GMII_RGMII

合集下载

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

简介MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:T XD(Transmit Data)[3:0]:数据发送信号,共4根信号线;RXD(Receive Data)[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期内传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类型于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS就有效,另外,CRS只有PHY在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只有PHY在半双工模式下有效。

以太网GMII介绍

以太网GMII介绍

以太网知识GMII / RGMII接口本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M模式下的连接方法。

1. GMII 接口分析GMII接口提供了8位数据通道,125MHz的时钟速率,从而1000Mbps的数据传输速率。

下图定义了RS层的输入输出信号以及STA的信号:图18 Reconciliation Sublayer (RS) and STA connections to GMII下面将详细介绍GMII接口的信号定义,时序特性等。

由于GMII接口有MAC和PHY模式,因此,将会根据这两种不同的模式进行分析,同时还会对RGMII/TBI/RTBI接口进行介绍。

4.1 GMII接口信号定义GMII接口可分为MAC模式和PHY模式,一般说来MAC和PHY对接,但是MAC和MAC也是可以对接的。

在GMII接口中,它是用8根数据线来传送数据的,这样在传送1000M数据时,时钟就会125MHz。

GMII接口主要包括四个部分。

一是从MAC层到物理层的发送数据接口,二是从物理层到MAC层的接收数据接口,三是从物理层到MAC层的状态指示信号,四是MAC层和物理层之间传送控制和状态信息的MDIO接口。

GMII接口的MAC模式定义:注意在表7中,信号GTX_CLK对于MAC来说,此时是Output信号,这一点和MII接口中的TX_CLK的Input特性不一致。

GMII接口PHY模式定义:表8注意在表8中,信号GTX_CLK对于PHY来说,此时是Input信号,这一点和MII接口中的TX_CLK的Output特性不一致。

4.2 GMII接口时序特性在GMII接口中,TX通道参考时钟是GTX_CLK,RX通道参考时钟是RX_CLK,802.3-2005定义了它们之间的关系。

图19 GMII signal timing at receiver input由图19可知,Spec只定义了TX通道和RX通道中接收端Setup时间和Hold时间。

SGMII_RGMII

SGMII_RGMII

MII、GMII、RMII、SGMII、XGMIIMII即媒体独立接口,也叫介质无关接口。

它是IEEE-802.3定义的以太网行业标准。

它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1)。

数据接口包括分别用于发送器和接收器的两条独立信道。

每条信道都有自己的数据、时钟和控制信号。

MII数据接口总共需16个信号。

管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。

通过管理接口,上层能监视和控制PHY。

MII标准接口用于连快Fast Ethernet MAC-block与PHY。

“介质无关”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。

在其他速率下工作的与 MII等效的接口有:AUI(10M 以太网)、GMII(Gigabit 以太网)和XAUI(10-Gigabit 以太网)。

MII总线在IEEE802.3中规定的MII总线是一种用于将不同类型的PHY与相同网络控制器(MAC)相连接的通用总线。

网络控制器可以用同样的硬件接口与任何PHY GMII (Gigabit MII)GMII是8bit并行同步收发接口,采用8位接口数据,工作时钟125MHz,因此传输速率可达1000Mbps。

同时兼容MII所规定的10/100 Mbps工作方式。

GMII接口数据结构符合IEEE以太网标准。

该接口定义见IEEE 802.3-2000。

发送器:◇ GTXCLK——吉比特TX..信号的时钟信号(125MHz)◇ TXCLK——10/100M信号时钟◇ TXD[7..0]——被发送数据◇ TXEN——发送器使能信号◇ TXER——发送器错误(用于破坏一个数据包)注:在千兆速率下,向PHY提供GTXCLK信号,TXD、TXEN、TXER信号与此时钟信号同步。

否则,在10/100M速率下,PHY提供 TXCLK时钟信号,其它信号与此信号同步。

其工作频率为25MHz(100M网络)或2.5MHz(10M网络)。

以太网MII接口类型大全

以太网MII接口类型大全

MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:TXD[3:0]:数据发送信号,共4根信号线;RXD[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期内传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类型于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps 速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS就有效,另外,CRS只在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只在半双工模式下有效。

MII接口一共有16根线(TX_CLK, RX_CLK未记入)。

以太网MII接口类型大全_MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XL

以太网MII接口类型大全_MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XL

MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:TXD[3:0]:数据发送信号,共4根信号线;RXD[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期内传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类似于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS 就有效,另外,CRS只在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只在半双工模式下有效。

MII接口一共有16根线(TX_CLK, RX_CLK未记入)。

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

简介MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:TXD(Transmit Data)[3:0]:数据发送信号,共4根信号线;RXD(Receive Data)[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期内传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类型于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS就有效,另外,CRS只有PHY在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只有PHY在半双工模式下有效。

rgmii接口标准

rgmii接口标准

rgmii接口标准
RGMII(Reduced Gigabit Media Interface Digital Line Signaling)是一种以太网媒体接口标准,用于连接千兆以太网(Gigabit Ethernet)设备。

RGMII标准是在GMII(Gigabit Media-Independent Interface)基础上简化和改进而来的。

RGMII接口标准的特点如下:
1. 接口速度:RGMII接口支持1000 Mbps的数据传输速率,是GMII 标准的10倍。

2. 信号数量:RGMII接口只需要两条信号线(TXD和RXD),比GMII接口少了两条信号线,因此更加简洁。

3. 信号格式:RGMII接口采用16位半字节(16-bit)格式传送数据,时钟速率为25 MHz。

与GMII接口的8位字节(8-bit)格式和25 MHz 时钟速率相比,RGMII接口的数据传输速率更快,但信号数量更少。

4. 信号功能:RGMII接口支持媒体独立性接口(MII)的所有功能,包括媒体独立性接口(MII)和媒体相关性接口(PCIe)之间的连接。

5. 信号时序:RGMII接口采用差分信号时序,与GMII接口类似。

总之,RGMII接口标准是一种高效、简洁的以太网媒体接口标准,适用于连接千兆以太网设备。

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

简介MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:T XD(Transmit Data)[3:0]:数据发送信号,共4根信号线;RXD(Receive Data)[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER 有效期传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER 有效期传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类型于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY 提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS就有效,另外,CRS只有PHY在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只有PHY在半双工模式下有效。

以太网接口MII,RMII,SMII,GMII总线接口简介

以太网接口MII,RMII,SMII,GMII总线接口简介

以太网接口MII,RMII,SMII,GMII总线接口简介<i>以太网接口MII,RMII,SMII,GMII总线接口简介</i>以太网接口MII,RMII,SMII,GMII总线接口简介所有的这些接口都从MII而来,MII是(Medium Independent Interface)的意思,是指不用考虑媒体是铜轴、光纤、电缆等,因为这些媒体处理的相关工作都有PHY或者叫做MAC的芯片完成。

MII支持10兆和100兆的操作,一个接口由14根线组成,它的支持还是比较灵活的,但是有一个缺点是因为它一个端口用的信号线太多,如果一个8端口的交换机要用到112根线,16端口就要用到224根线,到32端口的话就要用到448根线,一般按照这个接口做交换机,是不太现实的,所以现代的交换机的制作都会用到其它的一些从MII简化出来的标准,比如RMII、SMII、GMII等。

RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线,所以它一般要求是50兆的总线时钟。

RMII一般用在多端口的交换机,它不是每个端口安排收、发两个时钟,而是所有的数据端口公用一个时钟用于所有端口的收发,这里就节省了不少的端口数目。

RMII的一个端口要求7个数据线,比MII少了一倍,所以交换机能够接入多一倍数据的端口。

和MII一样,RMII支持10兆和100兆的总线接口速度。

SMII是由思科提出的一种媒体接口,它有比RMII更少的信号线数目,S表示串行的意思。

因为它只用一根信号线传送发送数据,一根信号线传输接受数据,所以在时钟上为了满足100的需求,它的时钟频率很高,达到了125兆,为什么用125兆,是因为数据线里面会传送一些控制信息。

SMII一个端口仅用4根信号线完成100信号的传输,比起RMII差不多又少了一倍的信号线。

SMII在工业界的支持力度是很高的。

同理,所有端口的数据收发都公用同一个外部的125M 时钟。

(完整版)以太网MII接口类型大全_MII、RMII、SMII、SSMII、SSSMII、GMII、

(完整版)以太网MII接口类型大全_MII、RMII、SMII、SSMII、SSSMII、GMII、

MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:TXD[3:0]:数据发送信号,共4根信号线;RXD[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期内传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类似于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS 就有效,另外,CRS只在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只在半双工模式下有效。

MII接口一共有16根线(TX_CLK, RX_CLK未记入)。

MII、RMII、GMII、RGMII接口介绍

MII、RMII、GMII、RGMII接口介绍

MII、RMII、GMII、RGMII接口介绍2010-04-28 18:44:46| 分类:电子技术| 标签:|字号大中小订阅1 MII (Media Independent Interface )是介质无关接口。

40针。

MII类似于10Mbps以太网的连接单元接口(AUI)。

MII层定义了在100BASE-T MAC和各种物理层之间的标准电气和机械接口,这种标准接口类似于经典以太网中的AUI,它允许制造厂家制造与介质和布线无关的产品,利用外接MAU去连接实际的物理电缆。

MII和AUI的电气信号是不同的,AUI信号具有较强的、能驱动50米电缆的能力,而MII的信号是数字型的,只能驱动0.5米电缆。

MII采用一个类似于SCSI连接器的40芯小型连接器。

2 任天堂Wii主机名为“Mii”的新功能,重点是让用户可以DIY个性化定制游戏角色的形象。

观察其操作界面,可以发现这个功能让用户可以对软件提供的各种五官元素进行自由组装拼合,产生接近本人长相特征的虚拟Avatar形象。

这个系统表面上就是现在各种网络社区的Avatar系统的一个翻版,但它本质上最关键的一点是这个Avatar可以通过统一的API被应用到各种Wii的游戏软件中,强化用户体验的代入感。

词条简介MII (Media Independent Interface(介质无关接口);或称为媒体独立接口,它是IEEE-802.3定义的以太网行业标准。

它包括一个数据接口,以及一个MAC和PHY之间的管理接口。

数据接口包括分别用于发送器和接收器的两条独立信道。

每条信道都有自己的数据、时钟和控制信号。

MII数据接口总共需要16个信号。

管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。

通过管理接口,上层能监视和控制PHY。

MII (Management interface)只有两条信号线。

MII标准接口用于连快Fast Ethernet MAC-block与PHY。

GMII_RGMII_SMII_RMII

GMII_RGMII_SMII_RMII

MII (Media Independent Interface介质无关接口)数据接口包括分别用于发送器和接收器的两条独立信道。

每条信道都有自己的数据、时钟和控制信号。

MII数据接口总共需要16个信号。

管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。

MII总线,在IEEE802.3中规定的MII总线是一种用于将不同类型的PHY与相同网络控制器(MAC)相连接的通用总线。

网络控制器可以用同样的硬件接口与任何PHY连接。

GMII (Gigabit MII)GMII采用8位接口数据,工作时钟125MHz,因此传输速率可达1000Mbps。

同时兼容MII所规定的10/100 Mbps工作方式。

发送器:◇GTXCLK——1G信号的时钟信号(125MHz)◇TXCLK——10/100M信号时钟◇TXD[7..0]——被发送数据◇TXEN——发送器使能信号◇TXER——发送器错误(用于破坏一个数据包)注:在千兆速率下,向PHY提供GTXCLK信号,TXD、TXEN、TXER信号与此时钟信号同步。

否则,在10/100M速率下,PHY提供TXCLK时钟信号,其它信号与此信号同步。

其工作频率为25MHz(100M网络)或2.5MHz(10M网络)。

接收器:◇RXCLK——接收时钟信号(从收到的数据中提取,因此与GTXCLK无关联)◇RXD[7..0]——接收数据◇RXDV——接收数据有效指示◇RXER——接收数据出错指示◇COL——冲突检测(仅用于半双工状态)管理配置◇MDC——配置接口时钟◇MDIO——配置接口I/O管理配置接口控制PHY的特性。

该接口有32个寄存器地址,每个地址16位。

其中前16个已经在“IEEE 802.3,2000-22.2.4 Management Functions”中规定了用途,其余的则由各器件自己指定。

RMII:Reduced Media Independant Interface简化媒体独立接口是标准的以太网接口之一,比MII有更少的I/O传输。

MII、RMII、GMII、RGMII接口介绍

MII、RMII、GMII、RGMII接口介绍

MII、RMII、GMII、RGMII接口介绍2010-04-28 18:44:46| 分类:电子技术| 标签:|字号大中小订阅1 MII (Media Independent Interface )是介质无关接口。

40针。

MII类似于10Mbps以太网的连接单元接口(AUI)。

MII层定义了在100BASE-T MAC和各种物理层之间的标准电气和机械接口,这种标准接口类似于经典以太网中的AUI,它允许制造厂家制造与介质和布线无关的产品,利用外接MAU去连接实际的物理电缆。

MII和AUI的电气信号是不同的,AUI信号具有较强的、能驱动50米电缆的能力,而MII的信号是数字型的,只能驱动0.5米电缆。

MII采用一个类似于SCSI连接器的40芯小型连接器。

2 任天堂Wii主机名为“Mii”的新功能,重点是让用户可以DIY个性化定制游戏角色的形象。

观察其操作界面,可以发现这个功能让用户可以对软件提供的各种五官元素进行自由组装拼合,产生接近本人长相特征的虚拟Avatar形象。

这个系统表面上就是现在各种网络社区的Avatar系统的一个翻版,但它本质上最关键的一点是这个Avatar可以通过统一的API被应用到各种Wii的游戏软件中,强化用户体验的代入感。

词条简介MII (Media Independent Interface(介质无关接口);或称为媒体独立接口,它是IEEE-802.3定义的以太网行业标准。

它包括一个数据接口,以及一个MAC和PHY之间的管理接口。

数据接口包括分别用于发送器和接收器的两条独立信道。

每条信道都有自己的数据、时钟和控制信号。

MII数据接口总共需要16个信号。

管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。

通过管理接口,上层能监视和控制PHY。

MII (Management interface)只有两条信号线。

MII标准接口用于连快Fast Ethernet MAC-block与PHY。

以太网MII接口类型大全 MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XL

以太网MII接口类型大全 MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XL

MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:TXD[3:0]:数据发送信号,共4根信号线;RXD[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期内传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类型于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS 就有效,另外,CRS只在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只在半双工模式下有效。

MII接口一共有16根线(TX_CLK, RX_CLK未记入)。

以太网接口总线接口简介

以太网接口总线接口简介

以太网接口MII,RMII,SMII,GMII总线接口简介所有的这些接口都从MII而来,MII是(Medium Independent Interface)的意思,是指不用考虑媒体是铜轴、光纤、电缆等,因为这些媒体处理的相关工作都有PHY或者叫做MAC 的芯片完成。

MII支持10兆和100兆的操作,一个接口由14根线组成,它的支持还是比较灵活的,但是有一个缺点是因为它一个端口用的信号线太多,如果一个8端口的交换机要用到112根线,16端口就要用到224根线,到32端口的话就要用到448根线,一般按照这个接口做交换机,是不太现实的,所以现代的交换机的制作都会用到其它的一些从MII简化出来的标准,比如RMII、SMII、GMII等。

RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线,所以它一般要求是50兆的总线时钟。

RMII一般用在多端口的交换机,它不是每个端口安排收、发两个时钟,而是所有的数据端口公用一个时钟用于所有端口的收发,这里就节省了不少的端口数目。

RMII的一个端口要求7个数据线,比MII少了一倍,所以交换机能够接入多一倍数据的端口。

和MII一样,RMII支持10兆和100兆的总线接口速度。

SMII是由思科提出的一种媒体接口,它有比RMII更少的信号线数目,S表示串行的意思。

因为它只用一根信号线传送发送数据,一根信号线传输接受数据,所以在时钟上为了满足100的需求,它的时钟频率很高,达到了125兆,为什么用125兆,是因为数据线里面会传送一些控制信息。

SMII一个端口仅用4根信号线完成100信号的传输,比起RMII差不多又少了一倍的信号线。

SMII在工业界的支持力度是很高的。

同理,所有端口的数据收发都公用同一个外部的125M时钟。

GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口。

MII工作原理“媒体独立”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

各种MII详解(MII,GMII,RGMII,RMII,SMII,SSMII,TBI,RTBI)

简介MII是英文Medium Independent Interface的缩写,翻译成中文是“介质独立接口”,该接口一般应用于以太网硬件平台的MAC层和PHY层之间,MII接口的类型有很多,常用的有MII、RMII、SMII、SSMII、SSSMII、GMII、RGMII、SGMII、TBI、RTBI、XGMII、XAUI、XLAUI等。

下面对它们进行一一介绍。

MII接口:T XD(Transmit Data)[3:0]:数据发送信号,共4根信号线;RXD(Receive Data)[3:0]:数据接收信号,共4根信号线;TX_ER(Transmit Error):发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。

对于10Mbps速率下,TX_ER不起作用;RX_ER(Receive Error):接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。

对于10Mbps速率下,RX_ER不起作用;TX_EN(Transmit Enable):发送使能信号,只有在TX_EN有效期内传的数据才有效;RX_DV(Reveive Data Valid):接收数据有效信号,作用类型于发送通道的TX_EN;TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。

RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。

RX_CLK也是由PHY侧提供的。

CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS就有效,另外,CRS只有PHY在半双工模式下有效;COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只有PHY在半双工模式下有效。

RGMII通信接口详述

RGMII通信接口详述

RGMII通信接口详述RGMII通信接⼝详述1. RGMII简介:就是Reduced GMII,GMII采⼝8位数据传输,RGMII采⼝4位数据传输,所以这个按字⼝意思理解就是减少的GMII。

这个是因为RGMII在时钟的上升沿和下降沿均采样数据,所以数据位减少⼝般的情况下还是可以达到千兆的速率。

其⼝作时钟125兆,兼容MII规定的10/100Mbps,2. 接⼝信号定义:a. TX_CLK: RGMII发送时钟提供125mhz,25mhz,或2.5mhz 参考时钟,容差±50 ppm,具体取决于速度。

b. TX_CTRL: RGMII发送控制。

TX_EN出现在TX_CLK的上升沿。

TX_EN和TX_ER出现在TX_CLK的下降沿。

c. TXD0..3: RGMII发送数据。

发送数据端⼝以双速率运⼝,数据字节的bits[3:0]在TX_CLK的上升沿发送。

数据bit[7:4]在TX_CLK的下降沿发送。

d. RX_CLK: RGMII 接收时钟提供 125 MHz、25 MHz 或 2.5 MHz 参考时钟,具有± 50 ppm 容差,取决于接收数据流的速度。

e. RX_CTRL: RGMII发送控制。

RX_DV出现在RX_CLK的上升沿。

RX_DV和RX_ER的逻辑导数出现在RX_CLK的下降沿。

f. RXD0..3: RGMII发送数据端。

RXD[3:0]运⼝在双速率模式,在RX_CLK的上升沿发送bits[3:0],在数据下降沿发送bits[7:4]。

g.RESETn: 硬件复位低有效。

h. MDC:串⼝管理接⼝的参考时钟。

不需要连续的时钟流。

最⼝⼝持12M。

i. MDIO:串⼝管理接⼝的数据。

此管脚需要⼝个上拉电阻,范围是1.5K-10K.j. CLK125: 125MHZ参考时钟输出。

//其他衍⼝信号(不同MAC/PHY略有不同): a. RXDV: receive data valid ,发送数据有效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以太网知识(3)-GMII / RGMII接口作者:luqiliang 日期:2010-5-11 13:24:45字体大小: 小中大本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M 模式下的连接方法。

4. GMII 接口分析GMII接口提供了8位数据通道,125MHz的时钟速率,从而1000Mbps的数据传输速率。

下图定义了RS层的输入输出信号以及STA的信号:图18 Reconciliation Sublayer (RS) and STA connections to GMII下面将详细介绍GMII接口的信号定义,时序特性等。

由于GMII接口有MAC和PHY模式,因此,将会根据这两种不同的模式进行分析,同时还会对RGMII/TBI/RTBI接口进行介绍。

4.1 GMII接口信号定义GMII接口可分为MAC模式和PHY模式,一般说来MAC和PHY对接,但是MAC和MAC也是可以对接的。

在GMII接口中,它是用8根数据线来传送数据的,这样在传送1000M数据时,时钟就会125MHz。

GMII接口主要包括四个部分。

一是从MAC层到物理层的发送数据接口,二是从物理层到MAC层的接收数据接口,三是从物理层到MAC层的状态指示信号,四是MAC层和物理层之间传送控制和状态信息的MDIO接口。

GMII接口的MAC模式定义:注意在表7中,信号GTX_CLK对于MAC来说,此时是Output信号,这一点和MII接口中的TX_CLK的Input特性不一致。

GMII接口PHY模式定义:表8注意在表8中,信号GTX_CLK对于PHY来说,此时是Input信号,这一点和MII接口中的TX_CLK的Output特性不一致。

4.2 GMII接口时序特性在GMII接口中,TX通道参考时钟是GTX_CLK,RX通道参考时钟是RX_CLK,802.3-2005定义了它们之间的关系。

图19 GMII signal timing at receiver input由图19可知,Spec只定义了TX通道和RX通道中接收端Setup时间和Hold时间。

很明显,即该Spec只对TX通道上PHY这一侧的接收特性作了定义,而对TX通道MAC那一侧的发送特性并没有定义。

IC Vendor可在TX通道那一侧的MAC的发送特性作适当调整,只要最终的时序满足TX通道上PHY这一侧的接收特性就可以。

同样的道理,该Spec只对RX通道上MAC这一侧的接收特性作了定义,而对RX通道PHY那一侧的发送特性并没有定义。

IC Vendor可在RX通道那一侧的PHY的发送特性作适当调整,只要最终的时序满足RX通道上MAC这一侧的接收特性就可以。

图20 Setup和Hold Time的值从图20可以看出,这里有两组setup和hold时间。

其中第一组Spec则是根据图21给定的测试电路定义的,即该Spec未考虑PCB上传输线的不匹配等影响。

而第二组Spec则是定义了receiver at its input pins的时间要求,它考虑了PCB 上传输线的长度不匹配等影响。

一般IC Vendor需要按照第二组Spec来设计它们的IC。

(Two sets of setup and hold time parameters are specified in Fig. 20. The first set, tSETUP and tHOLD, applies to the source of a synchronous GMII signal and its clock and is measured using the “GMII Setup and Hold Time Test Circuit,” which has transmission lines with matched propagati on delays inthe “clock” and“signal” paths. The second set, tSETUP(RCVR) andtHOLD(RCVR), applies to the GMII receiver and specifies the minimum setup and hold times available to the GMII receiver at its input pins. The difference between the two sets of setup and hold time parameters provides margin for a small amount of mismatch in the propagation delays of the “clock” path and the “signal” paths in GMII applications)。

图21 GMII接口Setup和Hold Time测试电路4.3 GMII信号功能特性:<1>:GTX_CLK (transmit clock),GTX_CLK (Transmit Clock)是一个连续的时钟信号(即系统启动,该信号就一直存在),它是TX_EN, TXD, andTX_ER(信号方向为从RS到PHY)的参考时钟,PHY端在信号的上升沿采样,GTX_CLK由MAC驱动。

GTX_CLK的时钟频率是数据传输速率的12.5,即125MHz。

<2>:对于同样的RX_CLK,它与TX_CLK具有相同的要求,所不同的是它是RX_DV, RXD, and RX_ER(信号方向是从PHY到RS)的参考时钟,MAC端在时钟的上升沿采样。

RX_CLK是由PHY驱动,PHY可能从接收到的数据中提取时钟RX_CLK,也有可能从一个名义上的参考时钟(e.g., the TX_CLK reference)来驱动RX_CLK<3>:GMII接口的发送时序如图22所示,接收时序如图23所示,至于其它信号的功能特性以及在数据传输过程中,不同信号的逻辑变化所代表的意义,这里不再描述,大体上和“MII信号功能特性”一节中描述类似,读者可以参阅802.3-3005的Spec。

图22 GMII信号发送时序图23 GMII信号接收时序4.4 GMII的管理MDIO接口:关于GMII的管理MDIO接口,这里也不再描述,它在硬件设计上同MII的管理MDIO接口一节的描述。

4.5 Electrical CharacterG MII接口的电气特性可以分为DC characteristics和AC characteristics。

针对于DC电气特性而言,All GMII drivers and receivers shall comply with the dc parametric attributes specified in T able 35–7. The potential applied to the input of a GMII receiver may exceed the potential of the receiver’s power supply (i.e., a GMII driver powered from a 3.6 V supply driving VOH into a GMII receiver powered from a 2.5 V supply). T olerance for dissimilar GMII driver and receiver supply potentials is implicit in these specifications.针对于AC电气特性而言,The GMII ac electrical characteristics are specified in a manner that allows the implementor flexibility in selecting the GMII topologies its devices support and the techniques used to achieve the specified characteristics.All GMII devices are required to support point-to-point links. The electrical length of the circuit board traces used to implement these links can be long enough to exhibit transmission line effects and require some form of termination. The implementor is allowed the flexibility to select the driver output characteristics and the termination technique and components to be used with its drivers for point-to-point links. Implementors may elect to support other GMII topologies in addition to the point-to-point topology and may specify different termination techniques and components for each supported topology. Since the output characteristics and output voltage waveforms of GMII drivers depend on the termination technique and the location of the termination components, the ac output characteristics of GMII drivers are not explicitly specified. Rather, the ac characteristics of the signal delivered to a GMII receiver are specified. These characteristics are independent of the topology and termination technique and apply uniformly to all GMII applications.5. RGMII接口分析5.1 RGMII接口信号定义:RGMII接口(Reduced GMII接口)是简化的GMII接口。

相关文档
最新文档