 解得1,3.a c =⎧⎨=-⎩ 所以抛物线的表达式为y =x 2+2x -3. 对称轴为直线x =-1,顶点为(-1,-4).(2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD //AB ,设直线CD 的解析式为y =3x +b , 代入点C (-2,-3),可得b =3.所以点D 的坐标为(0,3).②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE .由73tan =∠DPE ,得3tan 7PH PDH DH ∠==.而DH =7,所以PH =3.因此点E 的坐标为(3,6).所以1()242BDEP S BD EP PH =+⋅=梯形.图2 图3考点伸展第(2)①用几何法求点D 的坐标更简便: 因为CD //AB ,所以∠CDB =∠ABO .因此13BC OA BD OB ==.所以BD =3BC =6,OD =3.因此D (0,3).【例2】如图1,把两个全等的Rt △AOB 和Rt △COD 方别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y =ax 2+bx +c 经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点P 为线段OC 上的一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移的过程中与△COD 重叠部分的面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.图1思路点拨1.如果四边形ABPM 是等腰梯形,那么AB 为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB 边分成的3小段,两侧的线段长线段.2.△AOB 与△COD 重叠部分的形状是四边形EFGH ,可以通过割补得到,即△OFG 减去△OEH .3.求△OEH 的面积时,如果构造底边OH 上的高EK ,那么Rt △EHK 的直角边的比为1∶2.4.设点A ′移动的水平距离为m ,那么所有的直角三角形的直角边都可以用m 表示.满分解答(1)将A (1,2)、O (0,0)、C (2,1)分别代入y =ax 2+bx +c ,得2,0,42 1.a b c c a b c ++=⎧⎪=⎨⎪++=⎩解得32a =-,72b =,0c =. 所以23722y x x =-+. (2)如图2,过点P 、M 分别作梯形ABPM 的高PP ′、MM ′,如果梯形ABPM 是等腰梯形,那么AM ′=BP ′,因此yA -y M ′=yP ′-yB .直线OC 的解析式为12y x =,设点P 的坐标为1(,)2x x ,那么237(,)22M x x x -+. 解方程23712()222x x x --+=,得123x =,22x =.x =2的几何意义是P 与C 重合,此时梯形不存在.所以21(,)33P .图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K . 设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m . 在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=.在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK .因此4432332OK OH m m ==⨯=.所以12EK OK m ==.所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.考点伸展第(3)题也可以这样来解:设点A ′的横坐标为a .由直线AC :y =-x +3,可得A ′(a , -a +3).由直线OC :12y x =,可得1(,)2F a a .由直线OA :y =2x 及A ′(a , -a +3),可得直线O ′A ′:y =2x -3a +3,33(,0)2a H -. 由直线OC 和直线O ′A ′可求得交点E (2a -2,a -1).由E 、F 、G 、H 4个点的坐标,可得【例4】已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图2思路点拨1.第(2)题可以根据对边相等列方程,也可以根据对角线相等列方程,但是方程的解都要排除平行四边形的情况.2.第(3)题重叠部分的形状分为三角形和梯形两个阶段,临界点是PO 的中点.满分解答(1)设抛物线的解析式为2(4)y a x k =-+,代入A (2,0)、C (0,12) 两点,得40,1612.a k a k +=⎧⎨+=⎩ 解得1,4.a k =⎧⎨=-⎩所以二次函数的解析式为22(4)4812y x x x =--=-+,顶点P 的坐标为(4,-4). (2)由2812(2)(6)y x x x x =-+=--,知点B 的坐标为(6,0). 假设在等腰梯形OPBD ,那么DP =OB =6.设点D 的坐标为(x ,2x ).由两点间的距离公式,得22(4)(24)36x x -++=.解得25x =或x =-2.如图3,当x =-2时,四边形ODPB 是平行四边形.所以,当点D 的坐标为(52,54)时,四边形OPBD 为等腰梯形.图3 图4 图5(3)设△PMN 与△POB 的高分别为PH 、PG .在Rt △PMH中,PM ,PH MH t ==.所以'24P G t =-.在Rt △PNH 中,PH t =,1122NH PH t ==.所以32MN t =.① 如图4,当0<t ≤2时,重叠部分的面积等于△PMN 的面积.此时2133224S t t t =⨯⋅=.②如图5,当2<t <4时,重叠部分是梯形,面积等于△PMN 的面积减去△P ′DC 的面积.由于2''P DC PMN S P G S PH ⎛⎫= ⎪⎝⎭△△,所以222'2433(24)44P DC t S t t t -⎛⎫=⨯=- ⎪⎝⎭△. 此时222339(24)1212444S t t t t =--=-+-.考点伸展第(2)题最好的解题策略就是拿起尺、规画图:方法一,按照对角线相等画圆.以P 为圆心,OB 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.方法二,按照对边相等画圆.以B 为圆心,OP 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.【例5】如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1思路点拨1.第(1)题求点M 的坐标以后,Rt △OCM 的两条直角边的比为1∶2,这是本题的基本背景图.2.第(2)题中,不变的关系是由平行得到的等角的正切值相等,根据数形结合,列关于t 与x 的比例式,从而得到t 关于x 的函数关系.3.探求自变量x 的取值范围,要考虑梯形不存在的情况,排除平行四边形的情况. 4.梯形的两底的长度之比为1∶2,要分两种情况讨论.把两底的长度比转化为QH 与MO 的长度比.满分解答(1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2). (2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-.如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得1x =±如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2.因此自变量x 的取值范围是1x ≠x ≠± 2的所有实数.图2 图3 图4②因为sin∠QPH=sin∠MCO,所以HQ OMPQ CM=,即PQ HQCM OM=.当12PQ HQCM OM==时,112HQ OM==.解方程21114x+=,得0x=(如图5).此时2t=-.当2PQ HQCM OM==时,24HQ OM==.解方程21144x+=,得x=±如图6,当x=8t=-+6,当x=-8t=--图5 图6 图7考点伸展本题情境下,以Q为圆心、QM为半径的动圆与x轴有怎样的位置关系呢?设点Q的坐标为21,14x x⎛⎫+⎪⎝⎭,那么222222111144QM x x x⎛⎫⎛⎫=+-=+⎪ ⎪⎝⎭⎝⎭.而点Q到x轴的距离为2114x+.因此圆Q的半径QM等于圆心Q到x轴的距离,圆Q与x轴相切.【例6】如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图1思路点拨1.根据△ABC 的面积和AB 边上的高确定AB 的长,这样就可以把两个点的坐标用一个字母表示.2.数形结合,根据点A 、B 、C 的坐标确定OA 、OB 、OC 间的数量关系,得到△AOC ∽△COB ,从而得到△ABC 是以AB 为斜边的直角三角形,AB 是它的外接圆直径,再根据对称性写出m 的取值范围.3.根据直角梯形的定义,很容易确定符合条件的点D 有两个,但是求点D 的坐标比较麻烦,根据等角的正切相等列方程相对简单一些.满分解答(1)因为OC =1,△ABC 的面积为45,所以AB =25. 设点A 的坐标为(a ,0),那么点B 的坐标为(a +25,0).设抛物线的解析式为)25)((---=a x a x y ,代入点C (0,-1),得1)25(-=+a a .解得21-=a 或2-=a .因为二次函数的解析式q px x y ++=2中,0<p ,所以抛物线的对称轴在y 轴右侧.因此点A 、B 的坐标分别为)0,21(-,)0,2(.所以抛物线的解析式为123)2)(21(2--=-+=x x x x y . (2)如图2,因为1=⋅OB OA ,12=OC ,所以OBOC OC OA =.因此△AOC ∽△COB .所以△ABC 是以AB 为斜边的直角三角形,外接圆的直径为AB .因此m 的取值范围是45-≤m ≤45.图2 图3 图4(3)设点D 的坐标为))2)(21(,(-+x x x . ①如图3,过点A 作BC 的平行线交抛物线于D ,过点D 作DE ⊥x 轴于E .因为OBC DAB ∠=∠tan tan ,所以21==BO CO AE DE .因此2121)2)(21(=+-+x x x .解得25=x .此时点D 的坐标为)23,25(.过点B 作AC 的平行线交抛物线于D ,过点D 作DF ⊥x 轴于F .因为C A O DB F ∠=∠t an t an ,所以2==AO CO BF DF .因此22)2)(21(=--+xx x .解得25-=x .此时点D 的坐标为)9,25(-.综上所述,当D 的坐标为)23,25(或)9,25(-时,以A 、B 、C 、D 为顶点的四边形为直角梯形.考点伸展第(3)题可以用代数的方法这样解:例如图3,先求得直线BC 为121-=x y ,再根据中考压轴题精选典型例题讲解第 11 页 共 11 页 AD //BC 求得直线AD 为4121+=x y ,由直线AD 和抛物线的解析式组成的方程组,得到点D 的坐标.。

函数图象中的存在性问题----因动点产生的平行四边形

函数图象中的存在性问题----因动点产生的平行四边形

函数图象中的存在性问题——因动点产生的平行四边形例26 如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画圆,P 是⊙O 上一动点且在第一象限内,过点P 作⊙O 的切线,与x 、y 轴分别交于点A 、B 。

求证:(1)、△OBP 与△OPA 相似; (2)、当点P 为AB 中点时,求出P 点坐标; (3)、在⊙O 上是否存在一点Q ,使得以Q 、O 、A 、P 为顶点的四边形是平行四边形。

若存在,试求出Q 点坐标;若不存在,请说明理由。

Py xB A O 2121-1-1例24.如图,抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为m ;①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设BCF △的面积为S ,求S 与m 的函数关系式.例27::在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.例252009-2010北京大兴区九年级(上)期末数学试卷【023】如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形. (1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.【033】已知抛物线22y x x a =-+(0a <)与y 轴相交于点A ,顶点为M .直线12y x a =-分别与x 轴,y 轴相交于B C ,两点,并且与直线AM 相交于点N .(1)填空:试用含a 的代数式分别表示点M 与N 的坐标,则()()M N , , , ;(2)如图,将NAC △沿y 轴翻折,若点N 的对应点N ′恰好落在抛物线上,AN ′与x 轴交于点D ,连结CD ,求a 的值和四边形ADCN 的面积;(3)在抛物线22y x x a =-+(0a <)上是否存在一点P ,使得以P A C N ,,,为顶点的四边形是平行四边形?若存在,求出P 点的坐标;若不存在,试说明理由.23(2012奉贤二模).已知:直角坐标平面内有点A (-1,2),过原点O 的直线l ⊥OA ,且与过点A 、O 的抛物线相交于第一象限的B 点,若OB =2OA 。

二次函数-因动点产生的平行四边形典型例题

二次函数-因动点产生的平行四边形典型例题

二次函数-因动点产生的平行四边形典型例题【例1】如图1,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点. (1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.图1思路点拨1.第(2)题求∠ABO 的正切值,要构造包含锐角∠ABO 的角直角三角形. 2.第(3)题解方程MN =y M -y N =BC ,并且检验x 的值是否在对称轴左侧.满分解答(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩ 解得92b =,c =1. 所以抛物线的解析式是2912y x x =-++. (2)在Rt △BOC 中,OC =4,BC =3,所以OB =5. 如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=,所以4sin 5AH OA AOH =⋅∠=. 图2 所以35OH =,225BH OB OH =-=.在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=.(3)直线AB 的解析式为112y x =+.设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +, 那么2291(1)(1)422MN x x x x x =-++-+=-+. 当四边形MNCB 是平行四边形时,MN =BC =3.解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐标为9(1,)2(如图3).图3 图4考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标.那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M .由y N -y M =4x -x 2,解方程x 2-4x =3,得2x =(如图5).所以符合题意的点M 有4个:9(1,)2,11(3,)2,(2,(2+.图5【例2】如图1,在Rt △ABC 中,∠C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0). (1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在∠ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径.满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作∠ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ⊥AB ,垂足为E ,那么BE =BC =8. 在Rt △ABC 中,AC =6,BC =8,所以AB =10. 图3在Rt △APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ -=.解得329CQ =.所以点Q 的运动速度为3210169315÷=. (3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6. 如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t-,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF=图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数:当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.【例3】如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1思路点拨1.把△ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD .2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在.满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4, 代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3.(2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==. 所以点E 的横坐标为112t +.将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+.所以当t =1时,△ACG 面积的最大值为1.(3)2013t =或20t =- 考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+.如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图3【例4】已知平面直角坐标系xOy (如图1),一次函数334y x =+的图象与y 轴交于点A ,点M 在正比例函数32y x =的图象上,且MO =MA .二次函数 y =x 2+bx +c 的图象经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+的图象上,且四边形ABCD 是菱形,求点C 的坐标.图1思路点拨1.本题最大的障碍是没有图形,准确画出两条直线是基本要求,抛物线可以不画出来,但是对抛物线的位置要心中有数.2.根据MO =MA 确定点M 在OA 的垂直平分线上,并且求得点M 的坐标,是整个题目成败的一个决定性步骤.3.第(3)题求点C 的坐标,先根据菱形的边长、直线的斜率,用待定字母m 表示点C 的坐标,再代入抛物线的解析式求待定的字母m .满分解答(1)当x =0时,3334y x =+=,所以点A 的坐标为(0,3),OA =3. 如图2,因为MO =MA ,所以点M 在OA 的垂直平分线上,点M 的纵坐标为32.将32y =代入32y x =,得x =1.所以点M 的坐标为3(1,)2.因此AM = (2)因为抛物线y =x 2+bx +c 经过A (0,3)、M 3(1,)2,所以3,31.2c b c =⎧⎪⎨++=⎪⎩解得52b =-,3c =.所以二次函数的解析式为2532y x x =-+.(3)如图3,设四边形ABCD 为菱形,过点A 作AE ⊥CD ,垂足为E . 在Rt △ADE 中,设AE =4m ,DE =3m ,那么AD =5m .因此点C 的坐标可以表示为(4m ,3-2m ).将点C(4m ,3-2m )代入2532y x x =-+,得23216103m m m -=-+.解得12m =或者m =0(舍去).因此点C 的坐标为(2,2).图2 图3考点伸展如果第(3)题中,把“四边形ABCD 是菱形”改为“以A 、B 、C 、D 为顶点的四边形是菱形”,那么还存在另一种情况:如图4,点C 的坐标为727(,)416.图4【例5】将抛物线c1:2y=x轴翻折,得到抛物线c2,如图1所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.图1思路点拨1.把A、B、D、E、M、N六个点起始位置的坐标罗列出来,用m的式子把这六个点平移过程中的坐标罗列出来.2.B、D是线段AE的三等分点,分两种情况讨论,按照AB与AE的大小写出等量关系列关于m的方程.3.根据矩形的对角线相等列方程.满分解答(1)抛物线c2的表达式为2y=(2)抛物线c1:2y=x轴的两个交点为(-1,0)、(1,0),顶点为.抛物线c2:2y=x轴的两个交点也为(-1,0)、(1,0),顶点为(0,.抛物线c1向左平移m个单位长度后,顶点M的坐标为(m-,与x轴的两个交点为(1,0)A m--、(1,0)B m-,AB=2.抛物线c2向右平移m个单位长度后,顶点N的坐标为(,m,与x轴的两个交点为(1,0)D m-+、(1,0)E m+.所以AE=(1+m)-(-1-m)=2(1+m).①B、D是线段AE的三等分点,存在两种情况:情形一,如图2,B在D的左侧,此时123AB AE==,AE=6.所以2(1+m)=6.解得m=2.情形二,如图3,B在D的右侧,此时223AB AE==,AE=3.所以2(1+m)=3.解得12m=.图2 图3 图4②如果以点A、N、E、M为顶点的四边形是矩形,那么AE=MN=2OM.而OM2=m2+3,所以4(1+m)2=4(m2+3).解得m=1(如图4).考点伸展第(2)题②,探求矩形ANEM,也可以用几何说理的方法:在等腰三角形ABM中,因为AB=2,AB ABM是等边三角形.同理△DEN是等边三角形.当四边形ANEM是矩形时,B、D两点重合.因为起始位置时BD=2,所以平移的距离m=1.【例6】在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图2思路点拨1.第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础.2.讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边.满分解答(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.在Rt△ABH中,AH=3,BA=,所以BH=6.因此点B的坐标为(3,6).(2) 因为OE=2EB,所以223E Bx x==,243E By y==,E(2,4).设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得5,2 4.bk b=⎧⎨+=⎩解得12k=-,5b=.所以直线DE的解析式为152y x=-+.(3) 由152y x=-+,知直线DE与x轴交于点F(10,0),OF=10,DF=①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M 的坐标为(5,52),点N 的坐标为(-5,52). ②如图4,当DO 、DN 为菱形的邻边时,点N 与点O 关于点E 对称,此时点N 的坐标为(4,8).③如图5,当DO 、DM 为菱形的邻边时,NO =5,延长MN 交x 轴于P .由△NPO ∽△DOF ,得NP PO NODO OF DF==,即510NP PO ==.解得NP =,PO =N 的坐标为(-.图3 图4考点伸展如果第(3)题没有限定点N 在x 轴上方的平面内,那么菱形还有如图6的情形.图5 图6【例7】如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.图1思路点拨1.数形结合,用函数的解析式表示图象上点的坐标,用点的坐标表示线段的长.2.当四边形PEDF 为平行四边形时,根据DE =FP 列关于m 的方程. 3.把△BCF 分割为两个共底FP 的三角形,高的和等于OB .满分解答(1)A (-1,0),B (3,0),C (0,3).抛物线的对称轴是x =1. (2)①直线BC 的解析式为y =-x +3.把x =1代入y =-x +3,得y =2.所以点E 的坐标为(1,2). 把x =1代入322++-=x x y ,得y =4.所以点D 的坐标为(1,4). 因此DE =2.因为PF //DE ,点P 的横坐标为m ,设点P 的坐标为)3,(+-m m ,点F 的坐标为)32,0(2++-m m ,因此m m m m m FP 3)3()32(22+-=+--++-=.当四边形PEDF 是平行四边形时,DE =FP .于是得到232=+-m m .解得21=m ,12=m (与点E 重合,舍去).因此,当m =2时,四边形PEDF 是平行四边形时.②设直线PF 与x 轴交于点M ,那么OM +BM =OB =3.因此BM FP OM FP S S S S CPF BPF BCF ⋅+⋅=+==∆∆∆2121 m m m m 29233)3(2122+-=⨯+-=. m 的变化范围是0≤m ≤3.图2 图3考点伸展在本题条件下,四边形PEDF 可能是等腰梯形吗?如果可能,求m 的值;如果不可能,请说明理由.如图4,如果四边形PEDF 是等腰梯形,那么DG =EH ,因此E P F D y y y y -=-. 于是2)3()32(42-+-=++--m m m .解得01=m (与点CE 重合,舍去),12=m (与点E 重合,舍去).因此四边形PEDF 不可能成为等腰梯形.图4。

抛物线中平行四边形问题

抛物线中平行四边形问题
分两种情况讨论(1)AB为平行四边形的边,将AB上下左右平移,确定P,Q的位置 (2)若AB为平行四边形的对角线,取AB中点,旋转经过中点的直线确定P,Q的位置
A B
A B
二、集思广益 探究发现
• 1、线段的中点公式
平面直角坐标面中,Ax , y , Bx , y ,则线段AB的中点P的
11
22
坐标为P x1 x2 y1 y2 , 2 2
①点B与点O相对 0 0 m a 4 0 0.5m2 m 4 a
a 4 1
a2 0舍
②点B与点P相对
0
4
m0 0.5m2
a
m
4
0
a
a 2 2 5
0 a 0 m ③点B与点Q相对 4 a 0 0.5m2 m 4
a1 4
a2 0舍
∴Q1 (4,-4), Q2 (-2 2 5,2 - 2 5), Q3 (-2 2 5,2 2 5),Q4 (-4,4)
变式训练2
如图,平面直角坐标系中,y=0.5x2+x-4与y轴相交于点B(0,-4),点P是抛物线上的
动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四
边形为平行四边形,写出相应的Q的坐标
已知B(0,-4), O(0,0)
设Q(a,-a), P(m,0.5m2+m-4)
先求出A(-1,0),B(2,0),C(0,2),设点M(x,y)
①点A与点B相对 1 2 0 x 0 0 2 y
x 1 y 2
②点A与点C相对 1 0 2 x 0 2 0 y
x 3 y 2
1 x 2 0 ③点A与点M相对 0 y 0 2
∴M1(1,-2), M2(-3,2), M3(3,2)

中考压轴题(二次函数)之【因动点产生的梯形问题】精品解析

中考压轴题(二次函数)之【因动点产生的梯形问题】精品解析

中考压轴题(二次函数)之【因动点产生的梯形问题】精品解析【例1】(上海市松江区中考模拟第24题)已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形.①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73t a n =∠D P E ,求四边形BDEP 的面积.图1思路点拨1.这道题的最大障碍是画图,A 、B 、C 、D 四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了.2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D 、P 两点间的垂直距离等于7. 3.已知∠DPE 的正切值中的7的几何意义就是D 、P 两点间的垂直距离等于7,那么点P 向右平移到直线x =3时,就停止平移.满分解答(1)直线y =3x -3与x 轴的交点为A (1,0),与y 轴的交点为B (0,-3). 将A (1,0)、B (0,-3)分别代入y =ax 2+2x +c , 得20,3.a c c ++=⎧⎨=-⎩ 解得1,3.a c =⎧⎨=-⎩所以抛物线的表达式为y =x 2+2x -3.对称轴为直线x =-1,顶点为(-1,-4).(2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD //AB ,设直线CD 的解析式为y =3x +b , 代入点C (-2,-3),可得b =3.所以点D 的坐标为(0,3).②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE .由73tan =∠DPE ,得3tan 7PH PDH DH ∠==.而DH =7,所以PH =3. 因此点E 的坐标为(3,6).所以1()242BDEP S BD EP PH =+⋅=梯形.图2 图3考点伸展第(2)①用几何法求点D 的坐标更简便: 因为CD //AB ,所以∠CDB =∠ABO .因此13BC OA BDOB==.所以BD =3BC =6,OD =3.因此D (0,3).【例2】(衢州市中考第24题)如图1,把两个全等的Rt △AOB 和Rt △COD 方别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y =ax 2+bx +c 经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点P 为线段OC 上的一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移的过程中与△COD 重叠部分的面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.图1思路点拨1.如果四边形ABPM 是等腰梯形,那么AB 为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB 边分成的3小段,两侧的线段长线段.2.△AOB 与△COD 重叠部分的形状是四边形EFGH ,可以通过割补得到,即△OFG 减去△OEH .3.求△OEH 的面积时,如果构造底边OH 上的高EK ,那么Rt △EHK 的直角边的比为1∶2.4.设点A ′移动的水平距离为m ,那么所有的直角三角形的直角边都可以用m 表示.满分解答(1)将A (1,2)、O (0,0)、C (2,1)分别代入y =ax 2+bx +c ,得2,0,42 1.a b c c a b c ++=⎧⎪=⎨⎪++=⎩解得32a =-,72b =,0c =. 所以23722y x x =-+. (2)如图2,过点P 、M 分别作梯形ABPM 的高PP ′、MM ′,如果梯形ABPM 是等腰梯形,那么AM ′=BP ′,因此yA -y M ′=yP ′-yB .直线OC 的解析式为12y x =,设点P 的坐标为1(,)2x x ,那么237(,)22M x x x -+. 解方程23712()222x x x --+=,得123x =,22x =.x =2的几何意义是P 与C 重合,此时梯形不存在.所以21(,)33P .图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K . 设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+.在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=.在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK .因此4432332OK OH m m ==⨯=.所以12EK OK m ==.所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=.于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.考点伸展第(3)题也可以这样来解:设点A ′的横坐标为a .由直线AC :y =-x +3,可得A ′(a , -a +3). 由直线OC :12y x =,可得1(,)2F a a . 由直线OA :y =2x 及A ′(a , -a +3),可得直线O ′A ′:y =2x -3a +3,33(,0)2a H -.由直线OC 和直线O ′A ′可求得交点E (2a -2,a -1).由E 、F 、G 、H 4个点的坐标,可得【例4】(义乌市中考第24题)已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图2思路点拨1.第(2)题可以根据对边相等列方程,也可以根据对角线相等列方程,但是方程的解都要排除平行四边形的情况.2.第(3)题重叠部分的形状分为三角形和梯形两个阶段,临界点是PO 的中点.满分解答(1)设抛物线的解析式为2(4)y a x k =-+,代入A (2,0)、C (0,12) 两点,得40,1612.a k a k +=⎧⎨+=⎩ 解得1,4.a k =⎧⎨=-⎩所以二次函数的解析式为22(4)4812y x x x =--=-+,顶点P 的坐标为(4,-4). (2)由2812(2)(6)y x x x x =-+=--,知点B 的坐标为(6,0). 假设在等腰梯形OPBD ,那么DP =OB =6.设点D 的坐标为(x ,2x ).由两点间的距离公式,得22(4)(24)36x x -++=.解得25x =或x =-2.如图3,当x =-2时,四边形ODPB 是平行四边形.所以,当点D 的坐标为(52,54)时,四边形OPBD 为等腰梯形.图3 图4 图5(3)设△PMN 与△POB 的高分别为PH 、PG .在Rt △PMH中,PM ,PH MH t ==.所以'24P G t =-.在Rt △PNH 中,PH t =,1122NH PH t ==.所以32MN t =.① 如图4,当0<t ≤2时,重叠部分的面积等于△PMN 的面积.此时2133224S t t t =⨯⋅=.②如图5,当2<t <4时,重叠部分是梯形,面积等于△PMN 的面积减去△P ′DC 的面积.由于2''P DC PMN S P G S PH ⎛⎫= ⎪⎝⎭△△,所以222'2433(24)44P DC t S t t t -⎛⎫=⨯=- ⎪⎝⎭△. 此时222339(24)1212444S t t t t =--=-+-.考点伸展第(2)题最好的解题策略就是拿起尺、规画图:方法一,按照对角线相等画圆.以P 为圆心,OB 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.方法二,按照对边相等画圆.以B 为圆心,OP 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.【例5】(杭州市中考第24题)如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1思路点拨1.第(1)题求点M 的坐标以后,Rt △OCM 的两条直角边的比为1∶2,这是本题的基本背景图.2.第(2)题中,不变的关系是由平行得到的等角的正切值相等,根据数形结合,列关于t 与x 的比例式,从而得到t 关于x 的函数关系.3.探求自变量x 的取值范围,要考虑梯形不存在的情况,排除平行四边形的情况. 4.梯形的两底的长度之比为1∶2,要分两种情况讨论.把两底的长度比转化为QH 与MO 的长度比.满分解答(1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2). (2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-.如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得1x =.如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2.因此自变量x 的取值范围是1x ≠,且x ≠± 2的所有实数.图2 图3 图4②因为sin ∠QPH =sin ∠MCO ,所以HQ OM PQ CM =,即PQ HQCM OM=. 当12PQ HQ CM OM ==时,112HQ OM ==.解方程21114x +=,得0x =(如图5).此时2t =-.当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144x +=,得x =±如图6,当x =8t =-+;如图6,当x =-8t =--图5 图6 图7考点伸展本题情境下,以Q 为圆心、QM 为半径的动圆与x 轴有怎样的位置关系呢?设点Q 的坐标为21,14x x ⎛⎫+ ⎪⎝⎭,那么222222111144QM x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭.而点Q 到x 轴的距离为2114x +. 因此圆Q 的半径QM 等于圆心Q 到x 轴的距离,圆Q 与x 轴相切.【例6】广州市中考第25题如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图1思路点拨1.根据△ABC 的面积和AB 边上的高确定AB 的长,这样就可以把两个点的坐标用一个字母表示.2.数形结合,根据点A 、B 、C 的坐标确定OA 、OB 、OC 间的数量关系,得到△AOC ∽△COB ,从而得到△ABC 是以AB 为斜边的直角三角形,AB 是它的外接圆直径,再根据对称性写出m 的取值范围.3.根据直角梯形的定义,很容易确定符合条件的点D 有两个,但是求点D 的坐标比较麻烦,根据等角的正切相等列方程相对简单一些.满分解答(1)因为OC =1,△ABC 的面积为45,所以AB =25. 设点A 的坐标为(a ,0),那么点B 的坐标为(a +25,0).设抛物线的解析式为)25)((---=a x a x y ,代入点C (0,-1),得1)25(-=+a a .解得21-=a 或2-=a .因为二次函数的解析式q px x y ++=2中,0<p ,所以抛物线的对称轴在y 轴右侧.因此点A 、B 的坐标分别为)0,21(-,)0,2(. 所以抛物线的解析式为123)2)(21(2--=-+=x x x x y .(2)如图2,因为1=⋅OB OA ,12=OC ,所以OBOC OC OA =.因此△AOC ∽△COB .所以△ABC 是以AB 为斜边的直角三角形,外接圆的直径为AB .因此m 的取值范围是45-≤m ≤45.图2 图3 图4(3)设点D 的坐标为))2)(21(,(-+x x x .①如图3,过点A 作BC 的平行线交抛物线于D ,过点D 作DE ⊥x 轴于E .因为OBC DAB ∠=∠tan tan ,所以21==BO CO AE DE .因此2121)2)(21(=+-+x x x .解得25=x .此时点D 的坐标为)23,25(.过点B 作AC 的平行线交抛物线于D ,过点D 作DF ⊥x 轴于F .因为C A O DB F ∠=∠t a n t a n ,所以2==AO CO BF DF .因此22)2)(21(=--+xx x .解得25-=x .此时点D 的坐标为)9,25(-.综上所述,当D 的坐标为)23,25(或)9,25(-时,以A 、B 、C 、D 为顶点的四边形为直角梯形.考点伸展中考压轴题之【因动点产生的梯形问题】精品解析———————————————————————————————————————11 第(3)题可以用代数的方法这样解:例如图3,先求得直线BC 为121-=x y ,再根据AD //BC 求得直线AD 为4121+=x y ,由直线AD 和抛物线的解析式组成的方程组,得到点D 的坐标.。

中考数学压轴题:抛物线上平行四边形找不到?掌握方法直接求

中考数学压轴题:抛物线上平行四边形找不到?掌握方法直接求

中考数学的最后一题是压轴大题,通常是二次函数与几何的结合,难度较大,计算复杂,是学生最容易失分的地方。

2019年山西省中考数学就是这样。

我们先来看一下题吧。

中考压轴题第1问和第2问都是常规题,在固定的解题法,只要认真计算,就可以做对,在这里不作讲解。

我想重点讲的是第3问,如何在抛物线上寻找平行四边形。

这是一个动点问题,许多同学一看动点,头就变大,感觉无从下手,没有思路。

这是因为同学们没有抓住关键点,找不到突破口。

如果能够抓住关键点,问题就迎刃而解了。

我们来看一下第三个问题。

(3)在(2)的条件下,若点M是x轴上的一动点,点N是抛物线上的一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,若存在,请直接写出M点的坐标;若不存在,请说明理由。

第3问也就是知道两个定点B和D,然后找两个动点M和N,M在x轴上,N在抛物线,使得以点B,D,M,N为顶点的四边形是平行四边形。

只有找出平行四边形,知道两个动点是怎么确定的,我们才能进行计算。

那么知道两个点,怎么去找平行四边形呢?首先我们要知道两个定点的连线是平行四边形中的什么,只有两种情况,一种是平行四边形的一条边,另一种是平行四边形的对角线。

两定点连线的两种情况知道了这两种情况,我们就知道要分情况进行讨论。

1、如果BD是平行四边形的一条边。

如果BD是平行四边形的一条边,那么MN就是它的对边,根据平行四边形的性质,就要求BD平行且等于MN,其实质,就是将BD平行,使其一个端点在x轴上,一个端点在抛物线上。

如图所示,通过平移,我们可以得到三条符合条件的线段:N1M1,N2M2,N3M3。

找到了平行四边形的顶点,接下来,我们就要去求两动点的坐标了。

我们分别做D,N1,N2,N3到X轴的垂线段DE,N1E1,N2E2,N3E3,根据平行四边形的性质,会发现DE=N1E1=N2E2=N3E3,都等于D点纵坐标的绝对值,也就是知道动点N的纵坐标,接下来就可以求出横坐标了。

2020 中考数学复习解析:4因动点产生的平行四边形问题

2020 中考数学复习解析:4因动点产生的平行四边形问题

动点产生平行四边形例题.已知抛物线y=2x2+bx+6经过A(1,0),点P为抛物线的顶点,点B为抛物线与x轴的另一交点.(1)求出点P、点B的坐标.(2)如图,在直线y=2x上是否存在点D,使以O、P、B、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.【分析】(1)把点A的坐标代入抛物线求出b的值,再整理成顶点式,然后写出点P的坐标;令y=0解方程即可得到点B的坐标;(2)利用待定系数法求出直线BP的解析式,然后根据平行四边形对边平行且相等解答.【解答】解:(1)∵抛物线y=2x2+bx+6经过A(1,0),∴2×12+b+6=0,解得b=﹣8,∴y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点P的坐标为(2,﹣2),令y=0,则2x2﹣8x+6=0,解得x1=1,x2=3,∴点B的坐标为(3,0);(2)设直线BP的解析式为y=kx+b,则,解得,所以,直线BP的解析式为y=2x﹣6,∵直线y=2x与直线y=2x﹣6互相平行,∴直线y=2x上是否存在点D,使以O、P、B、D为顶点的四边形是平行四边形,此时,点D的坐标为(1,2)或(﹣1,﹣2).练习:1.已知等腰梯形ABOC在直角坐标系中如图所示,AB∥OC,OB=2,OA=.(1)求点C的坐标;(2)求经过点B,O,C的抛物线解析式;(3)若点P为(2)中所求抛物线上一动点,点Q为y轴上一动点,请探索是否存在点P和点Q,使得以B,C,P,Q为顶点的四边形是平行四边形?若存在,请求出所有对应的P,Q的坐标;若不存在,请说明理由.2.(2011•梅州)如图,已知抛物线y=x2﹣4x+3与x 轴交于两点A、B,其顶点为C.(1)对于任意实数m,点M(m,﹣2)是否在该抛物线上?请说明理由;(2)求证:△ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.3.(2012•宜宾)如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.4.(2015秋•台安县期中)如图,抛物线y=﹣x2+bx+c经过点A,B,C,已知点A(﹣1,0),点C (0,3).(1)求抛物线的表达式;(2)P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)设E是抛物线上的一点,在x轴上是否存在点F,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求点E,F的坐标;若不存在,请说明理由.5.(2015秋•诸暨市校级月考)如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4).(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,在对称轴存在点Q,使以A,B,P,Q四点构成的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.6.(2015•三亚校级模拟)如图,抛物线y=与x轴交于A,B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)在x轴上方的抛物线上,是否存在一点P,使得四边形OBEP是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.7.已知,二次函数y=(x+2)2的图象与x轴交于点A,与y轴交于点B.(1)求点A、点B的坐标;(2)求S△AOB;(3)求对称轴方程;(4)在对称轴上是否存在一点P,使以P,A,O,B为顶点的四边形为平行四边形?若存在,求P 点坐标;若不存在,请说明理由.。

5.因动点产生的平行四边形问题

5.因动点产生的平行四边形问题

5. 因动点产生的平行四边形问题1.(2020秋•九龙县期末)如图所示,在平面直角坐标中,抛物线的顶点P 到x 轴的距离是4,抛物线与x 轴相交于O 、M 两点,4OM =;矩形ABCD 的边BC 在线段的OM 上,点A 、D 在抛物线上.(1)求这条抛物线的解析式;(2)设(,)D m n ,矩形ABCD 的周长为l ,写出l 与m 的关系式,并求出l 的最大值;(3)点E 在抛物线的对称轴上,在抛物线上是否还存在点F ,使得以E 、F 、O 、M 为顶点的四边形是平行四边形?如果存在,写出F 点的坐标.【解答】解:(1)抛物线与x 轴相交于O 、M 两点,4OM =, ∴顶点P 的横坐标为422÷=,M 的坐标为(4,0),顶点P 到x 轴的距离是4,∴顶点P 的纵坐标为4,∴顶点P 的坐标为(2,4),设抛物线的解析式为2(2)4y a x =-+,则2(42)40a -+=,解得1a =-,∴抛物线的解析式为2(2)4y x =--+,即24y x x =-+;(2)(,)D m n 在抛物线上,24n m m ∴=-+,42BC m =-,∴矩形ABCD 的周长为2(42)l m n =-+,22(424)m m m =--+,22(21)10m m =--++,22(1)10m =--+,即22(1)10l m =--+,∴当1m =时,周长l 有最大值10;(3)①OM 是平行四边形的边时,点F 的横坐标为242-=-, 纵坐标为:2(2)4(2)4812--+⨯-=--=-,此时,点(2,12)F --,或点F 的横坐标为246+=,纵坐标为:2646362412-+⨯=-+=,此时,点(6,12)F -,②OM 是平行四边形的对角线时,EF 所在的直线经过OM 的中点, EF ∴都在抛物线的对称轴上,∴点F 与点P 重合,此时,点(2,4)F ,综上所述,点(2,12)F --或(6,12)-或(2,4)时,以E 、F 、O 、M 为顶点的四边形是平行四边形.2.(2020•高州市模拟)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C .(1)求该抛物线的解析式;(2)如图①,若点D 是抛物线上一个动点,设点D 的横坐标为(03)m m <<,连接CD 、BD 、BC 、AC ,当BCD ∆的面积等于AOC ∆面积的2倍时,求m 的值;(3)若点N 为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M ,使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【解答】解:(1)把(1,0)A -,(3,0)B 代入22y ax bx =++中,得:209320a b a b -+=⎧⎨++=⎩,解得:2343a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为224233y x x =-++;(2)过点D 作y 轴平行线交BC 于点E ,把0x =代入224233y x x =-++中,得:2y =, C ∴点坐标是(0,2),又(3,0)B∴直线BC 的解析式为223y x =-+, 224(,2)33D m m m -++ ∴2(,2)3E m m -+ ∴222422(2)(2)23333DE m m m m m =-++--+=-+, 由2BCD AOC S S ∆∆=得:11222DE OB OA OC =⨯ ∴2121(2)3212232m m -+⨯=⨯⨯⨯, 整理得:2320m m -+=解得:11m =,22m =03m <<m ∴的值为1或2;(3)存在,理由:设:点M 的坐标为:(,)t n ,224233n x x =-++,点(1,)N s ,点(3,0)B 、(0,2)C , ①当BC 是平行四边形的边时,当点C 向右平移3个单位,向下平移2个单位得到B , 同样点()M N 向右平移3个单位,向下平移2个单位()N M , 故:31t +=,2n s -=或31t -=,2n s +=,解得:2t =-或4,故点M 坐标为:10(2,)3--或10(4,)3-; ②当BC 为对角线时,由中点公式得:13t +=,2n s +=,解得:2t =,故点(2,2)M ;综上,M 的坐标为:(2,2)或10(2,)3--或10(4,)3-. 3.(2020•安定区校级三模)如图,抛物线经过(1,0)A -,(5,0)B ,5(0,)2C -三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA PC +的值最小,则点P 的坐标为 3(2,)2- ; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)设抛物线的解析式为2(0)y ax bx c a =++≠,(1,0)A -,(5,0)B ,5(0,)2C -三点在抛物线上, ∴0255052a b c a b c c ⎧⎪-+=⎪++=⎨⎪⎪=-⎩, 解得:12252a b c ⎧=⎪⎪=-⎨⎪⎪=-⎩∴抛物线解析式为:215222y x x =--; (2)连接BC ,如图1所示, 抛物线的解析式为:215222y x x =--, ∴其对称轴为直线221222b x a -=-=-=⨯, 连接BC ,如图1所示,设直线BC 的解析式为(0)y kx b k =+≠,且过(5,0)B ,5(0,)2C -∴5052k b b +=⎧⎪⎨=-⎪⎩, 解得1252k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线BC 的解析式为1522y x =-, 当2x =时,53122y =-=-, 3(2,)2P ∴-, 故答案为:3(2,)2-;(3)存在点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形. 如图2所示,①当点N 在x 轴下方时,抛物线的对称轴为直线2x =,5(0,)2C -, 15(4,)2N ∴-; ②当点N 在x 轴上方时,如图,过点2N 作2N D x ⊥轴于点D ,在△2AN D 与△2M CO 中,222222N AD CM O AN CM AN D M CO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△2AN D ≅△2()M CO ASA ,252N D OC ∴==,即2N 点的纵坐标为52. ∴21552222x x --=,解得2x =+2x =2(2N ∴5)2,3(2N -5)2.综上所述,符合条件的点N 的坐标为5(4,)2-或(2,5)2或(2-5)2. 4.(2020•郑州一模)如图,直线243y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线2103y ax x c =++经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当BEC ∆面积最大时,请求出点E 的坐标;(3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【解答】解:(1)当0x =时,4y =,(0,4)B ∴,当0y =时,2403x -+=, 6x =,(6,0)C ∴,把(0,4)B 和(6,0)C 代入抛物线2103y ax x c =++中得: 41036603c a c =⎧⎪⎨+⨯+=⎪⎩, 解得:234a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为:2210433y x x =-++; (2)如图1,过E 作//EG y 轴,交直线BC 于G , 设2210(,4)33E m m m -++,则2(,4)3G m m -+, 2221022(4)(4)43333EG m m m m m ∴=-++--+=-+, 221126(4)2(3)18223BEC S EG OC m m m ∆∴==⨯-+=--+, 20-<,S ∴有最大值,此时(3,8)E ;(3)2222102252525494(5)4()33344326y x x x x x =-++=--+-+=--+; 对称轴是:52x =, (1,0)A ∴- 点Q 是抛物线对称轴上的动点,Q ∴的横坐标为52, 在抛物线上存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形; ①如图2,以AM 为边时,由(2),可得点M 的横坐标是3,点M 在直线243y x =-+上, ∴点M 的坐标是(3,2), 又点A 的坐标是(1,0)-,点Q 的横坐标为52, 根据M 到Q 的平移规律:可知:P 的横坐标为32-, 3(2P ∴-,5)2-; ②如图3,以AM 为边时,四边形AMPQ 是平行四边形, 由(2),可得点M 的横坐标是3,(1,0)A -,且Q 的横坐标为52, P ∴的横坐标为132, 13(2P ∴,5)2-; ③以AM 为对角线时,如图4, M 到Q 的平移规律可得P 到A 的平移规律,∴点P 的坐标是1(2-,13)6, 综上所述,在抛物线上存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形,点P 的坐标是3(2-,5)2-或13(2,5)2-或1(2-,13)6.5.(2020•霍林郭勒市模拟)如图,在平面直角坐标系中,二次函数2=++的图象与y x bx cC-点,x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于(0,4)点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把POC∆沿CO翻折,得到四边形POP C',那么是否存在点P,使四边形POP C'为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解答】解:(1)将B、C两点的坐标代入得:16404b c c ++=⎧⎨=-⎩, 解得:34b c =-⎧⎨=-⎩;所以二次函数的表达式为:234y x x =--;(2)存在点P ,使四边形POP C '为菱形; 设P 点坐标为2(,34)x x x --,PP '交CO 于E 若四边形POP C '是菱形,则有PC PO =; 如图1,连接PP ',则PE CO ⊥于E , (0,4)C -, 4CO ∴=,又OE EC =, 2OE EC ∴==2y ∴=-; 2342x x ∴--=-解得:1x =2x =,P ∴点的坐标为,2)-;(3)如图2,过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设2(,34)P x x x --,设直线BC 的解析式为:y kx d =+, 则440d k d =-⎧⎨+=⎩,解得:14k d =⎧⎨=-⎩,∴直线BC 的解析式为:4y x =-,则Q 点的坐标为(,4)x x -; 当2034x x =--,解得:11x =-,24x =, 1AO ∴=,5AB =,ABC BPQ CPQ ABPC S S S S ∆∆∆=++四边形111222AB OC QP BF QP OF =++ 2211154(4)[4(34)][4(34)]222x x x x x x x x =⨯⨯+-----+---- 22810x x =-++22(2)18x =--+当2x =时,四边形ABPC 的面积最大,此时P 点的坐标为:(2,6)-,四边形ABPC 的面积的最大值为18.6.(2020•玉林一模)如图,Rt AOB ∆中,90A ∠=︒,以O 为坐标原点建立直角坐标系,使点A 在x 轴正半轴上,2OA =,8AB =,点C 为AB 边的中点,抛物线的顶点是原点O ,且经过C 点.(1)填空:直线OC 的解析式为 2y x = ;抛物线的解析式为 ;(2)现将该抛物线沿着线段OC 移动,使其顶点M 始终在线段OC 上(包括端点O 、)C ,抛物线与y 轴的交点为D ,与AB 边的交点为E ;①是否存在这样的点D ,使四边形BDOC 为平行四边形?如存在,求出此时抛物线的解析式;如不存在,说明理由;②设BOE ∆的面积为S ,求S 的取值范围.【解答】解:(1)2OA =,8AB =,点C 为AB 边的中点∴点C 的坐标为(2,4),设直线的解析式为y kx = 则42k =,解得2k =∴直线的解析式为2y x =,设抛物线的解析式为2y kx = 则44k =,解得1k =∴抛物线的解析式为2y x =(2)设移动后抛物线的解析式为2()2y x m m =-+ 当OD BC =,四边形BDOC 为平行四边形, 4OD BC ∴==,①则可得0x =时4y =, 224m m ∴+=,2(1)5m ∴+=解得1m =-1m =-,所以1m =-2(12(1y x =+-+⨯-+2(12x =+-+②28[(2)2]BE m m =--+242m m =+- 12BOE S BE OA ∆∴=21(42)22m m =+-⨯ 224m m =-++2(1)5m =--+, 而02m , 所以45S .7.(2019•铜仁市)如图,已知抛物线21y ax bx =+-与x 轴的交点为(1,0)A -,(2,0)B ,且与y 轴交于C 点.(1)求该抛物线的表达式;(2)点C 关于x 轴的对称点为1C ,M 是线段1BC 上的一个动点(不与B 、1C 重合),ME x ⊥轴,MF y ⊥轴,垂足分别为E 、F ,当点M 在什么位置时,矩形MFOE 的面积最大?说明理由.(3)已知点P 是直线112y x =+上的动点,点Q 为抛物线上的动点,当以C 、1C 、P 、Q为顶点的四边形为平行四边形时,求出相应的点P 和点Q 的坐标.【解答】解:(1)将(1,0)A -,(2,0)B 分别代入抛物线21y ax bx =+-中,得1421a b a b -=⎧⎨+=⎩,解得:1212a b ⎧=⎪⎪⎨⎪=-⎪⎩∴该抛物线的表达式为:211122y x x =--. (2)在211122y x x =--中,令0x =,1y =-,(0,1)C ∴- 点C 关于x 轴的对称点为1C ,1(0,1)C ∴,设直线1C B 解析式为y kx b =+,将(2,0)B ,1(0,1)C 分别代入得201k b b +=⎧⎨=⎩,解得121k b ⎧=-⎪⎨⎪=⎩, ∴直线1C B 解析式为112y x =-+,设1(,1)2M t t -+,则(,0)E t ,1(0,1)2F t -+21111(1)222MFOES OE OF t t t ⎛⎫∴=⨯=-+=--+ ⎪⎝⎭矩形,102-<, ∴当1t =时,MFOE S 矩形最大值12=,此时,1(1,)2M ;即点M 为线段1C B 中点时,MFOE S 矩形最大.(3)由题意,(0,1)C -,1(0,1)C ,以C 、1C 、P 、Q 为顶点的四边形为平行四边形,分以下两种情况:①1C C 为边,则1//C C PQ ,1C C PQ =,设1(,1)2P m m +,211(,1)22Q m m m --,2111|(1)(1)|2222m m m ∴---+=,解得:14m =,22m =-,32m =,40m =(舍), 1(4,3)P ,1(4,5)Q ;2(2,0)P -,2(2,2)Q -;3(2,2)P ,3(2,0)Q②1C C 为对角线,1C C 与PQ 互相平分,1C C 的中点为(0,0), PQ ∴的中点为(0,0),设1(,1)2P m m +,则211(,1)22Q m m m -+-2111(1)(1)0222m m m ∴+++-=,解得:10m =(舍去),22m =-, 4(2,0)P ∴-,4(2,0)Q ;综上所述,点P 和点Q 的坐标为:1(4,3)P ,1(4,5)Q 或2(2,0)P -,2(2,2)Q -或3(2,2)P ,3(2,0)Q 或4(2,0)P -,4(2,0)Q .8.(2020•潢川县一模)如图,抛物线252y ax bx =++与直线AB 交于点(1,0)A -,5(4,)2B .点D 是抛物线A ,B 两点间部分上的一个动点(不与点A ,B 重合),直线CD 与y 轴平行,交直线AB 于点C ,连接AD ,BD . (1)求抛物线的解析式;(2)设点D 的横坐标为m ,ADB ∆的面积为S ,求S 关于m 的函数关系式,并求出当S 取最大值时的点C 的坐标;(3)当点D 为抛物线的顶点时,若点P 是抛物线上的动点,点Q 是直线AB 上的动点,判断有几个位置能使以点P ,Q ,C ,D 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【解答】解:(1)抛物线252y ax bx =++与直线AB 交于点(1,0)A -,5(4,)2B .∴5025516422a b a b ⎧=-+⎪⎪⎨⎪=++⎪⎩,解得,122a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式是215222y x x =-++(2)如图1,过点B 作BF DE ⊥于点F . 点(1,0)A -,5(4,)2B ,∴易求直线AB 的解析式为:1122y x =+. 又点D 的横坐标为m ,∴点C 的坐标是11(,)22m m +,点D 的纵坐标是215(2)22m m -++1AE m ∴=+,4BF m =-,213222CD m m =-++,22111353125()(2)(14)()(14)22224216S CD AE BF m m m m m m ∴=+=⨯-++⨯++-=--+-<<.∴当32m =时,S 取最大值12516,此时3(2C ,5)4;(3)假设存在这样的点P 、Q 使以点P ,Q ,C ,D 为顶点的四边形为平行四边形. 点D 是抛物线的顶点, 9(2,)2D ∴,3(2,)2C .①如图2,当//PQ DC ,PQ DC =时. 设215(,2)22P x x x -++,则11(,)22Q x x +,21511232222x x x ∴-++--=,解得,1x =或2x =(舍去), (1,1)Q ∴;②如图3,当//CD PQ ,且CD PQ =时. 设215(,2)22P x x x -++,则11(,)22Q x x +,∴21115232222x x x ++--=, 解得,5x =或2x =-, (5,3)Q ∴、1(2,)2Q '--;③如图4,当//PC DQ ,且PC DQ =时.过点P 作PE CD ⊥于点E ,过点Q 作QF CD ⊥于点F .则PE QF =,DE FC =. 设215(,2)22P x x x -++,则215(2,2)22E x x -++,51(4,)22Q x x ∴--,51(2,)22F x -,∴由DE CF =得,2915513(2)222222x x x --++=--, 解得,1x =或2x =(舍去), (3,2)Q ∴综上所述,符合条件的点Q 的坐标有:(1,1)、(5,3)、1(2,)2--、(3,2).。

中考数学压轴题精讲特训 因动点产生的平行四边形问题(含试题,含详解)

中考数学压轴题精讲特训 因动点产生的平行四边形问题(含试题,含详解)

因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题如图1,已知抛物线y =-x 2+bx +c 经过A (0, 1)、B (4, 3)两点. (1)求抛物线的解析式; (2)求tan ∠ABO 的值;(3)过点B 作BC ⊥x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线段AB 于点N ,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标.图1动感体验请打开几何画板文件名“13松江24”,拖动点N 在直线AB 上运动,可以体验到,以M 、N 、C 、B 为顶点的平行四边形有4个,符合MN 在抛物线的对称轴的左侧的平行四边形MNCB 只有一个.请打开超级画板文件名“13松江24”,拖动点N 在直线AB 上运动,可以体验到,MN 有4次机会等于3,这说明以M 、N 、C 、B 为顶点的平行四边形有4个,而符合MN 在抛物线的对称轴的左侧的平行四边形MNCB 只有一个. 思路点拨1.第(2)题求∠ABO 的正切值,要构造包含锐角∠ABO 的角直角三角形. 2.第(3)题解方程MN =y M -y N =BC ,并且检验x 的值是否在对称轴左侧. 满分解答(1)将A (0, 1)、B (4, 3)分别代入y =-x 2+bx +c ,得1,164 3.c b c =⎧⎨-++=⎩ 解得92b =,c =1. 所以抛物线的解析式是2912y x x =-++. (2)在Rt △BOC 中,OC =4,BC =3,所以OB =5. 如图2,过点A 作AH ⊥OB ,垂足为H .在Rt △AOH 中,OA =1,4sin sin 5AOH OBC ∠=∠=,所以4sin 5AH OA AOH =⋅∠=. 图2所以35OH =,225BH OB OH =-=. 在Rt △ABH 中,4222tan 5511AH ABO BH ∠==÷=.(3)直线AB 的解析式为112y x =+.设点M 的坐标为29(,1)2x x x -++,点N 的坐标为1(,1)2x x +,那么2291(1)(1)422MN x x x x x =-++-+=-+.当四边形MNCB 是平行四边形时,MN =BC =3.解方程-x 2+4x =3,得x =1或x =3.因为x =3在对称轴的右侧(如图4),所以符合题意的点M 的坐标为9(1,)2(如图3).图3 图4考点伸展第(3)题如果改为:点M 是抛物线上的一个点,直线MN 平行于y 轴交直线AB 于N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点M 的坐标.那么求点M 的坐标要考虑两种情况:MN =y M -y N 或MN =y N -y M .由y N -y M =4x -x 2,解方程x 2-4x =3,得27x =±(如图5).所以符合题意的点M 有4个:9(1,)2,11(3,)2,57(27,)2--,57(27,)2++.图5例2 2012年福州市中考第21题如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C 以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图2动感体验请打开几何画板文件名“12福州21”,拖动左图中的点P运动,可以体验到,PQ的中点M的运动路径是一条线段.拖动右图中的点Q运动,可以体验到,当PQ//AB时,四边形PDBQ为菱形.请打开超级画板文件名“12福州21”,拖动点Q向上运动,可以体验到,PQ的中点M 的运动路径是一条线段.点击动画按钮的左部,Q的速度变成1.07,可以体验到,当PQ//AB 时,四边形PDBQ为菱形.点击动画按钮的中部,Q的速度变成1.思路点拨1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径.满分解答(1)QB=8-2t,PD=43t.(2)如图3,作∠ABC的平分线交CA于P,过点P作PQ//AB交BC 于Q,那么四边形PDBQ是菱形.过点P作PE⊥AB,垂足为E,那么BE=BC=8.在Rt△ABC中,AC=6,BC=8,所以AB=10.图3在Rt△APE中,23cos5AEAAP t===,所以103t=.当PQ//AB时,CQ CPCB CA=,即106386CQ-=.解得329CQ=.所以点Q的运动速度为3210169315÷=.(3)以C为原点建立直角坐标系.如图4,当t=0时,PQ的中点就是AC的中点E(3,0).如图5,当t=4时,PQ的中点就是PB的中点F(1,4).直线EF的解析式是y=-2x+6.如图6,PQ的中点M的坐标可以表示为(62t-,t).经验证,点M(62t-,t)在直线EF上.所以PQ的中点M的运动路径长就是线段EF的长,EF=25.图4 图5 图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t=2时,PQ的中点为(2,2).设点M的运动路径的解析式为y=ax2+bx+c,代入E(3,0)、F(1,4)和(2,2),得930,4,42 2.a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩解得a=0,b=-2,c=6.所以点M的运动路径的解析式为y=-2x+6.例3 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、H为顶点的四边形为菱形?请直接写出t的值.图1动感体验请打开几何画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB 的中点时,△ACG的面积最大.观察右图,我们构造了和△CEQ中心对称的△FQE和△ECH′,可以体验到,线段EQ的垂直平分线可以经过点C和F,线段CE的垂直平分线可以经过点Q 和H′,因此以C、Q、E、H为顶点的菱形有2个.请打开超级画板文件名“12烟台26”,拖动点P在AB上运动,可以体验到,当P在AB 的中点时,即t=2,△ACG的面积取得最大值1.观察CQ,EQ,EC的值,发现以C、Q、E、H 为顶点的菱形有2个.点击动画按钮的左部和中部,可得菱形的两种准确位置。

中考复习专题之五---因动点问题产生的梯形问题

中考复习专题之五---因动点问题产生的梯形问题

因动点产生的梯形问题例1:已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标; (2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形.①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y=3x -3交于点E ,若73tan =∠DPE ,求四边形BDEP 的面积.图1动感体验请打开几何画板文件名“12松江24”,拖动点P 向右运动,可以体验到,D 、P 间的垂直距离等于7保持不变,∠DPE 与∠PDH 保持相等.请打开超级画板文件名“12松江24”, 拖动点P 向右运动,可以体验到,D 、P 间的垂直距离等于7保持不变,∠DPE 与∠PDH 保持相等,tan 0.43DPE ∠≈,四边形BDEP 的面积为24.思路点拨1.这道题的最大障碍是画图,A 、B 、C 、D 四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了.2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D 、P 两点间的垂直距离等于7.3.已知∠DPE 的正切值中的7的几何意义就是D 、P 两点间的垂直距离等于7,那么点P 向右平移到直线x =3时,就停止平移.满分解答(1)直线y =3x -3与x 轴的交点为A (1,0),与y 轴的交点为B (0,-3). 将A (1,0)、B (0,-3)分别代入y =ax 2+2x +c , 得20,3.a c c ++=⎧⎨=-⎩ 解得1,3.a c =⎧⎨=-⎩ 所以抛物线的表达式为y =x 2+2x -3. 对称轴为直线x =-1,顶点为(-1,-4).(2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD //AB ,设直线CD 的解析式为y =3x +b , 代入点C (-2,-3),可得b =3.所以点D 的坐标为(0,3).②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE .由73tan =∠DPE ,得3tan 7PH PDH DH ∠==.而DH =7,所以PH =3.因此点E 的坐标为(3,6). 所以1()242BDEP S BD EP PH =+⋅=梯形.图2 图3考点伸展第(2)①用几何法求点D 的坐标更简便: 因为CD //AB ,所以∠CDB =∠ABO .因此13BC OA BD OB ==.所以BD =3BC =6,OD =3.因此D (0,3).例2:如图1,把两个全等的Rt △AOB 和Rt △COD 方别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y =ax 2+bx +c 经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点P 为线段OC 上的一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移的过程中与△COD 重叠部分的面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.图1动感体验请打开几何画板文件名“12衢州24”, 拖动点P 在线段OC 上运动,可以体验到,在AB 的左侧,存在等腰梯形ABPM .拖动点A ′在线段AC 上运动,可以体验到,Rt △A ′OB ′、Rt △COD 、Rt △A ′HG 、Rt △OEK 、Rt △OFG 和Rt △EHK 的两条直角边的比都为1∶2.请打开超级画板文件名“12衢州24”,拖动点P 在线段OC 上运动,可以体验到,在AB 的左侧,存在AM=BP .拖动点A ′在线段AC 上运动,发现S 最大值为0.375.思路点拨1.如果四边形ABPM 是等腰梯形,那么AB 为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB 边分成的3小段,两侧的线段长线段.2.△AOB 与△COD 重叠部分的形状是四边形EFGH ,可以通过割补得到,即△OFG 减去△OEH . 3.求△OEH 的面积时,如果构造底边OH 上的高EK ,那么Rt △EHK 的直角边的比为1∶2. 4.设点A ′移动的水平距离为m ,那么所有的直角三角形的直角边都可以用m 表示.满分解答(1)将A (1,2)、O (0,0)、C (2,1)分别代入y =ax 2+bx +c ,得2,0,42 1.a b c c a b c ++=⎧⎪=⎨⎪++=⎩解得32a =-,72b =,0c =. 所以23722y x x =-+. (2)如图2,过点P 、M 分别作梯形ABPM 的高PP ′、MM ′,如果梯形ABPM 是等腰梯形,那么AM ′=BP ′,因此yA -y M ′=yP ′-yB .直线OC 的解析式为12y x =,设点P 的坐标为1(,)2x x ,那么237(,)22M x x x -+. 解方程23712()222x x x --+=,得123x =,22x =.x =2的几何意义是P 与C 重合,此时梯形不存在.所以21(,)33P .图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K . 设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+.在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=.在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK .因此4432332OK OH m m ==⨯=.所以12EK OK m ==.所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=.于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+.因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.考点伸展第(3)题也可以这样来解:设点A ′的横坐标为a .由直线AC :y =-x +3,可得A ′(a , -a +3).由直线OC:12y x=,可得1(,)2F a a.由直线OA:y=2x及A′(a, -a+3),可得直线O′A′:y=2x-3a+3,33(,0)2aH-.由直线OC和直线O′A′可求得交点E(2a-2,a-1).由E、F、G、H 4个点的坐标,可得例3:已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.备用图动感体验请打开几何画板文件名“11海淀24”,拖动点P在OA上运动,观察PQ的长随点P变化的跟踪点,可以体验到,当P运动到OA的中点时,PQ的长取得最大值.答案(1)抛物线的解析式为y=x2-2x,直线的解析式为y=2x.(2)如图1,当P为OA的中点时,PQ的长度取得最大值为4.(3)如图2,如果四边形AOMN是梯形,那么点N的坐标为(3,3),梯形AOMN的面积为9.图1 图2例 4:已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图2动感体验请打开几何画板文件名“11义乌24”,拖动点M 从P 向O 运动,可以体验到,M 在到达PO 的中点前,重叠部分是三角形;经过中点以后,重叠部分是梯形.思路点拨1.第(2)题可以根据对边相等列方程,也可以根据对角线相等列方程,但是方程的解都要排除平行四边形的情况.2.第(3)题重叠部分的形状分为三角形和梯形两个阶段,临界点是PO 的中点.满分解答(1)设抛物线的解析式为2(4)y a x k =-+,代入A (2,0)、C (0,12) 两点,得40,1612.a k a k +=⎧⎨+=⎩解得1,4.a k =⎧⎨=-⎩所以二次函数的解析式为22(4)4812y x x x =--=-+,顶点P 的坐标为(4,-4). (2)由2812(2)(6)y x x x x =-+=--,知点B 的坐标为(6,0).假设在等腰梯形OPBD ,那么DP =OB =6.设点D 的坐标为(x ,2x ).由两点间的距离公式,得22(4)(24)36x x -++=.解得25x =或x =-2.如图3,当x =-2时,四边形ODPB 是平行四边形. 所以,当点D 的坐标为(52,54)时,四边形OPBD 为等腰梯形.图3 图4 图5(3)设△PMN 与△POB 的高分别为PH 、PG .在Rt △PMH 中,2PM t =,PH MH t ==.所以'24P G t =-.在Rt △PNH 中,PH t =,1122NH PH t ==.所以32MN t =.① 如图4,当0<t ≤2时,重叠部分的面积等于△PMN 的面积.此时2133224S t t t =⨯⋅=.②如图5,当2<t <4时,重叠部分是梯形,面积等于△PMN 的面积减去△P ′DC 的面积.由于2''P DC PMN S P G S PH ⎛⎫= ⎪⎝⎭△△,所以222'2433(24)44P DC t S t t t -⎛⎫=⨯=- ⎪⎝⎭△. 此时222339(24)1212444S t t t t =--=-+-.考点伸展第(2)题最好的解题策略就是拿起尺、规画图:方法一,按照对角线相等画圆.以P 为圆心,OB 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.方法二,按照对边相等画圆.以B 为圆心,OP 长为半径画圆,与直线y =2x 有两个交点,一个是等腰梯形的顶点,一个是平行四边形的顶点.例5 :如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1动感体验请打开几何画板文件名“10杭州24”,拖动点Q 在抛物线上运动,从t 随x 变化的图象可以看到,t 是x 的二次函数,抛物线的开口向下.还可以感受到,PQ ∶CM =1∶2只有一种情况,此时Q 在y 轴上;CM ∶PQ =1∶2有两种情况.思路点拨1.第(1)题求点M 的坐标以后,Rt △OCM 的两条直角边的比为1∶2,这是本题的基本背景图. 2.第(2)题中,不变的关系是由平行得到的等角的正切值相等,根据数形结合,列关于t 与x 的比例式,从而得到t 关于x 的函数关系.3.探求自变量x 的取值范围,要考虑梯形不存在的情况,排除平行四边形的情况.4.梯形的两底的长度之比为1∶2,要分两种情况讨论.把两底的长度比转化为QH 与MO 的长度比.满分解答(1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2).(2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122t x x =-+-. 如图3,当P 与C 重合时,4t =-,解方程21422x x -=-+-,得15x =±.如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2. 因此自变量x 的取值范围是15x ≠±,且x ≠± 2的所有实数.图2 图3 图4②因为sin ∠QPH =sin ∠MCO ,所以HQ OMPQ CM=,即PQ HQ CM OM =.当12PQ HQ CM OM ==时,112HQ OM ==.解方程21114x +=,得0x =(如图5).此时2t =-. 当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144x +=,得23x =±. 如图6,当23x =时,823t =-+;如图6,当23x =-时,823t =--.图5 图6 图7考点伸展本题情境下,以Q 为圆心、QM 为半径的动圆与x 轴有怎样的位置关系呢?设点Q 的坐标为21,14x x ⎛⎫+ ⎪⎝⎭,那么222222111144QM x x x ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭.而点Q 到x 轴的距离为2114x +. 因此圆Q 的半径QM 等于圆心Q 到x 轴的距离,圆Q 与x 轴相切.例 6 :已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“10奉贤24”,分别双击按钮“MO //AD ”、“MA //OD ”和“MD //OA ”,可以体验到,在“MO //AD ”和“MA //OD ”两种情况下,根据两直线平行,内错角相等,可以判定直角三角形相似;在“MD //OA ”情况下,根据对称性可以直接得到点M 的坐标.思路点拨1.用待定系数法求抛物线的解析式,设交点式比较简便.2.过△AOD 的三个顶点分别画对边的平行线与抛物线相交,可以确定存在三个梯形. 3.用抛物线的解析式可以表示点M 的坐标.满分解答(1)因为BC //x 轴,点D 在BC 上,C (0,-2),所以点D 的纵坐标为-2.把y =-2代入x y 32-=,求得x =3.所以点D 的坐标为(3,-2).(2)由于抛物线与x 轴交于点O 、A (4,0),设抛物线的解析式为y =ax (x -4),代入D (3,-2),得23a =.所求的二次函数解析式为2228(4)333y x x x x =-=-. (3) 设点M 的坐标为228,33x x x ⎛⎫- ⎪⎝⎭. ①如图2,当OM //DA 时,作MN ⊥x 轴,DQ ⊥x 轴,垂足分别为N 、Q .由tan ∠MON =tan ∠DAQ ,得228332x x x-=.因为x =0时点M 与O 重合,因此28233x -=,解得x =7.此时点M 的坐标为(7,14). ②如图3,当AM //OD 时,由tan ∠MAN =tan ∠DOQ ,得22823343x xx -=-. 因为x =4时点M 与A 重合,因此2233x -=,解得x =-1.此时点M 的坐标为10(1,)3-.③如图4,当DM //OA 时,点M 与点D 关于抛物线的对称轴对称,此时点M 的坐标为(1,-2).图2 图3 图4考点伸展第(3)题的①、②用几何法进行计算,依据是两直线平行,内错角的正切相等.如果用代数法进行,计算过程比较麻烦.以①为例,先求出直线AD 的解析式,再求出直线OM 的解析式,最后解由直线OM 和抛物线的解析式组成的二元二次方程组.例7:如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图1动感体验请打开几何画板文件名“09广州25”,可以看到,△ABC 是以AB 为斜边的直角三角形,AB 是它的外接圆直径,拖动点M 在y 轴上运动,可以体验到,过M 的直线与圆相切或者相交时有公共点.在抛物线上有两个符合条件的点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形.思路点拨1.根据△ABC 的面积和AB 边上的高确定AB 的长,这样就可以把两个点的坐标用一个字母表示. 2.数形结合,根据点A 、B 、C 的坐标确定OA 、OB 、OC 间的数量关系,得到△AOC ∽△COB ,从而得到△ABC 是以AB 为斜边的直角三角形,AB 是它的外接圆直径,再根据对称性写出m 的取值范围.3.根据直角梯形的定义,很容易确定符合条件的点D 有两个,但是求点D 的坐标比较麻烦,根据等角的正切相等列方程相对简单一些.满分解答(1)因为OC =1,△ABC 的面积为45,所以AB =25. 设点A 的坐标为(a ,0),那么点B 的坐标为(a +25,0).设抛物线的解析式为)25)((---=a x a x y ,代入点C (0,-1),得1)25(-=+a a .解得21-=a 或2-=a .因为二次函数的解析式q px x y ++=2中,0<p ,所以抛物线的对称轴在y 轴右侧.因此点A 、B 的坐标分别为)0,21(-,)0,2(.所以抛物线的解析式为123)2)(21(2--=-+=x x x x y . (2)如图2,因为1=⋅OB OA ,12=OC ,所以OBOC OC OA =.因此△AOC ∽△COB .所以△ABC 是以AB 为斜边的直角三角形,外接圆的直径为AB . 因此m 的取值范围是45-≤m ≤45.图2 图3 图4(3)设点D 的坐标为))2)(21(,(-+x x x . ①如图3,过点A 作BC 的平行线交抛物线于D ,过点D 作DE ⊥x 轴于E .因为OBC DAB ∠=∠tan tan ,所以21==BO CO AE DE .因此2121)2)(21(=+-+x x x .解得25=x .此时点D 的坐标为)23,25(. 过点B 作AC 的平行线交抛物线于D ,过点D 作DF ⊥x 轴于F .因为CAO DBF ∠=∠tan tan ,所以2==AO CO BF DF .因此22)2)(21(=--+xx x .解得25-=x .此时点D 的坐标为)9,25(-. 综上所述,当D 的坐标为)23,25(或)9,25(-时,以A 、B 、C 、D 为顶点的四边形为直角梯形.考点伸展第(3)题可以用代数的方法这样解:例如图3,先求得直线BC 为121-=x y ,再根据AD //BC 求得直线AD 为4121+=x y ,由直线AD 和抛物线的解析式组成的方程组,得到点D 的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档