MULTI-SENSOR INFORMATION FUSION TECHNOLOGY APPLIED TO
基于多传感器信息融合的农作物监测系统
3.1 云服务器的选择
云服务器应选择能适应各种传感网络和通信网络的 OneNET 物联网云平台 [7]。OneNET 物联网云平台会不断刷 新显示的数值,实现数据接入与数据异常监督,当出现数据 异常触发函数给开发板发送信息。用户能够通过云平台提供 的界面实现远程监控和控制,对农作物的生长环境和生长状
1 系统设计方案
基于多传感器信息融合的农作物监测系统与一般智慧农 业不同,不仅能实现农作物温湿度等生长环境的检测与调节, 还加入了农作物生长状态实时检测与防虫害预警系统 [3]。整 个系统分为大数据采集模块、大数据分析模块、显示模块、 农作物状况检测模块、设备控制模块和视频监控模块 [4]。大 数据采集模块由田间传感器、空气监测设备、虫害检测系统 和视频监控构成,通过这些设备可获取空气数据、害虫样本、 分布密度和作物受害程度等数据并上传至云服务器。大数据 分析模块能够对云服务器中存储的数据进行综合分析,通过 自动控制或者手动调控达到实时调节与病虫预警的目的。农 作物状况检测模块通过与图库中相应作物的各种状态进行比
态进行实时监测。
3.2 系统开发环境
系统硬件选用 C51 单片机,通过系统中的传感网络来感 知环境。主控制板在 Keil4 MDK 环境下开发,将 C 语言作 为eNET 物联网平台,完成数据的存储、 智能控制、远程查询和控制等功能。系统为 B/S 三层构造, 它的运转环境分为客户端、中央控制器和硬件执行机构 。 [8-9]
(School of Information Engineering, Shaanxi Xueqian Normal University, Xi'an Shaanxi 710100, China)
Abstract: Real-time monitoring and remote control of parameters such as temperature, humidity and light in the growing environment of crops are important means of agricultural production modernization. For this reason, the author designed a crop monitoring system based on multi-sensor information fusion. The system combines the Internet of Things cloud platform with big data analysis technology to realize the real-time monitoring function of crops, can combine system data to realize automatic control, complete automatic irrigation, and achieve the purpose of improving agricultural production efficiency.
多传感器数据融合技术概述
科技信息SCIENCE &TECHNOLOGY INFORMATION2010年第15期多传感器数据融合技术概述黄惠宁刘源璋梁昭阳(桂林理工大学土木与建筑工程学院广西桂林541004)【摘要】多传感器数据融合技术是一门新兴前沿技术。
近年来,多传感器数据融合技术已受到广泛关注,它的理论和方法已被应用到许多研究领域。
介绍多传感器数据融合的基本原理和过程,重点介绍多传感器数据融合的三个层次并对三个层次进行比较,最后论述数据融合技术的发展趋势。
【关键词】数据融合;多传感器;方法Overview of the Multi-sensor Data Fusion Technology【Abstract 】Multi-sensor data fusion is the front line of technique.rencently,the technique of Multi -sensor data fusion had attained attention widely.It ’s principle and methodology had benn applied in so many fields.Introducing the fundamental principle and basic processing ,This paper had set focus on the contrast of the three levels of Multi-sensor data fusion and had analysed differences of them and had discussed the developing tendency.【Key words 】D ata fusion ;Multi-sensor ;M ethods0前言数据融合是关于协同利用多传感器信息,进行多级别、多方面、多层次信息检测、相关、估计和综合以获得目标的状态和特征估计以及态势和威胁评估的一种多级自动信息处理过程。
机器人控制技术毕业论文.doc
为了使机器人完成各种调控手段执行不同的任务和行动。
作为一个计算机系统,领先的技术,计算机控制技术,其中包括非常广泛,从智能机器人,任务的描述来控制伺服运动控制技术。
以实现各种硬件系统的控制都需要的,并且包括各种软件系统。
第一机械手控制方法使用顺序的,与计算机,机器人使用的计算机系统的整合的机械和电气设备的功能,以及使用的教学和重放控制的。
随着信息技术和控制技术的发展,以及扩大机器人的范围内,智能控制技术,机器人正朝着的方向发展,它已经离线编程,高级语言任务,多传感器信息融合,智能控制行为等新技术。
技术将促进各种智能机器人的发展。
当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
这个理论和应用自动控制的关键是,做出正确的测量和比较后,如何才能更好地纠正系统。
PID(比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
它由于用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti 和Td)即可。
在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。
关键词:机器人,机器人控制,PID,自动控制To enable the robot to complete a variety of control means various tasks and actions performed. As a computer system, the key technology, computer control technology, including a very wide range, from the robot intelligent, task description to the motion control and servo control technology. Both needed to achieve control of various hardware systems, and includes a variety of software systems. The first robot uses sequential control mode, with the development of the computer, the robot uses a computer system to integrate the functions of mechanical and electrical equipment, and the use of teaching and playback control. With the development of information technology and control technology, and expanding the scope of application of the robot, intelligent robot control technology is moving in the direction of development, there has been off-line programming, task-level language, multi-sensor information fusion, intelligent behavior control and other new technologies. Technology will facilitate the development of a variety of intelligent robots.Today's automatic control techniques are based on the concept of feedback. Elements feedback theory consists of three parts: the measuring, comparing and implementation. V ariable measurements concern, compared with expectations, with the error correction control system response regulator. The key to the theory and application of automatic control is made after the correct measure and compare, how best to correct the system.PID (proportional - integral - derivative) controller as the first practical controller has 50 years of history, and still is the most widely used industrial controller. PID controller is easy to understand, without the use of an accurate system model prerequisites, and thus become the most widely used controller.It is due to the widespread use, flexible, has a series of products, the use of simply setting three parameters (Kp, Ti and Td) can be. In many cases, it does not necessarily require all three units, which may take one to two units, but the ratio is essential to the control unit.Keywords: robots, robot control, PID, automatic control引言信息技术是当前高技术发展中的主流技术,它的发展对其它技术会产生极大的影响。
多模态融合
多模态融合多模态融合 1多模态机器学习MultiModal Machine Learning (MMML),旨在通过机器学习理解并处理多种模态信息。
包括多模态表示学习Multimodal Representation,模态转化Translation,对齐Alignment,多模态融合Multimodal Fusion,协同学习Co-learning等。
多模态融合Multimodal Fusion也称多源信息融合(Multi-source Information Fusion),多传感器融合(Multi-sensor Fusion)。
多模态融合是指综合来自两个或多个模态的信息以进行预测的过程。
在预测的过程中,单个模态通常不能包含产生精确预测结果所需的全部有效信息,多模态融合过程结合了来自两个或多个模态的信息,实现信息补充,拓宽输入数据所包含信息的覆盖范围,提升预测结果的精度,提高预测模型的鲁棒性。
一、融合方法1.1早期融合为缓解各模态中原始数据间的不一致性问题,可以先从每种模态中分别提取特征的表示,然后在特征级别进行融合,即特征融合。
由于深度学习中会涉及从原始数据中学习特征的具体表示,从而导致有时需在未抽取特征之前就进行数据融合,因此数据层面和特征层面的融合均称为早期融合。
特征融合实现过程中,首先提取各输入模态的特征,然后将提取的特征合并到融合特征中,融合特征作为输入数据输入到一个模型中,输出预测结果。
早期融合中,各模态特征经转换和缩放处理后产生的融合特征通常具有较高的维度,可以使用主成分分析( PCA) 和线性判别分析( LDA) 对融合特征进行降维处理。
早期融合中模态表示的融合有多种方式,常用的方式有对各模态表示进行相同位置元素的相乘或相加、构建编码器—解码器结构和用LSTM 神经网络进行信息整合等。
1.2后期融合后期融合法又称决策级融合法,先用不同的模型训练不同的模式,然后融合多个模型的输出结果。
多传感器融合系统特点及体系结构
多传感器融合系统特点及体系结构所谓多传感器信息融合(Multi-sensor Information Fusion,MSIF),就是利用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。
多传感器信息融合是用于包含处于不同位置的多个或者多种传感器的信息处理技术。
随着传感器应用技术、数据处理技术、计算机软硬件技术和工业化控制技术的发展成熟,多传感器信息融合技术已形成一门热门新兴学科和技术。
多传感器信息融合技术的基本原理就像人的大脑综合处理信息的过程一样,将各种传感器进行多层次、多空间的信息互补和优化组合处理,最终产生对观测环境的一致性解释。
在这个过程中要充分地利用多源数据进行合理支配与使用,而信息融合的最终目标则是基于各传感器获得的分离观测信息,通过对信息多级别、多方面组合导出更多有用信息。
这不仅是利用了多个传感器相互协同操作的优势,而且也综合处理了其它信息源的数据来提高整个传感器系统的智能化。
多传感器融合系统具有四个显著的特点:1、信息的冗余性:对于环境的某个特征,可以通过多个传感器(或者单个传感器的多个不同时刻)得到它的多份信息,这些信息是冗余的,并且具有不同的可靠性,通过融合处理,可以从中提取出更加准确和可靠的信息。
此外,信息的冗余性可以提高系统的稳定性,从而能够避免因单个传感器失效而对整个系统所造成的影响。
2、信息的互补性:不同种类的传感器可以为系统提供不同性质的信息,这些信息所描述的对象是不同的环境特征,它们彼此之间具有互补性。
如果定义一个由所有特征构成的坐标空间,那么每个传感器所提供的信息只属于整个空间的一个子空间,和其他传感器形成的空间相互独立。
基于多传感器信息融合的机器人避障系统的研究与实现
本文研究了移动机器人避障系统,设计了一种超声串扰消除方法,使用 EKF 融合包含光电鼠标传感器在内的三个传感器进行定位,结合稀疏自动编码器与 基于 EKF 的模糊神经网络算法进行避障。搭建了移动机器人平台,通过机器人 避障平台验证了 2PSK 调制方式下的超声测距方法,增强了其抗干扰性;验证了 定位融合算法的有效性,提高了定位精度;也验证了避障算法的可行性。 关键词:避障;多传感器信息融合;超声串扰;模糊神经网络;稀疏自动编码器
(1)通过对机器人避障需求的分析,设计了移动机器人避障系统的总体方 案,设计了多传感器系统和信息融合方案。
(2)通过对超声测距会出现的串扰问题进行分析,提出了一种基于 2PSK 调制的超声测距方法,消除了串扰,提高了测距精度。
(3)研究了扩展卡尔曼滤波算法(Extended Kalman Filter,EKF),设计了 一种基于 EKF 的数据融合定位算法,融合了惯性传感器、编码器、光电鼠标传 感器的数据进行定位,并通过实验测试,验证了定位的精度和算法的有效性。
fuzzy neural network; sparse auto-encoder
II
目录
第 1 章 绪论 .................................................................................................................1 1.1 课题来源.........................................................................................................1 1.2 课题研究的背景及意义.................................................................................1 1.3 相关领域国内外研究现状.............................................................................2 1.3.1 机器人避障技术的研究现状 .............................................................2 1.3.2 超声串扰消除方法的研究现状 .........................................................4 1.3.3 多传感器信息融合技术的研究现状 .................................................6 1.4 本文的主要研究内容和组织结构.................................................................7 1.4............................................................7 1.4.2 本文组织结构 .....................................................................................7
风力机塔架安全在线监测系统研究与设计
10
李萌:风力机塔架安全在线监测系统研究与设计
塔筒底部和基础有角度的变化与垂直沉降、塔筒各 段及联接处的形态变化等状况,数据的采集精度要 求达到毫米级。为了实现上述功能,需建立一个基 于物联网的风力机塔架倾斜、沉降、变形的数学模 型及算法。由于风机自振、外部震动、仪器故障、 设备停电、电磁干扰等异常情况的影响,传感器采 集到的数据可能会产生误差,因此需要对数据进行 预处理以剔除数据中坏值数据、空值数据的影响, 提高系统报警和预测精度。多传感器信息融合技术 是将来自多传感器或多信息源所获取的信息和数 据,在一定的准则下加以自动分析和综合评估,以 完成所需要的决策和估计而进行的信息处理过程 [6] 。常用的理论方法包括加权平均融合法、卡尔曼 滤波法和人工神经网络法等[7]。传感器采集的风力 机塔架安全及形态数据有大量、实时、动态等特性, 所以优选采用人工神经网络法进行数据融合和预处 理,以加强传感器采集数据的实时性和可行度,提 高信息利用率和处理速度。
感器在线监测系统[5] 两种类型。这两种系统通常集 中在对塔架基础不均匀沉降、塔筒沉降倾斜等方面 的实时数据采集及信息处理,但是对于因为极端载 荷作用、材料疲劳、法兰变形、焊缝开裂、螺栓松 动等原因造成的塔架形态特征异常状况很难做出判 断。上述系统大都缺乏对传感器一段时间内采集的 海量数据进行有效甄别和处理的能力,难以对塔架 未来安全及变化趋势做出有效预警。在空气动力载 荷、惯性力和重力载荷、运行载荷和其他载荷作用 下,如何保障风力机塔架的整体结构安全及长期稳 定运行,是新型风力机塔架安全在线监测系统研究 急需解决的1 卷第 2 期
智能诊断
智能诊断技术综述摘要:设备故障诊断技术是在电子、计算机技术的发展中产生的一门技术。
当1个系统的状态偏离正常状态时,就称该系统发生了故障,此时系统可能完全也可能部分丧失其功能。
故障诊断就是寻找故障原因的过程,包括状态检测、故障原因分析及劣化趋势预测等内容。
传统故障诊断技术在分析结构比较复杂的深层次故障时效果不理想,且对操作员能力要求较高;而人工智能技术的发展,则使诊断技术走向了智能化[1]。
由于智能故障诊断技术可模拟人类的逻辑思维和形象思维,将人类各种知识融入诊断过程,故可实现对大型复杂设备的实时、可靠、深层次和预测性故障诊断,获得的诊断信息就能准确地对诊断对象的状态进行识别和预测。
因此这一技术也受到了世界各国工程研究人员的普遍重视。
目前,随着基于行为的人工智能、分布式人工智能、多传感器信息融合技术以及新理论的提出与发展,故障诊断也获得了新的发展机遇[2]。
基于建模处理和信号处理的诊断技术正发展为基于知识处理的智能诊断技术。
智能诊断技术在知识层次上实现了辩证逻辑与数理逻辑的集成、符号逻辑与数值处理的统一、推理过程与算法过程的统一、知识库与数据库的交互等功能,目前的研究主要从两方面展开:基于专家系统的智能故障诊断技术和基于神经网络的智能故障诊断技术[3]。
图一智能诊断系统的功能模块1智能诊断技术(1)基于专家系统的智能诊断技术故障诊断专家系统是诊断领域引人注目的发展方向之一,也是研究最多、应用最广的一类智能诊断技术,主要用于那些没有精确数学模型或很难建立数学模型的复杂系统。
大致经历了两个发展阶段:基于浅知识的第一代故障诊断专家系统和基于深知识的第二代故障诊断专家系统。
近期出现的混合结构的专家系统,是将上述两种方法结合使用,互补不足。
基于浅知识(人类专家的经验知识)的故障诊断系统是以领域专家和操作者的启发性经验知识为核心,通过演绎推理或产生式推理来获取诊断结果,目的是寻找一个故障集合使之能对一个给定的征兆(包括存在的和缺席的)集合产生的原因做出最佳解释[4]。
Multi-sensor Information Fusion
I. INTRODUCTION Along with the constant development of China's modernization process and the continuous improvement of people's living standards, people need better producing and living environment, and they pay more attention to the ecological environment. So the real-time monitoring of environmental factors (water, dust, smoke, noise, air quality, etc.) becomes the focus work of the environmental protection departments. They often put the monitoring device in every monitoring point, and there are three data acquisition ways: artificial way, specialized lines, and wireless sensor networks. But these ways all have significant drawback: artificial way is neither convenient nor a waste of manpower and resources; specialized line is difficult to achieve in remote areas; wireless sensor networks is greatly influenced by the weather and geographical conditions [1]. Aiming at these problems, some experts have made encouraging progress. Wireless sensor networks can solve the data transmission problem in environment monitoring system [3]; however, the accuracy of the data which return from the area by wireless sensor networks is not very well, especially when the external environment mutation, it will return clear distortion data. In recent years, multi-sensor information fusion technology has been rapidly developed and applied in many sophisticated application areas [4]. In view of the current low accuracy, reliability in environmental detecting, we propose an environmental detecting system based on multi-sensor information fusion technology, which can get more accurate information than any single sensor in a shorter period of time with smaller price. The paper is organized as follows. In section 2, the system structure and the process model are discussed, and choose the adaptive one to apply in the system. In section 3, the method of multi-sensor information fusion based on Neural Networks is illustrated in detail, and then we propose an improved ART
多传感器信息融合技术研究
多传感器信息融合技术研究多传感器信息融合技术(Multi-sensor Information Fusion Technology)是一种通过整合多种传感器信息来获得更好结果的技术。
多传感器信息融合技术能够有效地解决单一传感器无法完成的任务,例如环境感知、目标检测和定位等。
本文将讨论多传感器信息融合技术的概念、应用、挑战和未来发展方向。
一、多传感器信息融合技术的概念多传感器信息融合技术是指通过整合多种类型的传感器信息,以及运用人工智能和机器学习算法等技术,将信息转换为更精确的数据和知识。
多传感器信息融合技术能够将多种数据源(如可见光、红外、声音、气体、温度等)的信息相结合,以获取丰富的信息和更完整的数据。
通过多传感器信息融合技术,可以提高传感器的工作效率和准确性。
二、多传感器信息融合技术的应用1.智能交通:多传感器信息融合技术已经在智能交通领域得到了广泛应用。
通过整合多种类型的传感器(如雷达、视频、红外、微波、光学等),交通系统可以实时监测交通流量、车辆速度和事故等情况,并实现智能化的交通管制。
2.工业生产:在工业生产中,多传感器信息融合技术可以帮助企业检测设备故障、监测生产过程和优化生产效率。
通过整合不同类型传感器的信息,可以更精确地实现设备状态监测和故障诊断。
3.智能家居:多传感器信息融合技术可以帮助智能家居系统实现个性化的家居控制。
例如,通过整合温度、湿度、光线等传感器的信息,系统可以自动地调整室内温度和照明等环境,提供更舒适和安全的家庭环境。
三、多传感器信息融合技术的挑战多传感器信息融合技术的应用还面临一些挑战。
首先,不同类型传感器所采集的信息不一定匹配,因此需要对传感器信息进行标准化处理。
其次,传感器之间可能存在互相影响的情况,例如传感器之间的干扰或协作。
最后,多传感器信息融合技术需要用复杂的算法实现数据的整合和分析,算法的复杂度和计算量也需要考虑。
四、多传感器信息融合技术的未来发展方向未来多传感器信息融合技术的发展趋势将更加注重智能化和自主化。
西安交大自动化专业多传感器信息融合ch1(资料)
第1章 绪论1.1多源信息融合的一般概念与定义1.1.1定义多源信息融合(multi-source information fusion)又称为多传感信息融合(multi-sensor information fusion),是20世纪70年代提出来的,军事应用是该技术诞生的源泉。
事实上,人类和自然界中其它动物对客观事物的认知过程,就是对多源信息的融合过程。
在这个认知过程中,人或动物首先通过视觉、听觉、触觉、嗅觉和味觉等多种感官(不是单纯依靠一种感官)对客观事物实施多种类、多方位的感知,从而获得大量互补和冗余的信息;然后由大脑对这些感知信息依据某种未知的规则进行组合和处理,从而得到对客观对象的统一与和谐的理解与认识。
这种由感知到认知的过程就是生物体的多源信息融合过程。
人们希望用机器来模仿这种由感知到认知的过程。
于是,一门新的边缘学科——多源信息融合便诞生了。
由于早期的融合方法研究是针对数据处理的,所以有时也把信息融合称为数据融合(data fusion)。
我们在这里所讲的传感器(sensor)也是广义的,不仅包括物理意义上的各种传感系统,也包括与观测环境匹配的各种信息获取系统,甚至包括人或动物的感知系统。
虽然人们对这门边缘学科的研究已经有20至30年的历史了,但至今仍然没有一个被普遍接受的定义。
这是因为其应用面非常广泛,而各行各业会按自己的理解给出不同的定义。
目前能被大多数研究者接受的有关信息融合的定义,是由美国三军组织实验室理事联合会JDL(Joint Directors of Laboratories)提出来的[1-3],从军事应用的角度给出信息融合的定义。
定义1.1.1 信息融合就是一种多层次、多方面的处理过程,包括对多源数据进行检测、相关、组合和估计,从而提高状态和身份估计的精度,以及对战场态势和威胁的重要程度进行适时完整的评价。
从该定义可以看出,信息融合是在几个层次上完成对多源信息处理的过程,其中每一个层次反映对原始观测数据不同级别的抽象。
多传感器信息融合及其在农业中的应用
农机化研究
第5期
多传感器信息融合及其在农业中的应用
邓 巍,丁为民
(南京农业大学 工学院,南京 210031)
摘 要:多传感器信息融合在现代军事 C3I(指挥、控制、通信与情报)系统中,以及许多民事领域得到了
广泛应用。为此,在对多传感器信息融合技术进行综述的基础上,介绍了此技术在民事各领域中的研究应
现象 H
y1
yN
S1
SN
u1
uN
融合中心 uf
现象 H
y1
yN
S1
u1 S 2 u2
SN
uf
融合中心
(a)并行结构
(b)串行结构
图 1 典型拓扑结构
拓扑结构选定后,多源信息协调处理技术应考
虑如下几方面:
1) 融合中心应该且能够得到什么层次的多源
信息?即各实体功能分配方案,通常称为融合层次
设计。
2) 如何从多源信息提炼融合信息?这是多源
2) 经典推理方法。在先验假设已知的情况下, 推理描述一个假设条件下观察到的事件概率。它完 全依据数学理论,严格地应用并需要先验概率分布 知识,但先验概率往往是不确知的。
3) 贝 叶 斯 法 。贝 叶 斯 法 解 决 了 经 典 推 理 方 法 的 某些困难。在给定一个预先似然估计和附加证据条 件下,更新一个假设的似然函数。允许使用主观概 率,但同样存在许多缺点。
还有许多方法,在此不再一一列举。各种信息 融合方法各具特色,任何一个融合算法都包罗不了 信息融合的完整内涵,它们只是信息融合过程中的 不同数学计算方法。随着各种研究的继续深入,必 将产生更有效的方法。 1.6 信息融合的过程问题
信息融合依赖于各种信息资源,因此数据融合 系统必须包括多信息的获取,即多传感器系统。信 息融合过程中,多传感器系统与信息融合中心紧密 相关,前者为后者提供信息资源,后者加前者的输 出,使前者的观测结果成为可靠输出。
信息融合综述
《信息合融》综述1 信息融合的发展历史与现状近二十年来,传感器技术比获得了迅速发展,各种面向复杂应用背景的多传感器信息系统大量涌现,在一个系统中装配的传感器在数量上和种类上也越来越多。
因此需要有效地处理各种各样的大量的传感器信息。
在这些系统中,信息表现形式的多样性,信息容量以及信息的处理速度等要求已经大大超出人脑的信息综合能力。
处理各种各样的传感器信息意味着增加了待处理的信息量,很可能会涉及到在各传感器数据组之间数据的矛盾和不协调。
在这样的情况下,多传感器信息融合技术(Multi-sensor information Fusion,MIF) 应运而生。
“融合”是指采集并集成各种信息源、多媒体和多格式信息从而生成完整、准确、及时和有效的综合信息的过程。
信息融合是针对一个系统中使用多种传感器(多个/或多类)这一特定问题而展开的一种信息处理的新研究方向。
其实,信息融合是人类的一个基本功能,我们人类可以非常自如地把自己身体中的眼、耳、鼻、舌、皮肤等各个感官所感受到的信息综合起来,并使用先验知识去感知、识别和理解周围的事物和环境。
信息融合技术研究如何加工、协同利用信息,并使不同形式的信息相互补充,以获得对同一事物或目标的更客观、更本质的认识的信息综合处理技术。
经过融合后的系统信息具有冗余性、互补性、实时性等特点。
根据信息融合的定义,信息融合技术包括以下方面的核心内容:(1)信息融合是在几个层次上完成对多源信息处理的过程,其中每一个层次都具有不同级别的信息抽象;(2)信息融合包括探测、互联、相关、估计以及信息组合;(3)信息融合的结果包括较低层次上的状态估计和身份估计,以及较高层次上的整个战术态势估计。
因此,多传感器是信息融合的硬件基础,多源信息是信息融合的加工对象,协调优化和综合处理是信息融合技术的核心。
信息融合的基本目标是通过信息组合而不是出现在输入信息中的任何个别元素,推导出更多的信息,这是最佳协同作用的结果。
多传感器信息融合增量卡尔曼滤波器
中文摘要多传感器信息融合滤波理论目前已被广泛应用于航空、航天、航海、工业过程控制、目标跟踪等领域。
信息的融合能够充分利用不同传感器的观测信息,从而可以得到系统状态的一种最佳描述,能够保证系统的可靠性。
而在复杂环境下,如对多传感器系统能够有效的识别、剔除各种错误或误差信息的话,则将可以进一步提高系统状态估计的精度。
Kalman滤波算法是一种极为常用的状态估计方法,其递推的算法形式,较小的数据存储量都使得它更优于其他一般的滤波算法。
然而,在实际应用过程中,由于周围环境的影响、测量设备自身造成的误差、模型和参数选取不当等原因,常常造成测量数据中的系统误差随时间变化而漂移。
这种量测系统误差通常又是难于验证或校准的,直接使用传统的Kalman滤波算法往往也会引起较大的滤波误差。
针对该问题,本文进行了基于增量方程的多传感器欠观测系统Kalman滤波算法和融合算法的相关研究,主要内容包含如下几个方面:首先对线性离散欠观测系统提出了一种新的增量方程,并基于两种增量方程分别提出了相应的增量Kalman估值器(包括增量滤波器、增量预报器和增量平滑器),能够有效解决传统Kalman滤波算法解决不了的欠观测系统的状态估计问题;其次,基于线性最小方差最优融合准则,分别提出了多传感器欠观测系统加权状态融合和加权观测融合增量Kalman估值器,提高了多传感器欠观测系统的状态估计精度。
最后,考虑增量观测噪声为有色噪声的情形,分别提出了带有色观测噪声的局部和加权观测融合增量Kalman估值器,相比带白色观测噪声的增量Kalman估值器在估计精度上又有了进一步的提高。
以上算法都给出了具体的仿真应用实例,仿真结果充分说明了所提出的算法的有效性和实用性。
关键词:多传感器信息融合;加权融合;欠观测系统;增量模型;增量滤波AbstractMulti-sensor information fusion filtering theory has been widely used in many fields such as aviation, aerospace, navigation, industrial process control, target tracking and so on. Information fusion can make full use of the observation information from different sensors, so as to obtain an optimal description of the system state and ensure the reliability of the system. In complex environment, if all kinds of errors or error information for the multi-sensor system can be effectively identified and eliminated, the accuracy of system state estimation can be further improved. Kalman filtering algorithm is a very common state estimation method. Its recursive form and small data storage make it better than the other general filtering algorithms. However, in the actual application process, due to the influence of the surrounding environment, errors caused by the measuring equipment itself, or improper selection of models and parameters and other reasons, the systematic errors in measurement data often drift with time. Such system observation errors are often difficult to be verified or calibrated, and the direct use of traditional Kalman filtering algorithm will also cause large filtering errors.To solve this problem, the Kalman filtering algorithm and fusion algorithm for the multi-sensor systems under poor observation condition are studied based on the incremental equation in this paper. The main contents include the following aspects: Firstly, a new incremental equation is proposed for linear discrete systems under poor observation condition. Moreover, the incremental Kalman estimators are proposed based on two incremental equations. They can effectively solve the state estimation problem for the systems under poor observation condition, which can not be solved by the traditional Kalman filter algorithm.Secondly, under the linear minimum variance optimal fusion criterion, the multi-sensor weighted state and weighted measurement fusion incremental Kalmanestimators are presented for the systems under poor observation condition. They improve the state estimation accuracy for the multi-sensor systems under poor observation condition.Finally, considering the incremental observation noise as colored noise, the local and weighted measurement fusion incremental Kalman estimators with colored measurement noises are proposed. Compared with the incremental Kalman estimators with white measurement noises, the estimation accuracy is further improved.Applying above algorithms, the specific simulation application examples are given, and the simulation results show the effectiveness and practicability of the proposed algorithm in this paper.Keywords: multi-sensor information fusion; weighted fusion; systems under poor observation condition; incremental model; incremental filtering目录中文摘要 (I)Abstract ........................................................................................................................... I I 第1章绪论 .. (1)1.1 课题研究的背景与意义 (1)1.2 多传感器信息融合估计发展概况 (3)1.3 Kalman滤波理论的研究现状 (6)1.4 典型欠观测系统 (10)1.5 本文的主要研究内容 (11)第2章欠观测系统的增量观测模型 (12)2.1 预备知识 (12)2.1.1 射影理论和新息序列 (12)2.1.2 分布式三种加权融合和集中式融合算法 (14)2.2 两种增量观测模型 (16)2.3 本章小结 (17)第3章欠观测系统增量Kalman估值器 (18)3.1 引言 (18)3.2 增量Kalman估值器 (18)3.2.1 增量Kalman滤波器 (18)3.2.2 增量Kalman预报器 (21)3.3.3 增量Kalman平滑器 (23)3.3 仿真研究 (24)3.3.1 仿真实例1 (24)3.3.2 仿真实例2 (26)3.4 本章小结 (28)第4章多传感器欠观测系统信息融合增量Kalman估值器 (29)4.1 引言 (29)4.2 问题阐述 (29)4.3 加权状态融合增量Kalman估值器 (30)4.3.1 局部增量Kalman估值器 (30)4.3.1 加权状态融合增量Kalman估值器 (31)4.4 加权观测融合增量Kalman估值器 (33)4.4.1 局部增量Kalman估值器 (33)4.4.2 加权观测融合增量Kalman估值器 (34)4.5 仿真研究 (35)4.5.1 仿真实例1 (35)4.5.2 仿真实例2 (37)4.6 本章小结 (38)第5章带有色观测噪声的加权融合增量Kalman估值器 (39)5.1 引言 (39)5.2 问题阐述 (39)5.3 带有色观测噪声的增量Kalman估值器 (40)5.3.1 增量ARMA模型 (40)5.3.1增量Kalman估值器 (41)5.4 带有色观测噪声的增量Kalman融合估值器 (42)5.4.1 局部增量Kalman估值器 (42)5.4.2 加权观测融合增量Kalman估值器 (44)5.5 仿真研究 (46)5.5.1 仿真实例1 (46)5.5.2 仿真实例2 (49)5.6 本章小结 (52)结论 (53)参考文献 (55)致谢 (62)攻读学位期间发表论文 (63)独创性声明 (64)第1章绪论1.1 课题研究的背景与意义控制系统从发展之初到现在已经逐渐进入到智能化的时代,这意味着人们不仅对于控制系统各方面性能的要求越来越高,要求控制系统的结果更为精确,而且需要控制系统在更加多样复杂的环境中的应用中更加稳定的发挥好的作用,这种需求不仅体现在军事领域中如雷达系统、导弹制导、无人机侦探、智能控制指挥等方面,现在也更多的在民用领域如智能机器人、物流系统、农业、工业开采勘探生产、汽车飞机智能驾驶等方面发挥着重要的作用。
9个基于多传感器的经典应用方案设计
9 个基于多传感器的经典应用方案设计
所谓多传感器信息融合(MulTI-sensor InformaTIon Fusion,MSIF),就是利
用计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。
本文介绍基于多传感器的9 个经典应用设计方案。
多传感器空气流量测试系统方案
本设计将LabVIW 软件、多传感器、计算机结合,构建了一个空气流量
测试系统,实现对多传感器信息的融合。
系统包括被测对象、传感系统、信号调理电路、数据采集与处理系统。
免除了对多传感器信息采集过程中一些繁琐的工作,采集过程不再需要编写不同软件以适应不同传感器的要求。
基于多传感器图像融合的温度场测试系统
本文首次提出了一种基于多传感器图像融合发动机温度场测试系统。
整个发动机温度场测试系统是由光源、发动机温度场测试的零部件、镜头、CCD 图像传感器、图像采集卡、图像融合处理和温度识别计算机5 大部分组成。
该系统明显地提高了发动机温度场的测试效率和测试精度,具有非常好的应用推广价值。
无人驾驶汽车多传感器融合研究概述
无人驾驶汽车多传感器融合研究概述作者:***来源:《时代汽车》2021年第12期摘要:傳感器感知和识别是无人驾驶汽车的一个关键技术,是路径规划、智能决策和自动控制的基础,是近几年汽车发展的新兴技术。
本文论述了多传感器融合技术的具体概念、分类、体系结构和主要算法,总结多传感器信息融合的发展要求和未来展望。
关键词:无人驾驶传感器融合融合算法信息融合多传感器Summary of Multi-sensor Fusion Research on Driverless VehicleLuo guorongAbstract:Sensor perception and recognition is a key technology of driverless vehicles, which is the basis of path planning, intelligent decision making and automatic control. It is a new technology of automobile development in recent years. This paper discusses the concept,classification, architecture and main algorithms of multi-sensor fusion technology, and summarizes the development requirements and future prospects of multi-sensor information fusion.Key words:Driverless; Sensor Fusion ;Fusion Algorithm; Information fusion;Multi-sensor。
多传感器融合技术
多传感器信息融合原理及其应用摘要:随着科学技术的发展,传感器得到了广泛的应用。
多个传感器的应用可以弥补各自的不足,这就导致了多传感器信息融合技术的产生。
在1960年,卡尔曼发表了他的著名的文章,该论文描述了对离散数据线性滤波器问题的迭代解。
从此,由于在数据计算方法的优势,卡尔曼滤波器成了研究和应用的主题,特别是在自动或辅助导航领域。
卡尔曼滤波器是一系列数学方程式,通过最小化均方误差,它们为过程的状态估计提供了有效的计算(迭代)方法。
该滤波器在许多方面具有强大的功能:支持过去、现在和未来的估计,并且在建模的系统的精确特性未知的情况下依然可行。
该文章对卡尔曼滤波器做了应用性的介绍,然后结合实际应用给予了阐述。
关键字:传感器,信息融合,滤波器,应用,发展Multi-sensor information fusion theory and its applicationAbstract:As the development of science and technology, sensors have been widely used. Multi-sensors have the advantage of covering the shortage, which stimulated the development of the technology of multi-sensors information fusion.In 1960, R.E. Kalman published his famous paper describing a recursive solution to the discrete-data linear filtering problem. Since that time, due in large part to advances in digital computing, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation.The Kalman filter is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The filter is very powerful in several aspects: it supports estimations of past, present, and even future states, and it can do so even when the precise nature of the modeled system is unknown.The purpose of this paper is to provide a practical introduction to the principal of multi-data fusion,and have a introduction of the widely used kalman filter then illustrate it with a practical application.Keywords: sensors, information fusion, filter, application, development1、引言信息融合或信息融合技术也称为多传感器融合技术,作为一种多源信息协调处理技术术语,在不同的问题领域,其实现方法、步骤和增益优化准则都不同。
一种多元信息融合技术的方案实现
一种多元信息融合技术的方案实现夏寅辉;白廷柱;徐长彬;殷金坚;何文忠【摘要】The concept,the theory and application fields of multi-sensor information fusion are discussed.Based on this,a scheme of multi-sensor information fusion is presented.The multisource battlefield informationsare captured and apperceived by using multi-sensor information fusion technology,and the potential targets are detected and identi-fied by information fusion algorithm.Thus,the estimations of targetstate,battlefield situation and threat can be ob-tained accurately,which achieves the full dimensional battlefield perception in the future battle.%对多元信息融合的概念、原理、模型进行了论述,基于以上论述提出了一种基于多传感器信息融合的设计方案。
该设计方案采用多元信息融合技术对多源战场信息进行获取、感知,通过信息融合算法对可疑目标进行探测、识别、定位、组合,可获得精确的目标状态估计,以及战场态势估计与威胁估计,从而实现未来战争中陆、海、空、天、电磁频谱全维战场感知。
【期刊名称】《激光与红外》【年(卷),期】2016(046)003【总页数】4页(P317-320)【关键词】信息融合;目标识别;目标定位;多传感器【作者】夏寅辉;白廷柱;徐长彬;殷金坚;何文忠【作者单位】华北光电技术研究所,北京 100015;北京理工大学,北京 100081;华北光电技术研究所,北京 100015;华北光电技术研究所,北京 100015;华北光电技术研究所,北京 100015【正文语种】中文【中图分类】TN29随着传感器技术、电子技术、信号处理技术及精密机械加工技术的迅速发展,系统集成的传感器越来越多,系统的环境适应能力越来越强,获取的信息越来越多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MULTI-SENSOR INFORMATION FUSION TECHNOLOGY APPLIED TO THE DEVELOPMENT OF SMART AIRCRAFTByDr. Buddy H. Jeun and Honorary Professor Allan Whittaker, Senior IEEELockheed Martin Aeronautics CompanyMarietta, GeorgiaABSTRACTThis paper explores the possibility of applying multi-sensor information fusion technology to the development of smart aircraft. This technology integrates information from multiple sensors and extracts tactical information to detect, track and identify time critical targets at any time, in any place and under all weather conditions. Such target information will help the war fighter avoid fratricide and deploy weapon systems for surgical strike. Finally, the smart aircraft helps the war fighter establish air superiority in the air, on the land and at sea.The architecture of a smart aircraft includes the pilot and flight crew, vehicle interface unit, multi-sensor correlation processor, multi-sensor image fusion model, multi-sensor track fusion model, multiple target identification fusion model and multiple sensors such as: Radar, CNI, EW, IFF Visual, Electro Optic and IR.The multi-sensor track fusion model computes a fused track from the sensor trackers. A Multiple Target Identification Fusion model creates integrated target identifications from identification of multiple targets. Similarly, a Multi-Sensor Image Fusion model creates an integrated target image from multiple sensor images.In traditional aircraft, the pilot and crew extract tactical information from a huge amount of multi-sensor information. This processing is time consuming and subject to human error. A future smart aircraft with Multi-Sensor Information Fusion technology will have access to accurately correlated fused information. Fused information assists the pilot and crew to detect, track and identify targets more rapidly and accurately. Such platforms are truly smart aircraft.1INTRODUCTIONThe smartness of the fighter aircraft can be characterized by the following qualities:(1)Quickly assess the tactical information from the multi-sensor and multiple targetenvironments.(2)Positively detect, track, and identified the time critical targets at any time and any placeunder all weather conditions.(3)Accurately deploy weapon system for surgical strike to the enemy target.(4)Preciously discriminate targets from friends and foes, to avoid friendly killing.Most aircraft development involves multiple sensors. Some sensors such as synthetic aperture radar can provide picture like images at very long range. Sensors, such as radar, IFF, electro-optic cameras and infrared images, can provide tactical information to detect, track and positively identify targets. All of sensor needed to integrated in order to generate the tactical information for the smart aircraft. Integration of multiple sensors is not a simple task, as it requires the application of mathematical concepts and computer algorithms. These form the bases of multi-sensor information fusion technology, which directly influences the development of smart aircraft.Multi-Sensor Information Fusion (MSIF) technology includes a Multi-Sensor Track Fusion (MSTF) model, a Multiple Target Identification (MTIDF) model and a Multi-Sensor Image Fusion (MSIF) model. The MSTF model creates fused tracks from the multi-senor trackers. The MTIDF model creates fused target identifications from the multi-sensor and multiple target identification system. The MSIF model creates the fused image from the multi-sensor image information system.Multi-sensor fusion technology is the tool to achieved multi-sensor integration. Aircraft without multi-sensor fusion information technology operates less effectively on the battlefield. Aircraft with multi-sensor information fusion technology can detect, track and identified the time critical targets quickly with great precision. Smart aircraft with multi-sensor information fusion technology can help the war fighter to avoid fratricide and help the aircrew to established superiority in the air, land and sea.2MULTI-SENSOR CORRELATION (MSC) PROCESSORThe objective of the Multi-Sensor Correlation (MSC) processor is to provide the logic and algorithms for the fusion processor. The MSC processor estimates the linear relationship between two given feature vectors X and Y, according to the correlation coefficient between X and Y. The equation to calculate the correlation coefficient between two feature vectors X and Y, can be expressed as following:Let:X ={x1, x2, x3,……………x n} be the feature vector of an objectY ={y1, y2, y3,…………….y n} be the feature vector of another object Then: the correlation coefficient between the two feature vectors X and Y is:C xy = X•Y / (X•X - X•Y + Y•Y)(1) [Jeun, 1997]Where: C xy is the correlation coefficient between feature vectors X and YX•X is the dot product of XX•Y is the dot product of X and YY•Y is the dot product of YDecision rules concerning the correlation coefficient might include the following:(1)If the Coefficient of Correlation (C xy) satisfies the following condition: 0.95 <= C xy <=1.0,then X and Y are most likely correlated(2) If the Coefficient of correlation (C xy) satisfies the following condition: 0.0 <= C xy<=0.95,then X and Y are most likely uncorrelated.The boundary condition, 0.95, is selected based upon the feature vector elements’ precision.3MULTI-SENSOR TRACK FUSION (MSTF) MODELThe objective of the Multi-Sensor Track Fusion (MSTF) model is to create the fused track from the multi-sensor trackers. Figure 1 depicts a Multi-Sensor Track Fusion model block diagram.Figure 1: The Multiple-Sensor Track Fusion Model block diagram depicts the analysis paths that provide the Aircrew with meaningful and useful knowledge.The MSTF model automatically generates fused tracks in the mission computers for the aircrew to make quick tactical decisions. The fused tracks can be use for accurate detection of objects in the battle space.The MSTF model consists of multiple sensors, trackers and multi-sensor correlation processor and the vehicle interface unit, and the aircrew. The multiple sensors provide sensor reports as the input vector to trackers, and the trackers generate the feature vector for the target. The feature vector indicates kinematics parameters, such as position vector, velocity vector and acceleration vector of detected targets. The multi-sensor correlation processor is use to compute the correlation coefficients between the tracks. The multi-sensor correlation processor also used to discriminate tracks. The vehicle interface unit (VIU) serves as the communication between the Multi-Sensor Correlation Processor and the aircrew.The output of the trackers, have the following feature elements inside each feature vector: {Latitude, Longitude, Bearing, Target Range, Range Rate, Ground Speed, Course or Direction, Altitude}. These feature elements are the tactical kinematics parameters that can characterize, detect and track targets. [Jeun, Whittaker, 2002]4EXAMPLE OF MSTF MODELConsider that the multi-sensor track fusion model consists of only two sensors and one is a radar sensor (radar tracker) the other one is IFF sensor (IIF tracker).Example #1:Suppose the radar tracker, computes a feature vector for track #1, denoted as T1: T1 = {5.0, 10.0, 75.0, 60.0, 2.0, 150.0, 75.0, 20.0} and suppose the IFF tracker, outputs a feature vector for the track #2, denoted as T2: T2 = {10.0, 40.0, 85.0, 65.0, 2.0, 140.0, 65.0, 85.0}. The correlation coefficient between the two feature vectors is equal to 0.87. Therefore the result of the fusion action is that the track #1 and track #2 are two distinct tracks.Example #2:Suppose the radar tracker, produces a feature vector for track #1, denoted as T3: T3 = {30.0, 20.0, 60.0, 70.0, 2.0,100.0, 60.0, 30.0} and suppose the IFF tracker, defines a feature vector for the track #2, denoted as T4: T4 = {30.0, 20.0, 60.0, 70.0, 2.0, 100.0, 60.0, 30.0}. The correlation coefficient between the two feature vectors is equal to 1.0. Therefore the result of the fusion action is that track #3 and track #4 most likely characterize the same target5MULTIPLE TARGET ID FUSION (MTIDF) MODELThe objective of the Multiple Target ID Fusion (MTIDF) model is to provide target identification information for the aircrew to make accurate decisions concerning target selection and target prioritization.Figure 2: Multiple Target Identification Fusion block diagram shows the analysis paths that provide the Aircrew with meaningful and useful knowledge.The aircrew can use the target identification information from the MTIF processor to accurately deploy weapons onto enemy targets. Most the smart aircraft with fusion technology, can clearly determine where the enemy aircraft are, in the multi-sensor and multiple target environment. The MTIDF model determines the fused target identification from the multiple targets.The fused target probability for the multi-sensor and multiple targets can beexpressed as:Ρ(S1/T k)P(S2/T k)……P(S n/T k)P(Τk / S1.S2.S3…….S n) = (2) [Hall, 1992]ΣP(S1/ T i )P(S2/T i ) ….. P(S n/T i)Where P(Τk/ S1.S2.S3…….S n) is the probability of target T k given in multi-sensorenvironment.For a single sensor and mulitple targets, the fused target probability reduces to thefollowing:P(S/T k)P(T k / S) = (3) [Jeun, 1979]ΣP(S/T i)This expression is exactly the same as the probability of association.6EXAMPLE OF MTIDF MODELFigure 3 is used to illustrate the different views of two targets, T1 and T2 as seen by Sensor #1, Sensor #2 and Sensor #3. The basic question to be answered can be formulated as the following:“Are targets #1 and #2 observed by sensor #1, sensor #2 and sensor #3 the same target”?Sensor #2Sensor #1T1Sensor #3Sensor #2Sensor #1T2Sensor #3F igure 3: Potentially two targets as “seen” by three different sensors, where the colored regions indicate the fused target probability.Application of the method shown in [Jeun, 1995] results in the following estimated fused target probabilities for the target set presented by Figure 3. The estimated fused target probability of target#1 (T1) is calculated to be P(T1/S1,S2, S3) = 0.20and the calculated fused probability of target#2(T2) is estimated to be: P(T2/S1,S2,S3) = 0.80. Because the fused probability of T2 is greater then the probability of T1, we therefore conclude that target #1 and target #2 are two distinct targets.7MULTI-SENSOR IMAGE FUSION MODELThe objective of the Multi-Sensor Image Fusion model is to produce consistent images from multiple sensor images. The Multi-Sensor Image Fusion model block diagram in Figure 4 showsFigure 4: Multi-Sensor Image Fusion block diagram portrays the analysis paths that provide the Aircrew with meaningful and useful knowledge.an example of processes that can be employed. The Edge Detector method and Coherence Change Detector method, and Fourier Descriptor method are widely used image analysis techniques. [Delp, Mitchell and Jain, 1986]Multiple pictures, like images, can produce information overload, making it impossible to be interpreted by human mental processing. In order to reduce this information overload requires some automatic integration, or better yet, application of the multi-sensor image fusion technique to process the pictorial images.8EXAMPLE OF MSIF MODELTo help understand the use of the MSIF model consider the objects pictured in Figures 5 and 6.Figure 5: An first image with three distinctly shaped and colored objects, two of which are different from Figure 6 and one of which, the pale blue moon, is common to Figure 6.Figure 6: A second image with three distinctly colored and shaped objects, two of which are different from Figure 5 and one of which, the pale blue moon, is common to Figure 5.Figure 5 contains the following images: (1) A red star with feature vector X1 = {0, 1, 7, 0, 5, 7, 3, 5, 1, 3}; (2) A pale blue moon with feature vector X2 = {1, 1, 1, 5, 5, 6, 7, 3, 3, 2}; and (3) A bright yellow sun with feature vector X3 = {1, 1, 1, 7, 7, 5, 5, 4, 4, 3}. Figure 6 portrays the following images: (5) A dark blue triangle with feature vector Y1={1, 1, 1, 1, 7, 7, 7, 7, 4, 4}; (6) A pale blue moon with feature vector Y2 ={1, 1, 1, 5, 5, 6, 7, 3, 3, 2}; and (7) A bright green cylinder with feature vector Y3 ={2, 2, 0, 0, 4, 4, 6, 6, 4, 4}. X1, X2, X3, Y1, Y2 and Y3 are obtained applying Friedman’s code. [Fu, 1982]The question that needs to be answered is the following: Can an Aircrew flying a smart aircraft, equipped with a MSIF model, positively identify the objects contained within the images presented by Figures 5 and 6?The results from the Multi-Sensor Image Fusion model are:(1)The fused image pale blue moon appeared in both Figure 5 and Figure 6, because thecorrelation coefficient between X2 and Y2 is 1.0(2)The red star and bright yellow sun in Figure 5 are distinct objects. They have nothing incommon with other images in Figure 5 and Figure 6, because:(a)The coefficient of correlation between X1 and X2 is 0.69(b)The coefficient of correlation between X1 and X3 is 0.54(c)The coefficient of correlation between X3 and X2 is 0.91(d)The coefficient of correlation between X1 and Y1 is 0.69(e)The coefficient of correlation between X1 and Y2 is 0.58(f)The coefficient of correlation between X1 and Y3 is 0.58(g)The coefficient of correlation between X3 and Y1 is 0.77(h)The coefficient of correlation between X3 and Y2 is 0.91(i)The coefficient of correlation between X3 and Y3 is 0.66(3)The dark blue triangle and bright green cylinder are distinct objects. Again they havenothing in common with other images in Figure 6 and Figure 5, because:(a)The coefficient of correlation between Y1 and X1 is 0.69(b)The coefficient of correlation between Y1 and X2 is 0.81(c)The coefficient of correlation between Y1 and X3 is 0.77(d)The coefficient of correlation between Y3 and X1 is 0.58(e)The coefficient of correlation between Y3 and X2 is 0.73(f)The coefficient of correlation between Y1 and Y2 is 0.81(g)The coefficient of correlation between Y1 and Y3 is 0.88(h)The coefficient of correlation between Y3 and X2 is 0.669CONCLUSIONS(1)Multi-sensor integration is widely accepted as a technology that is ready to be usedin product development and production environments.(2)Personnel need to become knowledgeable in fusion technology so that it too can beapplied in these environments.(3)The examples of the Multi-Sensor Track Fusion model, the Multiple TargetIdentification Fusion model and the Multi-Sensor Image Fusion model usedsimulated information. Nevertheless, only a smart aircraft equipped with thesemodels can quickly and positively identify the objects contained with the imagescontained in Figure 5 and Figure 6.(4)The fusion techniques outlined in this paper were mathematically proven. However,further testing with real time sensor input data is required before they can be appliedto real world problems.(5)The fused track, fused target ID and fused target image are all expressed in a multi-dimensional feature vector. The algorithm developer and the software engineer, whowork with fusion technology, need to be knowledgeable in the mathematicalprocessing techniques.10 REFERENCES1[Jeun, Whittaker, 2002] Buddy H. Jeun and Allan Whittaker, Improve Strike Capability With The Statistical Pattern Recognition Technology, National Fire Control Symposium, Seattle, Washington, 2002.2[Jeun, 1999] Buddy H. Jeun, Application Of Neural Network, Statistical Pattern Recognition And Fusion Technologies To The Multiple Target Classification Problem, National Fire Control Symposium, Colorado Springs, Colorado, 1999.3[Jeun, 1997] Buddy H. Jeun, A Multi-Sensor Information Fusion Model, Joint Service Combat Identification Conference, San Diego, California, 1997.4[Jeun, 1995] Buddy H. Jeun, An ID Fusion Model, Joint Service Combat Identification Conference, Monterey, California, 1995.5[Hall, 1992] David Hall, Mathematical Techniques In Multi-sensor Data Fusion, Artech House Publish Company, New York, 1992.6[Jeun, 1979] Buddy H. Jeun, Design And Implementation Of Statistical Pattern Recognition Model, Ph. D. Dissertation, Collage Of Engineering, University of Missouri-Columbia, Missouri, 1979.7Delp, Mitchell and Jain, 1986] Delp, Mitchell and Jain, Machine Vision, School of Electrical Engineering, Purdue University, West Lafayette, Indiana, 1986 8[Fu, 1982] S. K. Fu, Syntactic Pattern Recognition and Application, Prentice Hall, New York, 1982。