Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strai
材料性能计算及其在加工模拟中的应用Materials-SenteSoftware
中国工程院年会论文: C06材料性能计算及其在加工模拟中的应用郭战利 1*,G. Kang2,N. Saunders1,J.P. Schillé1(1 Sente Software Ltd., Guildford GU2 7YG, U.K. 2 Marketing Lab, 1408 Dunsan-Dong, Seo-Gu, Daejeon, 302-700, Korea) 摘要:计算机辅助工程(CAE)模拟是材料加工工艺设计的先决条件。
可靠的模拟必需以准确的材料数据为基础。
所需的材料数据包括物理性能如热膨胀系数和导热系数,以及力学性能如强度和流动应力曲线。
钢铁材料的加工 模拟还需要了解相转变动力学,即 TTT/CCT 转变曲线,和相变潜热。
当前 CAE 模拟所面临的一个问题是材料数 据的严重缺乏,因而通过开发计算机模型来计算材料性能成了众望所归。
本文第一部分总结了最近开发的材料性 能计算模型,并以 22MnB5 钢为例说明了合金的组织和性能随温度、时间、冷却速率和应变速率的变化关系。
第 二部分以该合金的热加工模拟为例介绍了计算得到的材料性能数据在 CAE 模拟中的应用。
此模拟耦合了传热、 材料变形和固态相变三个物理过程。
最后讨论分析了相变塑性应变对残余应力及弹性回弹得影响。
关键词:材料性能,CAE 模拟,相变动力学,流动应力曲线,热加工Materials Properties and Its Applications in Processing SimulationZhanli Guo1,G. Kang2,N. Saunders1,J.P. Schillé1(1 Sente Software Ltd., Guildford GU2 7YG, U.K. 2 Marketing Lab, 1408 Dunsan-Dong, Seo-Gu, Daejeon, 302-700, Korea)Abstract:Computer-aided-engineering (CAE) simulation has become an essential precondition for a good process design. To achieve reliable CAE simulations, accurate material data is a pre-requisite. The material data required include physical properties such as coefficient of thermal expansion and thermal conductivity, and mechanical properties such as strength and flow stress curves. In the cases of steels, one usually has to know the transformation kinetics, i.e. TTT/CCT curves, and the heat evolution during transformation as well. Traditionally such material data are gathered through experimental means, which has significant disadvantages in that not all of the required data are readily available, and measurement of high temperature properties is expensive. It is therefore highly desirable to develop computer models that can calculate the relevant material properties required by hot forming simulation, or processing simulation in general. The first part of the paper briefly describes the development of a computer model that can provide many of the properties required by processing simulation. The second part features a case study, where the calculated material properties have been used to simulate the hot stamping process of an automotive part. The simulation is carried out with coupled analysis of heat transfer, deformation and phase transformation. Simulation results show that transformation plasticity lowers the residual stress level and accordingly the amount of springback. Good agreement was found between the simulated and experimentally observed final shape. Key words: Material data; CAE simulation; TTT/CCT diagrams; Flow stress curves; Hot stamping*联系人:郭战利. 第一作者:郭战利(1972—) ,男,博士引 言计算机辅助工程(CAE)模拟是材料生产加工和工艺设计优化中必不可少的步骤 [1,2]。
人大考研-化学系研究生导师简介-金朝霞教授
爱考机构-人大考研-化学系研究生导师简介-金朝霞教授金朝霞教授金朝霞,1970年出生。
北京大学化学系理学学士(1991年);北京大学化学系助理工程师(1991年)、工程师(1996年);新加坡国立大学化学系哲学博士(2002年);韩国国立汉城大学物理系博士后研究(2001年-2002年)。
中国人民大学化学系副教授(2004年6月),教授(2011年7月)。
主要研究方向:a.限域条件下聚合物纳米结构的制备、性质与功能的研究 b.碳纳米材料与聚合物的复合材料的生物医学应用主要科研项目与课题在研课题:国家自然科学基金面上项目21074149(2011.1-2013.12),51173201(2012.1-2015.12)中国人民大学明德学者计划(2009.12-2012.12)北京分子科学国家实验室开放课题(2009.10-2011.12)已完成课题:国家自然科学基金青年项目(2005年,项目号50503025)其他科研项目:中国人民大学科研启动基金教育部归国留学人员启动基金已发表论文:1.S.L.Mei,L.Wang,X.D.Feng,Z.X.Jin*,Swellingofblockcopolymernanoparticles---apro cesscombiningdeformationandphaseseparation,Langmuir2013,29,4640-4646.2.S.L.Mei, Z.X.Jin*,Mesoporousblock-copolymernanospherespreparedbyselectiveswelling,Small2 013,9,322-329.3.S.L.Mei,X.D.Feng,Z.X.Jin*,Polymernanofibersbycontrollableinfilt rationofvapourswollenpolymersintocylindricalnanopores,SoftMatter,2013,9,945-951 .4.X.D.Feng,S.L.Mei,Z.X.Jin*,Wettabilitytransitioninducedtransformationandentra pmentofpolymernanostructuresincylindricalnanopores,Langmuir2011,27,14240-14247.5.S.L.Mei,X.D.Feng,Z.X.Jin*,FabricationofPolymerNanospheresBasedonRayleighInsta bilityinCapillaryChannels,Macromolecules2011,44,1615-1620.6.L.Zhang,D.A.Zha,T.T .Du.S.L.Mei,Z.J.Shi,Z.X.Jin*,Formationofsuperhydrophobicmicrospheresofpoly(viny lidenefluoride-hexafluoropropylene)/graphenecompositeviagelation,Langmuir2011,2 7,8943-8949.7.D.A.Zha,S.L.Mei,Z.Y.Wang,H.J.Li,Z.J.ShiandZ.X.Jin*,Superhydrophob icpolyvinylidenefluoride/grapheneporousmaterials,Carbon2011,49,5166-5172.8.K.K. Zhao,Z.Y.Wang,Z.J.Shi,Z.N.Gu,Z.X.Jin*,Fillingdouble-walledcarbonnanotubeswithWO 3andWnanowiresviaconfinedchemicalreactions,J.Nanosci.Nanotechnol.2011,11,2278-2 282.9.H.L.Fan,L.L.Wang,K.K.Zhao,N.Li,Z.J.Shi,Z.G.Ge,andZ.X.Jin*,Fabrication,Mec hanicalProperties,andBiocompatibilityofGraphene-ReinforcedChitosanComposites,Bi omacromolecules2010,11,2345-2351.10.Q.C.Zhao,J.Yin,X.D.Feng,Z.J.Shi,Z.G.GeandZ. X.Jin*,Abiocompatiblechitosancompositecontainingphosphotungsticacidmodifiedsing le-walledcarbonnanotubes,J.Nanosci.Nanotechno.2010,10,7126-7129.11.X.D.Feng,Z.X .Jin*,SpontaneousFormationofNanoscalePolymerSpheres,Capsules,orRodsbyEvaporatio nofPolymerSolutionsinCylindricalAluminaNanopores,Macromolecules2009,42,569-572.12.Q.C.Zhao,X.D.Feng,S.L.MeiandZ.X.Jin*,Carbonnanotubeassistedhighloadingandcon trolledreleaseofpolyoxometalatesinbiodegradablemultilayerthinfilm,Nanotechnolog y2009,20,105101.13.Z.G.Ge,Z.X.JinandT.Cao,Manufactureofdegradablepolymericscaff oldsforboneregeneration,Biomed.Mater.2008,3,22001.14.Z.X.Jin*,Z.YWang,Z.J.Shi,H .J.Lee,Y.W.ParkandK.Akagi,Thehierarchicalmicrostructureofhelicalpolyacetylenena nofibers,Curr.App.Phys.2007,7,367.15.H.J.Lee,Z.X.Jin,A.N.Aleshin,J.Y.Lee,M.J.Go h,K.Akagi,Y.S.Kim,D.W.Kim,Y.W.Park,"Dispersionandcurrent-voltagecharacteristics ofhelicalpolyacetylenesinglefiber",J.Am.Chem.Soc.2004,126,16722.16.Z.X.Jin,S.H. Goh,G.Q.Xu,Y.W.Park,Dynamicmechanicalpropertiesofmulti-walledcarbonnanotube/poly(acrylicacid)-surfactantcomplex,Synth.Met.2003,135(Sp.Iss.),735-736.17.Z.X.Jin ,K.PPramoda,G.Q.Xu,S.HGoh,Poly(vinylidenefluoride)-assistedmelt-blendingofmulti -walledcarbonnanotube/poly(methylmethacrylate)composites,Mater.Res.Bull.,2002,3 7,271-278.18.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Size-dependentopticallimitingb ehaviorofmulti-walledcarbonnanotubes,Chem.Phys.Lett.,2002,352,328-333.19.Z.X.Ji n,K.PPramoda,G.Q.Xu,S.HGoh,Dynamicmechanicalbehaviorofmelt-processedmulti-walle dcarbonnanotube/poly(methylmethacrylate)composites,Chem.Phys.Lett.,2001,337,43-47.20.Z.X.Jin,L.Huang,S.H.Goh,G.Q.Xu,W.Ji,Characterizationandnonlinearpropertie sofapoly(acrylicacid)-surfactant-multi-walledcarbonnanotubecomplex,Chem.Phys.Le tt.,2000,332,461-466.21.Z.X.Jin,X.Sun,G.Q.Xu,S.H.Goh,Nonlinearopticalproperties ofsomepolymer/multi-walledcarbonnanotubecomposites,Chem.Phys.Lett.,2000,318,505 -510.22.Z.X.Jin,G.Q.Xu,S.H.Goh,Apreferentiallyorderedaccumulationofbromineonmul ti-wallcarbonnanotube,Carbon2000,38,1135-1139.。
(2021年整理)材料专业常用术语英语单词表
材料专业常用术语英语单词表编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(材料专业常用术语英语单词表)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为材料专业常用术语英语单词表的全部内容。
Unit 1property (材料的)性质heat treatment 热处理metal 金属glass 玻璃plastics 塑料fiber 纤维electronic devices 电子器件component 组元,组分semiconducting materials 半导体材料materials science and engineering 材料科学与工程materials science 材料科学materials engineering 材料工程materials scientist 材料科学家materials engineer 材料工程师synthesize 合成synthesissubatomic structure 亚原子结构electron 电子atom 原子nuclei 原子核nucleusmolecule 分子microscopic 微观的microscope 显微镜naked eye 裸眼macroscopic 宏观的specimen 试样deformation 变形polished 抛光的reflect 反射magnitude 量级solid materials 固体材料mechanical properties 力学性质force 力elastic modulus 弹性模量strength 强度electrical properties 电学性质electrical conductivity 导电性dielectric constant 介电常数electric field 电场thermal behavior 热学行为heat capacity 热容thermal conductivity 热传导(导热性)magnetic properties 磁学性质magnetic field 磁场optical properties 光学性质electromagnetic radiation 电磁辐射light radiation 光辐射index of refraction 折射率reflectivity 反射率deteriorative characteristics 劣化特性processing 加工performance 性能linear 线性的integrated circuit chip 集成电路芯片strength 强度ductility 延展性deterioration 恶化,劣化mechanical strength 机械强度elevated temperature 高温corrosive 腐蚀性的fabrication 制造Unit 2chemical makeup 化学组成atomic structure 原子结构advanced materials 先进材料high-technology 高技术smart materials 智能材料nanoengineered materials 纳米工程材料metallic materials 金属材料nonlocalized electrons 游离电子conductor 导体electricity 电heat 热transparent 透明的visible light 可见光polished 抛光的surface 表面lustrous 有光泽的aluminum 铝silicon 硅alumina 氧化铝silica 二氧化硅oxide 氧化物carbide 碳化物nitride 氮化物dioxide 二氧化物clay minerals 黏土矿物porcelain 瓷器cement 水泥mechanical behavior 力学行为ceramic materials 陶瓷材料stiffness 劲度strength 强度hard 坚硬brittle 脆的fracture 破裂insulative 绝缘的resistant 耐……的resistance 耐力,阻力,电阻molecular structures 分子结构chain-like 链状backbone 骨架carbon atoms 碳原子low densities 低密度mechanical characteristics 力学特性inert 隋性synthetic (人工)合成的fiberglass 玻璃纤维polymeric 聚合物的epoxy 环氧树脂polyester 聚酯纤维carbon fiber—reinforced polymer composite 碳纤维增强聚合物复合材料glass fiber-reinforced materials 玻璃纤维增强材料high-strength, low-density structural materials 高强度低密度结构材料solar cell 太阳能电池hydrogen fuel cell 氢燃料电池catalyst 催化剂nonrenewable resource 不可再生资源Unit 3periodic table (元素)周期表atomic structure 原子结构magnetic 磁学的optical 光学的microstructure 微观结构macrostructure 宏观结构positively charged nucleus 带正电的原子核atomic number 原子序数proton 质子atomic weight 原子量neutron 中子negatively charged electrons 带负电的电子shell 壳层magnesium 镁chemical bonds 化学键partially-filled electron shells 未满电子壳层bond 成键metallic bond 金属键nonmetal atoms 非金属原子covalent bond 共价键ionic bond 离子键Unit 4physical properties 物理性质chemical properties 化学性质flammability 易燃性corrosion 腐蚀oxidation 氧化oxidation resistance 抗氧化性vapor (vapour)蒸汽,蒸气,汽melt 熔化solidify 凝固vaporize 汽化,蒸发condense 凝聚sublime 升华state 态plasma 等离子体phase transformation temperatures 相变温度density 密度specific gravity 比重thermal conductivity 热导linear coefficient of thermal expansion 线性热膨胀系数electrical conductivity and resistivity 电导和电阻corrosion resistance 抗腐蚀性magnetic permeability 磁导率phase transformations 相变phase transitions 相变crystal forms 晶型melting point 熔点boiling point 沸腾点vapor pressure 蒸气压atm 大气压glass transition temperature 玻璃化转变温度mass 质量volume 体积per unit of volume 每单位体积the acceleration of gravity 重力加速度temperature dependent 随温度而变的,与温度有关的grams/cubic centimeter 克每立方厘米kilograms/cubic meter 千克每立方米grams/milliliter 克每毫升grams/liter 克每升pounds per cubic inch 磅每立方英寸pounds per cubic foot 磅每立方英尺alcohol 酒精benzene 苯magnetize 磁化magnetic induction 磁感应强度magnetic field intensity 磁场强度constant 常数vacuum 真空magnetic flux density 磁通密度diamagnetic 反磁性的factor 因数paramagnetic 顺磁性的ferromagnetic 铁磁性的non-ferrous metals 非铁金属,有色金属brass 黄铜ferrous 含铁的ferrous metals 含铁金属,黑色金属relative permeability 相对磁导率transformer 变压器,变换器eddy current probe 涡流探针Unit 5hardness 硬度impact resistance 耐冲击性fracture toughness 断裂韧度,断裂韧性structural materials 结构材料anisotropic 各向异性orientation 取向texture 织构fiber reinforcement 纤维增强longitudinal 纵向transverse direction 横向short transverse direction 短横向a function of temperature 温度的函数,温度条件room temperature 室温elongation 伸长率tension 张力,拉力compression 压缩bending 弯曲shear 剪切torsion 扭转static loading 静负荷dynamic loading 动态载荷cyclic loading 循环载荷,周期载荷cross-sectional area 横截面stress 应力stress distribution 应力分布strain 应变engineering strain 工程应变perpendicular 垂直normal axis 垂直轴elastic deformation 弹性形变plastic deformation 塑性形变quality control 质量控制nondestructive tests 无损检测tensile property 抗张性能,拉伸性能Unit 6lattice 晶格positive ions 正离子a cloud of delocalized electrons 离域电子云ionization 电离,离子化metalloid 准金属,类金属nonmetal 非金属diagonal line 对角线polonium 钋semi—metal 半金属lower left 左下方upper right 右上方conduction band 导带valence band 价带electronic structure 电子结构synthetic materials (人工)合成材料oxygen 氧oxide 氧化物rust 生锈potassium 钾alkali metals 碱金属alkaline earth metals 碱土金属volatile 活泼的transition metals 过渡金属oxidize 氧化barrier layer 阻挡层basic 碱性的acidic 酸性的electrochemical series 电化序electrochemical cell 电化电池cleave 解理,劈开elemental 元素的,单质的metallic form 金属形态tightly-packed crystal lattice 密排晶格,密堆积晶格atomic radius 原子半径nuclear charge 核电荷number of bonding orbitals 成键轨道数overlap of orbital energies 轨道能重叠crystal form 晶型planes of atoms 原子面a gas of nearly free electrons 近自由电子气free electron model 自由电子模型an electron gas 电子气band structure 能带结构binding energy 键能positive potential 正势periodic potential 周期性势能band gap 能隙Brillouin zone 布里渊区nearly-free electron model 近自由电子模型solid solution 固溶体pure metals 纯金属duralumin 硬铝,杜拉铝Unit 9purification 提纯,净化raw materials 原材料discrete 离散的,分散的iodine 碘long—chain 长链alkane 烷烃,链烃oxide 氧化物nitride 氮化物carbide 碳化物diamond 金刚石graphite 石墨inorganic 无机的mixed ionic—covalent bonding 离子-共价混合键constituent atoms 组成原子conduction mechanism 传导机制phonon 声子photon 光子sapphire 蓝宝石visible light 可见光computer-assisted process control 计算机辅助过程控制solid—oxide fuel cell 固体氧化物燃料电池spark plug insulator 火花塞绝缘材料capacitor 电容electrode 电极electrolyte 电解质electron microscope 电子显微镜surface analytical methods 表面分析方法Unit 12macromolecule 高分子repeating structural units 重复结构单元covalent bond 共价键polymer chemistry 高分子化学polymer physics 高分子物理polymer science 高分子科学molecular structure 分子结构molecular weights 分子量long chains 长链chain—like structure 链状结构monomer 单体plastics 塑料rubbers 橡胶thermoplastic 热塑性thermoset 热固性vulcanized rubbers 硫化橡胶thermoplastic elastomer 热塑弹性体natural rubbers 天然橡胶synthetic rubbers 合成橡胶thermoplastic 热塑性thermoset 热固性resin 树脂polyethylene 聚乙烯polypropylene 聚丙烯polystyrene 聚苯乙烯polyvinyl—chloride 聚氯乙烯polyvinyl 聚乙烯的chloride 氯化物polyester 聚酯polyurethane 聚氨酯polycarbonate 聚碳酸酯nylon 尼龙acrylics 丙烯酸树脂acrylonitrile-butadiene—styrene ABS树脂polymerization 聚合(作用)condensation polymerization 缩聚addition polymerization 加聚homopolymer 均聚物copolymer 共聚物chemical modification 化学改性terminology 术语nomenclature 命名法chemist 化学家the Noble Prize in Chemistry 诺贝尔化学奖catalyst 催化剂atomic force microscope 原子力显微镜(AFM) Unit 15composite 复合材料multiphase 多相bulk phase 体相matrix 基体matrix material 基质材料reinforcement 增强体reinforcing phase 增强相reinforcing material 加强材料metal—matrix composite 金属基复合材料ceramic—matrix composite 陶瓷基复合材料resin—matrix composite 树脂基复合材料strengthening mechanism 增强机理dispersion strengthened composite 弥散强化复合材料particle reinforced composites 颗粒增强复合材料fiber—reinforced composites 纤维增强复合材料Unit 18nanotechnology 纳米技术nanostructured materials 纳米结构材料nanometer 纳米nanoscale 纳米尺度nanoparticle 纳米颗粒nanotube 纳米管nanowire 纳米线nanorod 纳米棒nanoonion 纳米葱nanobulb 纳米泡fullerene 富勒烯size parameters 尺寸参数size effect 尺寸效应critical length 临界长度mesoscopic 介观的quantum mechanics 量子力学quantum effects 量子效应surface area per unit mass 单位质量的表面积surface physics and chemistry 表面物理化学substrate 衬底,基底graphene 石墨烯chemical analysis 化学分析chemical composition 化学成分analytical techniques 分析技术scanning tunneling microscope 扫描隧道显微镜spatial resolution 空间分辨率de Brogile wavelength 德布罗意波长mean free path of electrons (电子)平均自由程quantum dot 量子点band gap 带隙continuous density of states 连续态密度discrete energy level 离散能级absorption 吸收infrared 红外ultraviolet 紫外visible 可见quantum confinement (effect) 量子限域效应quantum well 量子势阱optoelectronic device 光电子器件energy spectrum 能谱electron mean free path 电子平均自由程spin relaxation length 自旋弛豫长度Unit 21biomaterial 生物材料implant materials 植入材料biocompatibility 生物相容性in vivo 在活体内in vitro 在活体外organ transplant 器管移植calcium phosphate 磷酸钙hydroxyapatite 羟基磷灰石research and development 研发 R&D Preparation & Characterizationprocessing techniques 加工技术casting 铸造rolling 轧制,压延welding 焊接ion implantation 离子注入thin—film deposition 薄膜沉积crystal growth 晶体生长sintering 烧结glassblowing 玻璃吹制analytical techniques 分析技术characterization techniques 表征技术electron microscopy 电子显微术X—ray diffraction X射线衍射calorimetry 量热法Rutherford backscattering 卢瑟福背散射neutron diffraction 中子衍射nuclear microscopy 核子微探针。
振动力学名词中英文对照
发信人: laissez (中正平和), 信区: DeptMech标题: 《振动力学》名词中英文对照发信站: 碧海青天(Tue Dec 12 16:06:09 2000), 转信Dirac delta function delta函数acceleration加速度admittance导纳amplification factor动力放大因子amplitude幅值、振幅amplitude-frequency characteristic幅频特性angular frequency圆频率attenuation vibration衰减振动base motion基础运动bending vibration弯曲振动boundary condition边界条件chaotic vibration混沌振动complementary energy余能complex frequency response function复频响应函数component modal synthesis method模态综合法condition of orthogonality正交性条件conservative system保守系统consistent mass matrix一致(协调)质量阵constraint mode约束模态continuous system连续系统continuum连续体damping coefficient阻尼系数damping ratio阻尼比damping vibration有阻尼振动degree-of-freedom自由度differential equation of motion动力学微分方程direct numerical integration直接积分法discrete system离散系统displacement位移dissipative system耗散系统Duhamel integral杜哈曼积分dynamical matrix动力矩阵dynamical system动力学系统dynamics动力学eigenvalue特征值eigenvector特征向量element单元energy of deformation变形能excitation激励flexibility柔度forced vibration强迫振动foundation基础Fourier transformation傅氏变换free vibration自由振动frequency equation频率方程fundamental frequency基频general coordinate广义坐标general solution通解generalized eigenvalue problem广义特征值问题governing equation控制方程impulse response function脉冲响应函数inertia惯性initial condition初始条件kinetic energy动能logarithmic decrement对数衰减率longitudinal vibration纵向振动lumped mass method集中质量法mass matrix质量矩阵matrix iteration method矩阵迭代法mechanical energy机械能modal matrix振型矩阵mode振型、模态mode function振型函数mode superposition method振型叠加法mode truncation method振型截断法natural frequency固有频率negative damping负刚度node节点normal mode简正振型oscillation振动、振荡period周期phase angle相角phase difference相位差positive definite正定potential energy势能principal mass主质量principal stiffness主刚度principle of superposition迭加原理principle of virtual work虚功原理proportional damping比例阻尼Rayleigh quotient瑞利商reduced mass约化质量resonance共振restoring force恢复力rotation转动shape function形函数shear vibration剪切振动shift frequency method移轴法simple harmonic excitation简谐激励spring-mass system弹簧-质量系统stability稳定性steady-state response稳态响应steady-state solution稳态解stiffness matrix刚度矩阵strain energy应变能structural damping结构阻尼subspace iteration method子空间迭代法system系统torsional vibration扭转振动transient solution瞬态解translation平动transverse vibration横向振动trial function试函数undamped vibration无阻尼振动variation变分velocity速度vibration振动viscous damping粘性阻尼。
推荐山东有突出贡献的中青年专家基本情况一览表
J Mater Eng Perform
SCI收录
Int J Mater Prod Tec
SCI收录
Finite Elem Anal Des
SCI收录
J Manuf Sci E-T ASME
SCI收录
MatSCI EngA-Struct
SCI收录
NUMISHEET2014
ISTP收录
上海交通大学学报
[7] Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state
3.指导的研究生获得CSC全额资助去国外攻读博士学位1人次;
4.指导的研究生得国家奖学金1人次;
5.曾获校优秀指导教师、科技创新发明创造先进个人等称号。
应用合作和国际交流:
与上海赛科利汽车模具技术应用有限公司合作,对激光拼焊板成形工艺分析及模具改进进行了深入研究,成功解决了激光拼焊板成形过程焊缝移动预测与控制问题。与大王金泰有限公司开展广泛深入的科研合作,部分科研专利处于国际领先地位。与德国纽伦堡大学LFT教席、多特蒙德大学IUL、意大利帕多瓦大学DIMEG在相关领域开展合作研究,合作发表多篇高水平学术论文。
主持项目:
1.国家自然科学基金(51375280);
2.国家自然科学基金(51005137,结题优秀);
3.教育部“新世纪优秀人才”支持计划(NCET-12-1028);
4.中国博士后科学基金特别资助(201104585,结题);
5.中国博士后科学基金(20100471541,结题);
金砖御窑烧制所涉及的化学知识
金砖御窑烧制所涉及的化学知识1.金砖御窑烧制需要了解陶瓷材料的化学成分和性质。
The firing of the royal kiln of the golden brick requires an understanding of the chemical composition and properties of ceramic materials.2.瓷器的釉料配方需要考虑各种化学原料的配比和反应条件。
The formulation of glazes for porcelain requires consideration of the proportions of various chemical raw materials and reaction conditions.3.了解氧化物在瓷器烧制过程中的化学变化对控制烧制温度和气氛有重要意义。
Understanding the chemical changes of oxides in thefiring process of porcelain is important for controlling the firing temperature and atmosphere.4.瓷器釉料的烧成过程涉及到各种化学反应和相变。
The firing process of glazes for porcelain involves various chemical reactions and phase transformations.5.熟悉瓷釉中的色谱化学知识可以帮助调配出不同颜色和特性的釉料。
Familiarity with the chromatography of glazes can help in formulating glazes of different colors and characteristics.6.了解金属氧化物的颜色和熔点的化学特性对于设计优质的釉料很重要。
钢件调质处理工艺流程
钢件调质处理工艺流程1.钢件调质处理是将钢件进行加热和冷却处理,以改善其力学性能和耐磨性。
Quenching and tempering of steel parts is a process of heating and cooling the steel parts to improve their mechanical properties and wear resistance.2.首先将钢件加热至临界温度以上,以使组织发生相变。
First, the steel parts are heated above the critical temperature to induce phase transformation in the microstructure.3.然后将钢件迅速冷却至较低的温度,通常采用水或油进行淬火。
The steel parts are then rapidly cooled to a lower temperature, typically using water or oil for quenching.4.这种快速冷却可以使钢件的组织变得均匀细密,提高硬度和强度。
This rapid cooling process can refine the microstructure of the steel parts, increasing their hardness and strength.5.随后,钢件需要进行回火处理,即再次加热至一个适当的温度区间并保持一定时间。
Subsequently, the steel parts need to undergo tempering, which involves reheating them to a suitable temperature range and holding for a period of time.6.回火处理可以消除淬火时产生的内应力,提高韧性和韧韧度。
电磁场对钢材组织性能的影响
2001年12月December 2001钢 铁 研 究Research on Iron &S teel第6期(总第123期)N o.6 (Sum123)电磁场对钢材组织性能的影响3王金录 邸洪双 张晓明 王国栋 刘相华(东北大学)摘 要 介绍了国内外磁场热处理对钢材组织影响的最新研究结果,并进行了电磁场对相变形核及晶粒长大影响的动力学分析。
利用自行设计的电磁场装置,在G LEE BL —1500热力模拟实验机上进行了电磁场对形变及随后相变过程影响的实验研究,得到了较为明显的晶粒细化效果。
关键词 电磁场 动力学 晶粒细化 相变EFFECTS OF E LECTR OMAGNETIC FIE LD ON MICR O STRUCTURE&PR OPERT Y OF STEE LPR ODUCTWang Jinlu Di H ongshuang Zhang X iaoming Wang G uodong Liu X ianghua(N ortheastern University )Synopsis The latest results achieved about studies on the effects of the electromagnetic field on the microsturcture and properties of steel during the magneticfield heat treatment in China and across the w orld are introduced.an rinetic analysis is als o made on the effect of electro -magnetic field on the crystal nucleation and growth during the phase trans formation.Based on the above men 2tioned understandings an experimental study is carried out on the in fluence of the elctromagnetic field on the refinement of mild steel during the hot deformation and subsequent phase trans formation using the self designed electromagnetic field device on a G LEE BL -1500simulation machine ,and g ood results obtained accordingly.K eyw ords electromagnetic field K inetics grain refinement phase trans formation联系人:王金录,硕士,沈阳市(110006)东北大学轧制技术及连轧自动化国家重点实验室国家重点基础研究发展规划资助项目,G 19980615101 前 言强度、塑性、韧性塑性—脆性转变温度和可焊接性等是低合金钢最重要的性能指标。
材料科学专业英语词汇
材料科学专业英语词汇1. Material science - 材料科学2. Properties - 物性3. Structure - 结构5. Mechanical properties - 机械性能6. Thermal properties - 热性能7. Electrical properties - 电性能8. Optical properties - 光学性能9. Chemical properties - 化学性能10. Processing - 加工11. Synthesis - 合成12. Manufacturing - 制造13. Testing - 测试14. Characterization - 表征15. Nanomaterials - 纳米材料16. Polymers - 高分子材料17. Metals - 金属18. Ceramics - 陶瓷20. Biomaterials - 生物材料21. Material selection - 材料选择22. Material degradation - 材料退化23. Corrosion - 腐蚀24. Fracture - 断裂25. Fatigue - 疲劳26. Deformation - 变形27. Microstructure - 微观结构28. Phase transformation - 相变29. Crystal structure - 晶体结构30. Surface engineering - 表面工程31. Coating - 涂层32. Thin films - 薄膜33. Materials characterization techniques - 材料表征技术34. X-ray diffraction - X射线衍射35. Scanning electron microscopy - 扫描电子显微镜36. Transmission electron microscopy - 透射电子显微镜37. Atomic force microscopy - 原子力显微镜38. Differential scanning calorimetry - 差示扫描量热计39. Tensile testing - 拉伸试验。
近年内最具代表性之学理创新与应用技术突破(至多五项)
一、近年內最具代表性之學理創新與應用技術突破(至多五項)。
(1) 在鋁鋰合金及鋁鋰基金屬複材方面,在國際、國內發表卅餘篇論文,並曾在國內外作過二十餘次之演講與報告;亦曾先後協同台中航發中心、金屬中心、中鋼公司、以及工研院工材所熟悉此種材料的特性。
(2) 在震波與高速負載下的金屬與金屬複材形變破壞,亦完成十餘種材料的測試與分析,建立一套動態形變破壞之微觀分析基礎。
(3) 在超塑性材料研究方面,從事將較便宜且易取得的厚板,加工製成昂貴不易買到的超塑性薄板,目前7475鋁材之最高形變量已達1500%。
曾與航發中心協力評估鋁鋰應用在飛機組件上,並已獲得國內專利。
也曾利用中鋼生產之鋁材,以熱機處理自製成長優異之超塑性薄板,單軸形變量亦達1000%以上。
而在Ti3Al基介金屬化合物超塑性,是與美國Rockwell公司合作,從事超塑機構之探討,在2 mm 板材上,已獲致1900%以上之高形變量。
(4) 在開發低溫超塑鋁合金的過程中,也進行SEM與TEM微組織觀察,對晶粒滑移與晶粒旋轉、晶粒中差排之性質、和其晶粒與相鄰晶粒之方向關係等,與機性數據與活化能印證,對超塑機構進一步認識。
(5) 最近致力於金屬複材在室溫或中高溫高速負載下的應力與應變特性,並研發細晶粒鋁基複材之低溫或高速超塑性,是相當令人興奮之題目,現在8090鋁材在350o C之低溫形變量達710%,5083鋁材在230o C之低溫形變量達511%,AZ91鎂合金在250o C之低溫形變量達1200 %,AZ31鎂合金在300o C之低溫及1x10-2 s-1之高速形變量達1000 %,6061鋁材在610o C之高溫形變量達500%,1050純鋁材在640o C之高溫形變量達210%,在6061/15%SiC(p)、2024/15%SiC(p)、及pure-Al/15%SiC(p)複材於10-1 - 10o s-1已有250%以上之高速變形量。
在過去兩年,被邀請於國際會議超塑性組發表數次,並核准專利七項,其中鋁基方面之專利技術皆已轉為中鋼或金屬中心,鎂基方面因方通過,仍在協議中。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
机械工程学专业词汇英语翻译(P)1
机械工程学专业词汇英语翻译(P)1paddle 桨叶pair force 偶力pair interaction 偶相互酌pair of element 运动副pair potential 对势pancaking 平坠panel point 格点parabolic creep 抛物线型蠕变parabolic curve 抛物曲线parabolic flow 抛物线型流parabolic orbit 抛物线轨道parabolic potential 抛物线型势parabolic trajectory 抛物线轨道parabolic velocity profile 抛物线速度剖面paraboloid of revolution 回转抛物面parabrake 制动伞paraclase 断层裂缝paraelastic resonance 顺弹性共振parallactic angle 视差角parallactic shift 视差移动parallel 平行的parallel band 平行带parallel chord truss 梯形桁架parallel connection 并联parallel coordinate system 平行坐标系parallel coordinates 平行座标parallel displacement 平行位移parallel excitation 并励parallel exis theorem 平行轴定理parallel field of forces 平行力场parallel flow 平行流parallel flow turbine 轴两涡轮parallel force 平行力parallel force system 平行力系parallel line 平行线parallel motion 平行运动parallel resonance 并联共振parallel shift 平行位移parallel stream 平行流parallel structure 平行结构parallel texture 平行织构parallelepipedal deformation 平行六面体形变parallelism 平行性parallelogram law 平行四边形定律parallelogram of forces 力平行四边形parallelogram of velocities 速度平行四边形parallelogram pendulum 平行四边形摆paramagnetic resonance phenomenon 顺磁共振现象parameter 参量parameter change 参量变换parameter curve 参数曲线parameter of velocity 速度参数parameter scattering 参量散射parameter transformation 参量变换parametric oscillation 参量振荡parametric resonance 参量共振parametron oscillation 变参管振荡parasite drag 寄生阻力parasitic drag 寄生阻力parasitic oscillation 寄生振荡parasitic resonance 干扰共振parasitics 寄生现象parent metal 底层金属paris formula 帕里斯公式partial air force 空气动力导数partial analysis 部分分析partial coherence function 部分相干函数partial correlation 部分相关partial cross section 部分截面partial deformation 部分形变partial diffusion coefficient 部分扩散系数partial energy 偏能partial entropy 偏熵partial equilibrium 部分平衡partial excitation 部分激发partial internal energy 偏内能partial ionization 部分电离partial load 部分负载partial luminous flux 部分光通量partial node 分节点partial potential 偏势partial pressure 分压partial pressure grade 分压梯度partial pulse 部分脉冲partial resonance 部分共振partial scattering cross section 部分散射截面partial vibration 部分振动partial wave 分波partial wave method 分波法particle 粒子particle acceleration 粒子加速particle displacement 粒子位移particle dynamics 质点动力学particle flow 粒子流particle momentum 粒子动量particle size distribution 颗粒尺寸分布particle trajectory 粒子轨道particle wave function 粒子波函数particulate fluidization 散体连化partition 分离partition law 分布律partly dispersed shock 部分分散冲击pascal law 帕斯卡尔定律paschen's law 帕邢定律pass band 通带pass band damping 通带衰减passage 练passage of front 锋面通过passivation 钝化passivation potential 钝化势passive earth pressure 被动土压力passive gravitational mass 被动引力质量passive mass 被动质量passive slip plane 被动滑移面passive state 钝态passivity 钝态path amplitude 径迹幅度path contraction 路径缩短path inclination 轨道倾角path length 路径长度path line 轨迹path time law 路径时间定律pathway 轨道pattern 图样payload 有效载荷payload ratio 有效载荷比peak frequency deviation 频率偏差peak load 峰值载荷peak output 功率peak shear strength 峰值抗剪强度peak to peak amplitude 峰峰振幅peak value 峰值peculiar minor planet 奇特小行星peculiar motion 本动pedestal 台pedomechanics 土壤力学peierls lattice force 佩尔斯点阵力peierls nabarro force 佩尔斯点阵力peierls potential 佩尔斯势peierls stress 佩尔斯应力pellicular water 薄膜水pelton turbine 培尔顿水轮机penalty function 罚函数pendular motion 摆运动pendular oscillation 摆振动pendulum 摆pendulum balance 摆秤pendulum deflection 摆幅pendulum effect 摆效应pendulum governor 摆式蒂器pendulum hardness 摆撞硬度pendulum hardness test 摆撞硬度试验pendulum hardness tester 摆撞硬度试验机pendulum impact tester 摆式冲辉验机pendulum law 摆定律pendulum manometer 摆式压力计pendulum motion 摆运动pendulum suspension 摆式悬挂penetrant method 透过法penetrating power 贯穿本领penetration 浸透penetration depth 浸透深度penetration resistance 穿透阻力penstock 压力水管percent consolidation 压密度percentage reduction of area 断面收缩率perch 杆percolation 渗透percolation coefficient 渗透系数percolation rate 渗透率percolation velocity 渗透率percussion 冲击percussion test 冲辉验perfect combustion 完全燃烧perfect diffusion 完全扩散perfect dislocation 全位错perfect elasticity 完全弹性perfect flexibility 完全挠性perfect fluid 理想铃perfect fluidity 理想怜性perfect gas 理想气体perfect overflow 完全溢流perfect pendulum 单摆perfect plasticity 完全塑性perfect resonance 理想共振perfect rigidity 完全刚性perfectly elastic 完全弹性的perfectly elastic body 完全弹性体perfectly elastic impact 完全弹性碰撞perfectly elastic material 完全弹性材料perfectly elastic torsion 完全弹性扭转perfectly inelastic collision 完全非弹性碰撞perfectly inelastic impact 完全非弹性碰撞perfectly plastic 完全塑性的perfectly plastic torsion 完全塑性扭转perfectly rigid body 完全刚体perfectly smooth 完全光滑的perforated plate 多孔板perforation 钻孔performance characteristic 性能特性曲线performance criterion 性能判据performance index 性能指标pericenter 近中心点perigean velocity 近地点速度perigee 近地点perigee altitude 近地点高度perigee distance 近地点距离perigon 周角perihelic velocity 近日点速度perihelion 近日点perihelion passage 近日点通过perimeter 周边period 周期period of acceleration 加速时间period of beat 拍频周期period of braking 制动时间period of oscillation 振荡周期period of revolution 回转周期period of vibration 振荡周期periodic error 周期误差periodic force 周期力periodic function 周期函数periodic law 周期律periodic motion 周期运动periodic orbit 周期轨道periodic perturbation 周期扰动periodic potential 周期势periodic sinusoidal flow 周期正弦流periodic structure 周期性结构periodic system 周期系periodically changing potential 周期变化势periodicity 周期性peripheral force 圆周力peripheral speed 周缘速度peripheral stress 周缘张力peripheral tension 周缘张力peripheral velocity 周缘速度permanence 永久性permanent axis of rotation 稳定旋转轴permanent current 恒流permanent deformation 剩余形变permanent elongation 永久伸长permanent hardness 永久硬度permanent load 持续负载permanent set 残余形变permanent wave 稳定波permeability 渗透性permeability coefficient 渗透系数permeability of the membrane 膜的渗透性permeability tensor 渗透率张量permeable layer 透水层permeation 渗透permeation pressure 渗透压permeation rate 渗透速率permissibility 容许度permissible concentration 容许浓度permissible error 容许误差permissible load 容许荷载permissible overload 容许过载permissible stress 容许应力permissible tolerance 容许公差perpendicular 垂直的perpendicular band 正交带perpendicular force 正交力perpendicular of incidence 入射法线perpendicular vibration 垂直振动perpendicularity 正交性perpetual mobile 永动机perpetual motion 永恒运动perpetuum mobile 永动机persistence length 持续长度persistence of state 状态住留persistence of velocity 速度住留personal error 人为误差perturbation 扰动perturbation energy 微扰能perturbation equation 微扰方程perturbation matrix 扰动矩阵perturbation method 微扰法perturbation potential 扰动势perturbation theory 微扰理论perturbed angular correlation 微扰的角关联perturbed motion 扰动运动perturbing action 微扰酌perturbing function 微扰函数perturbing mass 扰动质量perturbing vector 扰动矢量phase 脉冲相位phase acceleration 相位加速度phase angle 相位角phase boundary 相界phase change 相变化phase characteristic 相位特性phase contour 等相线phase cross over frequency 相位交界频率phase curve 相位曲线phase diagram 相图phase difference 相位差phase displacement 相位移phase distribution 相分布phase equation 相位方程phase equilibrium 相平衡phase error 相位误差phase frequency 相位频率phase frequency curve 相频曲线phase lag 相位滞后phase locus 相位轨迹phase noise 相位噪声phase of oscillation 振荡相位phase oscillation 相位振荡phase resonance 相共振phase response 相位响应phase rotation 相位转动phase rule 相律phase space 相空间phase space average 相空间平均phase spectrum 相谱phase stability 相位稳定性phase trajectory 相轨迹phase transformation 相位变换phase velocity 相位速度phase wave 相波phase wavelength 相波长phenomenon of turbulent fluctuation 湍燎落现象photodynamic effect 光动态效应photoelastic coating method 光弹性涂层法photoelastic coefficient 光弹性系数photoelastic constant 光弹性常数photoelastic fringe pattern 光弹性条纹图样photoelastic method 光弹性方法photoelastic strain gage 光弹性应变计photoelastic stress pattern 光弹性应力图样photoelasticimetry 光弹性测量photoelasticity 光弹性photoplastic measurement 光塑性测量photoplasticity 光塑性photoresonance 光共振photothermoelasticity 光热弹性phreatic nappe 潜水面phreatic surface 潜水面physical 物理的physical model 物理模型physical nutation 物理章动physical pendulum 物理摆physical property 物理性质physical similarity 物理相似physical simulation 物理模拟physico chemical mechanics 物理化学力学physics 物理学pi theorem 定理pick off 传感器pick up 传感器picture of flow 撂图piercing 穿孔piezocaloric coefficient 压热系数piezocaloric effect 压热效应piezoelectric effect 压电效应piezoelectric generator 压电振荡器piezoelectric material 压电材料piezoelectric oscillator 压电振荡器piezoelectric resonator 压电共振器piezomagnetic effect 压磁效应piezomagnetic moment 压磁矩piezomagnetic tensor 压磁张量piezometer 压电计piezometric line 量压线piezometric pressure 压力计压力piezometric surface 量压面piezotropic modulus of elasticity 压性弹性模数piezotropy 压性pile 桩pile driving test 打桩试验pile foundation 桩基础pile oscillation method 堆振荡法pile oscillator 堆振荡器pile up effect 堆积效应pile up of pulses 脉冲成堆pillar 柱pillar load 柱负荷pilot frequency 导频pilot pulse 导频脉冲pilot wave 导频波pilotless 无人驾驶的pin connected truss 铰接桁架pin connection 螺栓连接pin joint 铰结点pin support 针状支承pinch 箍缩pinch effect 箍缩效应pinch off effect 聚缩效应pinching 箍缩pinhole porosity 细缩孔率piola kirchhoff stress tensor 皮奥拉基尔霍夫应力张量piola strain tensor 皮奥拉应变张量pipe bender 弯管机pipe connection 管连接pipe diffusion 管中扩散pipe flow 管道怜pipe line 管路pipe loss 管道损耗pipe resistance 管道阻力pipe under pressure 压力管pipe wall 管壁piping 设置管道piston 活塞piston engine 活塞发动机piston flow 活塞流piston flowmeter 活塞式量计piston pressure 活塞压力piston speed 活塞速率pitch diameter 节径pitch moment 俯仰力矩pitching 俯仰pitching angle 俯仰角pitching moment coefficient 俯仰力矩系数pitot pressure 皮托压力pitot static tube 皮托静压管pitot tube 皮托管pitting corrosion 坑蚀pivot 枢轴pivot friction 轴承摩擦pivot journal 枢轴颈pivot support 轴颈支座pivoting 绕轴旋转pivoting friction 转动摩擦pivoting friction torque 转动摩擦力矩plan of transposition 变位图planar junction 平面结planar radius of inertia 平面惯性半径plane 平面plane bearing 平面支承plane coordinates 平面座标plane couette flow 平面库爱特怜plane cylindric wave 平面柱面波plane elasticity 平面弹性plane flow 平面怜plane frame work 平面构架plane lattice 平面点阵plane mathematical pendulum 平面数学摆plane motion 平面运动plane of deformation 形变平面plane of discontinuity 间断面plane of flexure 挠曲面plane of flow 怜平面plane of measurement 测量面plane of oscillation 振荡平面plane of polarisation 偏光面plane of stratification 层理面plane of symmetry 对称面plane of the section 截面plane of vibration 振动平面plane parallel atmosphere 平面分层大气plane parallel motion 平面平行运动plane plasticity 平面塑性plane poiseuille flow 平面泊肃叶怜plane problem 平面问题plane strain 平面应变plane stress problem 平面应力问题plane structure 平面结构plane symmetry 平面对称plane system 平面系plane system of force 平面力系plane truss 平面桁架plane wake 平面尾流plane wave 平面波plane wave expansion 平面波展开planetary configuration 行星组态planetary ellipsoid 行星椭球planetary orbit 行星轨道planetary vorticity flux 行星涡通量planetary wave 行星波planetary west wind drift 行星午漂流planetogenic vortex 形成行星的涡流planform 外形planing boat 滑行艇plaque 板plasma 等离子体plasma accelerator 等离子体加速器plasma balance 等离子体平衡plasma density 等离子体密度plasma dynamics 等离子体动力学plasma electron oscillation 等离子体电子振荡plasma filled waveguide 等离子体波导plasma flow 等离子体怜plasma flow similarity 等离子体怜相似plasma frequency 等离子体频率plasma generator 等离子体发生器plasma heating 等离子体加热plasma injection 等离子体注入plasma injector 等离子体注入器plasma instability 等离子体不稳定性plasma ion oscillation 等离子体离子振荡plasma jet 等离子体射流plasma oscillation 等离子体振荡plasma physics 等离子体物理学plasma propulsion 等离子体推进plasma reactor 等离子体反应器plasma resonance 等离子体共振plasma rocket 等离子体火箭plasma shock wave 等离子体激波plasma speed 等离子体速度plasma state 等离子体态plasma swelling 等离子体肿胀plasma torch 等离子体喷枪;等离子体焰炬plasma wave 等离子体波plasma wavelength 等离子体波长plasma wind tunnel 等离子体风洞plasmatron 等离子体发生器plasmoid 等离子体状态plasmotron 等离子体发生器plastic 塑性的plastic after flow 塑性后效plastic agent 增塑剂plastic anisotropy 塑性蛤异性plastic bending 塑性弯曲plastic body 塑性固体plastic buckling 塑性屈曲plastic collision 塑性碰撞plastic deformation 塑性应变plastic design 塑性设计plastic elongation 塑性延伸plastic equilibrium 塑性平衡plastic flow 塑性怜plastic flow persistence 塑性后效plastic flow rule 塑性怜规则plastic fracture 塑性断裂plastic gel 塑性凝胶plastic hinge 塑性铰plastic hysteresis 塑性滞后plastic impact 塑性碰撞plastic limit 塑性极限plastic limit load 塑性极限载荷plastic material 塑性材料plastic moment 塑性弯矩plastic plane strain 塑性平面应变plastic plane stress 塑性平面应力plastic potential 塑性势plastic range 塑性区域plastic rigid boundary 刚塑性边界plastic sheet 薄片plastic state 塑性状态plastic strain 塑性应变plastic strength 塑性强度plastic stress 塑性应力plastic stress function 塑性应力函数plastic stress surface 塑性应力面plastic viscosity 塑性粘度plastic wave 塑性波plastic work 塑性功plastic yield 塑性屈服plasticity 塑性plasticity condition 塑性条件plasticity index 塑性指数plasticity modulus 塑性模量plasticity theory of hencky 亨奇塑性理论plasticity threshold 塑性阈plasticization 塑性化plasticizer 增塑剂plasticizing 增塑plasticodynamics 塑性体动力学plasticostatics 塑性体静力学plastics 塑料plastigel 塑性凝胶plasto elastic 塑弹性的plasto inelastic 塑性非弹性的plastogel 塑性凝胶plastomer 塑性体plastometer 塑度计plastometry 塑性测定plate 板plate bearing test 平板承载试验plate girder 板大梁plate structure 板结构plate theory 板理论plate thickness 板块厚度plot 图plotting 绘图plumb 测深锤plumb line 铅垂线plume 羽流烟羽plunging 纵摇pneumatic brake 空气制动器pneumatic buffer 空气缓冲器气力减震器。
材料科学与工程专业英语词汇
材料科学与工程专业英语词汇1. material 材料2. composite material 复合材料3. ceramic material 陶瓷材料4. metallic material 金属材料5. alloy 材料合金6. material properties 材料性质7. mechanical properties 机械性质8. thermal properties 热学性质9. electrical properties 电学性质10. chemical properties 化学性质11. processing technology 加工工艺12. casting process 铸造工艺13. forging process 锻造工艺14. casting alloy 铸造合金15. high-temperature casting 高温铸造16. lost wax casting 失蜡法铸造17. extrusion process 挤压工艺18. rolling process 轧制工艺19. sintering process 烧结工艺20. sintering temperature 烧结温度21. welding technology 焊接工艺22. fusion welding 熔焊23. electron beam welding 电子束焊接24. laser welding 激光焊接25. adhesive bonding 粘接工艺26. adhesive 胶粘剂27. diffusion bonding 扩散焊接28. brazing process 钎焊工艺29. metallurgy 材料科学30. crystal structure 晶体结构31. phase transformation 物相转变32. grain size 晶粒尺寸33. microstructure microstructure 分析显微组织34. texture 织构35. phase 相36. solid solution solid solution 强化的固溶体37. transformation toughening transformation强化韧化38. dislocation 位错39. grain boundary dislocation 晶界位错40. stress state 应力状态41. deformation deformation 变形42. elastic deformation 弹性变形43. plastic deformation 塑性变形44. fracture fracture 断裂45. hardness hardness testing硬度测试46. Vickers hardness tester Vickers硬度计47. Brinell hardness tester 布氏硬度计48. tensile test拉伸试验49. compressive test 压缩试验50. bending test弯曲试验51. fracture test 断口分析52. corrosion resistance耐腐蚀性53. oxidation resistance耐氧化性54. fatigue resistance耐疲劳性55. thermal stability热稳定性56. electrical conductivity电导率57. thermal conductivity热导率58. dielectric constant介电常数59. permeability磁导率60. specific heat capacity比热容61. density密度62. reinforcement reinforcement增强剂/增强纤维63. carbon fiber碳纤维增强塑料(CFRP)等。
金属材料 专业英语词汇对照
Material Science 材料科学Material Science Definition 材料科学定义Machinability[məʃi:nə'biliti]加工性能Strength .[streŋθ]强度Corrosion & resistance durability.[kə'rəʊʒən] &[ri'zistəns] .[ 'djʊrə'bɪlətɪ] 抗腐蚀及耐用Special metallic features 金属特性Allergic, re-cycling & environmental protection 抗敏感及环境保护Chemical element 化学元素Atom of Elements 元素的原子序数Atom and solid material 原子及固体物质Atom Constitutes 原子的组织图Periodic Table 周期表Atom Bonding 原子键结合Metal and Alloy 金属与合金Ferrous & Non Ferrous Metal 铁及非铁金属Features of Metal 金属的特性Crystal Pattern 晶体结构Crystal structure, Space lattice & Unit cell 晶体结构,定向格子及单位晶格X – ray crystal analytics method X线结晶分析法Metal space lattice 金属结晶格子Lattice constant 点阵常数Mill's Index 米勒指数Metal Phase and Phase Rule金相及相律Solid solution 固熔体Substitutional type solid solution 置换固熔体Interstitial solid solution 间隙固熔体Intermetallic compound 金属间化合物Transformation 转变Transformation Point 转变点Magnetic Transformation 磁性转变Allotropic Transformation 同素转变Thermal Equilibrium 热平衡Degree of freedom 自由度Critical temperature 临界温度Eutectic 共晶Peritectic [.peri’tekti k] Temperature包晶温度Peritectic Reaction 包晶反应Peritectic Alloy 包晶合金Hypoeutectic Alloy 亚共晶体Hypereutectic Alloy 过共晶体Plastic Deformation 金属塑性Slip Plan 滑动面Distortion 畸变Work Hardening 硬化Annealing 退火Crystal Recovery 回复柔软Recrystallization 再结晶Properties & testing of metal 金属材料的性能及试验Chemical Properties 化学性能Physical Properties 物理性能Magnetism 磁性Specific resistivity & specific resistance 比电阻Specific gravity & specific density比重Specific Heat比热热膨胀系数 Coefficient of thermal expansion导热度 Heat conductivity机械性能 Mechanical properties屈服强度(降伏强度) (Yield strength)弹性限度、杨氏弹性系数及屈服点 elastic limit, Young’s module of elasticity to yield point伸长度 Elongation断面缩率 Reduction of area破坏性检验 destructive inspections渗透探伤法 Penetrate inspection磁粉探伤法 Magnetic particle inspection放射线探伤法 Radiographic inspection超声波探伤法 Ultrasonic inspection显微观察法 Microscopic inspection破坏的检验 Destructive Inspection冲击测试 Impact Test疲劳测试 Fatigue Test蠕变试验Creep Test潜变强度 Creeps Strength第一潜变期 Primary Creep第二潜变期 Secondary Creep第三潜变期 Tertiary Creep主要金属元素之物理性质 Physical properties of major Metal Elements工业标准及规格–铁及非铁金属 Industrial Standard – Ferrous & Non – ferrous Metal磁力 Magnetic简介 General软磁 Soft Magnetic硬磁 Hard Magnetic磁场 Magnetic Field磁性感应 Magnetic Induction导磁率[系数,性] Magnetic Permeability磁化率 Magnetic Susceptibility (Xm)磁力(Magnetic Force)及磁场 (Magnetic Field)是因物料里的电子 (Electron)活动而产生抗磁体、顺磁体、铁磁体、反铁磁体及亚铁磁体 Diamagnetism, Paramagnetic, Ferromagnetisms, Antiferromagnetism & Ferrimagnetisms抗磁体 Diamagnetism磁偶极子 Dipole负磁力效应 Negative effect顺磁体 Paramagnetic正磁化率 Positive magnetic susceptibility铁磁体 Ferromagnetism转变元素 Transition element交换能量 Positive energy exchange外价电子 Outer valence electrons化学结合 Chemical bond自发上磁 Spontaneous magnetization磁畴 Magnetic domain相反旋转 Opposite span比较抗磁体、顺磁体及铁磁体 Comparison of Diamagnetism, Paramagnetic & Ferromagnetism反铁磁体 Antiferromagnetism亚铁磁体 Ferrimagnetism磁矩 magnetic moment净磁矩 Net magnetic moment钢铁的主要成份 The major element of steel钢铁用"碳"之含量来分类 Classification of Steel according to Carbon contents铁相 Steel Phases钢铁的名称 Name of steel铁素体Ferrite渗碳体 Cementitle奥氏体 Austenite珠光体及共析钢 Pearlite &Eutectoid奥氏体碳钢 Austenite Carbon Steel单相金属 Single Phase Metal共释变态 Eutectoid Transformation珠光体 Pearlite亚铁释体 Hyppo-Eutectoid初释纯铁体 Pro-entectoid ferrite过共释钢 Hype-eutectoid粗珠光体 Coarse pearlite中珠光体 Medium Pearlite幼珠光体 Fine pearlite磁性变态点 Magnetic Transformation钢铁的制造 Manufacturing of Steel连续铸造法 Continuous casting process电炉 Electric furnace均热炉 Soaking pit全静钢 Killed steel半静钢 Semi-killed steel沸腾钢(未净钢) Rimmed steel钢铁生产流程 Steel Production Flow Chart钢材的熔铸、锻造、挤压及延轧 The Casting, Fogging, Extrusion, Rolling & Steel熔铸 Casting锻造 Fogging挤压 Extrusion延轧Rolling冲剪 Drawing & stamping特殊钢以元素分类Classification of Special Steel according to Element特殊钢以用途来分类 Classification of Special Steel according to End Usage 易车(快削)不锈钢 Free Cutting Stainless Steel含铅易车钢 Leaded Free Cutting Steel含硫易车钢 Sulphuric Free Cutting Steel硬化性能 Hardenability钢的脆性 Brittleness of Steel低温脆性 Cold brittleness回火脆性 Temper brittleness日工标准下的特殊钢材 Specail Steel according to JIS Standard铬钢–日工标准 JIS G4104 Chrome steel to JIS G4104铬钼钢钢材–日工标准 G4105 62 Chrome Molybdenum steel to JIS G4105镍铬–日工标准 G4102 63 Chrome Nickel steel to JIS G4102镍铬钼钢–日工标准 G4103 64 Nickel, Chrome & Molybdenum Steel to JIS G4103高锰钢铸–日工标准 High manganese steel to JIS standard片及板材 Chapter Four-Strip, Steel & Plate冷辘低碳钢片(双单光片)(日工标准 JIS G3141) 73 - 95 Cold Rolled (Low carbon) Steel Strip (to JIS G 3141)简介 General美材试标准的冷辘低碳钢片 Cold Rolled Steel Strip American Standard – American Society for testing and materials (ASTM)日工标准 JIS G3141冷辘低碳钢片 (双单光片)的编号浅释 Decoding of cold rolled(Low carbon)steel strip JIS G3141材料的加工性能 Drawing ability硬度 Hardness表面处理 Surface finish冷辘钢捆片及张片制作流程图表 Production flow chart cold rolled steel coil sheet冷辘钢捆片及张片的电镀和印刷方法 Cold rolled steel coil & sheet electro-plating & painting method冷辘(低碳)钢片的分类用途、工业标准、品质、加热状态及硬度表 End usages, industrial standard, quality, condition and hardness of cold rolled steel strip硬度及拉力 Hardness & Tensile strength test拉伸测试(顺纹测试) Elongation test杯突测试(厚度: 0.4公厘至 1.6公厘,准确至 0.1公厘 3个试片平均数 ) Erichsen test (Thickness: 0.4mm to 1.6mm, figure round up to 0.1mm)曲面(假曲率) Camber厚度及阔度公差 Tolerance on Thickness & Width平坦度(阔度大于 500公厘,标准回火 ) Flatness (width>500mm, temper: standard)弯度 Camber冷辘钢片储存与处理提示 General advice on handling & storage of cold rolled steel coil & sheet 防止生锈 Rust Protection生锈速度表 Speed of rusting焊接 Welding气焊 Gas Welding埋弧焊 Submerged-arc Welding电阻焊 Resistance Welding冷辘钢片(拉力: 30-32公斤/平方米)在没有表面处理状态下的焊接状况 Spot welding conditions for bared (free from paint, oxides etc) Cold rolled mild steel sheets(T/S:30-32 Kgf/ µ m2)时间效应(老化)及拉伸应变 Aging & Stretcher Strains日工标准(JIS G3141)冷辘钢片化学成份 Chemical composition – cold rolled steel sheet to JIS G3141冷辘钢片的"理论重量"计算方程式 Cold Rolled Steel Sheet – Theoretical mass 日工标准(JIS G3141)冷辘钢片重量列表 Mass of Cold-Rolled Steel Sheet to JIS G3141冷辘钢片订货需知Ordering of cold rolled steel strip/sheet其它日工标准冷轧钢片(用途及编号) JIS standard & application of other cold Rolled Special Steel电镀锌钢片或电解钢片Electro-galvanized Steel Sheet/Electrolytic Zinc Coated Steel Sheet电解/电镀锌大大增强钢片的防锈能力Galvanic Action improving Weather & Corrosion Resistance of the Base Steel Sheet上漆能力 Paint Adhesion电镀锌钢片的焊接 Welding of Electro-galvanized steel sheet点焊 Spot welding滚焊 Seam welding电镀锌(电解)钢片 Electro-galvanized Steel Sheet生产流程 Production Flow Chart常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度 Base metal, application, JIS & ASTM standard, and Normal thickness of galvanized steel sheet锌镀层质量 Zinc Coating Mass表面处理 Surface Treatment冷轧钢片 Cold-Rolled Steel Sheet/Strip热轧钢片 Hot-Rolled Sheet/Strip电解冷轧钢片厚度公差 Thickness Tolerance of Electrolytic Cold-rolled sheet热轧钢片厚度公差 Thickness Tolerance of Hot-rolled sheet冷轧或热轧钢片阔度公差 Width Tolerance of Cold or Hot-rolled sheet长度公差 Length Tolerance理论质量 Theoretical Mass锌镀层质量(两个相同锌镀层厚度) Mass Calculation of coating (For equal coating)/MM锌镀层质量(两个不同锌镀层厚度) Mass Calculation of coating (For differential coating)/MM镀锡薄铁片(白铁皮/马口铁) (日工标准 JIS G3303)简介 General镀锡薄铁片的构造 Construction of Electrolytic Tinplate镀锡薄钢片(白铁皮/马日铁)制造过程 Production Process of Electrolytic Tinplate锡层质量 Mass of Tin Coating (JIS G3303-1987)两面均等锡层 Both Side Equally Coated Mass两面不均等锡层 Both Side Different Thickness Coated Mass级别、电镀方法、镀层质量及常用称号Grade, Plating type, Designation of Coating Mass & Common Coating Mass镀层质量标记 Markings & Designations of Differential Coatings硬度 Hardness单相轧压镀锡薄铁片(白铁皮/马口铁) Single-Reduced Tinplate双相辗压镀锡薄钢片(马口铁/白铁皮) Dual-Reduction Tinplate钢的种类 Type of Steel常用尺寸 Commonly Used Size电器用硅 [硅] 钢片 Electrical Steel Sheet简介 General软磁材料 Soft Magnetic Material滞后回线 Narrow Hysteresis矫顽磁力 Coercive Force硬磁材料 Hard Magnetic Material最大能量积 Maximum Energy Product硅含量对电器用的低碳钢片的最大好处 The Advantage of Using Silicon low Carbon Steel晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented) Grain Oriented & Non-Oriented电器用硅 [硅] 钢片的最终用途及规格 End Usage and Designations of Electrical Steel Strip电器用的硅 [硅] 钢片之分类 Classification of Silicon Steel Sheet for Electrical Use电器用钢片的绝缘涂层 Performance of Surface Insulation of Electrical Steel Sheets晶粒取向电器用硅钢片主要工业标准 International Standard – Grain-Oriented Electrical Steel Silicon Steel Sheet for Electrical Use晶粒取向电器用硅钢片 Grain-Oriented Electrical Steel晶粒取向,定取向芯钢片及高硼定取向芯钢片之磁力性能及夹层系数 (日工标准及美材标准) Magnetic Properties and Lamination Factor of SI-ORIENT-CORE& SI-ORIENT-CORE-HI B Electrical Steel Strip (JIS and AISI Standard)退火 Annealing电器用钢片用家需自行应力退火原因 Annealing of the Electrical Steel Sheet退火时注意事项 Annealing Precautionary碳污染 Prevent Carbon Contamination热力应先从工件边缘透入 Heat from the Laminated Stacks Edges提防过份氧化 No Excessive Oxidation应力退火温度 Stress –relieving Annealing Temperature绝缘表面 Surface Insulation非晶粒取向电力用钢片的电力、磁力、机械性能及夹层系数 Lamination Factors of Electrical, Magnetic & Mechanical Non-Grain Oriented Electrical电器及家电外壳用镀层冷辘 [低碳] 钢片 Coated (Low Carbon) Steel Sheets for Casing,Electricals & Home Appliances镀铝硅钢片 Aluminized Silicon Alloy Steel Sheet镀铝硅合金钢片的特色 Feature of Aluminized Silicon Alloy Steel Sheet用途 End Usages抗化学品能力 Chemical Resistance镀铝(硅)钢片–日工标准 (JIS G3314) Hot-aluminum-coated sheets and coils to JIS G 3314镀铝(硅)钢片–美材试标准 (ASTM A-463-77)35.7 JIS G3314镀热浸铝片的机械性能 Mechanical Properties of JIS G 3314 Hot-Dip Aluminum-coated Sheets andCoils公差 Size Tolerance镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较 Comparsion of various resistance of aluminized steel & other kinds of steel镀铝(硅)钢片生产流程 Aluminum Steel Sheet, Production Flow Chart焊接能力 Weldability镀铝钢片的焊接状态(比较冷辘钢片) Tips on welding of Aluminized sheet in comparasion with cold rolled steel strip钢板 Steel Plate钢板用途分类及各国钢板的工业标准包括日工标准及美材试标准 Type of steel Plate & Related JIS, ASTM and Other Major Industrial Standards钢板生产流程 Production Flow Chart钢板订货需知 Ordering of Steel Plate不锈钢 Stainless Steel不锈钢的定义 Definition of Stainless Steel不锈钢之分类,耐腐蚀性及耐热性 Classification, Corrosion Resistant & Heat Resistance of Stainless Steel铁铬系不锈钢片Chrome Stainless Steel马氏体不锈钢Martensite Stainless Steel低碳马氏体不锈钢Low Carbon Martensite Stainless Steel含铁体不锈钢Ferrite Stainless Steel镍铬系不锈钢Nickel Chrome Stainless Steel释出硬化不锈钢Precipitation Hardening Stainless Steel铁锰铝不锈钢Fe / Mn / Al / Stainless Steel不锈钢的磁性Magnetic Property & Stainless Steel不锈钢箔、卷片、片及板之厚度分类Classification of Foil, Strip, Sheet & Plate by Thickness表面保护胶纸Surface protection film不锈钢片材常用代号Designation of SUS Steel Special Use Stainless 表面处理 Surface finish 薄卷片及薄片(0.3至 2.9mm 厚之片)机械性能Mechanical Properties of Thin Stainless Steel(Thickness from 0.3mm to 2.9mm) – strip/sheet 不锈钢片机械性能(301, 304, 631, CSP) Mechanical Properties of Spring use Stainless Steel不锈钢–种类,工业标准,化学成份,特点及主要用途Stainless Steel – Type, Industrial Standard, Chemical Composition, Characteristic & end usage of the most commonly used Stainless Steel不锈钢薄片用途例End Usage of Thinner Gauge不锈钢片、板用途例Examples of End Usages of Strip, Sheet & Plate不锈钢应力退火卷片常用规格名词图解General Specification of Tension Annealed Stainless Steel Strips耐热不锈钢Heat-Resistance Stainless Steel镍铬系耐热不锈钢特性、化学成份、及操作温度Heat-Resistance Stainless Steel铬系耐热钢Chrome Heat Resistance Steel镍铬耐热钢Ni - Cr Heat Resistance Steel超耐热钢Special Heat Resistance Steel抗热超级合金Heat Resistance Super Alloy耐热不锈钢比重表Specific Gravity of Heat – resistance steel plates and sheets stainless steel不锈钢材及耐热钢材标准对照表Stainless and Heat-Resisting Steels发条片 Power Spring Strip发条的分类及材料 Power Spring Strip Classification and Materials上链发条 Wind-up Spring倒后擦发条 Pull Back Power Spring圆面("卜竹")发条 Convex Spring Strip拉尺发条 Measure Tape魔术手环 Magic Tape魔术手环尺寸图 Drawing of Magic Tap定型发条 Constant Torque Spring定型发条及上炼发条的驱动力 Spring Force of Constant Torque Spring and Wing-up Spring定型发条的形状及翻动过程 Shape and Spring Back of Constant Torque Spring定型发条驱动力公式及代号The Formula and Symbol of Constant Torque Spring边缘处理 Edge Finish硬度 Hardness高碳钢化学成份及用途 High Carbon Tool Steel, Chemical Composition and Usage每公斤发条的长度简易公式 The Length of 1 Kg of Spring Steel Strip SK-5 & AISI-301每公斤长的重量 /公斤(阔 100-200公厘) Weight per one meter long (kg) (Width 100-200mm) SK-5 & AISI-301每公斤之长度 (阔 100-200公厘) Length per one kg (Width 100-200mm) SK-5 & AISI-301每公尺长的重量 /公斤(阔 2.0-10公厘) Weight per one meter long (kg) (Width 2.0-10mm) SK-5 & AISI-301每公斤之长度 (阔 2.0-10公厘) Length per one kg (Width 2.0-10mm)高碳钢片 High Carbon Steel Strip分类 Classification用组织结构分类 Classification According to Grain Structure用含碳量分类–即低碳钢、中碳钢及高碳钢 Classification According to Carbon Contains弹簧用碳钢片 Carbon Steel Strip For Spring Use冷轧状态 Cold Rolled Strip回火状态 Annealed Strip淬火及回火状态 Hardened & Tempered Strip/ Precision – Quenched Steel Strip贝氏体钢片 Bainite Steel Strip弹簧用碳钢片材之边缘处理 Edge Finished淬火剂 Quenching Media碳钢回火 Tempering回火有低温回火及高温回火 Low & High Temperature Tempering高温回火 High Temperature Tempering退火 Annealing完全退火 Full Annealing扩散退火 Diffusion Annealing低温退火 Low Temperature Annealing中途退火 Process Annealing球化退火 Spheroidizing Annealing光辉退火 Bright Annealing淬火 Quenching时间淬火 Time Quenching奥氏铁孻回火 Austempering马氏铁体淬火 Marquenching高碳钢片用途 End Usage of High Carbon Steel Strip冷轧高碳钢–日本工业标准 Cold-Rolled (Special Steel) Carbon Steel Strip to JIS G3311电镀金属钢片 Plate Metal Strip电镀金属捆片的优点Advantage of Using Plate Metal Strip金属捆片电镀层 Plated Layer of Plated Metal Strip镀镍 Nickel Plated镀铬 Chrome Plated镀黄铜 Brass Plated基层金属 Base Metal of Plated Metal Strip低碳钢或铁基层金属 Iron & Low Carbon as Base Metal不锈钢基层金属 Stainless Steel as Base Metal铜基层金属 Copper as Base Metal黄铜基层金属 Brass as Base Metal轴承合金 Bearing Alloy轴承合金–日工标准 JIS H 5401 Bearing Alloy to JIS H 5401锡基、铅基及锌基轴承合金比较表 Comparison of Tin base, Lead base and Zinc base alloy for Bearing purpose易溶合金 Fusible Alloy焊接合金 Soldering and Brazing Alloy软焊 Soldering Alloy软焊合金–日本标准 JIS H 4341 Soldering Alloy to JIS H 4341硬焊 Brazing Alloy其它焊接材料请参阅日工标准目录 Other Soldering Material细线材、枝材、棒材 Chapter Five Wire, Rod & Bar线材/枝材材质分类及制成品 Classification and End Products of Wire/Rod铁线(低碳钢线)日工标准 JIS G 3532 Low Carbon Steel Wires ( Iron Wire ) to JIS G 3532光线(低碳钢线),火线 (退火低碳钢线 ),铅水线 (镀锌低碳钢线)及制造钉用低碳钢线之代号、公差及备注 Ordinary Low Carbon Steel Wire, Annealed Low Carbon Steel Wire, Galvanized low Carbon Steel Wire & Low Carbon Steel Wire for nail manufacturing - classification, Symbol of Grade, Tolerance and Remarks.机械性能 Mechanical Properites锌包层之重量,铜硫酸盐试验之酸洗次数及测试用卷筒直径 Weight of Zinc-Coating, Number of Dippings in Cupric Sulphate Test and Diameters of Mandrel Used for Coiling Test冷冲及冷锻用碳钢线枝 Carbon Steel Wire Rods for Cold Heading & Cold Forging (to JIS G3507) 级别,代号及化学成份 Classification, Symbol of Grade and Chemical Composition直径公差,偏圆度及脱碳层的平均深度 Diameter Tolerance, Ovality and Average Decarburized Layer Depth冷拉钢枝材 Cold Drawn Carbon Steel Shafting Bar枝材之美工标准,日工标准,用途及化学成份 AISI, JIS End Usage and Chemical Composition of Cold Drawn Carbon Steel Shafting Bar冷拉钢板重量表 Cold Drawn Steel Bar Weight Table高碳钢线枝 High Carbon Steel Wire Rod (to JIS G3506)冷拉高碳钢线 Hard Drawn High Carbon Steel Wire (to JIS G3521, ISO-84580-1&2)化学成份分析表 Chemical Analysis of Wire Rod线径、公差及机械性能(日本工业标准 G 3521) Mechanical Properties (JIS G 3521)琴线(日本标准 G3522) Piano Wires (to G3522)级别,代号,扭曲特性及可用之线材直径 Classes, symbols, twisting characteristic and applied WireDiameters直径,公差及拉力强度 Diameter, Tolerance and Tensile Strength裂纹之容许深度及脱碳层 Permissible depth of flaw and decarburized layer常用的弹簧不锈钢线-编号,特性,表面处理及化学成份 Stainless Spring Wire – National Standard number, Characteristic, Surface finish & Chemical composition弹簧不锈钢线,线径及拉力列表Stainless Spring Steel, Wire diameter and Tensile strength of Spring Wire处理及表面状况 Finish & Surface各种不锈钢线在不同处理拉力比较表 Tensile Strength of various kinds of Stainless Steel Wire under Different Finish圆径及偏圆度之公差 Tolerance of Wire Diameters & Ovality铬镍不锈钢及抗热钢弹簧线材–美国材验学会 ASTM A313 – 1987 Chromium – Nickel Stainless and Heat-resisting Steel Spring Wire – ASTM A313 – 1987化学成份 Chemical Composition机械性能 Mechanical Properties305, 316, 321及 347之拉力表 Tensile Strength Requirements for Types 305, 316, 321 and 347 A1S1-302贰级线材之拉力表 Tensile Strength of A1S1-302 Wire日本工业标准–不锈钢的化学成份 (先数字后字母排列) JIS –Chemical Composition of Stainless Steel (in order of number & alphabet)美国工业标准–不锈钢及防热钢材的化学成份 (先数字后字母排列) AISI – Chemical Composition of Stainless Steel & Heat-Resistant Steel(in order of number & alphabet)易车碳钢 Free Cutting Carbon Steels (to JIS G4804 )化学成份 Chemical composition圆钢枝,方钢枝及六角钢枝之形状及尺寸之公差 Tolerance on Shape and Dimensions for Round Steel Bar, Square Steel Bar, Hexagonal Steel Bar易车(快削)不锈钢 Free Cutting Stainless Steel易车(快削)不锈钢种类 Type of steel易车(快削)不锈钢拉力表 Tensile Strength of Free Cutting Wires枝/棒无芯磨公差表 (μ) (μ = 1/100 mm) Rod/Bar Centreless Grind Tolerance易车不锈钢及易车钢之不同尺寸及硬度比较 Hardness of Different Types & Size of Free Cutting Steel 扁线、半圆线及异形线 Flat Wire, Half Round Wire, Shaped Wire and Precision Shaped Fine Wire 加工方法 Manufacturing Method应用材料 Material Used特点 Characteristic用途End Usages不锈钢扁线及半圆线常用材料 Commonly used materials for Stainless Flat Wire & Half Round Wire 扁线公差 Flat Wire Tolerance方线公差 Square Wire Tolerance。
材料科学与工程专业英语翻译
3、半导体材料的典型特征介于导体材料(如金属、金属合金)与绝缘体(陶瓷材料和聚合体材料)之间。Semiconductors have electrical properties that are intermediate between the electrical conductors ( viz. metals and metal alloys ) and insulators ( viz. ceramics and polymers ).
4、原子核中质子和中子的量的综合就是原子量。
The atomic weight of an atom indicates how many protons and neutrons in the nucleus.
Unit4:
2.材料工程学主要解决材料的制造问题和材料的应用问题。Material engineering mainly to solve the problem and create material application.
3.材料的加工过程不但决定了材料的结构,同时决定了材料的特征和性能。Materials processing process is not only to de structure and decided that the material characteristic and performance.
Unit1:
交叉学科 interdiscipline
介电常数 dieleቤተ መጻሕፍቲ ባይዱtric constant
材料专业英语常见词汇
材料专业英语常见词汇(一)Structure ['strʌktʃə] 组织Ceramic [si'ræmik]陶瓷Ductility [dʌk’tiləti]塑性Stiffness [’stifnis] 刚度Grain [ɡrein]晶粒Phase [feiz]相Unit cell 单胞Bravais lattice 布拉菲[’lætis]布拉菲点阵Stack [stæk]堆垛Crystal [’kristəl] 晶体Metallic crystal structure [mi’tælik, me—]金属性晶体点阵Non-directional [,nɔndi'rekʃənəl, -dai-] 无方向性Face—centered cubic ['kju:bik]面心立方Body—centered cubic 体心立方Hexagonal close-packed [hek'sæɡənəl]['kləus’pækt]密排六方Copper [’kɔpə] 铜Aluminum [ə'lju:minəm]铝Chromium [’krəumjəm] 铬Tungsten [’tʌŋstən] 钨Crystallographic Plane [,kristələu’ɡræfik][plein] 晶面Crystallographic direction 晶向Property ['prɔpəti]性质Miller indices [’indisi:z]米勒指数Lattice parameters ['lætis][pə’ræmitə] 点阵参数Tetragonal [te’træɡənəl] 四方的Hexagonal [hek’sæɡənəl]六方的Orthorhombic [,ɔ:θə'rɔmbik]正交的Rhombohedra [,rɔmbəu’hi:drə] 菱方的Monoclinic [,mɔnəu'klinik] 单斜的Prism ['prizm] 棱镜Cadmium ['kædmiəm] 镉Coordinate system [kəu'ɔ:dinit, kəu’ɔ:dineit]坐标系Point defect ['di:fekt,di’f—, di'fekt] 点缺陷Lattice ['lætis] 点阵Vacancy [’veikənsi]空位Solidification [,səlidifi’keiʃən]结晶Interstitial [,intə’stiʃəl]间隙Substitution [,sʌbsti'tju:ʃən] 置换Solid solution strengthening [sə’lju:ʃən] ['streŋθən, 'streŋkθən]固溶强化Diffusion [di’fju:ʒən]扩散Homogeneous [,hɔmə'dʒi:niəs,,həu—] 均匀的Diffusion Mechanisms [di’fju:ʒən] ['mekənizəm]扩散机制Lattice distortion [dis'tɔ:ʃən]点阵畸变Self—diffusion [’selfdi,fju:ʒən]自扩散Fick’s First Law 菲克第一定律Unit time 单位时间Coefficient [,kəui’fiʃənt] 系数Concentration gradient [,kɔnsən'treiʃən]['ɡreidiənt]浓度梯度Dislocation [,disləu'keiʃən]位错Linear defect [’liniə]['di:fekt, di’f—, di’fekt] 线缺陷Screw dislocation [skru:] 螺型位错Edge dislocation [edʒ] 刃型位错Vector ['vektə]矢量Loop [lu:p]环路Burgers’vector[’bə:ɡəs] 柏氏矢量Perpendicular [,pə:pən'dikjulə] 垂直于Surface defect 面缺陷Grain boundary [ɡrein][’baundəri] 晶界Twin boundary [twin] 晶界Shear force [ʃiə]剪应力Deformation [,di:fɔ:’meiʃən]变形Small ( or low) angle grain boundary [’æŋɡl]小角度晶界Tilt boundary [tilt]倾斜晶界Supercooled [,sju:pə'ku:ld] 过冷的Solidification [,səlidifi’keiʃən] 凝固Ordering process 有序化过程材料专业英语常见词汇(二)Crystallinity [,kristə'linəti] 结晶度Microstructure ['maikrəu,strʌktʃə] 纤维组织Term 术语Phase Diagram [feiz]['daiəɡræm] 相图Equilibrium [,i:kwi'libriəm]平衡Melt 熔化Cast 浇注Crystallization [,kristəlai'zeiʃən]结晶Binary Isomorphous Systems ['bainəri] [,aisəu’mɔ:fəs] 二元匀晶相图Soluble ['sɔljubl]溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm ['aisəuθə:m]等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System [’bainəri][ju:’tektik] 二元共晶相图Solvus Line [’sɔlvəs] 溶解线Invariant [in’vεəriənt]恒定Isotherm ['aisəuθə:m] 恒温线Cast Iron 铸铁Ferrite ['ferait] 珠光体Polymorphic transformation [,pɔli'mɔ:fik][,trænsfə'meiʃən]多晶体转变Austenite ['ɔstinait]奥氏体Revert [ri'və:t,’ri:və:t]回复Intermediate compound [,intə’mi:djət][kəm'paund] 中间化合物Cementite [si'mentait]渗碳体Vertical ['və:tikəl]垂线Nonmagnetic [,nɔnmæɡ’netik] 无磁性的Solubility [,sɔlju’biləti] 溶解度Brittle ['britl]易脆的Eutectic [ju:'tektik]共晶Eutectoid invariant point[ju:’tektɔid] [in'vεəriənt]共析点Phase transformation 相变Allotropic [,æləu’trɔpik,—kəl]同素异形体Recrystallization [ri:,kristəlai’zeiʃən] 再结晶Metastable [,metə'steibl]亚稳的Martensitic transformation [,mɑ:tin'zitik]马氏体转变Lamellae ?薄片Simultaneously [saiməl’teiniəsli]同时存在Pearlite [’pə:lait]珠光体Ductile [’dʌktail, -til] 可塑的Mechanically [mi'kænikəli] 机械性能Hypo eutectoid ['haipəu][ju:'tektɔid]过共析的Particle ['pɑ:tikl] 颗粒Matrix ['meitriks]基体,矩阵Proeutectoid ?先共析Hypereutectoid [,haipəju'tektɔid] 亚共析的Bainite [’beinait] 贝氏体Martensite [’mɑ:tnzait]马氏体Linearity [,lini'ærəti] 线性的Stress—strain curve [kə:v] 应力—应变曲线Proportional limit [prəu'pɔ:ʃənəl]比例极限Tensile strength ['tensail, —səl]抗拉强度Ductility [dʌk’tiləti] 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity [’mɔdjuləs][,elæs’tisəti]弹性模量Tolerance ['tɔlərəns] 公差Rub 摩擦Wear 磨损Corrosion resistance [’tɔlərəns][ri'zistəns] 抗腐蚀性Aluminum [ə’lju:minəm]铝Zinc [ziŋk] 锌Iron ore ['aiən][ɔ:] 铁矿材料专业英语常见词汇(三)Blast furnace ['baiəu,blæst] ['fə:nis]高炉Coke [kəuk]焦炭Limestone [’laimstəun] 石灰石Slag [slæɡ] 熔渣Pig iron 生铁Ladle ['leidl]钢水包Silicon ['silikən, -kɔn]硅Sulphur ['sʌlfə] 硫Wrought [rɔ:t]可锻的Graphite [’ɡræfait] 石墨Flaky ['fleiki] 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium—carbon steels 中碳钢Electrode [i'lektrəud] 电极As a rule 通常Preheating [’pri:hi:tiŋ]预热Quench [kwentʃ]淬火Body-centered lattice 体心晶格Carbide [’kɑ:baid]碳化物Hypereutectoid [,haipəju'tektɔid] 过共晶Chromium [’krəumjəm]铬Manganese [’mæŋɡə,ni:s, ,mæŋɡə'ni:z] 锰Molybdenum [mɔ'libdinəm]钼Titanium [tai’teiniəm, ti—]钛Cobalt [kəu’bɔ:lt] 钴Tungsten ['tʌŋstən] 钨Vanadium [və’neidiəm]钒Pearlitic microstructure [pə:’litik] 珠光体组织Martensitic microstructure [,mɑ:tin’zitik] 马氏体组织Viscosity [vi’skɔsəti]粘性Wrought [rɔ:t] 锻造的Magnesium [mæɡ’ni:ziəm, -ʃi—]镁Flake [fleik] 片状Malleable [’mæliəbl]可锻的Nodular [’nɔdjulə, —dʒə-]球状Spheroidal [sfiə'rɔidəl] 球状Superior property [sju:’piriə, sju:pə—] [’prɔpəti]优越性Galvanization [,ɡælvənai’zeiʃən,—ni'z—] 镀锌Versatile [’və:sətail]通用的Battery grid 电极板Calcium [’kælsiəm]钙Tin [tin]锡Toxicity [tɔk'sisəti] 毒性Refractory [ri’fræktəri]耐火的Platinum ['plætinəm] 铂Polymer ['pɔlimə]聚合物Composite [’kɔmpəzit]混合物Erosive [i'rəusiv] 腐蚀性Inert [i'nə:t] 惰性Thermo chemically ['θə:məu][’kemikəli] 热化学Generator ['dʒenəreitə] 发电机Flaw [flɔ:] 缺陷Variability [,vεəriə'biləti] 易变的Annealing ?退火Tempering [’tempəriŋ] 回火Texture ['tekstʃə] 织构Kinetic [ki'netik, kai-]动力学Peculiarity [pi,kju:li'æriti] 特性Critical point 临界点Dispersity ? 弥散程度Spontaneous [spɔn’teiniəs]自发的Inherent grain [in'hiərənt][ɡrein 本质晶粒Toughness [’tʌfnis] 韧性Rupture ['rʌptʃə] 断裂Kinetic curve of transformation 转变动力学曲线Incubation period [,inkju'beiʃən]孕育期Sorbite ['sɔ:bait] 索氏体Troostite ['tru:stait] 屈氏体Disperse [dis’pə:s]弥散的Granular [’ɡrænjulə]颗粒状Metallurgical [,melə’lə:dʒik,-kəl] 冶金学的Precipitation [pri,sipi’teiʃən] 析出Depletion [di'pli:ʃən] 减少Quasi—eutectoid ['kweizai][ju:’tektɔid 伪共析Superposition [,sju:pəpə'ziʃən] 重叠Supersede [,sju:pə'si:d] 代替Dilatometric [,dilətəu'metrik]膨胀Unstable [,ʌn’steibl] 不稳定Supersaturate [,sju:pə'sætʃəreit]使过饱和Tetragonality ?正方度Shear [ʃiə]切变Displacement [dis'pleismənt] 位移Irreversible [,iri'və:səbl]不可逆的。
(完整word版)Deform-3d热处理模拟操作全解
Deform-3d热处理模拟操作热处理工艺在机械制造中占有十分重要的地位。
随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。
热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。
Deform-3d 软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。
减少批量报废的质量事故发生。
热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。
它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。
但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。
本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。
1 、问题设置点击“文档”(File)或“新问题”(New problem),创建新问题。
在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。
图1 设置新问题2、初始化设置完成问题设置后,进入前处理设置界面。
首先修改公英制,将默认的英制(English)修改成公制(SI),同时选中“形变”(Deformation)、“扩散”(Diffusion)和“相变”(Phase transformation),见图2。
SiC陶瓷在钎焊过程中的6H到3C多型相变(英文)
第52卷第8期2023年8月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.8August,20236H to 3C Polytypic Transformation in SiC Ceramics During Brazing ProcessSHI Haojiang 1,ZHANG Ruiqian 1,LI Ming 1,YAN Jiazhen 2,LIU Zihao 2,BAI Dong 2(1.State Key Laboratory of Reactor Fuel and Materials,Nuclear Power Institute of China,Chengdu 610213,China;2.School of Mechanical Engineering,Sichuan University,Chengdu 610065,China)Abstract :In this paper,pure Ni foil was used as an intermediate layer to achieve brazing connection of 6H-SiC at 1100~1245ħ.The microstructure of the brazed joint and the interface between the brazed joint and the 6H-SiC substrate were studied to investigate the effect of brazing process on the crystal structure of SiC ceramics and provide theoretical and experimental data supports for brazing process design.The results show that a small amount of Ni atoms diffuse into the 6H-SiC ceramics during the brazing process and exist in solid solution form,which reduces the dislocation energy of 6H-SiC.The residual stress at the 6H-SiC /brazed joint interface increases with the increase of brazing temperature,and when the brazing temperature reaches 1245ħ,the (0001)plane of 6H-SiC at the interface slips along the 1/3<1100>direction,and the 6H-SiC is sheared to form 3C-SiC.Therefore,SiC ceramics can undergo phase transformation under the influence of stress and brazing material composition during the brazing process,and the effect of brazing process on their crystal structure and properties should be considered for SiC ceramics used in special environments.Key words :6H-SiC;3C-SiC;phase transformation;brazing;residual stressCLC number :O469㊀㊀Document code :A ㊀㊀Article ID :1000-985X (2023)08-1516-07SiC 陶瓷在钎焊过程中的6H 到3C 多型相变石浩江1,张瑞谦1,李㊀鸣1,颜家振2,刘自豪2,白㊀冬2(1.中国核动力研究设计院,反应堆燃料及材料国家重点实验室,成都㊀610213;2.四川大学机械工程学院,成都㊀610065)摘要:为探究钎焊过程对SiC 陶瓷晶体结构的影响,为钎焊工艺设计提供理论及试验数据支撑,本研究采用纯Ni 箔作为中间层在1100~1245ħ下实现了6H-SiC 的钎焊连接,并研究了焊缝以及6H-SiC 基体与焊缝界面处的微观形貌㊂研究结果表明,少量Ni 原子在钎焊过程中会扩散进入6H-SiC 陶瓷,并以固溶形式存在,降低了6H-SiC 层错能㊂随着钎焊温度升高,6H-SiC /焊缝界面处的焊后残余应力增大,当钎焊温度达到1245ħ时,界面处的6H-SiC 的(0001)面沿1/3<1100>方向产生滑移,6H-SiC 切变形成3C-SiC㊂因此,SiC 陶瓷在钎焊过程中受应力和钎料组成元素的作用发生相变,针对特殊环境使用的SiC 陶瓷需要斟酌钎焊工艺对其晶体结构及性能的影响㊂关键词:6H-SiC;3C-SiC;相变;钎焊;残余应力㊀㊀Received date :2023-01-03㊀㊀Foundation item :Research on Accident Tderant Fuel Technology for Nuclear Power (Phase Ⅱ)㊀㊀Biography :SHI Haojiang(1994 ),male,from Sichuan province,doctor,assistant research fellow.E-mail:myzxshj@ ㊀㊀Corresponding author :YAN Jiazhen,doctor,associate professor.E-mail:yanjiazhen@0㊀IntroductionSiC has a variety of crystal structures,such as hexagonal structure,cubic structure,and rhomboidal structure.Among them,the cubic SiC has only one stacking sequence,that is ABC ABC along the [0001]packing axis.SiC with this structure is called 3C-SiC,which is also known as β-SiC.All the other SiC crystals are collectively referred to as α-SiC.The hexagonal SiC with a stacking sequence of ABCACB along the packing axis is called 6H-SiC,㊀第8期SHI Haojiang et al:6H to3C Polytypic Transformation in SiC Ceramics During Brazing Process1517㊀and it is the most commonly seen SiC crystal in theα-SiC.SiC polytypes can transform to each other under certain conditions.Vlaskina et al[1-2]found that3C-SiC spontaneously transforms to6H-SiC at2000ħ.Parish et al[3]also observed the transformation from3C-SiC to6H-SiC at1440ħunder9dpa neutron irradiation.Due to the irradiation influence,the transformation temperature from3C-SiC to6H-SiC can be significantly reduced to1440ħ.In conclusion,β-SiC can transform toα-SiC through simple heat treatment at elevated temperatures. However,the transformation fromα-SiC toβ-SiC cannot be achieved by merely heat treatment.Zhu et al[4] investigated the deformation behavior and phase transformation in4H-SiC during nanoindentation process via molecular dynamics simulation.The simulation results show that it takes~9GPa of the shear stress for4H-SiC to transform to3C-SiC,where the atoms on(0001)plane of4H-SiC slips in1/3<1100>direction,resulting in the phase transformation from4H to3C.Yang et al[5]conducted a microindentation at1170ħwith a load of300g and a dwell time of30s on the6H-SiC,and the indented region shows that a6H to3C polytypic transformation occurs.The result confirms that SiC phase transformation can be induced by an applied stress.Based on the above investigations,a conclusion can be drawn that though it is difficult,the transformation fromα-SiC toβ-SiC is possible when enough stress is applied.Due to the significant differences in thermal conductivity,electrical conductivity,and radiation swelling resistance betweenα-SiC andβ-SiC,it is necessary for SiC ceramics to maintain structural stability in certain special service environments,such as structural materials in reactors and conductive materials in semiconductor components.Therefore studying the effect of the brazing process on the crystal structure of SiC ceramics is of great significance when SiC ceramics applications are often companied with joining.Nickel element is a common component element of SiC ceramic brazing fillers,and the reaction mechanism between nickel and SiC ceramic by a nickel foil as the brazing interlayer is reported in our previous work[6].In this paper,the polytypic transformation from6H-SiC to3C-SiC during brazing process is reported.The formation mechanism of the3C-SiC is investigated via HRTEM and SAED and well elaborated.1㊀Experimental sectionPressureless sintered6H-SiC ceramic blocks with dimension of15mmˑ10mmˑ5mm were brazed by a 0.1mm-thick pure nickel foil.The schematic diagram of the assembled SiC joint is shown in Fig.1(a).The detailed description about the SiC ceramics and nickel foil can be found in our previous work[6].The assembled specimens were heated to1100,1180,1245ħ,respectively,at a rate of15ħ/min with initial pressure of 3.5ˑ10-3Pa in vacuum furnace,and held for10min.Then the brazed samples were cooled down to room temperature in the furnace.The brazing heating curve is displayed in Fig.1(b).Fig.1㊀Schematic diagram of the assembled SiC joint(a)and the brazing heating curve(b)The detailed morphologies and compositions of the brazed seams were examined by field emission scanning electron microscope(FESEM,JSM-7500F)equipped with an energy dispersive spectrometer(EDS,Ultim Max). The EDS analysis using XPP correction method was operated under an accelerating voltage of15kV,a set of1518㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷physical standards including SiO2,pure Ni and pure C are used for the analysis of element Si,Ni and C, respectively.Only the atomic fractions of Si and Ni are compared to characterize the reaction products in the joining seam due to the fact that carbon has low solubility in Ni-Si phases and can hardly be quantitatively analyzed.To further identify the phase structure of the joined seam,lift-out method is applied to the target location of interest using focused ion beam(FIB)on FEI Helios Nanolab600i.The thickness of the FIB sample decreases to50nm with a voltage range from2kV to30kV,and then analyzed by FEI Talos F200X and FEI Tecnai G2F20,operated at200kV,with an extreme field emission gun(X-FEG)electron source.The target FIB area locates at the interface between the transition zone and the6H-SiC.2㊀Results and discussionFig.2shows the microstructure of the SiC joints brazed at1100,1180,and1245ħ,respectively.As shown in Fig.2(b)and(d),the brazed seam and the6H-SiC ceramics are distinctly separated in the SiC joints brazed at1100and1180ħ.The interfaces are obvious and clear.When the brazing temperature increases to 1245ħ,the morphology of the interface changes,a transition zone forms between the brazed seam and the 6H-SiC.The transition zone consists of three phases,the island-likeδ-Ni2Si,scattered graphite flakes,and the 3C-SiC substrate[6].The chemical composition of the3C-SiC was analyzed under SEM mode,and the EDS results show that the mole fractions of C,Si and Ni in the target area are62.6%,35.7%and1.7%,respectively.The reaction process and mechanism between the nickel foil and6H-SiC can be found in our previous work[6].Fig.2㊀Microstructure of the SiC joints brazed at1100(a),(b),1180(c),(d),and1245ħ(e),(f)held for10min㊀第8期SHI Haojiang et al:6H to3C Polytypic Transformation in SiC Ceramics During Brazing Process1519㊀Fig.3shows the bright field images and corresponding HRTEM and SAED images of the FIB sample.3C-SiC, 6H-SiC andδ-Ni2Si are identified.EDS results are displayed in Table1.Notably,3C-SiC and6H-SiC both contain0.1%(atomic fraction)Ni.Since no nickel silicides are found in the3C-SiC and6H-SiC,Ni atoms should be ina form of solid solution atoms.Based on the HRTEM and SAED images after Fourier transform,it can be seen that 3C-SiC and6H-SiC share an obvious orientation relationship,the(0001)plane of the6H-SiC and the(111) plane of the3C-SiC are parallel to each other.The interface shown in Fig.3(f)is not crystallographically perfect, dislocations and terraces on(0110)6H plane can be found along the interface.The interface morphologies indicate that compared to the possibility of3C-SiC nucleating and growing on6H-SiC,it is more likely that3C-SiC is formed through the6H-SiC(0001)plane slipping along a specific direction.Table1㊀EDS analysis results of each area in Fig.3Location Composition/%Ni Si C Phase P10.135.964.06H-SiCP20.165.634.33C-SiCP368.032.0 δ-Ni2SiP465.035.0 δ-Ni2Si Transformation from6H-SiC to3C-SiC requires a certain shear stress applied on the slipping plane.As can be seen in Fig.2,no transition layer forms at the brazing temperature of1100and1180ħ,while it forms at a higher temperature of1245ħ.So it is highly possible that the shear stress comes from the residual stress that generates interface due to the CTE mismatch between the brazed seam and6H-SiC.The residual stress at the interface is estimated asσ=E S E RE S+E R(αR-αS)ΔT(1) whereσrepresents the residual stress,S stands for SiC,R stands for the reaction products near the interface,E represents the elastic modulus,αrepresents the linear expansion coefficient,andΔT represents the difference between the brazing temperature and the room temperature.The products near the interface are mainly Ni2Si and graphite,which are mixed up with each other and are uniformly distributed.So,the mixture of Ni2Si and graphite can be considered as a composite phase.The elastic modulus E of this composite phase is calculated according to the Voigt-Reuss formula[7]E composite=38E UL+58E LL(2)E UL=V N E N+V G E G(3)E LL=E G E NV N E G+V G E N(4) where N stands for Ni2Si,G stands for graphite,V and E stands for the volume modulus and elastic modulus, respectively.UL and LL represent the so-called upper and lower limit of the elastic modulus,respectively.The linear expansion coefficient of this composite phase is calculated using a more sophisticated formula,where the impact of stress is considered.The formula is written asαcomposite=αN V N K N+αG V G K GV N K N+V G K G(5) where V stands for volume fraction,K stands for the bulk modulus.Since graphite is anisotropic,therefore its morphology characteristics should be considered when selecting the physical property data of graphite.The graphite s physical properties along C axis are used since the graphite flake is nearly vertical to the brazed seam. All the physical properties used in these calculations are displayed in Table2.The results calculated according to1520㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷the above formula show that the residual stress generated at the interface is1.76GPa when the joint cools down from1245ħ,and the residual stress is1.55GPa when the joint cools down from1100ħ.The residual stress increases with the increase of brazing temperature,providing a stronger force forα-SiC to transform.Fig.3㊀(a)TEM bright field image of the sample;(b),(c)HRTEM images of the3C/6H-SiC interface;(d)SAED image of the 3C/6H-SiC interface;(e),(f)higher magnification HRTEM images of the3C/6H-SiC interfaceTable2㊀Physical properties ofα-SiC,Ni2Si and graphite used in this paperPhase Elastic modulus,E/GPa Shear modulus,K/GPaCoefficient of linear expansion,α/(10-6K-1)Volume fraction/%α-SiC401.38[8]234[8] 3.5[8]Ni2Si168[9]189[9]13[10]51.3Graphite133.1[11]53.3[11]31[12]48.7 The calculated residual stress is much lower than the shear stress calculated by Zhu et al[4].However,there is no consensus on the critical value of stress thatα-SiC requires to transform toβ-SiC.Jepps et al[13]find that impurity element in SiC have a significant effect on the isomerism transition of SiC.When there are elements such as B and Al in SiC,α-SiC is more stable,andα-SiC can hardly transform toβ-SiC even under large shear stress. However,when the SiC contains N or P element,the stability ofβ-SiC is stronger,and only a small shear stress is required forα-SiC to transform toβ-SiC.Whitney et al[14]conducts a same experiment with the same conditions as Sokhor et al[15]reports,but fail to reproduce theα-SiC toβ-SiC transformation under the ambient pressure of3~7GPa at1200~1400ħ.But after Whitney et al adds BN intoα-SiC,the transformation fromα-SiC toβ-SiC occurred under the same circumstance.Therefore,impurity element has a significant effect on the(0001)6H slip activation energy ofα-SiC.As mentioned before,the presence of Ni element in SiC near the interface is confirmed,the existence of Ni should lower the magnitude of the residual stress thatα-SiC needs to transform toβ-SiC.Yuryeva et al[16-17] investigates the influence of Ni as an impurity element on the Si C bonding energy using first-principles calculations.They find that regardless of whether Ni exists in the form of a substitutional atom,an interstitial atom, or a more complex defect in SiC,the Si and C atoms around Ni atom are slightly displaced,resulting in the obvious weakening of the binding energy of the Si C covalent bond.This means that the isomeric transformation of SiC㊀第8期SHI Haojiang et al:6H to 3C Polytypic Transformation in SiC Ceramics During Brazing Process 1521㊀becomes easier.As shown in Fig.4,twins are found in the transformed SiC near the interface.The formation of twins in β-SiC indicates low stacking fault energy,which provides a high possibility for α-SiC to transform to β-SiC through (0001)6H plane sliding along the 1/3<1100>direction during the cooling process,turning the stackingsequence of ABCACB into ABCABC,as shown in Fig. 5.Fig.4㊀(a)TEM bright field image of the sample;(b),(c)HRTEM images of the twin grain in the 3C-SiC;(d)corresponding FFT pattern of the twin grain in the3C-SiCFig.5㊀HRTEM images of 6H-SiC (a)and 3C-SiC (b),and the schematic diagram of 6H-SiC transforming to 3C-SiC (c)1522㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷3㊀ConclusionThe change of the SiC crystal structure during brazing process was investigated,and a polytypic transformation of6H-SiC to3C-SiC is reported in this paper.When6H-SiC ceramics was brazed using a0.1mm-thick pure nickel foil as the interlayer at1245ħ,the transformation of6H-SiC to3C-SiC is observed near the interface between the brazed seam and ceramic substrate.The microstructure and chemical composition of transformed SiC was analyzed and the6H-SiC to3C-SiC transformation mechanism is summarized as follow:1)A slight amount of Ni element exsists in the6H-SiC in a form of solid solution atom,and weakens the Si C bonding energy,lowering the stacking fault energy of6H-SiC.2)The CTE mismatch between the6H-SiC substrate and the brazed seam leads to residual stress after brazing, which drives the(0001)6H plane to slide along1/3<1100>direction,turning6H-SiC into3C-SiC.3)The brazing parameters and fillers should be carefully selected when brazing SiC for sophisticated applications since SiC polytypic transformation may occurs during the brazing process.References[1]㊀VLASKINA S I.3C-6H transformation in heated cubic silicon carbide3C-SiC[J].Semiconductor Physics Quantum Electronics andOptoelectronics,2011,14(4):432-436.[2]㊀VLASKINA S I,BUSINKAA@MAIL RU E M.Silicon carbide phase transition in as-grown3C-6H polytypes junction[J].Semiconductor PhysicsQuantum Electronics and Optoelectronics,2013,16(2):132-135.[3]㊀PARISH C M,KOYANAGI T,KONDO S,et al.Irradiation-inducedβtoαSiC transformation at low temperature[J].Scientific Reports,2017,7:1198.[4]㊀ZHU B,ZHAO D,ZHAO H W.A study of deformation behavior and phase transformation in4H-SiC during nanoindentation process viamolecular dynamics simulation[J].Ceramics International,2019,45(4):5150-5157.[5]㊀YANG J W,PIROUZ P.Theαңβpolytypic transformation in high-temperature indented SiC[J].Journal of Materials Research,1993,8(11):2902-2907.[6]㊀SHI H J,CHAI Y D,LI N,et al.Interfacial reaction mechanism of SiC joints joined by pure nickel foil[J].Journal of the European CeramicSociety,2020,40(15):5162-5171.[7]㊀GUZMÁN DE VILLORIA R,MIRAVETE A.Mechanical model to evaluate the effect of the dispersion in nanocomposites[J].Acta Materialia,2007,55(9):3025-3031.[8]㊀SENGUPTA P,SAHOO S S,BHATTACHARJEE A,et al.Effect of TiC addition on structure and properties of spark plasma sintered ZrB2-SiC-TiC ultrahigh temperature ceramic composite[J].Journal of Alloys and Compounds,2021,850:156668.[9]㊀ZHAO Y H,HOU H,ZHAO Y H,et al.First-principles study of the nickel-silicon binary compounds under pressure[J].Journal of Alloys andCompounds,2015,640:233-239.[10]㊀GEENEN F A,KNAEPEN W,MOENS F,et al.Anisotropic thermal expansion of Ni,Pd and Pt germanides and silicides[J].Journal of PhysicsD:Applied Physics,2016,49(27):275307.[11]㊀KIEWEL H,BUNGE H J,FRITSCHE L.Effect of orientation correlation on the elastic constants of polycrystalline materials[J].Textures andMicrostructures,1996,28(1/2):105-120.[12]㊀KELLY B T,WALKER P L.Theory of thermal expansion of a graphite crystal in the semi-continuum model[J].Carbon,1970,8(2):211-226.[13]㊀JEPPS N W,PAGE T F.Polytypic transformations in silicon carbide[J].Progress in Crystal Growth and Characterization,1983,7(1/2/3/4):259-307.[14]㊀WHITNEY E D,SHAFFER P T B.Investigation of the phase transformation between alpha-and beta-silicon carbide at high pressures[J].HighTemperatures-High Pressures,1969,1(1):107-110.[15]㊀SOKHOR M I,KONDAKOV V G,FELDGUN L I.Transition of silicon carbide from the hexagonal to the cubic phase under the influence of highpressures and high temperatures[J].Soviet Physics Doklady,1967,175(4):826.[16]㊀MEDVEDEVA N I,YURYEVAÉI,IVANOVSKII A L.Titanium,vanadium,and nickel impurities in3C-SiC:electronic structure and latticerelaxation effects[J].Semiconductors,2002,36(7):751-754.[17]㊀YURYEVA E I,IVANOVSKII A L.Electronic structure and chemical bonding of nickel impurities in cubic silicon carbide[J].Russian Journalof Coordination Chemistry,2002,28(12):881-888.。
DEFORM加热过程的相转变
DEFORM加热过程的相转变今天带来的是一个热处理过程中的加热过程相转变的案例。
通过这个例子我们可以了解如何使用一个刚性平面来作为对称边界条件。
1 首先新建一个问题,然后进入前处理器点击,进入2D模式。
2 对模拟控制进行设置这里设置为平面应变问题,然后勾选上Deformation、Heat trasfer 和Transformation。
由于这里的停止条件不由总步数控制,所以可将总步数设置到最大。
步长这里设置成温度由温度定义,初始时间步为0.1,最大温度变化为5℃每步,最小时间步为0.1,最大时间步为20。
停止控制这里设置为3600s也就是加热一小时。
加工条件这里设置环境温度为850℃,热对流系数为0.1N/sec/mm/℃。
3 工件设置首先添加工件,并设置成弹塑性体,温度默认,材料为材料库中的steel-S45C-JAPAN,即45号钢。
从DEFORM安装文件夹加中导入几何。
并划分网格500个。
定义边界条件,工件下部y方向固定,并定义左右两边与环境进行热交换。
随后对工件C元素含量进行初始化,C元素含量为0.14。
对原始相进行初始化,将工件的初始相全部定义为珠光体。
3 刚性对称面设置刚性平面可以始终用作对称平面。
对于设置对称面来说,零速度条件可能更容易定义,例如上面的Y,fixed条件,但在与轴向(例如X 轴或Y 轴)不对应的方向上需要对称平面的情况下,唯一可用的方法只有使用刚性平面。
刚性平面的作用与对称平面完全一样。
刚性对称面的设置要求如下:o节点不允许与平面分离(由接触条件中的分离标准定义)o刚性平面是工件的主体(也是物体间的条件)o两个物体之间的摩擦为零(物体间条件)o刚性平面足够大以覆盖工件的对称平面首先同样添加刚性平面导入刚性平面几何。
这里需要着重注意一下,为了不使刚性面不与工件分离,这里定义分离标准为绝对压强,并且值为1e7,尽可能大。
然后不设置摩擦系数以及换热系数。
4 生成DB文件并计算5 后处理结果查看奥氏体的体积分数变化随着加热过程,珠光体基本转化成奥氏体了。