脑功能磁共振影像学PPT
磁共振成像基本知识PPT课件
波谱成像(Spectroscopic Imaging):通过分析组 织中的化学成分来提供分子层面的信息,有助于肿瘤 和代谢性疾病的诊断。
靶向成像(Targeted Imaging):通过使用特异性 标记的分子探针,对特定分子或细胞进行成像,为个 性化医疗和精准诊断提供了可能。
04 磁共振成像应用
医学诊断
成本与普及
磁共振成像设备成本较高,限制了其 在基层医疗机构的普及。未来需要降 低设备成本,提高可及性。
磁敏感加权成像(Susceptibility Weighted Imaging, SWI):利用组织磁敏感性 的差异进行成像,能够显示脑部微出血、铁沉积等病理变化。
分子成像技术
化学交换饱和转移成像(Chemical Exchange Saturation Transfer, CEST):利用特定频率的射频 脉冲来检测组织中特定化学物质的变化,对肿瘤和炎 症等疾病的诊断具有潜在价值。
。
快速扫描技术
研究更快的扫描序列和算法,缩短 成像时间,提高检查效率,减轻患 者长时间处于扫描腔内的压力。
多模态成像融合
结合磁共振成像与其他影像技术( 如CT、PET等),实现多模态成像 融合,提供更全面的医学影像信息 。
新应用活动和功能连接,深入 了解神经系统和认知科学领域。
磁共振成像的优势与局限性
高软组织分辨率
MRI对软组织结构有高分辨率,能够清晰显示脑、关节、肌 肉等组织的细微结构。
无骨伪影干扰
MRI不受骨骼的影响,能够清晰显示周围软组织的结构。
磁共振成像的优势与局限性
01
02
03
检查时间长
由于MRI需要采集大量数 据,检查时间相对较长。
金属植入物限制
磁共振 PPT课件
20
21
22
23
24
腹部、盆腔MRI适应证
主要用于部分实质性器官的肿瘤性病变,(需做增强) 肝肿瘤性病变,提供鉴别信息 胰腺肿瘤,有利小胰癌、胰岛细胞癌显示 宫颈、宫体良恶性肿瘤及分期等,先天畸形 肿瘤的定位(脏器上下缘附近)、分期 胆道、尿路梗阻和肿瘤,(需做MRCP,MRU) 直肠肿瘤
40
41
42
椎间盘突出颈髓损伤、软化灶
43
椎间盘突出,颈髓损伤 44
女,43岁,高出坠下 8小时,截瘫。
45
女,20岁
脊髓星形细胞瘤
16年后复发 46
骨与关节MRI适应证
X线及CT的后续检查手段--钙质显示差和 空间分辨力
部分情况可作首选: 1. 累及骨髓改变的骨病(早期骨缺血性坏死,
8
MR检查的临床应用及与相关影像方法比较
. 1.中枢神经系统最佳,也比较成熟; . 2.胸部:适于纵隔和心脏大血管的检查; . 3.腹、盆部:各种脏器和器官(胃肠道除外); . 4.骨关节系统:观察骨髓改变、软骨及软组织
(如椎间盘、半月板)
9
颅脑MRI适应证:
颅内良恶性占位病变 (需加做增强) 脑血管性疾病: 梗死、出血、动脉瘤、动静脉
利用人体内固有的H离子原子核, 在外加磁场作用下产生共振现象, 吸收能量并释放MR信号,将其采集 并作为成像源,经计算机处理,形 成人体MR图像,是一种核物理现象 在医学领域的应用。
3
2、MRI检查有那些优点?
(1)没有电离辐射的损伤(尚未发现); (2)多方位(横、冠、矢及斜面)成像; (3)图像对解剖结构的细节显示比较好; (4)对组织细微病理的变化更敏感,如脑
水肿 等,组织间的对比度优于CT; (5)根据信号可以确定组织的类型,如脂
功能磁共振成像
功能磁共振成像(fMRI)功能磁共振成像技术简述功能性磁共振成像(fMRI)是一种新兴的神经影像学方式,其原理是采用磁振造影来测量神经元活动所引发之血液动力的转变。
由于fMRI的非侵入性、没有辐射暴露问题与其较为广泛的应用,从1990年月开头就在脑部功能定位领域占有一席之地。
目前主要是运用在讨论人及动物的脑或脊髓。
相关技术进展自从1890年月开头,人们就知道血流与血氧的转变(两者合称为血液动力学)与神经元的活化有着密不行分的关系。
神经细胞活化时会消耗氧气,而氧气要借由神经细胞四周的微血管以红血球中的血红素运送过来。
因此,当脑神经活化时,其四周的血流会增加来补充消耗掉的氧气。
从神经活化到引发血液动力学的转变,通常会有一5秒的延迟,然后在4-5秒达到的高峰,再回到基线(通常伴随着些微的下冲)。
这使得不仅神经活化区域的脑血流会转变,局部血液中的去氧与带氧血红素的浓度,以及脑血容积都会随之转变。
血氧浓度相依对比(Blood oxygen-level dependent, BOLD) 首先由贝尔试验室小川诚二等人于1990年所提出⑵,小川博士与其同事很早就了解BOLD对于应用MRI于脑部功能性造影的重要性,但是第一个胜利的fMRI讨论则是由John W. Belliveau 与其同事于1991年透过静脉内造影剂(Gd)所提出。
接着由邙健民等人于1992年发表在人身上的应用。
同年,小川博士于 4 月底提出了他的结果且于7月发表于PNAS。
在接下来的几年,小川博士发表了BOLD的生物物理学模型于生物物理学期刊。
Bandettini博士也于1993年发表论文示范功能性活化地图的量化测量。
由于神经元本身并没有储存所需的葡萄糖与氧气,神经活化所消耗的能量必需快速地补充。
经由血液动力反应的过程,血液释出葡萄糖与氧气的比率相较于未活化神经元区域大幅提升。
这导致了过多的带氧血红素布满于活化神经元处,而明显的带氧/缺氧血红素比例变化使得BOLD可作为MRI的测量指标之一。
磁共振成像基本原理PPT课件
射频脉冲与磁化矢量
射频脉冲
向样品发射特定频率的射频脉冲,使磁化矢量发生旋 转。
磁化矢量旋转
射频脉冲使磁化矢量从一个静息态旋转到另一态,产 生能量变化。
信号的产生
磁化矢量回到静息态时释放能量,被探测器接收并转 换为可测信号。
信号的接收与处理
接收线圈
环绕在样品周围的接收线圈用于接收磁共振信号。
信号处理
超高场强磁共振成像
超高场强磁共振成像技术使用大于或等于7 特斯拉(T)的磁场进行成像。超高场强设 备在图像质量和分辨率方面具有显著优势, 能够提供更深入的生理和病理信息,有助于 疾病的早期诊断和精准治疗。
功能与分子影像学在技术利用磁场变化 来研究大脑和其他器官的功能活动。通过测 量血液氧合状态的变化,fMRI可以揭示大脑 在执行特定任务时的活动模式。此外,fMRI 还可以用于研究其他器官的功能和疾病进程。
射频电磁场安全
射频电磁场是磁共振成像过程中产生的另一种能量形式, 需要确保其强度符合国际和国家安全标准,避免对患者的 健康造成潜在影响。
热安全
在磁共振成像过程中,设备会向人体发射射频脉冲,这些 脉冲会产生热量。因此,需要监测和限制患者的体温升高, 确保热安全。
磁共振成像质量控制
01
图像分辨率
图像分辨率是磁共振成像质量的重要指标之一。为了获得高质量的图像,
参数优化
根据不同的扫描目标和需求,优化扫描序列中的参数,如磁场强度、射频脉冲的频率和持续时间等,以提高图像 质量和分辨率。
04
磁共振成像设备
磁体系统
01
02
03
磁体类型
超导磁体、永磁磁体和常 导磁体等。
磁场强度
磁场强度决定了成像质量, 通常在0.5-3.0特斯拉之间。
核磁共振成像PPT课件
人体危害
由于射频线圈的电流所致的电阻率丧失,组 织中可产生热量,高场强的MRI扫描机比低 场强者更有可能产生能被测到的体温升高。
尽管证明没有危害,但对那些散热功能障碍 的病人,高热的病人,必须谨慎处理,防止 产生过多的热量,特别是在热而又潮湿的环 境下更应注意
25
人体危害
磁共振检查时,要把人体置于强大的 外加静磁场和变化着的梯度磁场内
22
03 MRI检查注意事项
人体危害
目前,经过各国医药工业管理部门批准生产的MR 成像仪都是安全的,均证明对人体没有不良作用
六类人群不适宜进行核磁共振检查
安装心脏起搏器的人 有或疑有眼球内金属异物的人 动脉瘤银夹结扎术的人 体内金属异物存留或金属假体的人 有生命危险的危重病人 幽闭恐惧症患者等
24
13 24
属无创伤 无射线检查
成像参数多 信息量大
13
MRI检查的限制
01 体内有金属异物,尤其被 检部位有磁铁性金属异物
02 重危病人需要生命监护 系统和生命维持系统者 扫描时间较长,噪声大。严
03 重不合作者,精神病患者, 危重病人,幽闭恐惧症患者
04 妊娠病人,尤其妊娠3个月内 急诊(脊髓损伤除外)
11
发展前景
快速成像技术
MR扫描时间过长和人体的生理运动之 间的矛盾仍是目前MR成像诊断中的一 大问题。如果屏气一次或数次即可完 成图像采集的话,那么胸部和腹部的 成像质量就能改善。工程技术人员在 这方面进行了很多研究并且仍在不断 改进完善中
12
MRI优点
具有较高 的分辨率 具有任意方向直 接切层的能力
进入扫描室前勿穿戴任何金属 物品如手表、发夹、眼镜、活 动假牙等,女性带有金属节育 环时,检查前一周取出节育环
磁共振功能成像的临床应用PPT课件
提高医疗服务水平
磁共振功能成像的应用将提高医疗服务的质量和效率,为患者提 供更好的医疗体验。
THANKS
感谢观看
磁共振功能成像的优势与局限性
优势
无创、无辐射损伤、多参数成像 、高软组织分辨率等。
局限性
检查费用较高、检查时间长、对 运动伪影敏感等。
03
磁共振功能成像在神经系统疾病中的
应用
脑肿瘤
总结词
磁共振功能成像在脑肿瘤的诊断、治疗和预后评估中具有重要作用。
详细描述
磁共振功能成像技术可以检测肿瘤的位置、大小和扩散情况,有助于医生制定 更精确的治疗计划。同时,通过观察肿瘤的代谢和血流情况,可以评估治疗效 果和预测复发风险。
该技术可以提供高分辨率、高对比度的图像,并且无辐射, 对人体无害。
临床应用的意义和价值
磁共振功能成像能够提供更深入的生理和病理生理信息,有助于疾病的早期诊断和 预后评估。
该技术能够检测到传统影像学检查难以发现的细微病变,提高诊断的准确性和可靠 性。
磁共振功能成像还可以用于监测治疗效果和评估病情进展,为临床医生制定治疗方 案提供重要依据。
分析和处理,提高诊断准确性和可靠性。
新型成像技术
02
研究和发展新的磁共振功能成像技术,如高分辨率成像、多模
态成像等,以满足临床对诊断和治疗的更高要求。
实时成像与导航技术
03
实现实时成像和导航技术,为手术和介入治疗提供更精确的定
位和导航信息。
在临床诊断和治疗中的作用与价值
01
02
03
精准诊断
磁共振功能成像能够提供 更精准的定位和定性信息, 有助于医生对疾病的早期 发现和准确诊断。
磁共振 ppt课件
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。
磁共振基础知识ppt课件
磁共振检查技术
平扫(T1WI,T2WI,PDWI) 增强(TIWI) 动态增强(Dynamic MR) 磁共振血管造影(MRA) 脂肪抑制成像(STIR) 水抑制成像(FLAIR) 水成像(MRCP、MRU) 灌注成像(Perfusion) 弥散成像(Diffusion) 功能成像(Function MR)
9
纵 向 弛 豫 过 程
a、射频结束瞬间,纵向磁化为零,横向磁化最大 b、反平行质子释放能量跃迁回平衡态,纵向磁化逐渐增大 c、最后回归原始状态,纵向磁化恢复到最大
10
横 向 弛 豫 过 程
a、射频结束瞬间,横向磁化达到最大,进动相位一致 b、c、内部小磁场的不均匀性使得进动相位分散,横向磁化矢量逐渐减小 d 、最终相位完全分散,横向磁化矢量为零
28
正常胸部MRI表现 SE序列(黑血技术)
正常胸部MRI表现 GRE序列(亮血技术)
29
MR脑血管成像 (MRA)
30
正常肝脏增强动态MRA (DE-MRA)
31
怎样阅读常规检查的MR图像
1、熟悉图像上的常用标记:姓名、年龄、日期、左右、层厚以 及增强的标记等
2、仔细观察每一帧图像,目的在于发现疾病或异常的征象 3、当发现病变后,应看其病变在T1加权、T2加权上的信号特
核磁共振成像(MRI)基础知识
1
磁共振成像基本原理 定义:利用人体内固有的原子核(氢质子),在外加磁场作用下产生共振现象,
产生振荡磁场,并形成感应电流(电信号),将其采集并作为成像源,经计 算机处理后,形成人体 MR图像。
2
3
磁共振成像基本原理
基本过程: 一、自然状态下的原子核(磁矩、自旋) 二、外加磁场(主磁场和射频磁场)后的原子
《磁共振成像》课件
穿着舒适、无金属纽扣或拉链的衣 服进行检查。
检查中的安全问题
保持静止
在检查过程中,需要保持静止不动,以免影 响成像效果。
遵循医生指导
在检查过程中,需要遵循医生的指导,如保 持正常呼吸、不要憋气等。
观察身体反应
在检查过程中,需要观察身体是否有不适反 应,如有异常应及时告知医生。
避免携带电子设备
02
磁共振成像系统
磁体系统
01
磁体类型
磁体系统是磁共振成像的核心 部分,主要分为永磁型、超导
型和脉冲型三种类型。
02
磁场强度
磁场强度是衡量磁体性能的重 要指标,通常在0.5-3.0特斯拉
之间。
03
磁场均匀性
为了获得高质量的图像,磁场 的均匀性必须得到保证,通常
要求在±0.01ppm之内。
梯度系统
• 技术挑战:高场强磁共振成像技术需要更高的技术和资金投入,同时还需要解决磁场均匀性、信噪比和安全性等问题。
快速成像技术
总结词
快速成像技术能够缩短成像时间,提高成像效率 ,减轻患者的痛苦和不适感。
发展趋势
随着快速成像技术的不断改进和完善,其应用范 围也将不断扩大,未来可能会成为磁共振成像技 术的主流之一。
02
详细描述
多模态成像技术是当前研究的 热点之一,它能够综合利用多 种成像模式的信息,如磁共振 成像、超声成像、X射线成像 等,从而提供更加全面和准确
的诊断结果。
03
发展趋势
多模态成像技术的应用范围将 不断扩大,未来可能会成为医
学影像技术的主流之一。
04
技术挑战
多模态成像技术需要解决不同 模态之间的兼容性和同步性问 题,同时还需要进一步提高图
磁共振检查技术MRI检查方法PPT课件
《医学影像检查技术》第八章 磁共振检查技术
快速自旋回波序列(FSE)
①图像对比特性与SE相似,磁敏感性更 低; ②成像速度更快; ③回波链长增加,扫描时间缩短,采集 层数减少。
《医学影像检查技术》第八章 磁共振检查技术
反转恢复序列(IR)
①具有较强T1对比特性,短TI反转恢复 序列同时具有较强的T2对比特性; ②可根据需要设定TI,饱和特定组织产 生特征性对比的图像(STIR、FLAIR); ③短TI对比常用于新生儿脑部成像; ④采集时间较长,扫描层面较少。
《医学影像检查技术》第八章 磁共振检查技术
第二节 MRI检查方法
《医学影像检查技术》第八章 磁共振检查技术
总体概述
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
《医学影像检查技术》第八章 磁共振检查技术
MR成像参数
《医学影像检查技术》第八章 磁共振检查技术
三、反转恢复序列(IR) 在1800脉冲的激励下,使磁化矢量M反转到主磁场 的反方向,在驰豫的过程中施加900重聚脉冲,检
测信号
180°
180°
180°
90°
回波
TI TE
TR
《医学影像检查技术》第八章 磁共振检查技术
四、梯度回波序列(GE,GRE) 使用一个小于900的RF激励质子后,使用两个大小相同 而方向相反的梯度磁场使其产生相位重聚
反转时间 TI (IR序列中)
Y
Y
Y
X
甲组织 恢复最慢
X
乙组织 恢复一般
X
丙组织 恢复快
《医学影像检查技术》第八章 磁共振检查技术
《MRI技术》课件
MRI的成像过程包括磁场对齐、脉冲信号激发、信号接收和图像重建等步骤,最终生成高 质量的人体图像。
MRI技术设备
MRI设备的组成
MRI设备由主磁场系统、梯度线 圈和射频线圈等部件组MRI设备的主要部件包括磁体、 梯度线圈和射频线圈,它们协同 工作来实现高质量的成像。
MRI设备的分类
MRI设备可以根据磁场强度、磁 体类型和应用领域等方面进行分 类。
MRI技术操作
1
MRI技术的操作流程
进行MRI技术,需要准备患者、确定扫描范围、对患者进行定位,然后进行扫描 和图像处理等步骤。
2
MRI检查的准备工作
患者需要遵循一些准备步骤,如空腹、去除金属物品和穿着舒适的服装,以确保 MRI检查的顺利进行。
MRI技术相比于CT和X线成像技术,具有更好的对比度和更广泛的应用领域。
MRI技术发展趋势
1 MRI技术的发展历程
MRI技术自从20世纪70年 代问世以来,经历了不断 的改进和发展,成为医学 影像领域的重要技术。
2 MRI技术的未来发展
方向
随着科技的进步,MRI技 术将更加智能化、高分辨 率、高速度和便携化,以 满足临床医学的需求。
3
MRI过程中的安全措施
MRI设备中的强磁场和无线电波需要注意安全,患者和医生需要遵循相关的安全 措施。
MRI技术优缺点
MRI技术的优点
MRI技术具有无辐射、对软组织有很好的对比度、可以多平面重建等优点。
MRI技术的局限性
MRI技术在成像时间、成本和对金属材料的敏感性上存在一些局限性。
MRI技术与其它成像技术的比较
3 MRI技术的应用前景
MRI技术将在神经科学、 肿瘤学、心脑血管疾病等 领域发挥更大的作用,为 医学诊断和治疗提供更好 的支持。
功能磁共振
功能磁共振功能磁共振,又称为功能性核磁共振成像(fMRI),是一种通过检测血液氧合水平变化来研究脑活动的影像技术。
它基于核磁共振原理,结合神经元活动与血氧水平的关系,能够精确地定位和呈现脑部功能区域的活动。
功能磁共振通过检测血液氧合水平的变化来推测神经元活动情况。
当某个脑功能区域活跃时,该区域所需的能量和氧气也会增加。
为了满足这些需求,大脑会向活跃区域输送更多的血液。
而血液在脑部供应过程中,其中的氧气含量发生变化,这种变化可以通过fMRI进行检测。
在功能磁共振扫描过程中,被检测的人需要躺在机器中,然后在不同的时间段内进行特定的任务。
通过多次扫描并分析数据,研究人员可以确定特定任务对应的脑部功能区域。
具体分析方法包括激活区域的统计学分析、激活时间的分析以及激活强度的测算,这些分析可以在不同层次上展现脑功能的变化。
功能磁共振在许多领域都具有广泛的应用。
在临床医学中,它可以用来检测脑部功能异常,例如卒中、癫痫和神经退行性疾病等。
此外,它还可以用于神经学、心理学等研究领域,帮助我们了解大脑的结构和功能。
然而,功能磁共振也存在一些局限性。
首先,扫描时间较长,通常需要几分钟到半小时不等,这对于某些特殊人群,如婴儿和不耐受扫描的患者来说可能比较困难。
其次,由于生理和心理因素的影响,扫描结果可能存在一定的误差。
此外,fMRI只能提供脑部的功能信息,不能直接观察到神经元的活动。
综上所述,功能磁共振是一项重要的脑部影像技术,通过检测血液氧合水平变化来研究脑活动。
它在医学和科学研究中扮演着重要的角色,但也面临一些挑战和限制。
随着技术的不断进步和发展,我们相信功能磁共振会在未来发展中发挥更重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生理参数
葡萄糖消耗量 氧耗量 细胞色素-C (叶绿醇氧化还原状态) 脑血容量
脑血氧含量
方法
FCG-PET,FDG-SPET O2-PET NIRS
H2O-PET,氙-,ECD-, MPAO-SPET, fMRI, 氙-CCT,NIRS+造影剂, TCD fMRI(BOLD);NIRS;内 在的视觉信号(去氧血红 蛋白,血红蛋白浓度)
常用磁共振脑功能成像处理软件包
•ACTIV2000 •AFNI* •BrainVoyager •FIASCO •FMRI Analysis Package •FSL •LyngbyMEDx •SPM* •Stimulate •VoxBo
图像数据的获取 图像数据的转换 图像数据分析 图像数据展示
(N)MRI
(Nuclear) Magnetic Resonance Imaging
(核) 磁 共振 成像
MRI
Magnetic Resonance Imaging
磁 共振 成像
MRI
(N)Magnetic
(核)磁
MRI
Resonance
共振
MRI
Imaging
成像
几组常用磁共振 参数的概念
•脑活动状态的生理学变化 •脑活动状态的代谢变化 •脑活动状态的血管变化
功能脑成像的目的是描绘出活体脑
组织活动的空间和时间位置。 •监测脑细胞活动性的金标准是直接、侵入 性地记录单个神经元细胞膜的电势能;然 而,这些方法仅限于实验中使用。 •在以人为研究对象时必须用非侵袭性的方 法,因此这些方法本身具有局限性。非侵 袭性脑功能成像有两种方法:(1)电生理 的方法和(2)代谢/血流的方法。
在工作站,将“A”状态和“B” 状态中标化的原始数据进行类比, 无代谢活动改变的区域即血氧水平 无改变的感兴趣区域脑组织设为0, 而有代谢活动改变的区域即血氧水 平增高或减低的感兴趣区域脑组织 数字化,并依据血氧水平增高或减 低的情况作出伪彩图像。
手 对 掌 运 动
双手对掌运动
fMRI
功能性磁共振成像的生理学基础
T1 TR T1WI T2 TE T2WI
水长T1、长T2。 脂肪短T1、长T2。 软组织等T1、等T2。 钙化短T1、短T2。
T1WI:短TR(小于500ms)、短TE。 PDWI:长TR(500-1000ms)、短TE。 T2WI:长TR(大于2000ms)、长TE。
随着磁共振成像技术的迅猛发展,功能性 磁共振成像技术亦日趋成熟。过去,临床功能 性检查主要依靠同位素检查(SPECT、PET等)。 自九十年代末以来,功能性磁共振成像技术不 断地成功应用于临床,以其卓越的性能和全新 的技术,逐渐被临床工作者尤其神经科学工作 者的认同和接受。该技术即没有使患者暴露于 同位素的缺点,又有功能性与形态学完美结合 的优点,因此,作者认为,一旦功能性磁共振 广泛应用于临床,势必有着宽阔的前景。
电生理的方法:
•脑电图(EEG) •脑磁图描记术(MEG)
代谢/血流的方法:
•正电子发射体层成像(PET) •功能 Nhomakorabea共振成像(fMRI)
利用成像设备产生功能图像的过程被 称作功能重建。要理解如何用这些方 法获得功能图像重要是要理解:
•脑活动与测量的生理参数之间的 关系。 •这些生理参数与脑功能图像之间 的关系。
此PPT下载后可任意修改编辑增删页面
脑功能磁共振影像学
有医术,有医道。术可暂行一时,道则流芳千古。
友情提示
感谢您不吸烟 手机调成静音 欢迎随时提问
▪诊断----治疗 ▪结构----功能 ▪宏观----微观
磁共振的设备
❖磁体 ❖线圈 ❖计算机
磁体的分类
❖永磁 ❖常导 ❖超导
射 频 线
圈
MR基本原理
血氧饱和度水平检测 (BOLD)
1990年Belliveau手次报 导了血氧饱和度水平检测技 术以来,该技术已成为神经 科学家探测各类认识活动脑 内定位的有效方法之一。
采样过程中需设置两种状态:一种 是活动、一种是休息(“A”和“B”), 在两种状态下,收集由于代谢活动的改 变而引起的血氧水平增加信息,作为原 始数据将这些原始数据进行标准化。如 动手实验中,要求受试者闭目、放松、 停30秒、对掌运动30秒、停30秒、对掌 运运动30秒、停30秒,依次类推,完成1 分20秒的扫描过程。
图像数据的预处理
移动校正 层面的延时校正 空间滤过 信号强度的标化 时序滤过
fMRI时间序列 高斯内核
设计矩阵
p <0.05
采用高斯野理论的推论
统计参数图 (SPM)
移动校正
平滑
通用线性模型
标化
标准脑 模版
参数评估
局部数据的校正
空间分布模式以及 相互有效的连通性
感觉、运动、认知功能障碍是医学中的重点,然 而我们在对他们进行诊断、监测这项战略中还存在实 质性的限制。在当今的医疗实践中,中枢神经系统疾 病大致分成神经病学的(疾病的生物学基础已被认识 的)和精神病学的(其特殊的生物学基础还不确定 的)。这种相当武断的分类根源于强调结构病理学。 功能测试直到现在还非常有限。传统医学的神经病学 和精神病学检查是通过特殊的刺激引起预期的反应来 检查神经系统。如反应正常其所做出的诊断是神经系 统正常。这“黑箱”方法现在可能被置疑,因为大脑 甚至在遇到严重损伤时也能够产生表面上是正常的反 应。然而,最后通过结合临床与病理,人们了解到许 多,这样的研究仅仅代表着对单个时间点的比较。
脑活动 代谢变化 功能图像 脑活动 血管变化 功能图像
磁共振脑功能成像的 数据分析
概述
磁共振脑功能成像的数据处理和分析的 方法很多,由于处理的数据量通常很大,因 此绝大多数研究的数据处理和分析多通过专 门的软件包来完成。磁共振工作站所附带的 软件虽然也可完成这项工作,如GE公司的 FUNCTOOL等,但其处理较粗糙和简单, 仅可作为实验结果的初步观察,一般不能达 到科学研究的需要。
功能性磁共振成像
(Functional Magnetic Resonance Imaging)
分广义和狭义两种
广义功能性磁共振成像
•弥散加权成像(DWI) •灌注加权成像(PWI) •磁共振波谱成像(MRS) •血氧饱和度水平检测(BOLD)
狭义功能性磁共振成像
特指血氧饱和度水平检 测( Blood Oxygen Level Dependent 简称BOLD)。