第2讲 巧添辅助 妙解竞赛题
小学奥数智巧趣题题库教师版精编版
智巧趣题顾名思义,就是有趣的一类问题,但回答时要十分小心,稍有不慎,就可能落入“圈套”。
要想正确地解答这类题目,一是细心,善于观察,全面考虑各种情况;二是要充分运用生活中学到的知识;三是需要那么一点思考问题的灵气和非常规的思考方法。
本讲主要是通过数学趣题的研究学习引发学生学习奥数的兴趣,激发学生学习奥数的灵感,充分调动学生学习奥数的积极性。
智巧趣题主要依靠巧妙的构思而解决问题,其中包括火柴棍游戏、数的恰当排列、称量问题及直线或圆周形状的报数问题。
【例 1】 用数字1,1,2,2,3,3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字。
【解析】 312132 231213【巩固】 把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段?【解析】 对折一次: 2*2-1=3段 对折二次:4*2-3=5段 对折三次:8*2-7=9段.【例 2】 12345679999999999⨯【解析】 粗看起来,本题应该是利用了99999999910000000001=-这个知识点。
于是有:()123456799999999991234567910000000001123456790000000001234567912345678987654321⨯=⨯-=-= 注意12345679到这个数字的特殊性质,123456799111111111⨯=,可以得到1234567999999999912345679911111111111111111111111111112345678987654321⨯=⨯⨯=⨯=【例 3】 有10张,卡片分别标有从2开始的10个连续偶数。
如果将它们分成5组,每组两张,计算同组中两个偶数和分别得到①34,②22,③16,④30,⑤8。
那么每组中的两张卡片上标的数各是多少?【解析】 10个连续偶数是:2,4,6,8,10,12,14,16,18,208=2+6 16=4+12 22=14+8 30=20+10 34=16+18【例 4】 售货员把29个乒乓球分装在5个盒子里,使得只要顾客所买的乒乓个数小于30,他总可以恰好把其中的一盒或几盒卖出,而不必拆盒。
巧题妙解第二期
故
n +2 <a n <1 n +1
7. 试求四个分数, 使得其中任意两数之积加 1, 皆为某个有理数的平方.(只需 求出一组即可) 8. 设 w(n)表示自然数 n 的素因数个数,n>1.证明:存在无穷多个 n,使得 w(n)<w(n+1)<w(n+2). (王连笑《通过试验证明数论中的存在性问题》 ,中等数学 1999 年 02 期) 9. 求
1
5. 定义数列 x1,x2,x3⋯如下: 已知 x1∈ [0, 1Hale Waihona Puke 且 xn + 1 = xn
-[
1
xn
] ( xn ≠ 0 )
.试
0 ( xn = 0 )
证明: 对一切 n∈N, 有 x1+x2+⋯+xn<
F1 F2
+
F2 F3
+⋯+
Fn Fn + 1
. 此处{Fn}为斐波那契数
列: F1=F2=1, 且对 n≥1,有 Fn+2=Fn+1+Fn . 证明:先考虑 n=2 时的情况(证明 x 1 +x 2 <1.5= x 1 =0 时,x 2 =0,x 1 +x 2 <1.5 0.5∠x 1 <1 时,x 1 +x 2 =x 1 +
②
F1 F2 F1 F2
+
F2 F3 F2 F3
+...+
Fk F k+ 1 F k+ 1 F k+ 2
③
x 2 +x 3 +...+x k+ 2 <
七年级数学上册 1.1 数学伴我们成长 奇思妙解题素材 (新版)华东师大版
奇思妙解题奇思妙解题用游戏方式设计,充分训练你的假设,提问、推论及想像力.快速提高你的学习质量和速度,让你在挑战难题的乐趣中提升智力水平,同时增进脑力、提高创造性.下面仅举3例供同学们欣赏.例1:教室里有9盏灯,每盏灯都有一根拉线开关.开始,9盏等全部关着,如果每回拉动其中的8盏灯的开关各一次,试问:⑴你能否经过若干回,把9盏灯全部开亮?如果能够,请说出一种方案;如果不能,请说明理由.⑵假若教室里有8盏灯,每回拉动其中7盏灯各一次,情况又如何呢?分析:⑴9盏灯,每回拉动其中的8盏灯的开关各一次,是不可能把9盏灯全部开亮的.若要使9盏灯全部由灭变亮,每盏灯的开关均应拉动奇数次,而奇数个奇数之和仍为奇数,这就是说,要使9盏灯全部由灭变亮,必须共拉动奇数次开关,如果每回拉动其中的8盏灯的开关,则无论拉多少回,,总是拉动了偶数次,所以,不可能把9盏灯全部开亮.⑵8盏灯,每回拉动其中7盏灯的开关各一次,经过若干回是可以把8盏灯全部开亮的,由题⑴分析可知:对一盏关着的灯来说,拉动奇数次开关,电灯由灭变亮;若拉动偶数次开关,电灯与原来的熄灭状态相同.我们可以作简单的操作:不妨将8盏灯编上1、2、3、……、8号,第一回拉动除1号灯以外的7盏灯的开关各一次,第二回拉动除2号灯以外的7盏灯的开关各一次,……,第八回拉动除8号灯以外的7盏灯的开关各一次,这样8盏灯的开关均被拉动了7次(奇数次),因而灯全部由灭变亮.品思感悟:本题看似无从下手,但是利用奇偶数的性质就简单地解决了.可见求解不同类型的题目时方法和解题的思路更重要些.因为对一盏关着的灯来说,拉动奇数次开关,电灯由灭变亮;若拉动偶数次开关,电灯与原来的熄灭状态相同.例2:七年级一班举行一次象棋比赛,每两个选手恰好比赛一局,每局赢者记2分,输着记0分,平局每个选手各记一分,今有4名同学统计了这次比赛全部得分的总数,由于有的同学粗心,其统计的总分各不相同,经查实其中只有一名同学统计正确,四个同学统计的分数如下,其中正确的是( )A.719B.720C. 721D.723分析:每局比赛不论胜负如何,双方得分的和为2,因此全部得分的总和应为偶数,所以只有720是正确的.故选B.例3:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷阱”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数R=______.分析:任取一个自然数294,(2+9+4)×3+1=46,(4+6)×3+1=31,(3+1)×3+1=13,(1+3)×3+1=13,……,所以这个固定不变的数是13.归纳整理:不管你开始写的是一个什么数,几步之后变成的自然数总是相同的,最后这个相同的数就称它为“黑洞数”.。
高中数学竞赛 平面几何讲座第2讲 巧添辅助 妙解竞赛题
第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆例1 如图1,在△ABC 中,AB =AC ,D 是底边BC上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD .分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能 直接证出BD =2CD .若延长AD 交△ABC 的外接圆 于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF .作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆 例2 凸四边形ABCD 中,∠ABC =60°,∠BAD = ∠BCD =90°,AB =2,CD =1,对角线AC 、BD 交于点O ,如图2. 则sin ∠AOB =____.分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可.解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. A B GC D FE 图1A B C D PO图2故sin ∠AOB =263615+. 例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD .分析:因S △ABC =43BC 2=43AC ·BC ,只 须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =43AC ·BC =43AP ·BD .2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长.分析:由“AD =DC =DB =p ”可知A 、B 、C 在 半径为p 的⊙D 上.利用圆的性质即可找到AC 与 p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上. ∵AB ∥CD ,∴= 从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故AC =22AE CE -=224q p -.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的AA图3BP QDHC A E DC B 图4点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围.解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0).分别以BC 、DA 为直径作⊙D 、⊙E ,则 两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论. 证明:如图6,∵∠2+∠3=∠4+∠5=90°,又∠3=∠4,∠1=∠5, ∴∠1=∠2.从而,AM =AN .以AM 长为半径作⊙A ,交AB 于F ,交BA 的延长线于E .则AE =AF =AN .由割线定理有 BM ·BN =BF ·BE =(AB +AE )(AB -AF ) =(AB +AN )(AB -AN ) =AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连 结CG .因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆. 由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB=EC ·ED +FC ·FB图5E A N BF M 12345图6=EP 2+FQ 2,即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B ' C '的三边分别为a 、b 、c 与a '、b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '. 分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D ,∠BCD =∠B =∠B ',∴∠A '=∠D ,∠B '=∠BCD . ∴△A 'B 'C '∽△DCB . 有DC B A ''=CB C B ''=DB C A '',即 DC c '=a a '=DB b '.故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '.练习题1. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而AC AB =DEBD=DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.)4.如图10,AC 是ABCD 较长的对角线,过C 作 CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2. (提示:分别以BC 和CD 为直径作圆交AC 于点(1)(2)图8AC A'B'c b c'b'A BCDa bbc 图9F DAB ECG 、H .则CG =AH ,由割线定理可证得结论.) 5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线 CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE=AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点.求证:AB ·AC =AE 2-BE 2. (提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)图11。
下篇 专题二 第二讲 “妙解”难题八大方法
C.6∶3∶2
D.2∶3∶6
一虚拟法
二残基法
三思维转化法
四极限思维法
五淘汰排除法
六整体思维法
七分析推理法
八形象思维法
解析
若根据题意列式计算,则十分麻烦。若作如下拆分进
行变换推算,则十分简便。由上述三种生成物分子式得知, Ca、P元素的原子数之比为3∶2、1∶1、1∶2。变换为 3∶2、3∶3、3∶6,则P元素的原子数已变换为2∶3∶6。而 P由H3PO4提供,且浓度已定,其量的多少显然只取决于其 体积,所以H3PO4溶液体积之比为2∶3∶6。 答案 D
部分;或指分子补上某些原子或原子团后的部分。残基不是 固定的,它依据题目的特点而定。利用残基法可以确定有机
物的化学式、相对分子质量、分子组成、分子结构等。
残基法解题的基本步骤是:根据题设要求将1个已知物的化 学式拆成若干部分或补上其他部分,再利用各种信息逐步求
得其余各部分,然后再求整体。
一虚拟法
二残基法
衍生物,说明含有苯环结构,还剩下3个碳原子,由“苯 环上的一氯代物只有两种”可知,取代基在苯环上为对 位结构,结合“分子中含有两个手性碳原子”可写出结 构简式。 答案
一虚拟法
二残基法
三思维转化法
四极限思维法
五淘汰排除法
六整体思维法
七分析推理法
八形象思维法
方法解读
残基,是指分子除去某些原子或原子团后剩余的
二
残基法
【典例2】 写出同时满足下列条件的
的一种同分异构体的结构简式:________。
①属于α-氨基酸;②是苯的衍生物,且苯环上的一氯代
物只有两种;③分子中含有两个手性碳原子。
一虚拟法
二残基法
2021-2022年高中数学竞赛训练讲义及详细答案
2021-2022年高中数学竞赛训练讲义及详细答案一、选择题1、为互不相等的正数,,则下列关系中可能成立的是( ).、; 、 ; 、; 、;2、设 ,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则( ).、; 、 ; 、; 、;3、设为锐角,,则的大小顺序为( ).、; 、 ; 、; 、;4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).、; 、; 、; 、.5、正四棱锥的一个对角截面与一个侧面的面积比为,则其侧面与底面的夹角为( ).、; 、; 、; 、 .6、正整数集合的最小元素为,最大元素为,并且各元素可以从小到大排成一个公差为的等差数列,则并集中的元素个数为( ).、 、; 、; 、. 二、填空题 7、若实数满足:1031031031031,125263536x y x y+=+=++++,则 .8、抛物线顶点为,焦点为,是抛物线上的动点,则的最大值为 .9、计算 .10、过直线:上的一点作一个长轴最短的椭圆,使其焦点为,则椭圆的方程为 . 11、把一个长方体切割成个四面体,则的最小值是 .12、将各位数码不大于的全体正整数按自小到大的顺序排成一个数列,则 .三、解答题 13、数列满足:;令A B CD12111,1,2,k ky k a a a =+++=;求 .15、若四位数的各位数码中,任三个数码皆可构成一个三角形的三条边长,则称为四位三角形数,试求所有四位三角形数的个数.参考答案一、选择题(本题满分36分,每小题6分)1、为互不相等的正数,,则下列关系中可能成立的是( ) 、; 、 ; 、; 、;答案:;解:若,则,不合条件,排除,又由,故与同号,排除;且当时,有可能成立, 例如取,故选.2、设 ,又记()()()()()11,,1,2,,k kf x f x f x f f x k +===则( )、; 、 ; 、; 、; 答案:;解:()()1121111,11f x f x f x x f x++===---, ()()323423111,111f f x f x f x x f x f ++-====-+-,据此,()()414211,1n n x f x f x x x+++==--,()()4341,1n n x f x f x x x +-==+,因为型,故选. 3、设为锐角,,则的大小顺序为( ) 、; 、 ; 、; 、; 答案:;解:sin cos 1sin cos sin cos x y αααααα+=≥=++,2sin cos sin cos z y αααα=≤=<=+,故.4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).、; 、; 、; 、. 答案:;解:选两色有种,一色选择对角有种选法,共计种; 选三色有种,其中一色重复有种选法,该色选择对角有种选法,另两色选位有种,共计种;四色全用有种(因为固定位置),合计种.5、正四棱锥的一个对角截面与一个侧面的面积比为,则其侧面与底面的夹角为( ).、; 、; 、; 、 . 答案:;解:设底面正方形边长为,棱锥的高为,侧面三角形的高为,则 ,,则,.6、正整数集合的最小元素为,最大元素为,并且各元素可以从小到大排成一个公差为的等差数列,则并集中的元素个数为( ).、 、; 、; 、.答案:;解:用表示集的元素个数,设,由,得,于是,,175910032006131759A A A ==+=⨯;从而175917591003119353151A A A A A =+-=+-=.二、填空题(本题满分54分,每小题9分)A B CD7、若实数满足:1031031031031,125263536x y x y+=+=++++,则 .答案:; 解:据条件,是关于的方程的两个根,即()233560t x y t -+--+=的两个根,所以;.8、抛物线顶点为,焦点为,是抛物线上的动点,则的最大值为 . 答案:;解:设抛物线方程为,则顶点及焦点坐标为,若设点坐标为,则22222222242MO x y x px p MF p x px x y ++⎛⎫== ⎪⎝⎭⎛⎫++-+ ⎪⎝⎭()222222224313234444x px x px px x px x p x px ++=≤=+++++, 故.(当或时取等号)9、计算 .答案:.解:()000000012cos102sin 3010241sin10cos10sin 202⎛⎫ ⎪-⎝⎭==. 10、过直线:上的一点作一个长轴最短的椭圆,使其焦点为,则椭圆的方程为 . 答案:;解:设直线上的点为,取关于直线的对称点,据椭圆定义,12222a PF PF PQ PF QF =+=+≥== ,当且仅当共线,即,也即时,上述不等式取等号,此时, 点坐标为,据得,,椭圆的方程为. 11、把一个长方体切割成个四面体,则的最小值是 . 答案:;解:据等价性,只须考虑单位正方体的切割情况,先说明个不够,若为个,因四面体的面皆为三角形,且互不平行,则正方体的上底至少要切割成两个三角形,下底也至少要切割成两个三角形,每个三角形的面积,且这四个三角形要属于四个不同的四面体,以这种三角形为底的四面体,其高,故四个不同的四面体的体积之和,不合;所以,另一方面,可将单位正方体切割成个四面体; 例如从正方体中间挖出一个四面体,剩下四个角上的四面体,合计个四面体.12、将各位数码不大于的全体正整数按自小到大的顺序排成一个数列,则 .答案:; 解:简称这种数为“好数”,则一位好数有个;两位好数有个;三位好数有个;…,位好数有个;,记,因,,即第个好数为第个六位好数;而六位好数中,首位为的共有个,前两位为的各有个,因此第个好数的前两位数为,且是前两位数为的第个数;而前三位为的各个,则的前三位为,且是前三位数为的第个数;而前四位为的各个,则的前四位为,且是前四位数为的第个数;则的前五位为,且是前五位数为的第个数,则.三、解答题(本题满分60分,每小题20分)1A13、数列满足:()()111,211n n n na a a n na +==++;令 12111,1,2,k ky k a a a =+++=;求解:改写条件式为,则()()()112211111111111122n n n n n na na n a n a n a a a a ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭, 所以,111111111k kk i i i k x a i i k k ==⎛⎫==-=-= ⎪+++⎝⎭∑∑; ()2111111kk k kk i i i i i y i i i i a ======+=+=∑∑∑∑()()()()()121112623k k k k k k k k ++++++=;()()()()22111121112233236nnk kk k n n n n n x y k k ==+++⎛⎫=+=+⋅ ⎪⎝⎭∑∑. 15、若四位数的各位数码中,任三个数码皆可构成一个三角形的三条边长,则称为四位三角形数,试求所有四位三角形数的个数.解:称为的数码组,则{},,,1,2,,9a b c d M ∈=;一、当数码组只含一个值,为,共得个值; 二、当数码组恰含二个值,.、数码组为型,则任取三个数码皆可构成三角形,对于每个 ,可取个值,则数码组个数为,对于每组, 有种占位方式,于是这种有个.、数码组为型,,据构成三角形条件,有,共得个数码组,对于每组,有种占位方式,于是这种有个. 、数码组为型,,据构成三角形条件,有,同上得个数码组,对于每组,两个有种占位方式,于是这种有个.以上共计个.三、当数码组恰含三个值,.、数码组为型,据构成三角形条件,则有,这种有组,每组中有种占位方式,于是这种有个. 、数码组为型,,此条件等价于中取三个不同的数构成三角形的方法数,有组,每组中有种占位方式,于是这种有个.、数码组为型,,同情况,有个值. 以上共计个值.四、互不相同,则有,这种有组,每组有个排法,共得个值.综上,全部四位三角形数的个数为93049843841681+++=个.xx 年南菁高中数学竞赛训练讲义(二)一、选择题1、若点P (x ,y )在直线x+3y=3上移动,则函数f (x ,y )=的最小值等于( ) (A ) (B ) (C ) (D )2、满足的正整数数对(x ,y )( )(A )只有一对 (B )恰有有两对 (C )至少有三对 (D )不存在3、设集合M={-2,0,1},N={1,2,3,4,5},映射f :MN 使对任意的x ∈M ,都有是奇数,则这样的映射f 的个数是( )(A )45 (B )27 (C )15 (D )114、设方程1)19cos()19sin(2007220072=+y x 所表示的曲线是( ) (A )双曲线 (B )焦点在x 轴上的椭圆 (C )焦点在y 轴上的椭圆 (D )以上答案都不正确5、将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。
【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】
第一章 圆专题1巧构圆,妙解题知识解读在处理平面几何中的许多问题时,常常需要借助圆的性质,问题才能解决.而有时候我们需要的圆并不存在,这就需要我们能利用已知的条件,借助图形的特点把实际存在的圆找出来,从而运用圆中的性质来解决问题,往往有事半功倍的效果,使问题获得巧解或简解,这是我们解题必须要掌握的技巧. 作辅助圆的常用依据有以下几种:①圆的定义:若几个点到某个固定点的距离相等,则这几个点在同一个圆上; ②有公共斜边的两个直角三角形的顶点在同一个圆上;③对角互补的四边形四个顶点在同一个圆上,简记为:对角互补,四点共圆;④若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,则这两个三角形有公共的外接圆,简记为:同旁张等角,四点共圆.培优学案典例示范例1将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转(0120)αα<<得到线段AD ,连接CD . (1)连接BD .①如图1-1-1①,若α=80°,则∠BDC 的度数为;②在第二次旋转过程中,请探究∠BDC 的大小是否改变?若不变,求出∠BDC 的度数;若改变,请说明理由;(2)如图1-1-1②,以AB 为斜边作Rt △ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图1-1-1②①EDCBADBA【提示】(1)①∠BDC =∠ADC -∠ADB ,利用“等边对等角及三角形内角和为180°”可求出∠BDC 为30°; ②由题意知,AB =AC =AD ,则点B ,C ,D 在以A 为圆心,AB 为半径的圆上,利用“一条弧所对的圆周角等于它所对的圆心角的一半”可快速求出∠BDC 仍然为30°;(2)过点A 作AM ⊥CD 于点M ,连接EM ,证明“点A ,C ,D 在以M 为圆心,MC 为半径的圆上”.跟踪训练如图1-1-2,菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.若∠EAF =60°,求证:△AEF 是等边三角形.角相等”获证.图1-1-2BFEDC A例2 (1)如图1-1-3①,正方形ABCD 中,点E 是BC 边上的任意一点,∠AEF =90°,且EF 交正方形外角平分线CF 于点F .求证:AE =EF ;(2)若把(1)中的条件“点E 是BC 边上的任意一点”,改为“点E 是BC 边延长线上的一点”,其余条件不变,如图1-1-3②,那么结论AE =EF 是否还成立?若成立,请证明;若不成立,请说明理由.①②图1-1-3A B E CFDFDCEBA【提示】连接AC ,AF ,显然∠ACF =∠AEF =90°,所以A ,E ,C ,F 四点在以AF 为直径的圆上. (1)如图1-1-4①,当点E 在BC 边上,则∠AFE =∠ACE =45°,于是△AEF 是等腰直角三角形,AE =EF 获证;(2)如图1-1-4②,当点E 在BC 边的延长线上,则∠F AE =∠FCE =45°,于是△AEF 是等腰直角三角形,AE=EF 获证.F图1-1-4②①【拓展】本题将“正方形”改为“正三角形”,“∠AEF =90°”相应改为“∠AEF =60°”,仍然可以运用构造“辅助圆”的思路.还可进一步拓展为“正n 边形”,360180AEF =-∠,仍然可延续这种思路,读者可自己完成.跟踪训练已知,将一副三角板(Rt △ABC 和Rt △DEF )如图1-1-5①摆放,点E ,A ,D ,B 在一条直线上,且D 是AB的中点.将Rt △DEF 绕点D 顺时针方向旋转角(090)αα<<,在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N ,分别过点M ,N 作直线AB 的垂线,垂足为G ,H . (1)如图1-1-5②,当α=30°时,求证:AG =DH ; (2)如图1-1-5③,当α=60°时,(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当090α<<时,(1)中的结论是否成立?请写出你的结论,并根据图1-1-5④说明理由.③④图1-1-5②①HGEAF D C (N )BFE DCBA【提示】本题除了常规解法外,还可考虑构造“辅助圆”.例3 已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边于点P (点P 不与点B ,点C 重合),△BMN 的边MN 始终在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时.①如图1-1-6①,当θ=45时,∠ANC 的度数为 ; ②如图1-1-6②,当45θ≠时,①中的结论是否发生变化?说明理由;(2)如图1-1-6③,当∠BAC =∠MBN ≠90°时,请直接写出∠ANC 与∠BAC 之间的数量关系,不必证明.③②C【提示】由于在旋转过程中不变的关系是:∠BAC =∠MBN ,AB =AC ,BM =BN ,易知∠ABC =∠ACB =∠BMN =∠BNM .由∠ACB =∠BNM 可知A ,B ,N ,C 四个点在同一个圆上(如图1-1-7),则∠ANC =∠ABC =1902BAC -∠,这样思考,所有问题都会迎刃而解.跟踪训练在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1-1-8①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图1-1-8②中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.①图1-1-8②DP BACMQQM (P )CB A例4如图1-1-9,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.图1-1-9【提示】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.跟踪训练已知,如图1-1-10①,,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=43,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图1-1-10②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.若四边形CDEF的周长用t表示,请直接写出t的取值范围.图1-1-10例5已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.、① ②③图1-1-11【提示】本题除了建立方程模型,将问题转化为方程是否有解的判断外,还可以通过构造辅助圆,将问题转化为直线与圆的位置关系来讨论.跟踪训练1.如图1-1-12,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC1m .图1-1-12【提示】(1)①由直线y=-x+3写出OA=3,OB=3;由等腰直角三角形的边长关系,可得AB2;由PC⊥y轴,可得QC=1,BC=2;由对称知A'B=AB2,OA'=0A=3,然后用勾股定理求出A'C的长,也就可以求出△A'BC的周长;(2)②如果选用上一题的思路求∠BMC的正弦值,会陷入计算的麻烦,这里采用转化的思想,找到外接圆的半径,另外还应分类讨论。
新课标小学数学培优竞赛教程__五年级精练分册
新课程小学《数学培优、竞赛全程跟踪讲·学·练·考》五年级精练分册主编:杨跃目录上学期第一讲小数的巧算第二讲牛吃草问题第三讲多边形的面积3.1 面积计算3.2 等积变形3.3 列方程求面积第四讲图形的切拼第五讲列方程解应用题〈一〉第六讲逻辑推理第七讲抽屉原理下学期第八讲数的整除第九讲约数、倍数和最大公约数、最小公倍数9.1 约数和倍数9.2 最大公约数和最小公倍数第十讲质数、合数和分解质因数10.1 质数和合数10.2 分解质因数第十一讲奇数与偶数第十二讲带余除法12.1 一般余数问题12.2 同余数问题第十三讲完全平方数第十四讲分数14.1 分数的意义和性质14.2分数与小数的互化14.3 分数大小的比较第十五讲发现规律解数上学期第一讲小数的巧算[同步巩固演练]1、计算:7.93+(2.8-1.93)。
2、计算:7736-473+73。
3、计算:3.71-2.74+4.7+5.29-0.26+6.3。
4、计算:34×25×6。
5、计算:8.25×18。
6、计算:8.4÷5÷8。
7、计算:49000÷125。
8、计算:(5.25+0.125+5.75)×8。
9、计算下面各题⑴2.56-(1.65-0.97)⑵4.74+(1.26-0.77)⑶5.47-(1.47+0.84)⑷9.9×9.9+0.99⑸1.25×2.5×320010、计算:75×4.7+159×2.5 11、计算:4.25×5.24+1.52×2.51 12、计算:7142.85÷3.7÷2.7×1.7×0.7 13、计算:1.25×17.6+36÷0.8+2.64×12.514、计算:176.2+348.3+42.47+252.5+382.23 15、计算:(6.4×7.5×8.1)÷(3.2×2.5×2.7) 16、计算:15.37×7.88-9.37×7.38+1.537×21.2-93.7×0.262 [能力拓展平台]1、C.DE×A.B=A.CDE 是用字母表示的一个小数乘法算式,题中每一个字母表示一个数字,如果A.CDE <C.DE ,求A.B 所表示的数。
初中数学竞赛奥数培优资料第二辑专题21 梯形
专题21梯形阅读与思考梯形是一类具有一组对边平行而另一组对边不平行的特殊四边形,梯形的主要内容是等腰梯形、直角梯形等相关概念及性质.解决梯形问题的基本思路是:通过适当添加辅助线,把梯形转化为三角形或平行四边形,常见的辅助线的方法有:(1)过一个顶点作一腰的平行线(平移腰);(2)过一个顶点作一条对角线的平行线(平移对角线);(3)过较短底的一个顶点作另一底的垂线;(4)延长两腰,使它们的延长线交于一点,将梯形还原为三角形.如图所示:例题与求解【例1】如图,在四边形ABCD中,AB//CD,∠D=2∠B,AD和CD的长度分别为a,b,那么AB的长是___________.(荆州市竞赛试题)解题思路:平移一腰,构造平行四边形、特殊三角形.【例2】如图1,四边形ABCD是等腰梯形,AB//CD.由四个这样的等腰梯形可以拼出图2所示的平行四边形.(1)求四边形ABCD四个内角的度数;(2)试探究四边形ABCD四条边之间存在的等量关系,并说明理由;(3)现有图1中的等腰梯形若干个,利用它们你能拼出一个菱形吗?若能,请你画出大致的示意图.(山东省中考试题)解题思路:对于(1)、(2),在观察的基础上易得出结论,探寻上、下底和腰及上、下底之间的关系,从作出梯形的常见辅助线入手;对于(3),在(2)的基础上,展开想象的翅膀,就可设计出若干种图形.【例3】如图,在等腰梯形ABCD中,AD//BC,AB=DC,且AC⊥BD,AF是梯形的高,梯形的面积是49cm2,求梯形的高.(内蒙古自治区东四盟中考试题)解题思路:由于题目条件中涉及对角线位置关系,不妨从平移对角线入手.【例4】如图,在等腰梯形ABCD中,AB//DC,AB=998,DC=1001,AD=1999,点P在线段AD上,问:满足条件∠BPC=900的点P有多少个?(全国初中数学联赛试题)解题思路:根据AB+DC=AD这一关系,可以在AD上取点构造等腰三角形.【例5】如图,在等腰梯形ABCD中,CD//AB,对角线AC,BD相交于O,∠ACD=600,点S,P,Q分别为OD,OA,BC的中点.(1)求证:△PQS是等边三角形;(2)若AB=5,CD=3,求△PQS的面积;(3)若△PQS的面积与△AOD的面积的比是7:8,求梯形上、下两底的比CD:AB.(“希望杯”邀请赛试题)解题思路:多个中点给人以广泛的联想:等腰三角形性质、直角三角形斜边中线、三角形中位线等.【例6】如图,分别以△ABC的边AC和BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到边AB的距离是AB的一半.(山东省竞赛试题)解题思路:本题考查了梯形中位线定理、全等三角形的判定与性质.关键是要构造能运用条件EP=PF的图形.能力训练A级1.等腰梯形中,上底:腰:下底=1:2:3,则下底角的度数是__________.(天津市中考试题)2.如图,直角梯形ABCD中,AB⊥BC,AD=3,BC=5,将腰DC绕点D逆时针方向旋转900至DE ,连接AE ,则△ADE 的面积为______________.(宁波市中考试题)3.如图,在等腰梯形ABCD 中,AB//CD ,∠A =060,∠1=∠2,且梯形的周长为30cm ,则这个等腰梯形的腰长为______________.4.如图,梯形ABCD 中,AD//BC ,EF 是中位线,G 是BC 边上任一点,如果222cm S GEF =∆,那么梯形ABCD 的面积为__________.(成都市中考试题)5.等腰梯形的两条对角线互相垂直,则梯形的高h 和中位线的长m 之间的关系是()A .m >h B .m =h C .m <hD .无法确定6.梯形ABCD 中,AB//DC ,AB =5,BC =23,∠BCD =045,∠CDA =060,则DC 的长度是()A.3327+B .8 C.219 D.38+ E.338+(美国高中考试题)7.如图,在等腰梯形ABCD 中,AC =BC +AD ,则∠DBC 的度数是()A.300 B.450 C.600 D.900(陕西省中考试8.如图,在直角梯形ABCD 中,AD//BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为()A .17172B .17174C .17178D .3(鄂州市中考试题)9.如图,在等腰梯形ABCD 中,AD //BC ,AB =CD ,点P 为BC 边上一点,PE ⊥AB ,PF ⊥CD ,BG ⊥CD ,垂足分别为E ,F ,G .求证:PE +PF =BG .(哈尔滨市中考试题)10.如图,在梯形ABCD 中,AD//BC ,E ,F 分别为AB ,AC 中点,BD 与EF 相交于G .求证:)(21AD BC GF -=.11.如图,等腰三角形ABC 中,AB =AC ,点E 、F 分别是AB 、AC 的中点,CE ⊥BF 于点O .求证:(1)四边形EBCF 是等腰梯形;(2)2222BE BC EF =+.(深圳市中考试题)12.如图1,在等腰梯形ABCD 中,AD//BC ,E 是AB 的中点,过点E 作EF//BC 交CD 于点F ,AB =4,BC =6,∠B =060.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥EF 交BC 于点M ,过M 作MN//AB 交折线ADC 于点N ,连接PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由.②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.(江西省中考试题)B 级1.如图,在梯形ABCD 中,AB//DC ,AD =BC ,AB =10,CD =4,延长BD 到E ,使DE =DB ,作EF ⊥AB 交BA 的延长线于点F ,则AF =__________.(山东省竞赛试题)2.如图,在梯形ABCD 中,AD//BC ,AB =DC =10cm ,AC 与BD 相交于G ,且∠AGD =060,设E 为CG 中点,F 是AB 中点,则EF 长为_________.(“希望杯”邀请赛试题)3.用四条线段:7,9,13,14====d c b a 作为四条边,构成一个梯形,则在所构成的梯形中,中位线的长的最大值为_________.(湖北赛区选拔赛试题)4.如图,梯形ABCD 的两条对角线AC ,BD 相交于O 点,且AO :CO =3:2,则两条对角线将梯形分成的四个小三角形面积之比为=∆∆∆∆AOB COB DOC AOD S S S S :::_________.(安徽省中考试题)第4题图第5题图第6题图5.如图,在四边形ABCD 中,AD//BC ,E 是AB 的中点,若△DEC 的面积为S ,则四边形ABCD 的面积为()A .S 25B .2S C .S 47D .S 49(重庆市竞赛试题)6.如图,在梯形ABCD 中,AD//BC ,∠B =020,∠C =070,E ,M ,F ,N 分别为AB ,BC ,CD ,DA 的中点,已知BC =7,MN =3,则EF 的值为()A .4B .214C .5D .6(全国初中数学联赛试题)7.如图,梯形ABCD 中,AB//DC ,E 是AD 的中点,有以下四个命题:①若AB +DC =BC ,则∠BEC =090;②若∠BEC =090,则AB +DC =BC ;③若BE 是∠ABC 的平分线,则∠BEC =090;④若AB +DC =BC ,则CE 是∠DCB 的平分线.其中真命题的个数是()A .1个B .2个C .3个D .4个(重庆市竞赛试题)8.如图,四边形ABCD 是一梯形,AB//CD ,∠ABC =090,AB =9cm ,BC =8cm ,CD =7cm ,M 是AD 的中点,从M 作AD 的垂线交BC 于N ,则BN 的长等于()A .1cm B .1.5cm C .2cm D .2.5cm(“希望杯”邀请赛试题)9.如图,在梯形ABCD 中,AB//DC ,M 是腰BC 的中点,MN ⊥AD .求证:ADMN S ABCD ⋅=四边形(山东省竞赛试题)10.如图,在梯形ABCD 中,AD//BC ,分别以两腰AB ,CD 为边向两边作正方形ABGE 和正方形DCHF ,设线段AD 的垂直平分线l 交线段EF 于点M.求证:点M 为EF 的中点.(全国初中数学联赛试题)11.已知一个直角梯形的上底是3,下底是7,且两条对角线的长都是整数,求此直角梯形的面积.(“东方航空杯”上海市竞赛试题)12.如图1,平面直角坐标系中,反比例函数)0,0(>>=x k xk y 的图象经过矩形OABD 的边BD 的三等分点(BD DF 31=)交AB 于E ,AB =12,四边形OEBF 的面积为16.(1)求k 值.(2)已知)0,13(C ,点P 从A 出发以0.5cm/s 速度沿AB 、BD 向D 运动,点Q 从C 同时出发,以1.5cm/s 的速度沿CO ,OA ,AB 向B 运动,其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,经过多少时间,四边形PQCB 为等腰梯形(如图2).(3)在(2)条件下,在梯形PQCB 内是否有一点M ,使过M 且与PB ,CQ 分别交于S ,T 的直线把PQCB 的面积分成相等的两部分,若存在,请写出点M 的坐标及CM 的长度;若不存在,请说明理由.专题21梯形例1a +b例2⑴上底角为120°,下底角为60°;⑵梯形的上底等于下底的一半,且等于腰长;⑶能拼出菱形,以下图形供参考:例37cm 提示:过A 作AE ∥BD 交CB 延长线于E ,则S △AEC =S 梯形ABCD .例4(1)如图a ,若E 为AD 中点,则∠BEC =90°且CE,BE 分别平分∠BCD ,∠ABC ;⑵如图b ,在BC 上取一点M ,使AB =MB ,连结AM,DM ,则∠AMD =90°;⑶如图c ,将a ,b 组合,则四边形GEHM 为矩形.图a 图b 图c∴当P 为AD 中点时,可以证明∠BPC =90°;在AD 上截取AP =AB ,可以证明∠BPC =90°,故满足条件∠BPC =90°的点P 有2个.例5⑴连结SC,PB .∴△OCD,△OAB 均为等边三角形,S ,P ,Q 分别为OD,OA,BC 中点,∴SQ =12BC =12AD =SP =PQ .故△SPQ 为等边三角形.⑵∵SB =12DO +OB =132,CS =323,BC =7.∴△SPQ 的边长SQ =12BC =72.∴S △SPQ =34×(72)2=49316.(3)设CD =a ,AB =b (a <b ),BC 2=SC 2+BS 2=(32a )2+(b +a 2)2=a 2+b 2+ab .∴S △SPQ =316(a 2+ab +b 2).又S △AOD S △COD =b a,则S △AOD =34ab .又S △AOD S △COD =b a ,则S △AOD =34ab .∵S △PQS S △AOD =78,∴8×316(a 2+ab +b 2)=7×34ab .即2a 2-5ab +2b 2=0,化简得a b =12.故CD :AB =1:2.例6如图,分别过E,F,C,P 作AB 的垂线,垂足依次为R ,S ,T ,Q ,则PQ 就是点P 到AB的距离,且有ER ∥PQ ∥CT ∥FS ,故四边形ERSF 为直角梯形,PQ =12(ER +FS ).易证Rt △AER ≌Rt △CAT ,Rt △BFS ≌Rt △CBT ,∴ER =AT ,FS =BT ,又AT +BT =AB =ER +FS ,故PQ =12AB .A 级1.60°2.33.6cm4.82cm 25.B6.D7.C8.C 提示:如图,作点D 关于直线BC 的对称点D ',连结DD '交BC 于E ,连结AD '交BC 于P ,过D 作DF ⊥AP 于F,故PA +PD 此时最小.由BE =AD =2,EC =3,则可得:DE =4,∴DD '=8,则AD '=217.又∵AD '·DF =AD ·DD ',则DF =81717.9.提示:过P 点作PQ ⊥BG 于Q ,证明PE =BQ .10.提示:连结DF 并延长交于BC 于H ,则GF =12BH ,AD =CH .11.略12.⑴3⑵①当点N 在线段AD 上运动时,△PMN 形状不发生改变,其周长为3+7+4.②当点在线段DC 上运动时,△PMN 的形状发生改变,但MNC D 恒为等边三角形,过E 作EG BC 于G 。
初中奥林匹克数学竞赛知识点总结及训练题目-解直角三角形
初中数学竞赛辅导讲义---解直角三角形利用直角三角形中的已知元素(至少有一条是边)求得其余元素的过程叫做解直角三角形,解直角三角形有以下两方面的应用:1.为线段、角的计算提供新的途径.解直角三角形的基础是三角函数的概念,三角函数使直角三角形的边与角得以转化,突破纯粹几何关系的局限.2.解实际问题.测量、航行、工程技术等生活生产的实际问题,许多问题可转化为解直角三角形获解,解决问题的关键是在理解有关名词的意义的基础上,准确把实际问题抽象为几何图形,进而转化为解直角三角形.【例题求解】【例1】如图,已知电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,如果CD与地面成45°,∠A=60°,CD=4m,BC=(24-)m,则电线杆AB62的长为.思路点拨延长AD交BC于E,作DF⊥BC于F,为解直角三角形创造条件.【例2】如图,在四边形ABCD中,AB=24-,BC-1,CD=3,∠B=135°,∠C=90°,则∠D等于( )A.60°B.67.5°C.75°D.无法确定思路点拨通过对内分割或向外补形,构造直角三角形.注:因直角三角形元素之间有很多关系,故用已知元素与未知元素的途径常不惟一,选择怎样的途径最有效、最合理呢?请记住:有斜用弦,无斜用切,宁乘勿除.在没有直角的条件下,常通过作垂线构造直角三角形;在解由多个直角三角形组合而成的问题时,往往先解已具备条件的直角三角形,使得求解的直角三角形最终可解.【例3】如图,在△ABC中,∠=90°,∠BAC=30°,BC=l,D为BC边上一点,tan∠ADC 是方程2)1(5)1(322=+-+x x x x 的一个较大的根?求CD 的长. 思路点拨 解方程求出 tan ∠ADC 的值,解Rt △ABC 求出AC 值,为解Rt △ADC 创造条件.【例4】 如图,自卸车车厢的一个侧面是矩形ABCD ,AB=3米,BC=0.5米 ,车厢底部距离地面1.2米,卸货时,车厢倾斜的角度θ=60°.问此时车厢的最高点A 距离地面多少米?(精确到1米)思路点拨 作辅助线将问题转化为解直角三角形,怎样作辅助线构造基本图形,展开空间想象,就能得到不同的解题寻路【例5】 如图,甲楼楼高16米,乙楼坐落在甲楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30°,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好不落在乙楼上,那么两楼的距离应当是多少米?思路点拨 (1)设甲楼最高处A 点的影子落在乙楼的C 处,则图中CD 的长度就是甲楼的影子在乙楼上的高;(2)设点A 的影子落在地面上某一点C ,求BC 即可.注:在解决一个数学问题后,不能只满足求出问题的答案,同时还应对解题过程进行多方面分析和考察,思考一下有没有多种解题途径,每种途径各有什么优点与缺陷,哪一条途径更合理、更简捷,从中又能给我们带来怎样的启迪等. 若能养成这种良好的思考问题的习惯,则可逐步培养和提高我们分析探索能力.学历训练1.如图,在△ABC 中,∠A=30°,tanB=31,BC=10,则AB 的长为 .2.如图,在矩形ABCD 中.E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若tan ∠AEH =34,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为 .3.如图,旗杆AB ,在C 处测得旗杆顶A 的仰角为30°,向旗杆前北进10m ,达到D ,在D 处测得A 的仰角为45°,则旗杆的高为 .4.上午9时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,那么B 处船与小岛M 的距离为( )A .20海里B .20海里C .315海里D .3205.已知a 、b 、c 分别为△ABC 中∠A 、∠B 、∠C 的对边,若关于x 的方程02)(2=-+-+b c ax x c b 有两个相等的实根,且sinB ·cosA —cosB ·sinA =0,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.如图,在四边形ABCD 中,∠A =135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C . 4D .67.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=1,已知AD 、BD 的长是关于x 的方程02=++q px x 的两根,且tanA —tanB=2,求p 、q 的值.8.如图,某电信部门计划修建一条连结B 、C 两地的电缆,测量人员在山脚A 点测得B 、C 两地的仰角分别为30°、45°,在B 地测得C 地的仰角为60°.已知C 地比A 地高200米,则电缆BC 至少长多少米?(精确到0.1米)9.如图,在等腰Rt △ABC 中,∠C=90°,∠CBD =30,则DC AD = .10.如图,正方形ABCD 中,N 是DC 的中点.M 是AD 上异于D 的点,且∠NMB=∠MBC ,则tan ∠ABM = .11.在△ABC 中,AB=26-,BC=2,△ABC 的面积为l ,若∠B 是锐角,则∠C 的度数是 .12.已知等腰三角形的三边长为 a 、b 、c ,且c a =,若关于x 的一元二次方程022=+-c bx x 的两根之差为2,则等腰三角形的一个底角是( )A . 15°B .30°C .45°D .60°13.如图,△ABC 为等腰直角三角形,若AD=31AC ,CE=31BC ,则∠1和∠2的大小关系是( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定14.如图,在正方形ABCD 中,F 是CD 上一点,AE ⊥AF ,点E 在CB 的延长线上,EF 交AB 于点G .(1)求证:DF ×FC =BG ×EC ;(2)当tan ∠DAF=31时,△AEF 的面积为10,问当tan ∠DAF=32时,△AEF 的面积是多少?15.在一个三角形中,有一边边长为16,这条边上的中线和高线长度分别为10和9,求三角形中此边所对的角的正切值.16.台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力.据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正在以15千米/时的速度沿北偏东30°方向往C处移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?17.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H.可供使用的测量工具有皮尺、测角器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ等表示.测角器高度不计).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示).参考答案。
初中数学_巧添辅助线__解证几何题
巧添辅助线解证几何题[引出问题] 在几何证明或计算问题中.经常需要添加必要的辅助线.它的目的可以归纳为以下三点:一是通过添加辅助线.使图形的性质由隐蔽得以显现.从而利用有关性质去解题;二是通过添加辅助线.使分散的条件得以集中.从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。
值得注意的是辅助线的添加目的与已知条件和所求结论有关。
一、倍角问题研究∠α=2∠β或∠β=12∠α问题通称为倍角问题。
倍角问题分两种情形:1、∠α与∠β在两个三角形中.常作∠α的平分线.得∠1=12∠α.然后证明∠1=∠β;或把∠β翻折.得∠2=2∠β.然后证明∠2=∠α(如图一)2、∠α与∠β在同一个三角形中.这样的三角形常称为倍角三角形。
倍角三角形问题常用构造等腰三角形的方法添加辅助线(如图二)[例题解析]例1:如图1.在△ABC中.AB=AC,BD⊥AC于D。
求证:∠DBC=12∠BAC.分析:∠DBC、∠BAC所在的两个三角形有公共角∠C.可利用三角形内角和来沟通∠DBC、∠BAC和∠C的关系。
证法一:∵在△ABC中.AB=AC.∴∠ABC=∠C=12(180°-∠BAC)=90°-12∠BAC。
∵BD⊥AC于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-12∠BAC)=12∠BAC即∠DBC= 12∠BAC分析二:∠DBC、∠BAC分别在直角三角形和等腰三角形中.由所证的结论“∠DBC= ½∠BAC”中含有角的倍、半关系.因此.可以做∠A的平分线.利用等腰三角形三线合一的性质.把½∠A 放在直角三角形中求解;也可以把∠DBC沿BD翻折构造2∠DBC求解。
证法二:如图2.作AE⊥BC于E.则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC∵BD⊥AC于D∴∠DBC+∠C=90°∴∠EAC=∠DBC(同角的余角相等)即∠DBC=12∠BAC。
临场实战提分技巧 创新题 第二讲 创新问题命题规律揭秘(下) 课件
C1
的方程为
x2 2
y2
1.
2 , c 1 , b 1 ,所以椭圆
(II)(ⅰ)设
B( x2 ,
y2 )
,则椭圆 C1
在点
B
处的切线方程为
x2 2
x y2 y 1 ,令 x 0, yD
1 y2
,令 y 0 , xC
2 x2
,
所以 SOCD
1 x2 y2
,又点
B 在椭圆的第一象限上,所以 x2
y3 ) 处的切线为:
x3 2
x
y3 y
1 又 PM
过点 P(m, n) ,
所以
x3 2
m
y3n
1 ,同理点
N ( x4 ,
y4 ) 也满足
x4 2
m
y4n
1 ,所以
M,N
都在直线
x 2
m
yn
1 上,
即直线 MN 的方程为 m x yn 1 ,所以原点 O 到直线 MN 的距离 d 2
1 2, m2 n2 2 4
b
0) 过点
A(1,
2 ) ,其焦距为 2. 2
(Ⅰ)求椭圆 C1 的方程;
(Ⅱ)已知椭圆具有如下性质:若椭圆的方程为
x2 a2
y2 b2
1(a
b
0) ,则椭圆在其上一点
A( x0 ,
y0 ) 处的切线方程为
x0 x a2
y0 y b2
1 ,试运用该性质解决以下问题:
(i)如图(1),点 B 为 C1 在第一象限中的任意一点,过 B 作 C1 的切线 l,l 分别与 x 轴和 y 轴的正半轴交于 C,D 两点,
【答案】C
【解析】因为
小学奥数常见辅助线添加技巧9法
小学奥数常见辅助线添加技巧9法技巧1 同形添补例1一个六边形的六个内角都是120°,连续四边的长依次是2厘米、3厘米、3厘米、1厘米(如图1)。
求这个六边形的周长。
练习1如图1-1,已知等腰梯形的两个底角都是60°,一条腰长15厘米,下底长25厘米,求它的周长。
练习2如图1-2,六边形的六个内角都是120°,其中四条边的长度分别是8厘米、20厘米、15厘米、18厘米,求这个六边形的周长。
练习3如图1-3,四边形中,AD=3厘米,BC=10厘米,∠B=∠D=90°。
∠C=45°,求这个四边形的周长。
(等腰直角三角形的底长大约是腰长的1.4倍)例2如图2,已知四边形ABCD的边BC=7厘米,AD=3厘米,∠B=∠D=90°,∠C =45°,求这个四边形的面积。
练习1 如图2-1所示,已知四边形ABCD的两条边和三个角,求这个四边形的面积。
练习2 如图2-2所示,已知四边形ABCD的两条边和三个角,求这个四边形的面积。
(等腰直角三角形的底长大约是腰长的1.4倍)练习3 如图2-3所示,已知四边形ABCD的两条边和三个角,求这个四边形的面积。
(等腰直角三角形的底长大约是腰长的1.4倍)例3 如图3,已知四边形ABCD的边AB=5厘米,AD=4厘米,∠C=67.5°,∠A=90°,∠D=135°,BH与CD垂直,BH=7厘米。
求四边形ABCD的面积。
练习1 如图3-1,已知直角梯形的底角为45°,上底为8厘米,高为10厘米,求它的面积。
练习2 如图3-2,已知四边形ABCD中,∠A=90°,∠C=67.5°,∠D=135°。
BH与CD垂直,AB=8厘米,AD=6厘米,BH=10厘米。
求四边形ABCD的面积。
练习3 如图3-3,五边形ABCDE中,AB=7厘米,CD=16厘米,DE=10厘米,∠A=∠C=∠E=90°,∠D=135°,求五边形ABCDE的面积。
四年级奥数【巧添算符】带答案
巧添算符(三)98-76+5-4+3-2-1=232、在下面算式中适当的地方添上+、-、×、÷使等式成立1 2 3 4 5 6 7 8=11+2×3-4+5-6+7-8=13、在下面算式中适当的地方添上+、-使等式成立1 2 3 4 5 6 7 8=141+2+3-4+5+6-7+8=144、在下面的数字之间添上+、-、×、÷使等式成立1 2 3 4 5 6 = 6(1+2-3)×4×5+6=61 2 3 4 5 6 = 101+2×3×(4+5)÷6=10例4:改变下式中的一个运算符号,使等式成立。
1+2+3+4+5+6+7+8+9=100【思路导航】首先不妨算一算等号左边的值等于多少,1+2+3+4+5+6+7+8+9=45,45比100小55,所以应量使等号左边的结果大一些,如果把8和9之间的“+”改“×”,这样等式左边的值就增加了55,这样等式成立。
1+2+3+4+5+6+7+8×9=100练习四1、改变一个运算符号,使等式成立。
1+2+3+4+5+6+7+8+9+10=451+2+3+4-5+6+7+8+9+10=452、王老师在批改作业时发现小林同学抄题时丢了括号,但结果仍是正确的,请你给小林的算式添上排号。
4+28÷4-2×3-1=4(4+28)÷4-2×(3-1)=43、在下列算式中合适的地方添上括号,使等式成立。
1+2×3+4×5+6×7+8×9=303(1+2×3+4×5+6)×7+8×9=303。
新课程小学四年级《数学培优、竞赛全程跟踪讲·学·练·考》【121页】
新课程小学《数学培优、竞赛全程跟踪讲·学·练·考》四年级精练分册目录上学期第1讲巧算第2讲幻方和数阵图2.1 幻方2.2 数阵图第3讲数字谜3.1 填空格3.2 算式谜第4讲方阵第5讲长方形的面积第6讲平均数6.1 一般平均数6.2 平均数与个别数第7讲鸡兔同笼与假设法下学期第8讲等差数列及其应用第9讲计数问题9.1 计数原理9.2 计数方法第10讲简单规划问题第11讲最大最小问题第12讲盈亏问题及时对应法第13讲行程问题13.1 相遇问题13.2 追及问题13.3 流水行船问题13.4 火车过桥问题上学期第一讲巧算[同步巩固演练]1、简算下列各题(1)1308—(308—159)(2)1999+999×999(3)54×102(4)75×27+19×25(5)0—1+2—3+4—5+6—7+ ………—99+100(6)1440×976÷488(7)5÷(7÷11)÷(11÷16)÷(16÷35)(8)9999×7778+3333×6666(9)199999+19999+1999+199+19(10)2003×2005—2002×20062、简算下面各题(1) 3600000÷125÷32÷25(2) 5×96×125×25(3) 3456×998(4)1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷(6÷7)÷(7÷8)(5) 22222×222223、简算下面各题(1) 43÷23+3÷23(2) 765×123÷27+765×327÷274、简算下面各题(1) 19961997×19971996—19961996×19971997(2) 123456789×987654321—123456788×987654322[能力拓展平台]1、计算下面各题(1) 7+17+127+1237+12347+123457+1234567(2) 1212—1111+1010—909+808—707+606(3) 7×17+8×18+9×19+10×20+71×7+81×8+91×9+20×10(4) 99×43+98×42+97×41(5) 44327+22345+17252+49414+23212+43454+36987+29679(6) 1392+2859+3646+4873+5237+6464+7251+8718(7)(1419+14319+143319+1433319+14333319)÷43(8) 2001×2002×2003—1999×2000×2001(9) 3+33+333+ …… +3333333333(10) 40404+5050+60606+7070+80808+9090+101010+11111+121212+13131[全讲综合训练]计算下面各题1、1234×9009142、123455+234566+345677+456788+5678993、376+385+391+380+377+389+383+374+366+3784、8642—7531+6420—5317+4208—3175+2084—17535、6472—(4476—2480)+5319—(3323—1327)+9354—(7358—5362)+6839—(4843—2847)6、567×142+426×811+8520×507、2375×3987+9207×6013+3987×68328、123456789×8109、99+99×99+99×99×9910、(123456+234561+345612+456123+561234+612345)÷711、设N= ×9×,则N的各位数字之和为多少?12、乘积×的各位数字之和为多少?13、(1234567891)2— 1234567890×123456789214、×+第二讲幻方和数阵图2.1 幻方[同步巩固演练]1、用8—16这9个数排成一个三阶幻方2、用3—11这9个数补全图中的幻方,并求出幻和。
最全最新初中数学竞赛专题讲解辅助圆
初中数学竞赛专题讲解辅助圆在处理平面几何中的许多问题时,常需要借助于圆的性质,问题才得以解决.而我们需要的圆并不存在(有时题设中没有涉及圆;有时虽然题设涉及圆,但是此圆并不是我们需要用的圆),这就需要我们利用已知条件,借助图形把需要的实际存在的圆找出来, 添补辅助圆的常见方法有:1.利用圆的定义添补辅助圆;2.作三角形的外接圆;3.运用四点共圆的判定方法: (1)若一个四边形的一组对角互补,则它的四个顶点共圆. (2)同底同侧张等角的三角形,各顶点共圆.(3)若四边形ABCD 的对角线相交于P ,且PA ·PC=PB ·PD ,则它的四个顶点共圆.(4)若四边形ABCD 的一组对边AB 、DC 的延长线相交于P ,且PA ·PB =PC ·PD ,则它的四个 顶点共圆.推论:同斜边的直角三角形顶点共圆(斜边就是圆的直径). 4.画出辅助圆就可以应用圆的有关性质.常用的有:① 同弧所对的圆周角相等.② 圆内接四边形对角互补,外角等于内对角. ③ 圆心角(圆周角)、弧、弦、弦心距的等量关系. ④ 圆中成比例线段定理:相交弦定理 ,切割线定理. 5.证明型如ab+cd=m 2常用切割线定理一、基础过关1.如图1,AB=AC=AD,如果∠DAC 是∠CAB 的K 倍(K 为实数).求:∠DBC 是∠BDC 的多少倍?2.△ABC 中,作BD ⊥AC 于D ,CE ⊥AB 于E ,连DE ,若∠ABC =45°, 求∠EDB 的度数。
A COD EB3.如图,B 是线段AC 的中点,过点C 的直线l 与AC 成60°的角,在直线l 上取一点P ,使得∠APB=30°,则满足条件的点P 的个数是( )(A)3个(B)2个 (C)1个 (D)不存在4.已知:如图,直尺的宽度为2,A 、B 两点在直尺的一条边上,AB=6,C 、D 两点在直尺的另一条边上.若∠ACB=∠ADB=90°,求则C 、D 两点之间的距离 .4.如图,矩形ABCG(AB<BC)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P的个数是 ( ) A.0 B.1 C.2 D.35.如图,点A 与点B 的坐标分别是(1,0),(5,0),点P 是该平面直角坐标系内的一个动点. (1)若点C 平面直角坐标系内的一个点,且△ABC 是等边三角形,则点C 的坐标是 ; (2)若点P 在y 轴上,且∠APB=30°,求满足条件的点P 的坐标;(3)当点P 在y 轴上移动时,∠APB 是否有最大值?若有,求点P 的坐标,并说明此时∠APB 最大的理由;若没有,也请说明理由.二、例题讲解1.根据圆的定义作辅助圆例1:如图,四边形ABCD 中,AB ∥CD ,AB =AC =AD =p ,BC =q ,求BD 的长.解析:以点A 为圆心、AB 为半径作⊙A .因为AB =AC =AD ,所以B 、C 、D 三点在⊙A 上.延长BA 交⊙A 于点E ,连结DE .因为DC ∥EB ,所以弧ED =弧BC ,所以ED =BC =q .在Rt △BDE 中,根据勾股定理,得BD =.例2:如图,PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =5,PD =3,求AD ·DC 的值.解析:以点P 为圆心、P B为半径的作⊙P .因为PA =PB ,∠APB =2∠ACB ,所以点A、B 、C在⊙P 上.此时⊙P 的直径BE =10,DE =8,DB =2, 由相交弦定理,得AD ·DC =DE ·DB =8216⨯=2.作三角形的外接圆例3:如图,D 、E 为△ABC 边BC 上的两点,且BD=CE ,∠BAD=∠CAE ,求证:AB=AC . 解析:作△ADE 的外接圆,分别交AB 、AC 于点M 、N ,连结MD 、NE .因为∠BAD =∠CAE ,所以∠BAD +∠DAE =∠CAE+∠DAE ,即∠NAD =∠MAE .因为∠BDM =∠MAE ,∠CEN =∠NAD ,所以∠BDM =∠CEN . 又BD =CE ,DM =EN ,所以△BDM ≌△CEN ,所以∠B =∠C ,即AB =AC .例4:如图,△ABC 中,BF 、CE 交于点D ,BD =CD ,∠BDE =∠A ,求证:BE =CF . 解析:作△ABC 的外接⊙O ,延长CE 交⊙O 于G ,连接BG .因为∠G =∠A ,∠BDE =∠A ,所以∠G =∠BDE ,所以BG=BD . 又BD =CD ,所以BG =CD.又因为∠G =∠CDF ,∠GBE =∠DCF ,所以△GBE ≌△DCF . 所以BE =CF .BC例5:如图,在△ABC 中,AB =AC ,∠BAC =100°,∠B 的平分线交AC 于D , 求证:BC =BD +AD .解析:作△ABD 的外接圆交BC 于E ,连结DE .因为BD 是∠ABC 的平分线,所以弧AD =弧DE ,所以AD =DE . 在△BDE 中,∠DBE =20°,∠BED =180°―100°=80°, 所以∠BDE =80°, 所以BE =BD .在△DEC 中,∠EDC =80°―40°=40°,所以EC =DE . 所以BC =BE +EC =BD +AD .3.结论类似于圆幂定理的形式时作辅助圆例6:如图,在△ABC 中,AB =AC =3,D 是边BC 上的一点,且A D=1,求BD ·DC 的值. 解析:以点A 为圆心、AB 为半径作⊙A ,交直线AD 于点E 、F ,则点C 在⊙A 上,DE =13-,DF =13+.由相交弦定理,得BD ·DC =DE ·DF =)13)(13(+-=2.例7:如图,在△ABC 中,∠DAB =∠C ,∠B 的平分线BN 交AD 于M .求证:(1)AM =AN ;(2)AB 2-AN 2=BM ·BN .解析:(1)略;(2)由(1),得AM =AN .以点A 为圆心、AM 为半径作⊙A ,交AB 于E ,交BA 的延长线于F ,则N 在⊙A 上,且AE =AF =AN .由割线定理,得BM ·BN =BE ·BF =(AB -AE)(AB +AF)=(AB ―AN)(AB +AN =AB 2-AN 2,即AB 2-AN 2=BM ·BN .4.探究动点对定线段所张的角时作辅助圆例8:如图,在直角梯形ABCD 中,AB ∥DC ,∠B =90°,设AB =a ,DC =b ,AD =c , 当a 、b 、c 之间满足什么关系时,在直线BC 上存在点P ,使AP ⊥PD ?解析:以AD 为直径作⊙O ,根据直径所对的圆周角是直角,当⊙O 与直线BC 有公共点(相切或相交)时,在直线BC 上存在点P ,使AP ⊥PD .因为⊙O 的半径r =22cAD =,圆心O 到直线BC 的距离d =22b a DC AB +=+. 所以,当d ≤r ,即a +b ≤c 时,在直线BC 上存在点P ,使AP ⊥PD .C例9:如图,在平面直角坐标系xOy 中,给定y 轴正半轴上的两点A (0,2)、B(0,8),试在x 轴正半轴上求一点C ,使∠ACB 取得最大值。
巧添辅助圆 妙解竞赛题
巧添辅助圆妙解竞赛题
彭学军
【期刊名称】《中等数学》
【年(卷),期】1999(000)002
【摘要】(本讲适合初中) 在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路.
【总页数】4页(P4-7)
【作者】彭学军
【作者单位】湖南省衡阳市第八中学 421007
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.巧添辅助圆妙解几何题 [J], 郭书芹
2.巧添辅助圆妙解数学题 [J], 何沛;韩贵贤
3.巧构辅助圆妙解几何问题 [J], 郑惠容
4.巧构辅助圆妙解几何问题 [J], 郑惠容
5."融汇贯通多题归一"中考二轮专题复习课初探
——以《巧构辅助圆妙解几何题》一课为例 [J], 吴越
因版权原因,仅展示原文概要,查看原文内容请购买。
构建新数列巧解递推数列竞赛题目
构建新数列巧解递推数列竞赛题梁新潮(浙江新昌中学 312500)石美英(浙江新昌教师进修学校 312500)递推数列是国内外数学竞赛命题的“热点”之一,由于题目灵活多变,答题难度较大。
本文利用构建新数列的统一方法解答此类问题,基本思路是根据题设提供的信息,构建新的数列,建立新数列与原数列对应项之间的关系,然后通过研究新数列达到问题解决之目的。
其中,怎样构造新数列是答题关键。
1 求通项求通项是递推数列竞赛题的常见题型,这类问题可通过构建新数列进行代换,使递推关系式简化,这样就把原数列变形转化为等差数列、等比数列和线性数列等容易处理的数列,使问题由难变易,所用的即换元和化归的思想。
例1、数列{}n a 中,11=a ,()n n n a a a 241411611+++=+。
求n a 。
(1981年第22届IMO 预选题)分析 本题的难点是已知递推关系式中的n a 241+较难处理,可构建新数列{}n b ,令n n a b 241+=,这样就巧妙地去掉了根式,便于化简变形。
解:构建新数列{}n b ,使0241>+=n n a b则 51=b ,n na b 2412+= ,即2412-=n n b a⎪⎪⎭⎫ ⎝⎛+-⨯+=-+n n n b b b 24141161241221化简得 ()()22132+=+n n b b321+=+n n b b ,即 ()32131-=-+n n b b数列 {}3-n b 是以2为首项,21为公比的等比数列。
n n n b --=⎪⎭⎫⎝⎛⨯=-2122123 即 322+=-n n b121122231232241---⨯+⨯+=-=n n n n n b a2 证明不等式这类题一般先通过构建新数列求出通项,然后证明不等式或者对递推关系式先进行巧妙变形后再构建新数列,然后根据已经简化的新数列满足的关系式证明不等式。
例2、设10=a ,12111---+=n n n a a a ()N n ∈,求证:22+>n n a π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 巧添辅助 妙解竞赛题在某些数学竞赛问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系,通过圆的有关性质找到解题途径.下面举例说明添置辅助圆解初中数学竞赛题的若干思路. 1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化. 1.1 作出三角形的外接圆例1 如图1,在△ABC 中,AB =AC ,D 是底边BC 上一点,E 是线段AD 上一点且∠BED =2∠CED =∠A .求证:BD =2CD . 分析:关键是寻求∠BED =2∠CED 与结论的联系.容易想到作∠BED 的平分线,但因BE ≠ED ,故不能直接证出BD =2CD .若延长AD 交△ABC 的外接圆于F ,则可得EB =EF ,从而获取.证明:如图1,延长AD 与△ABC 的外接圆相交于点F ,连结CF 与BF ,则∠BFA =∠BCA =∠ABC =∠AFC ,即∠BFD =∠CFD .故BF :CF =BD :DC .又∠BEF =∠BAC ,∠BFE =∠BCA ,从而∠FBE =∠ABC =∠ACB =∠BFE . 故EB =EF . 作∠BEF 的平分线交BF 于G ,则BG =GF . 因∠GEF =21∠BEF =∠CEF ,∠GFE =∠CFE ,故△FEG ≌△FEC .从而GF =FC . 于是,BF =2CF .故BD =2CD . 1.2 利用四点共圆例2 凸四边形ABCD 中,∠ABC =60°,∠BAD =∠BCD =90°, AB =2,CD =1,对角线AC 、BD 交于点O ,如图2.则sin ∠AOB =____. 分析:由∠BAD =∠BCD =90°可知A 、B 、C 、D四点共圆,欲求sin ∠AOB ,联想到托勒密定理,只须求出BC 、AD 即可. 解:因∠BAD =∠BCD =90°,故A 、B 、C 、D 四点共圆.延长BA 、CD 交于P ,则∠ADP =∠ABC =60°.设AD =x ,有AP =3x ,DP =2x .由割线定理得(2+3x )3x =2x (1+2x ).解得AD =x =23-2,BC =21BP =4-3. 由托勒密定理有BD ·CA =(4-3)(23-2)+2×1=103-12.又S ABCD =S △ABD +S △BCD =233. 故sin ∠AOB =263615 .例3 已知:如图3,AB =BC =CA =AD ,AH ⊥CD 于H ,CP ⊥BC ,CP 交AH 于P .求证:△ABC 的面积S =43AP ·BD . 分析:因S △ABC =43BC 2=43AC ·BC ,只 A B GC DF E 图1ABCDPO 图2A图3BP QDHC须证AC ·BC =AP ·BD ,转化为证△APC ∽△BCD .这由A 、B 、C 、Q 四点共圆易证(Q 为BD 与AH 交点).证明:记BD 与AH 交于点Q ,则由AC =AD ,AH ⊥CD 得∠ACQ =∠ADQ . 又AB =AD ,故∠ADQ =∠ABQ .从而,∠ABQ =∠ACQ .可知A 、B 、C 、Q 四点共圆. ∵∠APC =90°+∠PCH =∠BCD ,∠CBQ =∠CAQ , ∴△APC ∽△BCD . ∴AC ·BC =AP ·BD . 于是,S =43AC ·BC =43AP ·BD . 2 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加以解决. 2.1 联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB ∥CD ,AD =DC =DB =p ,BC =q .求对角线AC 的长. 分析:由“AD =DC =DB =p ”可知A 、B 、C 在 半径为p 的⊙D 上.利用圆的性质即可找到AC 与p 、q 的关系.解:延长CD 交半径为p 的⊙D 于E 点,连结AE .显然A 、B 、C 在⊙D 上. ∵AB ∥CD , ∴=.从而,BC =AE =q .在△ACE 中,∠CAE =90°,CE =2p ,AE =q ,故 AC =22AE CE -=224q p -.2.2 联想直径的性质构造辅助圆例5 已知抛物线y =-x 2+2x +8与x 轴交于B 、C 两点,点D 平分BC .若在x 轴上侧的A 点为抛物线上的动点,且∠BAC 为锐角,则AD 的取值范围是____.分析:由“∠BAC 为锐角”可知点A 在以定线段BC 为直径的圆外,又点A 在x 轴上侧,从而可确定动点A 的范围,进而确定AD 的取值范围. 解:如图5,所给抛物线的顶点为A 0(1,9),对称轴为x =1,与x 轴交于两点B (-2,0)、C (4,0). 分别以BC 、DA 为直径作⊙D 、⊙E ,则两圆与抛物线均交于两点P (1-22,1)、Q (1+22,1).可知,点A 在不含端点的抛物线PA 0Q 内时,∠BAC <90°.且有3=DP =DQ <AD ≤DA 0=9,即AD 的取值范围是3<AD ≤9. 2.3 联想圆幂定理构造辅助圆例6 AD 是Rt △ABC 斜边BC 上的高,∠B 的平行线交AD 于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .分析:因AB 2-AN 2=(AB +AN )(AB -AN )=BM ·BN ,而由题设易知AM =AN ,联想割线定理,构造辅助圆即可证得结论.证明:如图6, ∵∠2+∠3=∠4+∠5=90°,A EDC B图4图5E又∠3=∠4,∠1=∠5,∴∠1=∠2.从而,AM =AN .以AM 长为半径作⊙A ,交AB 于F ,交 BA 的延长线于E .则AE =AF =AN . 由割线定理有BM ·BN =BF ·BE =(AB +AE )(AB -AF )=(AB +AN )(AB -AN )=AB 2-AN 2,即 AB 2-AN 2=BM ·BN .例7 如图7,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.分析:因EP 和FQ 是⊙O 的切线,由结论联想到切割线定理,构造辅助圆使EP 、FQ 向EF 转化.证明:如图7,作△BCE 的外接圆交EF 于G ,连结CG . 因∠FDC =∠ABC =∠CGE ,故F 、D 、C 、G 四点共圆.由切割线定理,有EF 2=(EG +GF )·EF =EG ·EF +GF ·EF =EC ·ED +FC ·FB=EC ·ED +FC ·FB =EP 2+FQ 2, 即 EP 2+FQ 2=EF 2.2.4 联想托勒密定理构造辅助圆例8 如图8,△ABC 与△A 'B 'C '的三边分别为a 、b 、c 与a '、 b '、c ',且∠B =∠B ',∠A +∠A '=180°.试证:aa '=bb '+cc '.分析:因∠B =∠B ',∠A +∠A '=180°,由结论联想到托勒密定理,构造圆内接四边形加以证明.证明:作△ABC 的外接圆,过C 作CD ∥AB 交圆于D ,连结AD 和BD ,如图9所示. ∵∠A +∠A '=180°=∠A +∠D ,∠BCD =∠B =∠B ',∴∠A '=∠D ,∠B '=∠BCD . ∴△A 'B 'C '∽△DCB .有DC B A ''=CB C B ''=DBC A '',即 DC c '=a a '=DBb '.故DC =''a ac ,DB =''a ab .又AB ∥DC ,可知BD =AC =b ,BC =AD =a .从而,由托勒密定理,得 AD ·BC =AB ·DC +AC ·BD , 即 a 2=c ·''a ac +b ·''a ab . 故aa '=bb '+cc '.练习题(1)(2)图8AC A'B'C'c b a'c'b'AB CDa b bc 图91. 作一个辅助圆证明:△ABC 中,若AD 平分∠A ,则AC AB =DCBD. (提示:不妨设AB ≥AC ,作△ADC 的外接圆交AB 于E ,证△ABC ∽△DBE ,从而AC AB =DEBD=DCBD.) 2. 已知凸五边形ABCDE 中,∠BAE =3a ,BC =CD =DE ,∠BCD =∠CDE =180°-2a .求证:∠BAC =∠CAD =∠DAE .(提示:由已知证明∠BCE =∠BDE =180°-3a ,从而A 、B 、C 、D 、E 共圆,得∠BAC =∠CAD =∠DAE .)3. 在△ABC 中AB =BC ,∠ABC =20°,在AB 边上取一点M ,使BM =AC .求∠AMC 的度数. (提示:以BC 为边在△ABC 外作正△KBC ,连结KM ,证B 、M 、C 共圆,从而∠BCM =21∠BKM =10°,得∠AMC =30°.)4.如图10,AC 是ABCD 较长的对角线,过C 作CF ⊥AF ,CE ⊥AE .求证:AB ·AE +AD ·AF =AC 2. (提示:分别以BC 和CD 为直径作圆交AC 于点G 、H .则CG =AH ,由割线定理可证得结论.)5. 如图11.已知⊙O 1和⊙O 2相交于A 、B ,直线CD 过A 交⊙O 1和⊙O 2于C 、D ,且AC =AD ,EC 、ED 分别切两圆于C 、D .求证:AC 2=AB ·AE .(提示:作△BCD 的外接圆⊙O 3,延长BA 交⊙O 3于F ,证E 在⊙O 3上,得△ACE ≌△ADF ,从而AE=AF ,由相交弦定理即得结论.)6.已知E 是△ABC 的外接圆之劣弧BC 的中点. 求证:AB ·AC =AE 2-BE 2. (提示:以BE 为半径作辅助圆⊙E ,交AE 及其延长线于N 、M ,由△ANC ∽△ABM 证AB ·AC =AN ·AM .)7. 若正五边形ABCDE 的边长为a ,对角线长为b ,试证:a b -ba=1. (提示:证b 2=a 2+ab ,联想托勒密定理作出五边形的外接圆即可证得.)感谢您的阅读,祝您生活愉快。