热力学基础[1]
第1章 热力学基础 -1
系统在一定环境条件下,经足够长的时间, 系统在一定环境条件下,经足够长的时间,可观测到的 宏观性质都不随时间而变,此时系统的状态称为热力学 宏观性质都不随时间而变,此时系统的状态称为热力学 平衡态。 平衡态。 热力学平衡态应同时有: 热力学平衡态应同时有: 应同时有 ⑴热平衡:系统各部分T 相等;若不绝热,则T系统= T环境。 热平衡:系统各部分 相等;若不绝热, ⑵力平衡:系统各部分p 相等;边界不相对位移。 力平衡:系统各部分 相等;边界不相对位移。 ⑶相平衡:系统各相长时间共存,组成和数量不随时间而变。 相平衡:系统各相长时间共存,组成和数量不随时间而变。 化学平衡:系统组成不随时间改变。 ⑷化学平衡:系统组成不随时间改变。
2 热力学第一定律
2.1 热力学第一定律 热力学第一定律就是能量守恒定律, 热力学第一定律就是能量守恒定律,这是从大量实践中 总结出的一个普遍规律。热力学第一定律又可表述为“ 总结出的一个普遍规律。热力学第一定律又可表述为“第一类 永动机”不可能造成。 永动机”不可能造成。 2.2 热力学能
2 热力学第一定律
1.2 状态与性质 状态: 系统所处的样子。用宏观性质描述系统的状态。 状态: 系统所处的样子。用宏观性质描述系统的状态。 描述系统的状态 性质:系统的热力学性质。系统的状态决定系统的宏观 性质:系统的热力学性质。系统的状态决定系统的宏观 热力学性质 决定 性质。 性质。 决 定
状态
描 述
性质
宏观性质分为两类: 宏观性质分为两类: 强度性质:与系统中所含物质的量无关, 强度性质:与系统中所含物质的量无关,无加和性 (如p,T 等) 广度性质:与系统中所含物质的量有关, 广度性质:与系统中所含物质的量有关,有加和性 (如n,V,等) V,等 若指定了物质的量,则成为强度性质, 若指定了物质的量,则成为强度性质, 如Vm= V/n。 。
热力学基础(1-2)
盖斯定律: 化学反应不管是一步完成还是分 几步完成,其反应热总是相同的。
P29 试由键能计算下列发应的焓变 CH3CH3(g) ② C(g) + 6H(g)
根据Hess定律: H ② = H ① + H ③ ∵ H ①=rH m, H ②=bH m(C-C, 6C-H), H ③=bH (C=C, 4C-H, H-H) ∴ rH m= bH m(C-C, 6C-H)-bH m(C=C, 4C-H, 反应物 产物 H-H)
反应进度必须对应具体的反应方程式。
3.热化学方程式 表示化学反应及其反应热(标准摩尔焓 变)关系的化学反应方程式。 2H2(g)+O2(g) 2H2O(g) mol △ rHm 298 = -483.64kJ· -1
△ rHm 称为反应的标准摩尔焓变。
标准状态: 气体:T,p = p =100kPa 液、固体:T,p 下,纯物质 溶液:溶质B,bB=b =1mol· -1 kg cB=c =1mol· -1 L
敞开体系:与环境有物质交换也有能量交换。
封闭体系:与环境无物质交换有能量交换。
隔离体系:与环境既无物质也无能量交换。
2.1.2 状态和状态函数
状态(state):系统的宏观性质的综合表现。 状态函数(state function):描述系统性质的物 理量。(p,V,T) 特点:① 状态一定,状态函数一定。 ② 状态变化,状态函数也随之而变(未 必所有状态函数都要变化)。
U 2 U1 U
热力学能变化只与始态、终态有关,与 变化途径无关。
2.2.3 热力学第一定律
(first law of thermodynamics)
能量具有各种不同的形式,它们之间可以相 互转化,而且在转化的过程中能量的总值不变! 热力学第一定律的实质是能量守恒与转化定律。 Q U1 W U2 U2 = U 1 + Q + W U2 - U 1 = Q + W
大学物理 热力学基础A1
理想气体内能: 内能是状态参量
E M M
mol
i 2
RT
T 的单值函数。
E = E 2- E 1 只取决于系
内能的增量
统的始末状态,而与过程无关。
注意:一个内能可以对应多个状态
系统内能改变的两种方式: 做功 热传递
1、 功是能量传递与转化的量度。 功是过程量而非态函数。两个平衡态之间可经历 不同的准静态过程,系统所做的功不同。 2、热量是系统与外界存在温度差而传递的能量
摩尔数为M/Mmol的理想气体在等压过程中吸收的 M 热量 M Q C PT dQ P C P dT
M
mol
M
mol
Q
i 2 2
A
三、比热容比
CP ( i 2 1 )R i2 2 R
CV
i 2
R
(摩尔热容比) 定义比热容比 :
C
P
CV
1 . 33 i 2 1 . 40 i 1 . 67
V2
PdV
V1
P
A
PdV
V1
功的大小等于
P~V 图上过程曲线 P=P(V)下的面积。 功与过程路径有关。
V1
PdV
B
V2
V1
0
V
对比沿着不同路径从状态A到B所做的功
•公式适用条件:
• (1)准静态过程
(2)外界压力保持恒定情况下的非准静态过 程,此时P应理解为外界压强。
如:气体的自由膨胀过程中,系统对 外作的功A=0
Q acb A cb
例题: 一定量的理想气体经历acb过程时吸 热500J, 则经历acbda过程时吸热为? P(105Pa) (A) -1200J d (B) 700J 4 a
竞赛课件16:热力学基础(1)
增长关系为 T(t) T0 1 (t t0)1/4.其中T0、α、t0均为常量.求金属片热
容量Cp(T).(本题讨论内容,自然只在一定的温度范围内适用)
热容量定义
P t C p T
1
1
其中 T T0 1 t t t0 4 T0 1 t t0 4
运用
一定质量的理想气体体积由V膨胀至V′,若通过压强不变
过程实现,对外做功W1、传递热量Q1、内能变化ΔU1;若通过温度不变的过程 实现,对外做功W2、传递热量Q2、内能变化ΔU2,则
A. W1>W2 Q1 <Q2 ΔU1 >ΔU2 B. W1>W2 Q1 >Q2 ΔU1 >ΔU2
C. W1<W2 Q1 =Q2 ΔU1 >ΔU2 D. W1=W2 Q1 >Q2 ΔU1 >ΔU2
活塞与上顶之间是抽成真空的.当打开活栓时容器1里的气体冲向容器2活塞下方,
于是此活塞开始上升(平衡时未及上顶),不计摩擦,计算当活栓打开且建
立平衡后气体的温度T,取
m nM
5
mg
1中活塞下气体压强为 S
由 mg V S
nRT0
h
nRT0 mg
1中活塞下气体内能为 E0
n
3 2
RT0
打开活栓重新平衡后 2中活塞下气体压强为
Q吸
27 16
p0V0
研究气柱摩尔热容随体积的变化
由过程中对应的热力学第一定律:
查阅
NR 5 T NC T pV 2
为得到C-V关系,由 3 V V NRT
NR T 3 V V V V 3 V V
热力学基础
如LiF的熔点为848℃,相变潜热为1300kJ·kg-1; LiH的熔点为688℃,相变潜热高达2840kJ·kg-1。
量、物质交换
(2)体系的性质与状态函数
经典热力学中把系统在任何瞬时所处的宏观物理状 况称为系统的状态,而把用来描述系统所处状态的物理 量,即系统的宏观性质称为状态参数(状态函数),又 称为热力学变量。
体系状态确定后,各性质就有完全确定的值,即性 质与(热力学平衡)状态间存在单值对应关系,性质之 中只有几个是独立的。
前言
热力学-研究各种形式的能相互转化规律 以及与此转化有关的物质性质间相互关系的科学。
热力学一般从两个方面来讨论物质进行的变 化: (1)物质的性质按指定要求发生变化时(各种 物理变化和化学变化过程),必须与外界交换多 少各种形式的能(热、功和其他形式能量之间的 相互转换及其转换过程中所遵循的规律)?
热力学是材料科学的重要基础,是理解材 料制备加工(如金属渗碳、熔化-凝固、陶瓷烧 成、聚合物合成)、相的平衡与转变、元素在 不同相之间的分布以及金属的腐蚀、氧化、材 料表面与界面性质、结构上的物理和化学有序 性以及各类晶体缺陷的形成等一系列重要现象 的的钥匙,而动力学研究有助于了解这些现象 的发展历程,深入揭示材料中的组织形成规律。
内能为状态函数,用符号U表示。它的绝对值
尚无法测定,只能求出变化值。 对于组成与质量确定的体系而言,
U f (T ,V )
§1. 2 热力学第一定律
1.2.1 表达式
• 热力学第一定律的实质就是能量守恒原理。热力学 第一定律适用于任何系统的任何过程。
大学化学化学热力学基础
?U= q+w = 300 + (-100) = 200J
沿另一途径变化 ? U = q + w q= ?U-w
=200 - (-50) = 250J
1.2.2 反应热与焓
1.恒容, ? V = 0
体积功 w = _ P外 ? V = 0
C6H6(l) + 15/2O2(g) = 6CO2(g) + 3H2O(l)
苯的摩尔量M = 78g mol-1 计算出1mol液苯的恒容热 ΔUm=(-31.4 kJ g-1)? 78 g mol-1 = -2449.2 kJ mol-1
根据ΔH m=ΔUm+ΔnRT Δn = 6 -7.5= -1.5,
与系统密切相关的其余部分。
具有相同
的物理及
相 化学性质, 单相系统和多相系统
的均匀部 分(有明
确的界面)
气相 液相 固相
单相 单相,两相(水与苯),三相 固溶体,多相
状态
系统物理性质和化学性质的总和。
状态 = f ( 温度,压力,体积 ,密度, H2
粘度,折光度 ...)
P = 101.325kPa
数学表达式 ? U = q + w
? U是系统的内能变; w 是功,(包括 体积
功与非体积功); q 是热。
系统从环境得到功或热, q、w 为正值; 系统对环境做功或放热, q、w 为负值。
注意: q ,w 都不是状态函数,其值与过程 的具体途径有关。
例:某系统由状态 A沿途径Ⅰ变化到状态 B时, 吸热300J,同时系统对环境做功 100J。当该体系沿 另一途径自状态 A变化到状态 B时,系统对环境做功 50J,则此过程 q为多少?
热力学基础
AT
V2 M
V1
RT 1 dV V
M
RT ln V2 V1
M
RT ln
P1 P2
QT
AT
m M
RT ln V2 V1
m M
RT ln P1 P2
例题:温度为27℃,压强为1atm,质量为2.80×10 - 3 kg的 氮气,先在体积不变的条件下,使压强增至3atm;然后经 等温膨胀,使压强降到1atm;而后,又在1atm的等压条 件下使其体积压缩一半。试求:先画出P-V图;再求各分 过程吸收的热量、所作的功和内能的改变量。
A.孤立系统:系统和环境没有物质和能量的交换 B.封闭系统:系统和环境不交换物质,但交换能量 C.开放系统:系统和环境既交换物质又交换能量
3. 热力学状态:由状态参量所确定的系统的状况.
4. 平衡态 在没有外界影响的情况下,系统各部分的宏观性质在长时 间内不发生变化的状态。
说明 (1) 不受外界影响是指系统与外界不通过作功或传热的方
等压过程有
Mi
E E2 E1 2 R(T2 T1 )
AP P(V2 V1)
M
QP CP(T2 T1 )
气体的比热容比
CP CV R 1 2
CV
CV
i
①因CP恒大于CV,所以γ大于1
②双原子分子气体的比热容比为
1 2 1.40
5
气体摩尔热容、两种摩尔热容比、R的理论值表
CO 29.00 21 . 20
R=CP-CV
8.34
8.31 8.36
多
CO2 36.20 27.80
8.40
CP
CV
1.67 1.41 1.37
1.31
化学热力学基础
微小变化: dH = δQp
第三节 热 化 学
一、反应进度 二、化学反应的摩尔热力学能变和摩尔焓变 三、热化学方程式 四、赫斯定律 五、化学反应的标准摩尔焓变的计算
一、反应进度
化学反应一般可以写成如下通式:
A A B B Y Y Z Z
通常可写成如下更简单的形式:
反应进度定义为:
降低温度有利于 反应自发进行
对在等温、等压不做非体积功的条件下进行的 化学反应:
rG m rH mT rSm
大多数反应属于ΔH 与ΔS 同号的上述③或④两类反应, 此时温度对反应的自发性有决定影响,存在一个自发 进行的最低或最高温度,称为转变温度 Tc (ΔG = 0):
Tc
H S
不同反应 Tc 是不同的,它取决于ΔH与ΔS 的相对大小,是反应的本性。
热力学能是状态函数,其量值取决于系统的状 态。当系统由状态 A 变化到状态 B 时,热力学能改 变为:
UUBUA
由于系统内部粒子的运动方式及其相互作用非 常复杂,热力学能的绝对值无法测量。
二、热力学第一定律的数学表达式
系统的热力学能改变是由于系统与环境之间 进行热和功传递的结果。
在任何过程中,系统热力学能的增加等于系 统从环境吸收的热与环境对系统所做的功之和。
(4)循环过程:系统由某一状态经过一系列 变化又回到原来状态,称为循环过程。
四、热和功
(一)热
由于系统与环境的温度不同,而在系统与环 境间所传递的能量称为热。系统从环境吸热,Q >0;系统向环境放热,Q<0。
(二)功
除热以外,在系统与环境之间传递的其他各 种形式的能量称为功。环境对系统做功,W>0; 系统对环境做功,W<0。
功可以分为体积功和非体积功。体积功是系 统发生体积变化时与环境传递的功;非体积功是 除体积功以外的所有其他功。
普通化学 第一章 化学热力学基础
1 1 (91.8kJ mol-1 ) 30.6 kJ mol-1 Δr H Δ H m,2 3 r m 3
(3)
NH3 ( g )
Δr H m,3
3 1 H2 ( g) N2 ( g ) 2 2 1 1 (91.8 kJ mol-1 ) 45.9 kJ mol-1 Δ r H m 2 2
体系由始态到终态,状态发生了变化,则称体系经历 了一个热力学过程,简称过程。 在状态发生了变化过程中,若体系的始态和终态温度
相等并且等于恒定的环境温度,称为“恒温过程”;同
样,若体系的始态和终态压力相等并且等于恒定的环境 压力,称为“恒压过程”;若体系的体积保持不变称为 “恒容过程”。若体系变化时和环境之间无热量交换, 则称之为“绝热过程”。
“生成”之意。例如:
1 H 2 ( g ) O 2 ( g ) H 2 O(l ) 2
1 Δr H ( 298 .15 K) 285.8 kJ mol m
普通化学
1.3.2 化学反应的标准摩尔焓变的计算
对任一个化学反应来说 dD eE gG hH 其反应物和生 成物的原子种类和个数是相同的,因此我们可以用同样 的单质来生成反应物和生成物,如图1.5所示。
与Q之和。
U Q W
(1.2)
式(1.2)为封闭体系中热力学第一定律的数学表达式。
普通化学
1.2.1 热力学第一定律
例1.1 设能量状态为U1的体系,体系输出200 J的热量,
Q 200 J
环境对体系做了350 J的功,求体系能量变化和终态能量U2。 解: 由题意
W 350 J
普通化学
普通化学
目 录
热力学基础1
0.1kg水蒸气自120℃加热升温至140℃, 水蒸气自120℃加热升温至140℃ 例3. 0.1kg水蒸气自120℃加热升温至140℃,求等 体过程和等压过程各吸收了多少热量?内能各变化多 体过程和等压过程各吸收了多少热量? 各作了多少功? 少?各作了多少功? 解: 已知 M = 18×10−3 kg⋅ mol −1 CV ,m = 27⋅ 82J ⋅ mol −1⋅ k −1
系统内能的增量只与系统起始和终了状态有 关,与系统所经历的过程无关 .
二 热力学第一定律
Q = (E2 − E1) +W
系统从外界吸收热量, 系统从外界吸收热量,一部分使系统内能 增加, 增加,另一部分使系统对外做功 —— 热力学第一定律
热力学第一定律 讨论: 讨论:
Q = (E2 − E1) +W
C p, m =
PV =
dQp dT
m RT M
m W = ∫ dW = ∫ pdV = p(V2 −V1 ) = R(T2 − T1 ) V1 M m m ∆E = Qp −W = (Cp,m − R)(T2 −T1)= CV ,m (T2 −T1 ) M M
V2
C p,m − CV ,m = R
p
A*
2 1 *B
p
A*
2 1 *B
WA1B +QA1B =WA2B +QA2B
∆EAB = C
o
V
WA1B2A + QA1B2A = 0
∆E A1B 2 A = 0
o
V
理想气体内能 : 表征系统状态的单值函数 , 理想气体的内能仅是温度的函数 .
E = E (T )
一般气体: 一般气体:
热力学基础-1
dE CV ,mdT dW pdV RdT
dQp C p,mdT dE pdV
无穷小等压过程,ν摩尔理想气体 m
M dE CV ,mdT dW pdV RdT
dQp Cp,mdT dE pdV
摩尔热容比 C p,m CV ,m
等压过程三个量:
W p(V2 V1)
m M
2 ( p2,V ,T2 )
1 ( p1,V ,T1)
V
V
p
等 p1
体
降 压
p2
o
1( p1,V ,T1)
2( p2,V ,T2 )
V
V
QV
E1
E2
E1
QV
E2
二、等压过程 摩尔定压热容
特性 p 常量, 过程方程 VT 1 常量
功 W
V2 V1
pdV
p(V2
V1 )
m M
R(T2
T1)
1
2 d 2n
Z 2 d 2nv
2 d 2n 8kT m
第四章 热力学基础
1、 热力学第一定律 2、 等值过程、绝热过程 3、 循环过程和卡诺循环 4、 热力学第二定律 5、 卡诺定理 6、 熵
§ 4-1 热力学第一定律
平衡态 状态参量
一、热力学过程
热力学系统由一个平衡态经历一系列中间态变 化到另一平衡态,这称为一个热力学过程。
内能:E
m M
CV ,m (T2
T1)
热量:Q
m M
C p,m (T2
T1)
p
p ( p,V1,T1) ( p,V2,T2 )
1
2
W
Cp,m 摩尔定压热容
o V1
热力学基础1
物理学
第五版
平衡态 准静态过程 内能复习
二 内能
内能: 由热运动状态决定的一种能量。 内能是系统状态的单值函数。
内能是描述热力学系统状态的物理量。
对于理想气体
m i E RT M mol 2
---- 温度的单值函数 当状态变化时,内能的变化为
ΔE m i R(T2 T1 ) M mol 2
已知 等压膨胀过程 质量 m 1.25kg 摩尔质量 M 2810 kg mol 自由度
i5
38
3
-1
物理学
第五版
10-2热力学第一定律应用
解
m A p(V2 V1 ) R(T2 T1 ) M 1.25 8.31 1 371J 3 28 10
m E C V ,m T M
注意 (1)能量转换和守恒定律. 第一类永动机 是不可能制成的.
第一类永动机:即不从外界吸收能量, 而不断对外作功的机械。
(2)实验经验总结,适用于气、液、固, 自然界的普遍规律.
21
物理学
第五版
10-1热量 功 热力学第一定律
(3)热—功转换不是直接进行的,而是间接的, 内能是传递工具。
热功
系统吸热后,先使内能增加,再 通过降低内能对外作功。
2
V2
V
摩尔气体常量等于1mol理想气体在温度 升高1K时对外所做的功
30
物理学
第五版
10-2热力学第一定律应用
摩尔定压热容: mol 理想气体在等压 过程中吸收热量 dQ p ,温度升高 dT ,其 摩尔定压热容为:
C p,m dQp
dT
dQp C p,mdT dE pdV
第一章 热力学基础
例: 一热力学系统在等温定容的条件下发生变 化时,放热15 kJ,同时做电功35 kJ,假 若系统在发生变化时,不做非体积功(其 它条件不变),计算系统能放出多少热。
例: 在101.3 kPa及298 K时,液态溴的气化热 为30.7 kJ/mol,计算该条件下1 mol溴完 全气化时系统热力学能的变化值。
p = ΣpB
如:组分气体B的物质的量为nB 混合气体的物质的量为n
混合气体的体积为V
则它们的压力: pB = nBRT/V p = nRT/V
将两式相除,得
pB nB p =n
nB nΒιβλιοθήκη 则pB =nB p n
为组分气体B的摩尔分数
同温同容,气态物质的分压与其物质的量成正比。
物质 氮气 氧气 氩气 二氧化碳 水
热(heat):系统和环境之间因温度不同而传递 或交换的能量的形式。 用符号Q 表示。单位:J、kJ。
功(work) :除了热之外其它传递或交换的能量 形式。 用符号W 表示。单位:J、kJ。
热的本质:系统与环境间因内部粒子无序运动 强度不同而造成的能量传递。
热的正负符号规定:以系统为中心,系统 吸热,Q 为正值,系统放热,Q 为负值。
热是途径函数,不是状态函数。 • 热不仅与始末态有关,还与过程经历的具
体途径有关。 • 微量热记作δQ,一定量的热记作Q,而不
是ΔQ。
功是系注统意与: 环功境和间热因都内不部是粒状子态有函序运数动。而交换 的其能数量值。与变化途径有关。都是过程的产物。
功的符号规定:以系统为中心,环境对系统做 功,W为正值;系统对环境做功,W为负值。
热力学基础
p1V1 p2V2 恒量 T1 T2
(质量不变)
p,V , T p0 ,V0 , T0 (标准状态)
标准状态:
p0 1.01325 10 Pa
5
m V0 Vmol M
其中:
T0 273.15 K
Vmol 22.4 10 m
3
3
m 为气体的总质量。
M 为气体的摩尔质量。
H m T
式中m是磁化强度,H是磁场强度,a是与物质有关的 常数,式又称为居里(Curie)定律.
五、与物态方程有关的三个系数
定压膨胀系数
1 V ( )p V T
表示在压强不变的条件下,温度升高1K所引起的物体体积 的相对变化.
定容压强系数
1 p ( )V p T
1准静态过程和非静态过程 2可逆过程和不可逆过程
1 准静态过程和非静态过程
如果过程进行得非常缓慢,致使系统在过程进行
中所经历的每一个状态都可以看成是平衡态,这 样的过程称为准静态过程.反之,若过程进行中 系统平衡态被破坏的程度大到不可忽略时,这样 的过程称为非静态过程.通常准静态过程又叫平 衡过程,非静态过程又叫非平衡过程.
热力学基本概念
体系(System)与环境(Surroundings) 系统的状态(State)与状态函数(State Function) 系统的过程(Process)与途径(Path) 体系的性质(Property) 热力学平衡态(thermodynamic equilibrium state )
热力学系统的宏观状态是由一些独立的物理量 完全确定的. 可以用这些物理量的连续函数来描述系统的状 态,如简单系统的自由能F(T,V),当系统的温 度T和体积V确定时,系统的状态就完全确定了.
热力学基础
第一章热力学基础目的要求:1. 理解热力学的一些基本概念:系统与环境、状态与状态函数、热和功、各种热力学过程。
2. 明确热力学能和焓的定义及状态函数的特征,理解热力学能变与恒容热,焓变与恒压热之间的关系。
3. 理解热力学第一定律的文字表述,掌握热力学第一定律的数学表达式及其应用。
4. 理解可逆过程及其特征。
5. 明确过程量热和功的正、负,理解体积功、热容、显热、潜热、化学反应热、摩尔相变焓、标准摩尔反应焓、标准摩尔生成焓、标准摩尔燃烧焓等概念。
6. 能熟练地运用热力学第一定律计算系统在理想气体的纯 P V T 变化、在相变化及化学变化中的应用(计算功、热、热力学能变、焓变)。
7. 能熟练地应用标准摩尔生成焓、标准摩尔燃烧焓求标准摩尔反应焓,能用基尔霍夫公式计算不同温度下化学反应的焓变。
8. 了解自发过程的共同特征。
理解热力学第二定律的文字表达。
9. 了解熵判据的表达式和熵增原理,较熟练地计算单纯P、V、T变化过程、相变和化学反应的熵变。
10. 理解规定摩尔熵、标准摩尔熵,理解标准摩尔反应熵的定义及掌握化学反应熵差的计算。
11. 理解熵的物理意义,了解热力学第三定律、卡诺循环、卡诺定理。
12. 明确亥姆霍兹函数、吉布斯函数的概念,较熟练地计算各种恒温过程的ΔG。
13. 明确熵判据、亥姆霍兹函数判据、吉布斯函数判据应用条件,会用熵判据、吉布斯函数判据判断过程的方向和限度。
14.了解热力学基本方程及一些重要关系式。
教学重点难点:1.基本概念:系统与环境、状态与状态函数、热和功、各种热力学过程2.热力学的状态函数:热力学能、焓、熵、亥姆霍兹函数、吉布斯函数2过程量:热和功3.基本定律:热力学第一定律、热力学第二定律、热力学第三定律4.热力学第一定律对理想气体的状态变化过程、相变过程及化学变化过程的应用(计算Q、W、ΔU、ΔH)。
5.热力学判据:熵判据、亥姆霍兹函数判据、吉布斯函数判据的具体应用(计算ΔS、ΔG、ΔF)。
热力学基础知识
热力学基础知识热力学是物理学的一个分支,研究热现象和热能转化的规律。
在我们生活中,也可以看到许多与热力学有关的现象,比如汽车引擎的工作、空调的制冷、发热体的加热等等。
在接下来的文章中,我们将深入了解一些热力学的基本概念和原理。
一、热力学的基本概念1. 温度和热量温度是描述物体热度的物理量,单位是摄氏度(℃)、开尔文(K)、华氏度(℉)等。
热量是指热能的转移量,单位是焦耳(J)、卡路里(cal)等。
两者的联系可以用下面的公式表示:Q=m×c×ΔT其中,Q表示热量,m表示物体质量,c表示物体的热容量,ΔT表示物体温度变化量。
此外,还有一个重要的物理量叫做热力学摩尔容量,指的是单位量物质在温度变化1K时所吸收的热量,单位是焦/摩尔-开尔文(J/mol-K)。
2. 热力学第一定律热力学第一定律也叫做能量守恒定律,指的是能量不能被创造或毁灭,只能从一种形式转化为另一种形式,并且总能量守恒。
从热观点来看,热量也是一种能量,因此热能也具有守恒性质。
3. 热力学第二定律热力学第二定律是一个非常重要的定律,它规定了热能转化的方向性,即热量只能从高温物体流向低温物体,不可能反向。
这个定律也成为热力学的增熵定律,指的是一个孤立系统的熵(混乱度)只可能增加,而不可能减小。
二、热力学的应用1. 热力学循环热力学循环是指通过对气体或液体的加热或冷却来产生机械功或者热量,再将剩余的热量排放到外界,从而实现能量转化的过程。
熟悉汽车工作原理的人应该都知道,汽车引擎就是一种热力学循环系统,通过燃烧汽油来加热气体,从而产生机械功驱动车轮,同时排放废气。
2. 热力学平衡当物体的温度相同时,此时物体达到了热力学平衡,它们之间的热量不再交换。
但是,这并不意味着温度相同的两个物体一定热力学平衡。
比如,在室内放着一瓶冰水和一只热汤的碗,虽然它们的温度都是20℃,但是它们内部的热量分布不同,因此不能说它们处于热力学平衡状态。
热力学基础
汽液平衡,饱和压力、饱和温度
2、定压加热汽化过程
五种状态;
干度;
(1)
(2)
(3)
(4)
(5)
● 饱和状态 (Saturated state) 当汽化速度 = 液化速度时,宏观上气、液两相保持 一定的相对数量,系统处于动态平衡—饱和状态。
◇ 饱和温度,ts (Ts) —饱和状态的温度
◇ 饱和压力,ps— 饱和状态的压力
t=ts
t>ts
干度(dryness)
定义:湿蒸汽中干饱和蒸汽的质量分数,用x表示。
干度x=
湿蒸汽中含干蒸汽的质量 湿蒸汽的总质量
x m汽 m汽 m液
饱和水
x=0
湿饱和蒸汽 0<x<1
干饱和蒸汽 x=1
● 湿度 y=1–x 表示湿蒸汽中饱和水的含量。
第五节 水蒸气
• 预热阶段:未饱和水区
• 气化阶段:饱和水区(湿蒸汽区)
• 准平衡过程 特点:自动恢复;实线示图;
• 可逆过程 特点:准平衡过程+ 无能量耗散; 实际过程均为不可逆过程;
★ 可逆过程熵的变化: 系统吸热 q 0, ds 0 熵增; 系统放热 q 0, ds 0 熵减; 绝热过程 q 0, ds 0 熵不变。
(可逆绝热过程)
可逆绝热过程又称等熵过程。
(表明与实际气体的区别)
(2) 状态方程式:
pv= RgT 2、理想气体的比热
定义:单位物量的工质,温度升高或降低一度所吸收 的热量。
c = (δq/dT)
注意:三种不同单位。
第三节 理想气体
3、定容比热、定压比热:
cv= (∂u/∂T)v = du/dT (理想气体)
普通化学 第一章 化学热力学基础上
2019/9/20
第一章 化学热力学基础(上)
8
(3)过程和途径: 过程:体系状态发生的变化。 途径:完成过程的具体步骤。
3. 热化学方程式可以像一般代数方程一样进行运算。
2019/9/20
第一章 化学热力学基础(上)
21
第三节 热化学定律
一、 盖斯(Gess)定律
在恒压或恒容条件下,任一反应不管是一步完成还是分 步完成,其反应的热效应总是相同的。
反应物(始)
Qp = H
产物(终)
Qp 1 = H 1 过程1
中间产物
U = -240.3 kJ ·mol-1
2019/9/20
第一章 化学热力学基础(上)
17
1 反应的摩尔热力学能[变]
当生成物的温度与反应物的温度相同时, 化学反应过程中放出或吸收的热量,化学反 应的热效应,简称反应热。
在不做非体积功时,定容热等于系统热 力学能变:
QV = ΔU
2019/9/20
15
在恒压过程(不做其它功)中,体系与环境交换的热量全 部用来改变体系的焓。
注意以下几点:
1. H0 ,体系向环境放热; H0 ,体系向环境吸热;
C(s) + 2H2O(g) = CO(g) + H2(g) H=131.25KJ·mol-1 2. 焓与体系温度有关,而H几乎与温度无关,即温度对 H几乎无影响。
2019/9/20
第一章 化U1
U2
W
状态1(始) 体系对环境做了W的功
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学基础作业班级:_____________ 姓名:_____________ 学号:_____________日期:__________年_______月_______日 成绩:_____________一、选择题1.一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低.(C) 不变. (D)升高还是降低,不能确定. [ ]2.若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了(A)0.500. (B) 400.(C) 900. (D) 2100. [ ]3.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为:(A) pV / m . (B) pV / (kT ).(C) pV / (RT ). (D) pV / (mT ). [ ]4.理想气体向真空作绝热膨胀.(A) 膨胀后,温度不变,压强减小.(B) 膨胀后,温度降低,压强减小.(C) 膨胀后,温度升高,压强减小.(D) 膨胀后,温度不变,压强不变. [ ]5.对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值?(A) 等体降压过程. (B) 等温膨胀过程.(C) 绝热膨胀过程. (D) 等压压缩过程. [ ]6.如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的净功和热机效率变化情况是:(A) 净功增大,效率提高.(B) 净功增大,效率降低. (C) 净功和效率都不变.(D) 净功增大,效率不变. [ ]7. 两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1 与T 3的两个热源之间,另一个工作在温度为T 2 与T 3的两个热源之间,已知这两个循环曲线所包围的面积相等.由此可知:(A ) 两个热机的效率一定相等.(B ) 两个热机从高温热源所吸收的热量一定相等. c ' d T 2 a b b ' c T 1VO p(C ) 两个热机向低温热源所放出的热量一定相等.(D ) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等.[ ] 8.有人设计一台卡诺热机(可逆的).每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J .同时对外作功1000 J ,这样的设计是(A) 可以的,符合热力学第一定律.(B) 可以的,符合热力学第二定律.(C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.(D) 不行的,这个热机的效率超过理论值. [ ]9. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是: (A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定. [ ]10.根据热力学第二定律判断下列哪种说法是正确的.(A) 热量能从高温物体传到低温物体,但不能从低温物体传到高温物体.(B) 功可以全部变为热,但热不能全部变为功.(C) 气体能够自由膨胀,但不能自动收缩.(D) 有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能变为有规则运动的能量. [ ]二、填空题11.下面给出理想气体的几种状态变化的关系,指出它们各表示什么过程.(1) p d V = (M / M mol )R d T 表示____________________过程.(2) V d p = (M / M mol )R d T 表示____________________过程.(3) p d V +V d p = 0 表示____________________过程.12.在p V 图上(1) 系统的某一平衡态用_____________来表示;(2) 系统的某一平衡过程用________________来表示;(3) 系统的某一平衡循环过程用__________________来表示;13.如图所示,已知图中画不同斜线的两部分的面积分别为S 1和S 2,那么(1) 如果气体的膨胀过程为a ─1─b ,则气体对外做功W =________; (2) 如果气体进行a ─2─b ─1─a 的循环过程,则它对外做功W =_______________. 14.不规则地搅拌盛于绝热容器中的液体,液体温度在升高,若将液体看作系统,则:(1) 外界传给系统的热量_________零;(2) 外界对系统作的功__________零;(3) 系统的内能的增量___________零;(填大于、等于、小于)15.刚性双原子分子的理想气体在等压下膨胀所作的功为W ,则传递给气体的热量为__________.16.常温常压下,一定量的某种理想气体(其分子可视为刚性分子,自由度为i ),在等压过程中吸热为Q ,对外作功为W ,内能增加为E ∆,则W /Q =_____________. =∆Q E / _____________.17.已知1 mol 的某种理想气体(其分子可视为刚性分子),在等压过程中温度上升1 K ,内能增加了20.78 J ,则气体对外作功为_______________,气体吸收热量为_____________________. (普适气体常量11K mol J 31.8--⋅⋅=R )18.3 mol 的理想气体开始时处在压强p 1 =6 atm 、温度T 1 =500 K 的平衡态.经过一个等温过程,压强变为p 2 =3 atm .该气体在此等温过程中吸收的热量为Q=____________________J . (普适气体常量11K mol J 31.8--⋅⋅=R ) 19.可逆卡诺热机可以逆向运转.逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为T 1 =450 K , 低温热源的温度为T 2 =300 K, 卡诺热机逆向循环时从低温热源吸热 Q 2 =400 J ,则该卡诺热机逆向循环一次外界必须作功W =_________.20.气体经历如图所示的一个循环过程,在这个循环中,外界传给气体的净热量是___________.三、计算题21.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中(1) 气体对外作的功; (2) 气体内能的增量; (3) 气体吸收的热量.(1 atm =1.013×105 Pa) 22. 1 mol 理想气体在T 1 = 400 K的高温热源与T 2 = 300 K的低温热源间作卡诺循环(可逆的),在400 K 的等温线上起始体积为V 1 = 0.001m 3,终止体积为V 2 = 0.005 m 3,试求此气体在每一循环中(1) 从高温热源吸收的热量Q 1(2) 气体所作的净功W(3) 气体传给低温热源的热量Q 223. 1 mol 双原子分子理想气体作如图的可逆循环过程,其中1-2为直线,2-3为绝热线,3-1为等温线.已知T 2 =2T 1,V 3=8V 1 试求:(1) 各过程的功,内能增量和传递的热量;(用T 1和已知常量表示)(2) 此循环的效率 . (注:循环效率η=W /Q 1,W 为整个循环过程中气体对外所作净功,Q 1为循环过程中气体吸收的热量)24.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A 的温度为T A =300 K ,求 (1) 气体在状态B 、C 的温度; (2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).23) p 123 V (m 3)100200300参考答案1.B2.B3.B4.A5.D6.D7.D8.D9.B 10.C11.等压 1分 等体 1分 等温 1分 12.一个点。
1分 一条曲线。
1分 一条封闭曲线。
1分 13.S 1+ S 2 1分 - S 1 2分 14.等于 1分 大于 1分 大于 1分 15.W 273分 16.22+i 1分 2+i i2分 17.8.31 J 1分 29.09 J 2分 18.31064.8⨯ 3分 19.200 J 3分 20.90 J 3分 21.解:(1) 气体对外作的功等于线段c a 下所围的面积 W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分 内能增量 0=∆E .2分 (3) 由热力学第一定律得 Q =E ∆ +W =405.2 J .3分 22.解:(1) 312111035.5)/ln(⨯==V V RT Q J 3分(2) 25.0112=-=T T η. 311034.1⨯==Q W η J 4分(3) 3121001.4⨯=-=W Q Q J 3分 23.解:(1) 1-2 任意过程 11112125)2()(RT T T C T T C E V V =-=-=∆11211221212121)(21RT RT RT V p V p W =-=-=11111132125RT RT RT W E Q =+=+=∆2分 2-3 绝热膨胀过程 12123225)()(RT T T C T T C E V V -=-=-=∆12225RT E W =-=∆Q 2 = 0 3分 3-1 等温压缩过程 ΔE 3= 0W 3 =-RT 1ln(V 3/V 1)=-RT 1ln(8V 1/V 1)=-2.08 RT 1 3分 Q 3 =W 3 =-2.08RT 1(2) η=1-|Q 3 |/ Q 1 =1-2.08RT 1/(3RT 1)=30.7% 2分 24.解:由图,p A =300 Pa ,p B = p C =100 Pa ;V A =V C =1 m 3,V B =3 m 3.(1) C →A 为等体过程,据方程p A /T A = p C /T C 得 T C = T A p C / p A =100 K . 2分 B →C 为等压过程,据方程V B /T B =V C /T C 得T B =T C V B /V C =300 K .2分 (2) 各过程中气体所作的功分别为 A →B : ))((211C B B A V V p p W -+==400 J .B →C : W 2 = p B (V C -V B ) = -200 J . C →A : W 3 =03分 (3) 整个循环过程中气体所作总功为W = W 1 +W 2 +W 3 =200 J .因为循环过程气体内能增量为ΔE =0,因此该循环中气体总吸热Q =W +ΔE =200 J .3分。