振动力学课程设计报告
振动设计分析实验报告
振动设计分析实验报告1. 引言振动设计分析是一门重要的工程学科,广泛应用于机械工程、结构设计以及产品开发等领域。
振动设计分析实验通过对不同振动系统进行测试和分析,以评估系统的振动性能和特性。
本实验旨在通过测量不同振动系统的振幅、频率和相位等参数,以及对系统进行模态分析,并通过分析实验结果来探索振动设计的理论与应用。
2. 实验目的- 学习使用振动测量设备和仪器;- 了解振动设计的基本原理和分析方法;- 熟悉模态分析的操作流程;- 掌握振动设计分析实验的基本技巧。
3. 实验设备和仪器本实验所使用的设备和仪器包括:1. 振动传感器;2. 振动测量仪器;3. 示波器;4. 计算机。
4. 实验步骤1. 配置振动传感器并连接到振动测量仪器;2. 将振动传感器安装在待测试振动系统上,确保其与系统紧密接触;3. 打开振动测量仪器和示波器,并进行仪器校准;4. 调节振动系统的频率和振幅,测量并记录不同参数;5. 进行模态分析实验,记录系统的固有频率和振动模态;6. 将实验数据导入计算机,进行数据处理和分析;7. 分析实验结果,评估振动系统的性能和特点。
5. 实验结果与分析通过实验测量和分析,我们得到了以下结果:1. 不同振动系统的频率和振幅;2. 振动系统的固有频率和振动模态。
根据实验结果,我们可以评估振动系统的性能和特性,并进一步优化设计方案。
例如,通过调整振动系统的频率和振幅,我们可以使系统在工作范围内达到最佳的振动效果。
6. 实验总结本实验通过振动设计分析实验,我们学习了振动设计的基本原理和分析方法,并熟悉了模态分析的操作流程。
同时,我们掌握了使用振动测量设备和仪器的技巧,提高了实验操作的能力。
通过实验结果的分析和评估,我们可以得出结论:振动设计分析是有效评估振动系统性能和特性的方法,能为系统设计和优化提供重要参考。
7. 参考文献[1] 振动设计与分析原理教程, XX出版社, 20XX.[2] 振动工程学, XX出版社, 20XX.[3] 振动设计与控制, XX出版社, 20XX.附录- 实验数据表格;- 模态分析结果图表。
力学桥梁振动实验报告
一、实验目的1. 理解桥梁振动的基本原理和影响因素。
2. 通过实验,验证桥梁振动的理论公式,如固有频率、振型等。
3. 掌握桥梁振动实验的基本操作和数据处理方法。
4. 分析桥梁在不同载荷和结构参数下的振动特性。
二、实验原理桥梁振动是指桥梁在外力作用下发生的周期性运动。
根据振动形式,桥梁振动可分为自由振动和强迫振动。
本实验主要研究桥梁的自由振动。
桥梁的自由振动可以由以下公式描述:\[ m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0 \]其中,\( m \) 为桥梁的质量,\( x \) 为桥梁的位移,\( t \) 为时间,\( c \) 为阻尼系数,\( k \) 为桥梁的刚度。
桥梁的固有频率 \( \omega_n \) 可以通过以下公式计算:\[ \omega_n = \sqrt{\frac{k}{m}} \]三、实验设备和仪器1. 桥梁振动实验台2. 力传感器3. 数据采集器4. 激振器5. 激光测距仪6. 振动传感器7. 计算机四、实验步骤1. 搭建实验装置:将桥梁振动实验台安装好,连接好力传感器、数据采集器、激振器、激光测距仪和振动传感器。
2. 调整实验参数:根据实验要求,调整桥梁的初始状态,如初始位移、初始速度等。
3. 激发振动:使用激振器激发桥梁振动,同时记录力传感器和振动传感器的数据。
4. 采集数据:使用数据采集器实时采集力传感器和振动传感器的数据,并存储到计算机中。
5. 数据处理:对采集到的数据进行处理,如滤波、计算固有频率、振型等。
五、实验结果与分析1. 固有频率的测定:通过实验数据,计算桥梁的固有频率,并与理论计算值进行比较。
2. 振型的测定:通过实验数据,绘制桥梁的振型图,分析桥梁在不同频率下的振动模式。
3. 影响因素分析:分析桥梁在不同载荷和结构参数下的振动特性,如桥面质量、阻尼系数、刚度等。
六、结论1. 通过实验,验证了桥梁振动的理论公式,并计算出桥梁的固有频率和振型。
振动力学课程设计报告
振动力学课程设计报告课设题目:单位:专业/班级:姓名:指导教师:2011年12月22日一、前言1、课题目的或意义振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。
增强了认识问题,分析问题,解决问题的能力。
带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。
为认识社会,了解社会,步入社会打下了良好的基础。
通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。
2、课题背景:随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。
GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。
特别适用于自动配料、定量包装、给料精度要求高的场合。
例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。
GZ电磁振动给料机的工作原理:GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。
GZ系列电磁振动给料机主要用途:电磁振动给料机广泛使用在冶金、煤炭、电子、机械、化工、建材、轻工、粮食等行业中,在生产流程中,用于把块状、颗粒状、粉状物料从贮料仓或漏斗中定量、均匀、连续地给到受料装置中去。
振动力学课程设计任务书
振动力学课程设计任务书一、课程设计的目的振动力学课程设计是工程力学专业集中实践环节的内容之一。
学生运用所学的基础理论和专业知识通过课程设计的实践,巩固和掌握振动力学课程的知识。
通过课程设计使学生了解结构振动研究的过程,培养学生的计算和分析能力。
二、课程设计的要求学生需认真阅读课程设计任务书,参考有关资料,在规定的时间内独立完成课程设计任务。
课程设计要求计算准确、文字通顺、图形精致。
课程设计(含任务书和计算程序等)应装订成册。
三、课程设计的内容振动力学课程设计的内容如下:题目1:1.图示振动系统,建立系统的振动微分方程,要求写出详细的过程。
2.求系统的振动固有频率。
3.计算系统的振动模态,绘制主振型的示意图。
4.计算系统的主质量、主刚度和简正振型矩阵。
5.初始条件为:,位移单位为m,速度单位为m/s。
求系统自由振动的响应。
6.在左侧第一个物体上作用简谐力,求系统强迫振动的响应。
7.在固定端和第1个物体之间安装一个阻尼系数为 c1的阻尼器,在第1个和第2个物体之间安装一个阻尼系数为 c2的阻尼器,在第2个和第3个物体之间安装一个阻尼系数为 c3的阻尼器,在第3个物体和固定端之间安装一个阻尼系数为 c4的阻尼器。
已知:c1=2c,c2=5c, c3=c,c4=3c。
建立系统的有阻尼振动微分方程,计算系统的阻尼矩阵、模态阻尼矩阵。
8.用瑞利法估算系统的基频。
9.用矩阵迭代法计算系统的固有频率。
题目2:1.图示振动系统,建立系统的振动微分方程,要求写出详细的过程。
2.求系统的振动固有频率。
3.计算系统的振动模态,绘制主振型的示意图。
4.计算系统的主质量、主刚度和简正振型矩阵。
5.初始条件为:,位移单位为m,速度单位为m/s。
求系统自由振动的响应。
6.在左侧第三个物体上作用非周期激励力,u(t)为单位阶跃函数,求系统强迫振动的响应。
7.在固定端和第1个物体之间安装一个阻尼系数为 c1的阻尼器,在第1个和第2个物体之间安装一个阻尼系数为 c2的阻尼器,在第2个和第3个物体之间安装一个阻尼系数为 c3的阻尼器,在第3个物体和固定端之间安装一个阻尼系数为 c4的阻尼器。
振动基础实验报告
振动基础实验报告振动基础实验报告引言:振动学作为一门重要的力学分支,对于工程领域的研究和应用具有重要意义。
振动基础实验是学习振动学的基础,通过实验可以更好地理解和掌握振动学的基本原理和实际应用。
本次实验旨在通过实际操作和数据分析,探究振动的基本特性和影响因素。
实验目的:1. 了解振动学的基本概念和公式;2. 学习振动实验的基本操作方法;3. 掌握振动实验数据的处理和分析技巧。
实验装置:1. 振动实验台:用于激发振动并记录振动数据;2. 振动传感器:用于测量振动信号。
实验步骤:1. 将振动传感器固定在振动实验台上;2. 调整振动实验台的频率和振幅,记录下相应的振动数据;3. 改变振动实验台的质量和刚度,再次记录振动数据;4. 对实验数据进行处理和分析。
实验结果与讨论:通过实验记录的数据,我们可以得到不同振动参数下的振动幅值和频率的关系。
实验结果表明,振动实验台的质量和刚度对振动幅值和频率有着明显的影响。
当振动实验台的质量增加时,振动幅值减小,频率增大;而当振动实验台的刚度增加时,振动幅值增大,频率减小。
这一实验结果与振动学的基本原理相符。
振动实验台的质量增加会增大振动系统的惯性,使得振动幅值减小,频率增大。
而振动实验台的刚度增加会增大振动系统的弹性,使得振动幅值增大,频率减小。
这一结论对于工程领域中的振动控制和设计具有重要意义。
实验误差与改进:在实验过程中,由于实验设备和测量仪器的精度限制,可能会导致实验数据存在一定误差。
为了减小误差,可以采取以下改进措施:1. 使用更高精度的振动传感器进行测量;2. 增加实验数据的采样点,提高数据的精确性;3. 多次重复实验,取平均值,减小随机误差。
结论:通过本次振动基础实验,我们深入了解了振动学的基本概念和公式,掌握了振动实验的基本操作方法和数据处理技巧。
实验结果表明,振动实验台的质量和刚度对振动幅值和频率有着明显的影响。
这一实验结果与振动学的基本原理相符,对于工程领域的振动控制和设计具有重要意义。
振动力学课程设计报告材料(2)
振动力学课程设计报告课设题目:电磁振动给料机的振动分析与隔振设计单位:专业/班级:姓名:指导教师:一、前言1、课题目的或意义通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中的基本理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。
2、课题背景:1、结构:本设计中,料槽底板采用16mm厚钢板焊接而成,再用筋板加强。
料槽衬板采用20mm厚钢板。
料槽材料全部采用镇静钢,能承受工作过程中由于振动产生的交变载荷,焊缝不易开裂。
2、工程应用前景:振动给料机用于把物料从贮料仓或其它贮料设备中均匀或定量的供给到受料设备中,是实行流水作业自动化的必备设备分敞开型和封闭型两种,本设计中电磁振动给料为双质体系统,结构简单,操作方便,不需润化,耗电量小;可以均匀地调节给料量为了减小惯性力,在保证强度和刚度的前提下,应尽可能减轻振动槽体的质量。
从而使其在实际工程应用中会有非常广泛的前景。
二、振动(力学)模型建立1、结构(系统)模型简介123123k k k c c c 、为隔振弹簧,为主振弹簧,、、分别为隔振和主振弹簧的阻尼4k 、4c 分别为尼龙连接板得等效刚度和阻尼。
0m 为偏心块质量,1m 为给料槽体质量,2m 激振器的振动质量。
R m —输送槽体(包括激振器)的质量,1500kg ;即012R m m m m ++=G m —槽内物料的结合质量。
在实际中系统为离散的,而建立模型后将质量进行集中从而该系统可视为为连续系统,通过上网搜索资料以及书中知识总结并设计出如上所示电磁振动给料机力学模型,其组成为料槽、电磁激振器、减振器、电源控制箱等组成。
2、系统模型参数(包括系统所必需的几何、质量、等效刚、激励等)根据实际应用情况假设个几何参数为:外形尺寸(长x 宽x 高):4057 x 2100 x 1730mm1l =390mm 2l =1140mm 3l =650mm质量参数:150018753375R G m m m kg =+=+=0587m Kg = 1456m Kg = 2457m Kg =等效刚度:由公式得24055(1)()79e k K N c k μλγλ=-∆++1k =875641N/m 2k =854213N/m 3k =2126284N/m 4k =458256 N/m激振力矩阵:三、振动分析1、振动方程建立由于系统做微抛物运动,因此系统有两个自由度,所以其振动微分方程如下:MX CX KX F++=其中; 。
振动力学课程设计报告--垂直振动输送机的机械振动与隔振分析
振动力学课程设计报告课设题目:垂直振动输送机的机械振动与隔振分析单位:理学院专业/班级:工程力学09-1姓名:指导教师:2011-12-18一、前言1、课题目的或意义主要研究双质体垂直振动输送机输送原理及设计理论,根据参数对其进行运动分析和隔振分析。
通过对结构进行振动分析或参数设计,进一步巩固和加深振动力学课程中的基础理论知识,初步掌握实际结构中对振动问题分析、计算的步骤和方法,培养和提高独立分析问题和运用所学理论知识解决实际问题的能力。
2、课题背景:垂直振动输送机主要应用于箱式元件的提升输送,按照进料口出料口的方向分为Z型垂直提升机和C型垂直提升机两种提升输送机。
垂直振动提升机主要应用于矿山、冶金、化工、轻工、建材、机械、粮食等各行业垂直输送50毫米以下的粉状、颗粒状、块状物料,在连续供料条件下也可用于输送具有滚动性的团状物料,可以代斗式提升机、倾斜使用皮带输送机等。
惯性自同步垂直振动提升机由于应用了机械振动学的自同步原理具有结构简单,技术参数先进,安装调整方便,维修量小,占地面积小及对基础无特殊要求等特点,而且设备费用和运送费用较低。
在有特殊要求时可同时完成冷却、干燥等多种工艺过程,是一种理想的物料垂直提升设备。
ZC系列垂直振动输送机的工作原理:ZC系列垂直振动输送机的驱动装置振动安装在输送塔下部,两台振动电机堆成交叉安装,输送塔由管体和焊接在管体周围的螺旋输送槽组成,输送塔座于减振装置上,减振装置有底座和隔振弹簧组成。
当垂直输送机工作时,根据双振电机自同步原理,由振动电机产生激振力,强迫整个输送塔体作水平圆运动和向上垂直运动的空间复合振动,螺旋槽内的物料则受输送槽的作用,做匀速抛掷圆运动,沿输送槽体向上运动,从而完成物料的向上(或向下)输送作业。
二、振动(力学)模型建立1、结构(系统)模型简介此系统为双质体垂直振动输送机,为离散体。
此结构由螺旋槽体、底座、隔振弹簧、激振电动机和底架组成,底架固结于地面上,两台振动电机堆成交叉安装,输送塔由管体和焊接在管体周围的螺旋输送槽组成,输送塔座于减振装置上,减振装置有底座和隔振弹簧组成。
振动力学学习报告
振动力学学习报告引言振动力学课程已经结束了。
在学完整个课程后,我将书本从头看了一边,一来加深自己都知识的掌握,二来将本课程做个总结,使自己掌握的知识能够系统化、结构化。
然后,我将各个部分的知识点总结如下。
第一章 概论一、基本概念1、目的:结构动力学研究结构在动力荷载作用下的位移和内力(统称响应)的分析原理和计算方法,为工程结构设计提供科学依据。
2、基本概念:动力荷载或动荷载(dynamic load )、弹簧力(spring force )、惯性力(inertia force )、阻尼力(damping force )。
3、动力荷载的分类:确定性:确定性动力荷载系指当时间给定后其量值是唯一的。
非确定性:非确定性动力荷载的量值随时间的变化规律不是唯一确定的,而是一个随机过程。
4、研究方法:理论计算方法、试验量测法和计算、试验混合法。
二、结构自由度简化方法1、在结构系统运动的任一时刻,确定其全部质量位置所需的独立几何参变量的个数,称为系统的动力自由度(dynamic freedom )。
2、集中质量法:将连续分布的质量集中到有限个质体上,即把连续分布质量离散成为无重弹性体系上的有限个集中质体。
3、广义位移法:适应于简单结构。
设在t 时刻x 点的位移为y(x,t)将它用一族位移函数的线性和表示∑∞==1)sin()(),(i i l xi t q t x y π,)sin(lx i π为满足位移边界条件的位移函数,)(t q i 为待定参数。
4、有限元法:将实际结构用有限个在结点处相互连接的单元所组成的离散系统代替,对每个单元给定插值函数,然后叠加单元在各个相应结点的贡献建立系统的求解方程。
三、阻尼力1、阻尼:各种能量耗散因素的总称。
在动力计算中,引入一个反应能量耗散的力,称为阻尼力。
2、阻尼力假设:粘性阻尼(viscous damping ):当系统在粘滞性液体中以不大的速度运动时,它所受到的阻尼力大小与速度成正比,而方向和速度的方向相反。
振动力学课程设计
振动力学课程设计x1 x2 x3年级:工程力学09级02班姓名:***学号:***********振动力学课程设计(大作业)的内容如下:1.在图示振动系统中,k k k k k k k k m m m m m m 3,,4,5,7,4,34321321=======建立系统的振动微分方程,要求写出详细的过程。
2.求系统的振动固有频率。
3.计算系统的振动模态,绘制主振型的示意图。
4.计算系统的主质量、主刚度和简正振型矩阵。
5.初始条件为:T 0T 0} 0.5 0, 0, { ,} 0.03 0, 0, {==x x ,位移单位为m,速度单位为m/s 。
求系统自由振动的响应。
6.在质量为m 1的物体上作用简谐力 sin )(t F t f ω=,求系统强迫振动的响应。
7.在质量为m 3的物体上作用非周期激励力 )()(t Fu t f =, )(t u 为单位阶跃函数,求系统强迫振动的响应。
8.在固定端和第1个物体之间安装一个阻尼系数为 1c 的阻尼器,在第1个和第2个物体之间安装一个阻尼系数为 2c 的阻尼器,在第2个和第3个物体之间安装一个阻尼系数为 c 3的阻尼器,在第3个物体和固定端之间安装一个阻尼系数为 c 4的阻尼器。
已知:c c c c c c c c 3 , 6 , ,2 4321====。
建立系统的有阻尼振动微分方程,计算系统的阻尼矩阵、模态阻尼矩阵。
9.用瑞利法估算系统的基频。
10.用传递矩阵法计算系统的固有频率。
解答过程如下:1.分别以两物体的平衡位置为坐标原点,取 x1 、x2和x3 为广义坐标,由牛顿第二定律得⎪⎩⎪⎨⎧---=---=--=3423333122233221112211)()()()(x k x x k xm x x k x x k x m x k x x k x m自由振动微分方程为⎪⎩⎪⎨⎧=++-=-++-=-++0)(0)(0)(34323333323212222212111x k k x k xm x k x k k x k x m x k x k k x m写成矩阵形式为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--++⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡00000000003214333322221321321x x x k k k k k k k k k k x x xm m m上式即为系统的振动微分方程。
振动力学课程设计
振动力学课程设计课设题目: DZSF式直线振动筛的振动分析单位:理学院专业/班级:工程力学09- 1姓名:指导教师:1一、前言1、课题目的或意义通过对振动筛分析与设计,了解一些机械振动原理,是自己在实际运用中掌握所学的振动力学知识,进一步学习实际结构中对振动问题的分析、建模、计算方法,培养提高独立分析问题和运用所学知识及计算机解决实际问题的能力,同时锻炼自己运用Matlab和AutoCAD进行作图运算的能力。
2、课题背景:直线振动筛利用振动电机激振作为振动源,使物料在筛网上被抛起,同时向前作直线运动,物料从给料机均匀地进入筛分机的进料口,通过多层筛网产生数种规格的筛上物、筛下物、分别从各自的出口排出。
具有耗能低、产量高、结构简单、易维修、全封闭结构,无粉尘溢散,自动排料,更适合于流水线作业。
二、振动(力学)模型建立1、结构(系统)模型简介2此系统为直线振动筛。
该振动筛是由筛箱、筛框、筛网、振动电机、电机台座、减震弹簧、支架组成。
直线振动筛是采用惯性激振器来产生振动的,其振源有电动机带动激振器,激振器有两个轴,每个轴上有一个偏心重,而且以相反方向旋转,故又称双轴振动筛,由两齿轮啮合以保证同步当两个带偏心重的圆盘转动时,两个偏心重产生的离心力,在x轴的分量互相抵消,在y轴的分量相加,其结果在y轴方向产生一个往复的激振力,使筛箱在y轴方向上产生往复的直线轨迹振动。
当振源采用振动电机时,必须布置二台,其轴线与振动筛纵向轴线方向一致(不平行,具有一夹角)。
二台振动电机对称布置在筛箱的上方、下部和两侧均可以。
直线振动筛的筛面倾角通常在8?以下,筛面的振动角度一般为45?,筛面在激振器的作用下作直线往复运动。
颗粒在筛面的振动下产生抛射与回落,从而使物料在筛面的振动过程中不断向前运动。
物料的抛射与下落都对筛面有冲击,致使小于筛孔的颗粒被筛选分离。
筛子的筛分效率及生产能力(处理量)同筛面的倾角、筛面的振动角度、物料的抛射系数有关。
强度震动课程设计
课程设计报告姓名:张小新专业:飞行器动力工程班级:飞动G班指导教师:李书明(教授)但敏二0一一年十一月题目及要求题目 基于ANSYS 的叶片强度与振动分析一.叶片模型把叶片简化为根部固装的等截面悬臂梁。
叶片模型如右图所示,相关参数如下:叶片长度:0.04m叶片宽度:0.008m叶片厚度:0.002m叶根截面距旋转轴的距离为0.16m 材料密度:3m/kg 7900弹性模量:a 11P 10.12 2. 泊松比 : 0.3二.叶片的静力分析(1)叶片在转速为5000rad/s 下的静力分析。
要求:得到von Mises 等效应力分布图,并对叶片应力分布进行分析说明。
三.叶片振动的有限元分析(1)叶片静频计算与分析要求:给出1到10阶的叶片振型图,并说明其对应振动类型。
(2)叶片动频计算与分析要求:计算出叶片在转速为1000rad/s,2000rad/s,4000rad/s, 8000rad/s,1000rad/s下的动频值,用表格形式表示。
(3)共振分析要求:根据前面的计算结果,做出叶片共振图(或称Campbell 图),找出叶片的共振点及共振转速。
四. 按要求撰写课程设计报告说明:网格划分必须保证结果具有一定精度。
各输出结果图形必须用ANSYS 的图片输出功能,不允许截图。
课程设计报告基于ANSYS的叶片强度与振动分析ANSYS有限元分析的一般步骤1. 结构离散;2. 单元分析a. 建立位移函数b. 建立单元刚度方程c. 计算等效节点力3. 进行单元集成;4. 得到节点位移;5. 根据弹性力学公式计算单元应变、应力。
一.叶片的静力分析……从von-mises图上可以看出所受到的离心拉伸应力从叶尖到叶根逐步增大,这是因为某一截面的离心拉伸应力是该截面以上质量所产生离心力,因为越接近叶根,其上质量越大,故所产生的离心拉伸应力越大。
………….叶片振动的有限元分析(1)叶片静频计算与分析……一弯(周向) 共振频率:1049.8HZ…………一弯(弦向)共振频率:4057.8HZ二弯(周向)共振频率:6499.1HZ一扭共振频率:9256.8HZ三弯(周向)共振频率:17893HZ二弯(弦向)共振频率:21902HZ二扭共振频率:28124HZ伸缩共振频率:32332HZ四弯(周向)共振频率:34260HZ二.叶片动频计算与分析……三.共振分析……k=1 159.2357 318.4713 636.9427 1273.885 1592.357 k=2 318.4713 636.9427 1273.885 2547.771 3184.713 k=3 477.707 955.414 1910.828 3821.656 4777.07 k=4 636.9427 1273.885 2547.771 5095.541 6369.427 k=5 796.1783 1592.357 3184.713 6369.427 7961.783 k=6 955.414 1910.828 3821.656 7643.312 9554.14 k=7 1114.65 2229.299 4458.599 8917.197 11146.55095.541 10191.08 12738.85 k=8 1273.8852547.771k=9 1433.121 2866.242 5732.484 11464.97 14331.21 k=10 1592.357 3184.713 6369.427 12738.85 15923.57 坎贝尔图包括两组图线:其一,倍频线簇(f=K ω/(2π)),用于表征外界激振力的频率其二,动频曲线簇,用于表示各转速下某振型的共振频率(离心力对共振频率的影响)另外,K的值与所分析的模型实际的受力环境有关,需根据实际情况选取特殊K值进行共振点分析分析共振点为倍频线与动频线的交点……。
振动力学课程设计模型
振动力学课程设计模型一、课程目标知识目标:1. 学生能理解并掌握振动的定义、分类及其基本特性;2. 学生能描述单自由度系统的自由振动和受迫振动的数学表达及物理意义;3. 学生能运用振动力学原理,分析实际简单机械振动问题。
技能目标:1. 学生能够运用振动方程求解单自由度系统的振动问题;2. 学生能够设计简单的振动控制实验,并通过数据分析评价振动控制效果;3. 学生能够运用物理软件进行振动模拟,提高问题解决能力。
情感态度价值观目标:1. 学生通过学习振动力学,培养对物理科学的兴趣和探究精神;2. 学生在学习过程中,培养团队合作意识和解决问题的耐心;3. 学生通过振动实例分析,认识到振动力学在工程领域的应用,增强理论联系实际的意识。
分析:本课程为高中物理学科振动力学部分,针对高二年级学生。
学生在前期已学习基础力学和波动学,具备一定物理基础。
课程性质为理论联系实际,强调学以致用。
教学要求注重启发式教学,引导学生主动探究,培养实践能力。
课程目标旨在通过具体学习成果的达成,使学生在知识、技能和情感态度价值观方面得到全面提升。
二、教学内容1. 振动基本概念:振动定义、分类、自由度;2. 单自由度系统自由振动:简谐振动、阻尼振动,振动方程及其解析;3. 单自由度系统受迫振动:受迫振动的数学描述,共振现象及其应用;4. 振动控制:振动控制原理,简单振动控制实验设计;5. 振动实例分析:结合实际工程案例,分析振动问题及其解决方案;6. 振动模拟:运用物理软件进行振动模拟,深化理解振动规律。
教学内容安排与进度:第一课时:振动基本概念,简谐振动的数学描述;第二课时:阻尼振动与受迫振动,共振现象;第三课时:振动控制原理,实验设计与数据分析;第四课时:工程案例分析与振动模拟。
教材章节关联:《高中物理》下册第八章“机械振动与波动”:1. 第一节 振动的基本概念;2. 第二节 简谐运动;3. 第三节 阻尼振动与受迫振动;4. 第四节 振动的控制与应用。
振动力学第三版课程设计
振动力学第三版课程设计一、前言振动力学是一门重要的工程学科,是研究振动现象、振动特性和振动控制等方面的学科。
本次课程设计旨在通过理论分析和计算实例,深入理解振动力学的基本理论和应用,全面提高学生的振动力学知识。
二、课程设计目的1.了解振动力学的基本概念及其基本理论;2.掌握振动系统的自由振动和强制振动的计算方法;3.熟悉振动系统的动力响应分析方法;4.掌握振动系统的非线性振动特性;5.掌握振动控制的基本方法;6.具备一定的综合应用能力。
三、课程设计内容1. 振动系统的自由振动和强制振动•振动系统的基本元件与模型•振动系统的自由振动•单自由度体系的阻尼简谐振动•单自由度体系的非阻尼简谐振动•振动系统的强制振动•简谐强迫振动的响应分析方法•非简谐强迫振动的响应分析方法2. 振动系统的动力响应分析方法•随机振动分析方法•有限元方法•能量法•非线性动力学分析方法3. 振动系统的非线性振动特性•不同非线性系统的基本行为•非线性振动分析方法•非线性动力学控制4. 振动控制的基本方法•振动控制的基本原理•主动控制与被动控制•最优控制与稳定性分析四、课程设计要求1.在掌握基本理论的前提下,学生需要独立完成两个以上的计算分析实例;2.要求对实例的分析过程进行详细记录,并说明所采取的计算方法和理论分析方法;3.提交实验报告,每个实例的报告应包括实验目的、实验原理、实验步骤、实验结果分析和结论等部分;4.要求各组学生相互合作,共同讨论、探讨,不得抄袭或抄袭他人的报告。
五、课程设计参考资料1.高清愿、骆仲毅. 振动力学[M]. 机械工业出版社, 2014.2.邬建国、冯海燕. 振动力学[M]. 电子工业出版社, 2015.3.石晓宝. 振动理论与应用[M]. 东南大学出版社, 2013.4.张强. 振动控制技术[M]. 科学出版社, 2015.本次课程设计的参考资料仅供学生扩展和延伸知识使用,学生应在课程设计过程中根据实际需要选择参考资料。
振动力学与工程应用教学设计
振动力学与工程应用教学设计引言振动力学是机械工程学科中一个重要的分支,应用广泛。
通过学习振动力学,能够深刻地理解结构物的振动特性及其对结构物的影响,从而合理地设计或改进结构物的振动性能。
因此,振动力学在机械、建筑、航空航天、汽车等领域具有重要的应用价值。
本文将通过详细设计一个振动力学与工程应用教学方案,旨在帮助学生更好地掌握振动力学相关知识。
教学目的本教学方案的主要目的是使学生:1.掌握基本的振动力学知识,包括单自由度系统、多自由度系统、强迫振动和阻尼振动等方面的内容。
2.理解并应用振动力学原理来设计或改进结构物的振动性能。
3.学会使用相关的工具和软件来分析和解决振动力学问题。
4.能够在实际工程中运用所学知识来优化结构物的振动性能。
教学内容1. 单自由度系统单自由度系统是振动力学中最基本的概念,它是解决振动力学问题的基础。
本教学将首先介绍单自由度系统的原理及其应用。
具体内容包括:•自由振动和强迫振动•简谐振动和非简谐振动•单自由度系统的阻尼•单自由度系统的振动分析方法2. 多自由度系统多自由度系统是振动力学中较为复杂的概念,它包括多个质点和弹性元件的系统,通常用于描述机械结构的振动。
本教学将介绍多自由度系统的原理及其应用。
具体内容包括:•多自由度系统的构建和建模•多自由度系统的本征频率和本征振型•多自由度系统的强迫振动和阻尼振动•多自由度系统的振动分析方法3. 工程应用案例振动力学在机械、建筑、航空航天、汽车等领域都有着广泛的应用。
本教学将通过一系列的工程案例来说明振动力学相关原理在实际工程中的应用。
具体内容包括:•机械结构的振动分析和优化•建筑结构的振动控制和减震•航空航天结构的振动测试与分析•汽车零部件的振动测试与分析4. 软件应用工程应用中经常需要用到一些振动分析和测试软件。
本教学将带领学生了解并掌握一些常用的振动分析和测试软件。
具体内容包括:•ANSYS动力学分析软件•MATLAB振动分析工具箱•不振仪和扭振仪的使用方法教学方法1.前期教学:教师讲授基本理论知识,介绍相关原理和应用。
振动力学与工程应用课程设计 (2)
振动力学与工程应用课程设计一、引言振动是自然界普遍存在的物理现象,具有许多重要的工程应用。
振动力学是研究物体在受到作用力时所产生的振动响应的学科。
工程应用中常常需要利用振动力学对系统进行设计、分析和调整。
因此,对于力学专业的学生来说,掌握一定的振动力学理论和工程应用技能是非常必要的。
为此,本文将介绍一次振动力学与工程应用的课程设计。
二、课程设计背景在振动力学与工程应用这门课程中,教师通过讲解内容、案例实践和小组讨论等方式,引导学生掌握振动力学基本概念、振动分析方法、振动控制技术和工程应用技能。
为了加深学生的理论应用能力和实践能力,设计了以下课程设计。
三、课程设计内容3.1 课程设计目的通过本课程设计,使学生掌握以下几个方面的内容:•了解振动的基本特性和原理;•掌握振动分析方法和工程应用技能;•能够使用ANSYS等软件进行振动分析;•能够对实际工程案例进行振动控制分析。
3.2 课程设计要求本次课程设计要求学生分为小组进行开展,每个小组需要完成一个小型振动工程案例。
具体要求如下:•确定小型振动工程案例,要求案例量级适中,包含振动分析和振动控制两个方面;•利用ANSYS等工具进行相关振动分析,包括模态分析、频率响应分析等;•根据分析结果设计适当的振动控制方案;•最后撰写课程设计报告。
3.3 课程设计步骤本次课程设计共分为以下几个步骤:步骤一:分组确定案例学生自行分组,每个小组确定一个小型振动工程案例。
案例选取应考虑到实际工程需求和难度适宜。
步骤二:案例分析和建模基于确定的小型振动工程案例,结合所学知识,应设计成全方位的振动分析模型,并通过ANSYS等工具进行分析。
步骤三:振动模态分析利用ANSYS进行振动模态分析,得到结构的自然频率和振型。
需要确定振动能量的主要传播路径,明确需要采取的控制手段。
步骤四:频率响应分析基于振动模态分析的结果和实际工作状况,利用ANSYS进行频率响应分析,并得到相应的传递函数和频率响应曲线。
力学振动的教学设计方案
总评成绩达到60分以上为通过。其中,期末考试和课程设计大作业必须分别达 到各自成绩的60%以上。
THANKS
感谢观看
通过案例学习与实践操作相结合的教学方式,学生应能够培养创新思维和实践能力 ,为未来的学习和工作奠定坚实基础。
06
学生自主实践活动安排
活动主题和目标设定
主题:探索力学振动现象及 其在生活中的应用
目标
01
让学生了解力学振动的基本
原理和概念
02
03
培养学生的动手实践能力和 科学探究精神
04
05
引导学生将理论知识应用于 实际生活中,提高解决问题
建立数学模型
根据受力分析,选择合适的数 学模型描述振动系统的运动规 律,如常微分方程、偏微分方 程等。
确定模型参数
通过实验测量或理论计算,确 定数学模型中的各项参数,如
质量、刚度、阻尼等。
线性振动系统分析方法
模态分析法
时域分析法
通过求解系统的特征值和特征向量, 得到系统的固有频率和振型,进而分 析系统的振动特性。
简谐振动及其特性
01
02
03
04
简谐振动的定义
物体在受到与位移成正比的恢 复力作用下的振动称为简谐振
动。
周期性
简谐振动具有周期性,即物体 在振动过程中会不断重复其运
动状态。
对称性
简谐振动的运动轨迹关于平衡 位置对称。
能量守恒
在简谐振动过程中,物体的动 能和势能相互转化,但总能量
保持不变。
阻尼振动与受迫振动
受迫振动的频率等于驱动力的频率。
振幅与驱动力频率有关
当驱动力频率接近物体的固有频率时 ,振幅最大,称为共振现象。
机械振动学课程设计
机械振动学课程设计一、课程目标知识目标:1. 理解机械振动的定义、分类及其在生活中的应用;2. 掌握简谐运动的基本概念、数学描述和物理特性;3. 学会运用振动公式计算位移、速度、加速度,并能解决实际问题;4. 了解阻尼振动、受迫振动及共振现象的基本原理。
技能目标:1. 能够运用物理知识分析并解决机械振动问题;2. 能够运用数学工具描述简谐运动,绘制位移-时间图、速度-时间图;3. 能够运用实验方法研究机械振动现象,操作相关实验设备;4. 能够通过团队合作,进行振动现象的观察、分析与讨论。
情感态度价值观目标:1. 培养学生对物理科学的兴趣,激发探索机械振动现象的欲望;2. 培养学生严谨的科学态度,注重理论与实际相结合;3. 培养学生的团队协作能力,学会倾听、交流、合作;4. 培养学生关注振动技术在现代科技及生活中的应用,提高社会责任感。
课程性质:本课程为高中物理课程,以理论教学为主,结合实验操作,旨在帮助学生深入理解机械振动学的基本概念和原理。
学生特点:高中学生具有较强的逻辑思维能力和数学基础,但对物理概念的理解和运用尚需引导和培养。
教学要求:注重理论联系实际,采用启发式教学,引导学生主动探索、积极思考,提高学生的动手能力和问题解决能力。
通过本课程的学习,使学生能够达到上述课程目标,并为后续相关课程打下坚实基础。
二、教学内容1. 引言:机械振动的基本概念、分类及其在实际应用中的重要性。
2. 简谐运动:- 定义、特点及数学描述;- 位移-时间图、速度-时间图的绘制与分析;- 弹簧振子、单摆等典型简谐运动实例的讨论。
3. 振动公式:- 振动的位移、速度、加速度公式推导;- 振动周期、频率、振幅的概念及其计算方法。
4. 实际振动问题:- 阻尼振动及其影响;- 受迫振动及共振现象的原理与应用;- 振动能量、振动传递的分析。
5. 实验研究:- 简谐运动的实验观察与数据分析;- 阻尼振动、受迫振动的实验操作与现象分析;- 共振实验及其在工程中的应用讨论。
振动力学教学设计
振动力学教学设计前言在大学物理学专业中,振动力学作为一门重要课程,是学生们必须要深入了解的领域。
在振动力学的学习中,教学设计尤为重要,因为它能够确保学生的学习成果并帮助他们理解振动的基本概念和应用。
本文旨在探讨振动力学教学设计,为教师提供一些有用的思路和方法。
教学设计课程内容振动力学教学的核心是振动的基本概念和应用,这些内容可以分为以下几个方面:1.振动的定义和分类2.简谐振动3.非简谐振动4.自由振动和强迫振动5.谐振和共振6.阻尼振动在振动力学教学中,这些内容必须按照适当的顺序进行演示和阐述,以确保学生正确理解振动的基本概念和应用。
教学方法振动力学教学的重点是提供学生深入了解振动的机会和激发他们的兴趣。
根据学生的学习效果及其理解能力,以下教学方法可供选择:1.教师讲解:教师可以在课堂上向学生深入解释振动的基本概念和应用,例如简谐振动和阻尼振动。
2.实验教学:教师可以在实验室中设计和实施各种振动实验,以便让学生亲身体验和理解实验结果及其原因。
3.计算机模拟:教师可以通过计算机模拟软件,让学生模拟和理解振动现象及其应用。
以上教学方法可相互融合,以确保学生获得最大化的学习成果。
此外,教师在教学中应该注重引导学生提出自己的问题,以帮助他们正确地学习和理解振动的概念。
教学流程振动力学的教学流程必须清晰明了,便于学生理解和记忆。
可以根据以下顺序安排振动力学教学:1.阐述振动的基本概念和分类;2.讲解简谐振动和阻尼振动等基本概念;3.进行振动实验教学,让学生亲身参与实验过程;4.讲解非简谐振动的概念和应用,引导学生自主思考;5.设计计算机模拟软件,帮助学生更加深入地理解振动现象;6.复习和总结前面的内容,以确保学生正确理解和记忆振动的概念和应用。
在整个流程中,教师需要注重学生的参与和思考,引导他们提出问题和疑点,帮助他们正确地理解和应用振动的概念。
结论振动力学的教学设计应该是清晰明了的,以帮助学生正确理解和应用振动的基本概念。
振动力学课程设计
振动力学课程设计
前言
振动力学是力学的重要分支,研究结构物体在不断变化的外力作用下,发生弹性形变而发生的频率、振幅、相位等变化,通过对振动的数学模型分析,可以对结构物体的性能进行预测和改进。
在工程结构分析和设计中,振动力学是一个非常重要的知识领域,深入学习振动力学对工程师的实践能力提升具有重要作用。
基于此,我们设计了这门振动力学课程,旨在为学生提供一种系统学习振动力学的方法,培养学生的振动力学思维和实践技能,促进学生掌握振动力学理论和应用的知识和技能,实现工程应用的创新和提高。
课程目标
本课程的主要目标是使学生熟悉振动基本概念和理论的基础知识,掌握振动模型建立和振动响应计算方法,并培养其普遍的振动力学分析技能和实践经验,以及掌握工程实际应用。
通过学习振动力学这门课程,学生将获得以下的技能和成果:
1.掌握振动力学的基本概念和原理;
2.掌握振动模型建立和振动响应计算的方法;
3.学会运用机械振动模型求解工程实际问题;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振动力学课程设计报告课设题目:单位:专业/班级:姓名:指导教师:2011年12月22日一、前言1、课题目的或意义振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。
增强了认识问题,分析问题,解决问题的能力。
带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。
为认识社会,了解社会,步入社会打下了良好的基础。
通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。
2、课题背景:随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。
GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。
特别适用于自动配料、定量包装、给料精度要求高的场合。
例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。
GZ电磁振动给料机的工作原理:GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。
GZ系列电磁振动给料机主要用途:给到受料装置中去。
GZ系列电磁振动给料机主要特点:1.可无级调节给料量,可用于自动控制的生产流程中,实现生产自动化。
2.无转动零部件,不需润滑,结构简单,维修方便。
3.物料呈微抛运动,料槽磨损小。
4.采用合金钢板制成的料槽,可使用输送高温、磨损严重及有腐蚀性的物料。
5.由于给料槽中的物料在给料过程中连续地被抛起,并按抛物线的轨迹向前进行跳跃运动,因此给料槽的摩损较小。
6.由于可瞬间改变和启闭料流,所以给料量有较高的精度。
7.工作效率高,消耗电能少。
GZ系列电磁振动给料机产品概述:二、振动(力学)模型建立1、结构(系统)模型简介此系统为连续体的弹簧式电磁振动给料机,它由槽体、电磁激振器、主弹簧、隔振弹簧组成。
电磁振动给料机的激振器电磁线圈的电流是经过单相半波整流的,当线圈接通后在正半周有电流通过,衔铁与铁芯之间便产生了一脉冲电磁力互相吸引,这时槽体向后运动,激振器的主弹簧发生变形储存了一定的势能,在负半周线圈中无电流通过,电磁力消失,主弹簧释放能量,使衔铁和铁芯朝反方向离槽体向前运动,于是电磁振动给料机以交流电源的频率作每分钟3000次的往复振动,由于槽体的底平面与激振力作用线有一定的夹角,因此槽体中的物料沿抛物线的轨迹连续不断地向前运动。
调节整流电压的高低,即可控制电磁振动给料机的送料量。
给料机采用可控硅整流供电。
改变可控硅的导通角,即可控制输出电压的高低。
根据使用条件,可取不同信号来控制可控硅导通角的大小以达到自动定量送料的目的。
GZ电磁振动给料机是利用电磁的方法使给料斗以振动,使料(一般是属于颗粒状的)单向运动,以达到均匀给料的目的。
给料的速度应和使用达到相对平衡。
为此就需要对给料速度进行调节。
控制器里有可控硅,有电位器可调:调整电位器,就是调整电阻,在电路中调整了可控硅的导通角,也就是调整了供给电磁铁的电流,使振动的大小得到调节,从而调节了给料的速度。
电磁振荡是电磁场,弹簧振子是机械振动,他们物理学基础上的共同性包含两点:1.运动刚好都是谐振动微分方程2.满足类似的边界条件:弹簧振子速度到两端就为0,电场在谐振腔的金属表面只存在垂直方向的分量,其他方向为0。
GZ系列电磁振动给料机结构简图如下:主要技术参数:电磁振动给料机是一个在交变电磁力作用下作稳态运动的振动系统。
其力学模型可简化为一个单自由度的弹簧一一质量系统,系统的刚度、质量和激励力的频率、幅值及波形都对系统的运动输出有影响。
目前电磁振动给料机的振动激励力主要是通过对电磁铁施加经过半波整流的50Hz 交流电而获得,激励力的幅度通过调节电压来控制,而工作频率及波形是不可调节的。
电磁振动给料机力学模型图2、系统模型参数1m —质体1的质量2m —质体2的质量1k k 2 k3 — 质体1和质体2上的弹簧刚度以及两质间的弹簧刚度x 1 x 2 x — 质体1和质体2的位移以及两质体的相对位移— 激振频率F — 激振力项目 型号 给料能力(t/h ) 物体最大允许粒数(mm) 功率(w) 电压(v) 电流(a)双振幅(mm)间隙(mm) 总重(kg) GZ1 5 50 60 220 1≤ 1.75 1.9-2.2 75 GZ2 10 60 150 220 2.3≤ 1.75 1.9-2.2 155 GZ3 25 70 200 220 3.8≤ 1.75 1.9-2.2 225 GZ4 50 100 450 220 7≤ 1.75 1.9-2.2 460 GZ510015065022010.6≤1.751.9-2.2 656三、振动分析 1、振动方程建立由刚度影响系数的定义直接计算刚度矩阵得出:K =⎥⎦⎤⎢⎣⎡22211211k k k k = ⎥⎦⎤⎢⎣⎡+--+322221k k k k k k又可得质量矩阵为:M = ⎥⎦⎤⎢⎣⎡22211211m m m m = ⎥⎦⎤⎢⎣⎡2100m m 2激励力为:Q =⎥⎦⎤⎢⎣⎡-t F t F ωωsin sin 11 由M x+ K x = Q 得动力学方程为:⎥⎦⎤⎢⎣⎡2100m m ⎥⎦⎤⎢⎣⎡21x x+⎥⎦⎤⎢⎣⎡+--+322221k k k k k k⎥⎦⎤⎢⎣⎡21x x = ⎥⎦⎤⎢⎣⎡-t F t F ωωsin sin 112、模态定性分析(1)固有频率由02=-M K ω 得系统的本征方程为22222212211221211211m k m k m k m k ωωωω---- = 2232221221)()(m k k k k m k k ωω-+---+ = 0展开得:0))(()()(42322122322121421=+++++-+-k k k k k m k k m k k m m ωωω 解得固有频率为:21231223121223212123212112])(2[4])()[()()(m m k k k k k k m m m k k m k k m k k m k k +++-+++-+++=ω2131m m k k ++≈2312231212232121232121])(2[4])()[()()(k k k k k k m m m k k m k k m k k m k k +++-+++-+++=ω21212)(m m m m k +≈3、主振弹簧刚度(根据工作情况选取)电磁振动给料机的工作频率是固定的,对于半波整流的电磁振动给料机,其工作频率为 50 Hz,在亚共振状态下,固有频率为55 Hz, 电磁振动给料机的振动次数为3000次/分。
由于振动机体的质量由工作性质决定,1m 和2m 为已知,主振弹簧刚度可以变化,则:221212ωm m m m k +=可取1m = 50 kg 2m = 100kg ω2=55 Hz , 代入得:=⨯+⨯=22)552(1005010050πk 610976705.3⨯kN/m4、隔振弹簧刚度电磁振动给料机隔振的固有频率在2.5-10Hz 之间,即150—600次之间,取1ω= 5 Hz,由下式可计算出隔振弹簧刚度:212131)(ωm m k k +=+则)10050(31+=+k k 2)52(⨯π=510478940.1⨯ kN/m由)(312111k k m m m k ++=;)(312123k k m m m k ++=得:5511049298.01047894.11005050⨯=⨯⨯+=k kN/m5531098596.01047894.110050100⨯=⨯⨯+=k kN/m5、固有频率(选取质量质体1和质体2的质量,运用Matlab 计算振动固有频率)代入1m ,2m ,1k ,3k 的值得:M = ⎥⎦⎤⎢⎣⎡1000050K =⎥⎤⎢⎡--4075301397670539767054026003运用matlab软件计算系统振动固有频率如下:>> M=[50,0;0,100]M =50 00 100>> K=[4026003 -3976705;-3976705 4075301] K =4026003 -3976705-3976705 4075301>> P=inv(M)*KP =1.0e+004 *8.0520 -7.9534-3.9767 4.0753>> [ev,ed]=eig(P) ev =0.8944 0.7071 -0.4472 0.7071 ed =1.0e+005 *1.2029 0 0 0.0099 6、模态定量分析固有频率:521102029.1⨯=ω 522100099.0⨯=ω 模态⎥⎦⎤⎢⎣⎡----22222212211221211211m k m k m k m k ωωωω )(i φ= 021222222111112)(1k m k m k k i ii ωωφ--=--= (i=1,2)1)(1=i φ时, 2223221212)(1)()(k m k k m k k k iii --+=-+-=ωωφ (i=1,2)当521102029.1⨯=ω时,1)1(1=φ0181.1102029.15040262033976705)(521212)(1-=⨯⨯--=-+-=ii m k k k ωφ 当522100099.0⨯=ω时,1)2(2=φ 0126.1100099.010040262033976705)(522212)(1=⨯⨯-=-+=ii m k k k ωφ 则模态为:⎥⎦⎤⎢⎣⎡-=10181.1)1(φ⎥⎦⎤⎢⎣⎡=10126.1)2(φ四、减振设计1、减振设计方案(以文字、图和公式形式)电磁式振动给料机是利用电磁激振力激起主振质量的振动来进行自动给料。
采取被动隔振措施对降低振动传递率有较好的效果, 但却使振动给料机的工作效率降低了;同时使电磁式振动给料机的共振频率发生了偏移。