高中数学《导数的几何意义》教案2 新人教A版选修2-2

合集下载

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。

高中数学《导数的概念》教案1 新人教A版选修2-2

高中数学《导数的概念》教案1 新人教A版选修2-2

第一课时 导数的背景:曲线的切线与瞬时速度【课时目标】 理解函数的增量与自变量的增量的比的极限的具体意义【引入探索】1. 圆的切线直线和圆有惟一公共点时,叫做直线和圆相切。

这时直线叫做圆的切线,惟一的公共点叫做切点。

问题:能不能把圆的切线推广为一般曲线的切线呢?(请学生说出推广的结果后,教师引导学生加以剖析)。

2. 曲线的切线 1)观察图形得出:相切可能不止一个交点,有惟一交点的也不一定是相切。

所以对于一般的曲线,必须重新寻求曲线切线的定义。

2)作图,按书上讲解,再用几何画板演示一次。

3)一般地,已知函数)(x f y =的图象是曲线C ,P(00,y x ),Q (y y x x ∆+∆+00,)是曲线C 上的两点,当点Q 沿曲线逐渐向点P 接近时,割线PQ 绕着点P 转动. 当点Q 沿着曲线无限接近点P ,即x ∆趋向于0时,如果割线PQ 无限趋近于一个极限位置PT ,那么直线PT 叫做曲线在点P 处的切线. 此时,割线PQ 的斜率xy k PQ ∆∆=无限趋近于切线PT 的斜率k ,也就是说,当x ∆趋向于0时,割线PQ 的斜率x y k PQ ∆∆=的极限为k. 例题 P (1,2)是曲线2x y =+1上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.(图略)3.巩固练习 P111练习1,2(处理:学生自求)4.瞬时速度例题 一个小球自由下落,它在下落3秒时的速度是多少?说明:1)上例中,如果运用物理所学地匀变速直线运动地速度公式,可得v t =v 0+at=gt=29.4(m/s)这与上面用平均速度的极限求得的瞬时速度是一样的。

2)这种速度的极限求法适用范围就比较广,只要知道运动的规律(函数表达式),即可求出任一时刻的瞬时速度。

一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ∆)这段时间内的平均速度为t t s t t s t s ∆-∆+=∆∆)()(. 如果t ∆无限趋近于0时,ts ∆∆无限趋近于某个常数a ,就说当t ∆趋向于0时,t s ∆∆的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 5.巩固练习:P113练习1,2(处理:学生自求)【小结】 瞬时速度是平均速度t s ∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy ∆∆当x ∆趋近于0时的极限。

《导数的几何意义》教案新人教A版选修

《导数的几何意义》教案新人教A版选修

数学:1.1.3《导数的几何意义(2)》教案(新人教A版选修2-2)1.1.3导数的几何意义(2)教学目标:理解导数概念.掌握函数在一点处的导数定义及求法.掌握函数的导数的求法.教学重点:导数的概念及其求法.及几何意义。

教学难点:对导数概念的理解.教学过程:复习引入1.函数的导数值函数y=f(x),如果自变量x在x0处有增量Dx,则函数y相应地有增量 Dy=f(x0+Dx)-f(x0).比值就叫做函数y=f(x)在x0到x0+Dx之间的平均变化率,即如果当Δx→0时,有极限,我们就说函数y=f(x)在点x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率) 记作f '(x0) 或,即 f '(x0)==2.函数 y=f(x) 的导函数如果函数在开区间(a, b)内每点处都有导数,对于每一个x0∈(a,b),都对应着一个确定的导数f ¢(x0).从而构成一个新的函数f ¢(x).称这个函数为函数y=f(x)在开区间内的导函数.简称导数.也可记作y¢.3.导数的几何意义函数y=f(x) 在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0, f(x0))处的切线的斜率.也就是说,曲线y=f(x)在点P(x0, f(x0))处的切线的斜率是f '(x0).切线方程为 y-y0=f '(x0) (x0-x0).练习:1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数( A )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的导数D.在区间[x0,x1]上的导数2.下列说法正确的是( C )A.若f ′ (x0)不存在,则曲线y = f (x)在点(x0, f (x0))处就没有切线B.若曲线y = f (x)在点(x0, f (x0))处有切线,则f ′ (x0)必存在C.若f ′ (x0)不存在,则曲线y = f (x)在点(x0, f (x0))处的切线斜率不存在D.若曲线y = f (x)在点(x0, f (x0))处的切线斜率不存在,则曲线在该点处就没有切线3.已知曲线求⑴ 点P处的切线的斜率;⑵ 点P处的切线的方程.解:⑴∴点P处的切线的斜率等于4.⑵在点P处的切线的方程是即新课讲授:例1.教材例2。

高二数学1.1.3导数的几何意义学案新人教A版选修2-2

高二数学1.1.3导数的几何意义学案新人教A版选修2-2

11 - ,-
28
∴ y′=
(x+Δ x)3-x3 Δx
(Δ x) 3+ 3x(Δ x) 2+ 3x2·Δ x

Δx

(( Δ x) 2+ 3x·Δ x+ 3x2) = 3x2.
令 3x2= 3,得 x=± 1,
∴点 P的坐标为 (1 , 1) ,( - 1,- 1) .故选 B.
基础巩固
1.已知曲线 y= f ( x) 在点 (1 , f (1)) 处的切线方程为 2x- y+ 2= 0,则 f ′(1) = ( D)
f ( 1+Δ x)- f ( 1)
Δx

1
1
- 1+Δ x- -1
Δx

1 1+Δ x= 1. 故选 B.
3.曲线 y= x3 在点 P 处的切线斜率为 3,则点 P 的坐标为 ( B)
A. ( -2,- 8)
B
.(1 , 1) ,( - 1,- 1)
C. (2 , 8)
D.
解析: ∵ y= x3,
在其他地方可能还有公共点.
2.函数的导数 当 x=x0 时,f ′( x0) 是一个确定的数, 则当 x 变化时, f ′ ( x) 是 x 的一个函数, 称 f ′(x) 是 f ( x) 的导函数 ( 简称导数 ) . f ′(x) 也记作 y′,即
f ′ ( x) = y′= 想一想:函数 f ( x) = x2 的导函数是 ___________________ .
A. 4 B .- 4 C .- 2 D . 2 解析: 由导数的几何意义知 f ′(1) = 2,故选 D.
2 2.已知曲线 f ( x) =- x和点 M(1 ,- 2) ,则曲线在点 M处的切线方程为 ( C)

吉林省长春市实验中学高中数学导数的几何意义导学案新人教A版选修22.doc

吉林省长春市实验中学高中数学导数的几何意义导学案新人教A版选修22.doc

吉林省长春市实验中学高二数学《导数的几何意义》导学案新人教A版选修2-2【学习目标】1.了解曲线的切线的概念.2.掌握用割线的极限位置上的直线来定义切线的方法.3.并会求一曲线.在具体一点处的切线的斜率与切线方.程【重点难点】重点:理解曲“线在一点处的切线的定义,以及曲线在一点处的切线的斜率的定义光滑曲线的切线斜率是了解导数概念的实际背景.难点:会求一•条具体的曲线在某一点处的切线斜率【自主学习】阅读教材P6-P8例2,并|门|答下面儿个问题:1.如何定义切线。

2.如何表示割线的斜率3.如何表示切线的斜•率阅读教材P8 - P9 IE答下面的问题4.导函数与上一课时中的导数的区别在那里?【合作释疑】探究一:当直线与曲线相切是时候,是否与曲线只有一个交点?探究二:过仙线上一点做曲线的切线能做儿条切线?【巩固训练,整理提高】%1.例题例1.,求曲线y =-在点(上,2)处的切线的斜率,并写出切线的方程。

x 2例2.求过点P(3,5)且与曲线),=X2相切的直线方羯。

例3.已知Illi线y = x2+x-3的某条切线与直线y = 3x + 4平行,求切点坐标与切线方程“%1.练习1 .曲线y = x3-2x2-4x + 2在点(1,-3)处的切线方程是什么.2.设函数f(x) = ax + -'—(a,beZ)f曲线y = f(x)在点(2,/(2).)处的•切线方程为x + b y =3.求⑴的解析式(实验班)3..已知函数广(0的图象如图所不,下列数值的排序正确的是(.A. 0<r (2)<r (3)<f(3)-/(2)B. 0<r (3)<A3)-/(2)<r (.2)C. 0<r (3).<r (2)<f(3)-A2)D. o<r(3)-/(2)<r (2)<r (3)(实验班)4.如图,函数尸广(x)的图象在点夕处的切线方程是y=—x+8,则 A5) + 尸(5)=.(实验班)5.在曲线公尸V上求出满足下列条件的点夕的坐标:过点P与曲线厅相切且与x轴成45°的倾斜角.%1.课堂总结通过本节课的学习,你有一哪些收获?【作业】教材第10页第4题高效能学习的十大学习方法方法一:目标激励法成就天才的必备素质就是远大志向,明确目标,勤奋刻苦,持之以恒,百折不挠。

人教A版高中数学选修2《导数的几何意义》说课设计

人教A版高中数学选修2《导数的几何意义》说课设计

《导数的几何意义》说课稿一、教材分析:本节课是《普通高中课程标准实验教科书数学》(人民教育出版社、课程教材研究所A 版教材)选修2-2中第§1.1.3节.作为导数概念的下位概念课,它是在学生学习了上位概念——平均变化率,瞬时变化率,及刚刚学习了用极限定义导数基础,进一步从几何意义的基础上理解导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容.导数的几何意义的学习为下位内容——常见函数导数的计算,导数是研究函数中的应用及研究函数曲线与直线的位置关系的基础.因此,导数的几何意义有承前启后的重要作用.二、教学目标【知识与技能目标】(1)知道曲线的切线定义,理解导数的几何意义;——让学生感知和初步理解函数()f x 在0x x =处的导数()0f x '的几何意义就是函数()f x 的图像在0x x =处的切线的斜率,即0000()()|limx x x f x x f x y x=→+-'==切线的斜率.(2)导数几何意义简单的应用.——用导数的几何意义解释实际生活问题,初步体会“逼近”和“以直代曲”的数学思想方法.【过程与方法目标】(1) 回顾圆锥曲线的切线的概念,复习导数概念,寻找()f x '在0x x =处的瞬时变化率的几何意义;(2) 观察P 7上探究问题,利用几何画板进行探究,由学生参与操作,发现割线n PP 变化趋势,分析整理成结论;(3) 通过学生经历或观察感知由割线逼近“变成”切线的过程,理解导数的几何意义; (4) 高台跳水模型中,利用导数的几何意义,描述比较()h t 在0t ,1t ,2t 处的变化情况,达到梳理新知的目的,渗透“以直代曲”的数学思想;(5) 通过分析导数的几何意义,研究在实际生活问题中,用区间较小的范围的平均变化率,来解决实际问题的瞬时变化率. 【情感态度价值观目标】(1) 经过几何画板演示割线“逼近”成切线过程,让学生感受函数图像的切线“形成”过程,获得函数图像的切线的意义;(2) 利用“以直代曲”的近似替代的方法,养成学生分析问题解决问题的方法,初步体会发现问题的乐趣;(3) 增强学生问题应用意识教育,让学生获得学习数学的兴趣与信心.三、重点、难点重点:导数的几何意义,导数的实际应用,“以直代曲”数学思想方法.难点:对导数几何意义的理解与掌握,在每处“附近”变化率与瞬时变化率的近似关系的理解.关键:由割线n PP 趋向切线动态变化效果,由割线“逼近”成切线的理解.四、教学过程板书:1.曲线的切线的定义当n P P →时,割线n PP →(确定位置) PT 叫做曲线在点P 处的切线. 2.导数的几何意义函数f (x )在x =x 0处的导数是切线的斜率k .即00)(x x f x x→+-求抛物线2y x =在点(1,1)A 处的切线:过抛物线2y x =的点0P 处的切23x =-,00)(x x f x x→+-数学思想方法:“以直代曲”曲线上某点的切线近似代替这一点附近的五、教法与学法学情分析从知识上看,学生通过学习平均变化率,特别是函数的瞬时变化率及导数的概念,对导数概念有一定的理解和认识,也在思考导数的另一种体现形式——形,学生对曲线的切线有一定的认识,特别是对抛物线的切线的概念在学习圆锥曲线与直线关系时有很深的了解与认识.从学习能力上看,通过一年多的学习实践,学生掌握了一定的探究问题的经验,具有一定的想象能力和研究问题的能力.从学习心理上看,学生已经在生活中掌握了圆锥的切线,只是它的含义是公共点个数方面了解的,当然在思维方面,也形成了定势:直线与曲线相切,直线与内线只有一个公共点.基于以上学情分析,我确定下列教法.1.教法从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,通过几何画板的动画演示,得出曲线的切线的“逼近”法的定义.同样通过几何画板的实验观察和具体函数导数的计算得到导数的几何意义和直观感知“以直代曲”的数学思想.因此,我采用实验观察法、研讨教学法和信息技术辅助教学法相结合.2.学法根据本课特点的教学设计,我注重引导下列学法: ——实验观察,利用几何画板的几何直观与数值计算功能,学生感知曲线的切线的定义和导数的几何意义;——反思探究,理解曲线的切线的逼近定义的科学性;——学以致用,引导学生利用导数的几何意义,用切线的近似值来估算导数值; ——分组讨论,激活学生的思维,经历用导数几何意义进行定性分析;——思想渗透,借助几何画板局部放大的直观性,学生直观体会“以直代曲”的思想.六、教学设计说明温故知新、诱发思维,以曲线的切线的逼近定义为切入点,借助几何画板的演示,揭示导数的几何意义,通过观察比较和数值计算来渗透“以直代曲”的数学思想.通过反思讨论,观察演示,实验操作,体会新知的形成过程.附:板书设计)()1x x f x→+-220)1x x x→-20()2x x xx→+lim(2)x x →+2=00)(x x f x x→+-即切线的斜率k .数学思想方法:“以直代曲”思想方法.即线近似代替。

人教A版数学高二选修2-2学案导数的几何意义

人教A版数学高二选修2-2学案导数的几何意义

1.1.3导数的几何意义预习课本P6~8,思考并完成下列问题(1)导数的几何意义是什么?(2)导函数的概念是什么?怎样求导函数?(3)怎么求过一点的曲线的切线方程?[新知初探]1.导数的几何意义(1)切线的概念:如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=li mΔx→0 f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=li mΔx→0f(x+Δx)-f(x)Δx.[点睛]曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.与曲线只有一个公共点的直线也不一定是曲线的切线.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)导函数f′(x)的定义域与函数f(x)的定义域相同.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)函数f(x)=0没有导函数.()答案:(1)×(2)×(3)×2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线()A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交答案:B3.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=() A.4B.-4C.-2D.2答案:D4.抛物线y2=x与x轴、y轴都只有一个公共点,在x轴和y轴这两条直线中,只有________是它的切线,而______不是它的切线.答案:y轴x轴求曲线的切线方程[典例]已知曲线C:y=13x3+43,求曲线C上的横坐标为2的点处的切线方程.[解]将x=2代入曲线C的方程得y=4,∴切点P(2,4).y′|x=2=li mΔx→0ΔyΔx=li mΔx→013(2+Δx)3+43-13×23-43Δx=li mΔx→0[4+2·Δx+13(Δx)2]=4.∴k=y′|x=2=4.∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y-4=0.1.过曲线上一点求切线方程的三个步骤2.求过曲线y =f (x )外一点P (x 1,y 1)的切线方程的六个步骤 (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx .(3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率. (4)根据斜率相等求得x 0,然后求得斜率k . (5)根据点斜式写出切线方程.(6)将切线方程化为一般式. [活学活用]过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( ) A .x -y -2=0或5x +4y -1=0 B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0解析:选A 显然点(1,-1)在曲线y =x 3-2x 上, 若切点为(1,-1),则由f ′(1)=li m Δx →0 f (1+Δx )-f (1)Δx=li m Δx →0 (1+Δx )3-2(1+Δx )-(-1)Δx =li m Δx →0[(Δx )2+3Δx +1]=1, ∴切线方程为y -(-1)=1×(x -1),即x -y -2=0. 若切点不是(1,-1),设切点为(x 0,y 0),则k =y 0+1x 0-1=x 30-2x 0+1x 0-1=(x 30-x 0)-(x 0-1)x 0-1=x 20+x 0-1, 又由导数的几何意义知 k =f ′(x 0)=li m Δx →0f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )3-2(x 0+Δx )-(x 30-2x 0)Δx=3x 20-2, ∴x 20+x 0-1=3x 20-2,∴2x 20-x 0-1=0, ∵x 0≠1,∴x 0=-12.∴k =x 20+x 0-1=-54,∴切线方程为y -(-1)=-54(x -1),即5x +4y -1=0,故选A.求切点坐标[典例] 已知抛物线y =2x 2+1分别满足下列条件,请求出切点的坐标. (1)切线的倾斜角为45°. (2)切线平行于直线4x -y -2=0. (3)切线垂直于直线x +8y -3=0. [解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x ⎪⎪⎪2-1=4x 0·Δx +2(Δx )2,∴ΔyΔx=4x 0+2Δx , 当Δx →0时,ΔyΔx →4x 0,即f ′(x 0)=4x 0.(1)∵抛物线的切线的倾斜角为45°, ∴斜率为tan 45°=1. 即f ′(x 0)=4x 0=1,得x 0=14,∴切点的坐标为⎝⎛⎭⎫14,98.(2)∵抛物线的切线平行于直线4x -y -2=0, ∴k =4,即f ′(x 0)=4x 0=4,得x 0=1, ∴切点坐标为(1,3).(3)∵抛物线的切线与直线x +8y -3=0垂直,则k ·⎝⎛⎭⎫-18=-1,即k =8, 故f ′(x 0)=4x 0=8,得x 0=2,∴切点坐标为(2,9).求切点坐标可以按以下步骤进行(1)设出切点坐标;(2)利用导数或斜率公式求出斜率;(3)利用斜率关系列方程,求出切点的横坐标;(4)把横坐标代入曲线或切线方程,求出切点纵坐标.[活学活用]直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切,则a 的值为___________,切点坐标为____________.解析:设直线l 与曲线C 的切点为(x 0,y 0), 因为y ′=li m Δx →0(x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx =3x 2-2x ,则y ′|x =x 0=3x 20-2x 0=1,解得x 0=1或x 0=-13, 当x 0=1时,y 0=x 30-x 20+1=1, 又(x 0,y 0)在直线y =x +a 上,将x 0=1,y 0=1代入得a =0与已知条件矛盾舍去. 当x 0=-13时,y 0=⎝⎛⎭⎫-133-⎝⎛⎭⎫-132+1=2327, 则切点坐标为⎝⎛⎭⎫-13, 2327,将⎝⎛⎭⎫-13, 2327代入直线y =x +a 中得a =3227. 答案:3227 ⎝⎛⎭⎫-13, 2327层级一 学业水平达标1.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率,当切线垂直于x 轴时,切线的斜率不存在,但存在切线.2.曲线f (x )=-2x 在点M (1,-2)处的切线方程为( )A .y =-2x +4B .y =-2x -4C .y =2x -4D .y =2x +4解析:选C Δy Δx =-21+Δx +2Δx =21+Δx ,所以当Δx →0时,f ′(1)=2,即k =2.所以直线方程为y +2=2(x -1).即y =2x -4.故选C.3.曲线y =13x 3-2在点⎝⎛⎭⎫1,-53处切线的倾斜角为( ) A .1 B.π4 C.5π4D .-π4解析:选B ∵y ′=li m Δx →0 ⎣⎡⎦⎤13(x +Δx )3-2-⎝⎛⎭⎫13x 3-2Δx=li m Δx →0 ⎣⎡⎦⎤x 2+x Δx +13(Δx )2=x 2, ∴切线的斜率k =y ′|x =1=1. ∴切线的倾斜角为π4,故应选B.4.曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B.12 C .-12D .-1解析:选A ∵y ′|x =1=li m Δx →0 a (1+Δx )2-a ×12Δx = li m Δx →0 2a Δx +a (Δx )2Δx =li m Δx →0 (2a +a Δx )=2a , ∴2a =2,∴a =1.5.过正弦曲线y =sin x 上的点⎝⎛⎭⎫π2,1的切线与y =sin x 的图象的交点个数为( ) A .0个 B .1个 C .2个D .无数个解析:选D 由题意,y =f (x )=sin x , 则f ′⎝⎛⎭⎫π2=li m Δx →0 sin ⎝⎛⎭⎫π2+Δx -sin π2Δx =li m Δx →0cos Δx -1Δx. 当Δx →0时,cos Δx →1, ∴f ′⎝⎛⎭⎫π2=0.∴曲线y =sin x 的切线方程为y =1,且与y =sin x 的图象有无数个交点.6.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由导数的几何意义得f ′(1)=12,由点M 在切线上得f (1)=12×1+2=52,所以f (1)+f ′(1)=3.答案:37.已知曲线f (x )=x ,g (x )=1x 过两曲线交点作两条曲线的切线,则曲线f (x )在交点处的切线方程为____________________.解析:由⎩⎪⎨⎪⎧y =x y =1x,得⎩⎪⎨⎪⎧x =1,y =1,∴两曲线的交点坐标为(1,1). 由f (x )=x , 得f ′(x )=li m △x →01+Δx -1Δx=li m Δx →0 11+Δx +1=12,∴y =f (x )在点(1,1)处的切线方程为y -1=12(x -1).即x -2y +1=0, 答案:x -2y +1=08.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________. 解析:设f (x )=y =x 2-3x ,切点坐标为(x 0,y 0), f ′(x 0)=li m Δx →0(x 0+Δx )2-3(x 0+Δx )-x 20+3x 0Δx =li m Δx →0 2x 0Δx -3Δx +(Δx )2Δx=2x 0-3=1,故x 0=2, y 0=x 20-3x 0=4-6=-2,故切点坐标为(2,-2). 答案:(2,-2)9.已知抛物线y =x 2,直线x -y -2=0,求抛物线上的点到直线的最短距离. 解:根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则y ′|x =x 0=li m Δx →0 (x 0+Δx )2-x 20Δx=2x 0=1,所以x 0=12,所以切点坐标为⎝⎛⎭⎫12,14, 切点到直线x -y -2=0的距离 d =12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728.10.已知直线l :y =4x +a 和曲线C :y =x 3-2x 2+3相切,求a 的值及切点的坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0),∵Δy Δx =(x 0+Δx )3-2(x 0+Δx )2+3-(x 30-2x 20+3)Δx=(Δx )2+(3x 0-2)Δx +3x 20-4x 0. ∴当Δx →0时,Δy Δx→3x 20-4x 0,即f ′(x 0)=3x 20-4x 0, 由导数的几何意义,得3x 20-4x 0=4, 解得x 0=-23或x 0=2.∴切点的坐标为⎝⎛⎭⎫-23,4927或(2,3), 当切点为⎝⎛⎭⎫-23,4927时, 有4927=4×⎝⎛⎭⎫-23+a ,∴a =12127, 当切点为(2,3)时,有3=4×2+a ,∴a =-5, 当a =12127时,切点为⎝⎛⎭⎫-23,4927; a =-5时,切点为(2,3).层级二 应试能力达标1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )<f ′(x B ) C .f ′(x A )=f ′(x B ) D .不能确定解析:选B 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选B.2.已知曲线y =2x 3上一点A (1,2),则点A 处的切线斜率等于( ) A .0 B .2 C .4D .6解析:选D Δy =2(1+Δx )3-2×13=6Δx +6(Δx )2+2(Δx )3,li m Δx →0ΔyΔx =li m Δx →0[2(Δx )2+6Δx +6]=6,故选D.3.设f (x )存在导函数,且满足li m Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2解析:选B li m Δx →0 f (1)-f (1-2Δx )2Δx=li m Δx →0 f (1-2Δx )-f (1)-2Δx=f ′(x )=-1.4.已知直线ax -by -2=0与曲线y =x 3在点P (1,1)处的切线互相垂直,则ab 为( ) A.13 B.23 C .-23D .-13解析:选D 由导数的定义可得y ′=3x 2,∴y =x 3在点P (1,1)处的切线斜率k =y ′|x =1=3,由条件知,3×a b =-1,∴a b =-13. 5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则li m Δx →0f (1+Δx )-f (1)Δx=______.解析:由导数的概念和几何意义知, li m Δx →0f (1+Δx )-f (1)Δx =f ′(1)=k AB =0-42-0=-2.答案:-26.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________.解析:由导数的定义,得f ′(0)=li m Δx →0f (Δx )-f (0)Δx=li m Δx →0 a (Δx )2+b Δx +c -cΔx =li m Δx →0 (a ·Δx +b )=b . 又因为对于任意实数x ,有f (x )≥0,则⎩⎪⎨⎪⎧Δ=b 2-4ac ≤0,a >0,所以ac ≥b 24,所以c >0.所以f (1)f ′(0)=a +b +c b ≥b +2ac b ≥2bb =2. 答案:27.已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx ,若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值.解:∵f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0 a (x +Δx )2+1-(ax 2+1)Δx =2ax , ∴f ′(1)=2a ,即切线斜率k 1=2a .∵g ′(x )=li m Δx →0 Δy Δx =li m Δx →0 (x +Δx )3+b (x +Δx )-(x 3+bx )Δx =3x 2+b ,∴g ′(1)=3+b ,即切线斜率k 2=3+b . ∵在交点(1,c )处有公共切线,∴2a =3+b .又∵a +1=1+b ,即a =b ,故可得⎩⎪⎨⎪⎧a =3,b =3.8.已知曲线y =x 2+1,是否存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.解:∵Δy Δx =(x +Δx )2+1-x 2-1Δx =2x +Δx ,∴y ′=li m Δx →0ΔyΔx =li m Δx →0(2x +Δx )=2x . 设切点为P (x 0,y 0),则切线的斜率为k =y ′|x =x 0=2x 0,由点斜式可得所求切线方程为y -y 0=2x 0(x -x 0).又∵切线过点(1,a ),且y 0=x 20+1, ∴a -(x 20+1)=2x 0(1-x 0),即x 20-2x 0+a -1=0.∵切线有两条, ∴Δ=(-2)2-4(a -1)>0,解得a <2.故存在实数a ,使得经过点(1,a )能够作出该曲线的两条切线,a 的取值范围是(-∞,2).。

高中数学人教A版选修(2-2)1.1 教学课件 《导数的几何意义》(人教A版)

高中数学人教A版选修(2-2)1.1 教学课件 《导数的几何意义》(人教A版)
药物浓度 f t 在此时刻的导数.从图象上看,它表示
图1.1 4
人民教育出版社 高二年级 | 选修2-2
曲线 f t在此点处的切线的斜率.
如图1.1 4,画出曲线上某点处的切线,利用网格 估计这条切线的斜率,可以得到此刻药物浓度瞬 时变化率的近似值.
作t 0.8处的切线,它的斜率约为 1.4,所以
第1.1单元 · 变化率与导数
导数的几何 意义
人民教育出版社 高二年级 | 选修2-2
一.创设情景 复习旧知
(一)平均变化率、割线的斜率 (二)瞬时速度、导数
人民教育出版社 高二年级 | 选修2-2
我们知道,导数表示函数y=f(x)在 x x0处的瞬时变化率,反映了函数y=f(x)在 x x0
在点(x0,f(x0))的切线的斜率。 (2)根据直线方程的点斜式写出切线方程,即
y f ( x0 ) f ( x0 )( x x0 ).
无限逼近的极限思想是建立导数概念、用导数 定义求 函数的导数的基本思想,丢掉极限思想就 无法理解导 数概念。
谢谢观看!
f '0.8 1.4.
下表给出了药物浓度瞬时变化率的估计值, 验证 一下, 这些值是否正确.
t
0.2 0.4 0.6 0.8
药物浓度的瞬时变化率f ' t 0.4 0 0.7 1.4
四.课堂小结:
人民教育出版社 高二年级 | 选修2-2
求切线方程的步骤:
(1)求出函数在点x0处的变化率 f ( x0 ) ,得到曲线 f x0
人民教育出版社 高二年级 | 选修2-2
y f ( x0 ) f ( x0)( x x0 )
(三)导函数:
人民教育出版社 高二年级 | 选修2-2

高中数学选修2-2教学设计4:1.1.3 导数的几何意义教案

高中数学选修2-2教学设计4:1.1.3 导数的几何意义教案

导数的几何意义【教学目标】知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。

(2) 借助两个类比的动画,从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。

(3) 依据割线与切线的变化联系,数形结合探究函数)(x f 在0x x =处的导数0()f x '的几何意义,使学生认识到导数0()f x '就是函数)(x f 的图象在0x x =处的切线的斜率。

即:()()xx f x x f x f x ∆-∆+=→∆)(lim 0000/=曲线在0x x =处切线的斜率 在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。

在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。

过程与方法目标:(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。

(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。

(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。

情感、态度、价值观:(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。

在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。

高中数学人教A版选修2-2第一章导数精讲教案

高中数学人教A版选修2-2第一章导数精讲教案

高二导数精讲一 导数的概念 (一)导数的定义1.导数的原始定义:设函数在处附近有定义,当时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即2.导函数的定义:如果函数在开区间内的每点处都有导数,此时对于每一个(),x a b ∈,都对应着一个确定的导数,从而构成了一个新的函数,称这个函数为函数在开区间内的导函数,简称导数. (二)导数的实际意义1.导数的几何意义:是曲线上点处的切线的斜率.因此,如果在点可导,则曲线在点处的切线方程为. 2.导数的物理意义:导数是物体变速直线运动的瞬时速度,也叫做瞬时变化率. (三)概念部分题型:1.利用定义求函数的导数 主要有三个步骤: (1)求函数的改变量(2)求平均变化率(3)取极限,得导数()0''limx y y f x x∆→∆==∆2.利用导数的实际意义解题主要有两种:求切线方程和瞬时速度,考试重点为求切线方程. 二 导数的运算(一)常见函数的导数1. 2. 3. 4. 5.6()11log 'log ln a ax e x x a== 7. 8.()cos 'sin x x =-(二)导数的四则运算 1.和差:()'''u v u v ±=± 2.积: ()'''uv u v uv =+ 3.商:(三)复合函数的导数1.运算法则复合函数导数的运算法则:2.复合函数的求导的方法和步骤:求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层.求复合函数的导数的方法步骤:(1)分清复合函数的复合关系,选好中间变量;(2)运用复合函数求导法则求复合函数的导数,注意分清每次是哪个变量对哪个变量求导数; (3)根据基本函数的导数公式及导数的运算法则求出各函数的导数,并把中间变量换成自变量的函数.三 导数的应用(一)利用导数判断函数单调性及求解单调区间1.导数和函数单调性的关系:(1)若()'0f x >在上恒成立,则在上是增函数,()'0f x >的解集与定义域的交集的对应区间为增区间;(2)若()'0f x <在上恒成立,则在上是减函数,()'0f x <的解集与定义域的交集的对应区间为减区间.2.利用导数求解多项式函数单调性的一般步骤:① 确定的定义域; ② 计算导数; ③ 求出()'0f x =的根;④ 用()'0f x =的根将的定义域分成若干个区间,列表考察这若干个区间内的符号,进而确定的单调区间:若()'0f x >,则在对应区间上是增函数,对应区间为增区间;若()'0f x <,则在对应区间上是减函数,对应区间为减区间. (二)利用导数求解函数极值与最值1.极值与最值的定义(1)极大值:一般地,设函数在点附近有定义,如果对附近的所有的点,都有,就说是函数的一个极大值,记作y 极大值=,是极大值点.(2)极小值:一般地,设函数在附近有定义,若对附近的所有的点,都有,就说是函数的一个极小值,记作y 极小值=,是极小值点.(3)函数的最大值和最小值:在闭区间上连续的函数在上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值.2.极值的性质(1)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小.(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点.3.判别是极大、极小值的方法:若满足()0'0f x =,且在的两侧的导数异号,则是的极值点,是极值,并且若在两侧满足“正右负”,则是的极大值点,是极大值;若在两侧满足“左负右正”,则是的极小值点,是极小值.4.求函数的极值的步骤:(1)确定函数的定义区间,求导数;(2)求方程()'0f x =的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查在方程根左右的值的符号,若左正右负,则在这个根处取得极大值;若左负右正,则在这个根处取得极小值;若左右不改变符号即都为正或都为负,则在这个根处无极值.5.利用导数求函数的最值步骤(1)求在内的极值;(2)将的各极值与()(),f a f b 比较得出函数在上的最值.(三)利用导数求解证明不等式主要方法为将不等式左右两边的多项式移到一边,构造出一个新的函数,通过对求导,根据的大小和导数的性质,结合已知条件进行求解或证明. 一. 导数的几何意义(一)利用导数的几何意义求切线方程1.(2015·赣州市十二县联考)函数()23ln f x x x =+ )A.B.C.D.2.(2015·山西省二诊)函数()2sin f x x x =-的零点个数为________3.求过点且与曲线相切的直线方程.4.已知函数()32454f x x x x =-+-.(1)求曲线在点处的切线方程; (2)求经过点的曲线的切线方程.5.函数的曲线上点处的切线与直线310x y -+=的夹角为,则点的坐标为________6.若曲线上点处的切线平行于直线210x y -+=,则点的坐标为________7.(2016·全国丙卷)已知为偶函数,当时,,则曲线在点处的切线方程为____________ 8.(2017·上饶模拟)若点是曲线上任意一点,则点到直线距离的最小值为( ) A.1 B. C . D .9.(2016全国Ⅱ)若直线是曲线的切线,也是曲线()ln 1y x =+的切线,则________10.(2015河南洛阳模拟)曲线在点处的切线为.若直线与轴的交点分别为,则△OAB 的周长的最小值为________11.(2015·豫南九校二联)若函数,则在点处的切线方程为____________12.已知函数的导函数为,且()()()31'103x x f x f ef x -=⋅-⋅+,则____________13.(2016·山东)若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有性质.下列函数中具有性质的是( ) A. B. C. D.14.(2016·江南十校二模)已知直线是曲线与曲线的一条公切线,若直线与曲线的切点为,则点的横坐标的取值范围( )A. B. C . D .15.(2016河北唐山模拟)若函数,函数,则()()221212x x y y -+-的最小值为________(二)利用导数的几何意义求参数1.(2015·宝鸡市质检一)已知直线与曲线切于点,则________2.(2016·广东揭阳模拟)若曲线在点处的切线与直线230x y -+=平行,则 ________3.(2015·大同市高三调研)已知函数()()2,mxf x m n R x n=∈+在处取到极值2,则的解析式为________4.(2015·河北省5名校高三监测)若曲线()21:0C y ax a =>与曲线存在公共切线,则实数的取值范围( ) A. B.C.D.5.已知在时有极值,则________6.(2015·河北唐山模拟)已知函数()()2,sin2x xf x ae xg x bx π=+=+,直线与曲线切于点且与曲线切于点.(1)求的值和直线的方程. (2)求证:.二. 单调性相关(一)判断函数的单调性 1.函数()()3x f x x e =-的单调递增区间为( )A.B.C.D.2.函数的单调递减区间为( ) A. B. C. D.3.已知函数()24ln f x x x a x =++,若在(1,2)上是单调函数,则实数a 的取值范围( )A.B.C.D.4.函数()ln f x x x =-在区间上的最大值为________5.(2016·淮南二模)函数2cos y x x =+________6.已知函数定义域为,且函数的图象关于直线对称, 当()0,x π∈时,()'sin ln 2f x f x x ππ⎛⎫=--⎪⎝⎭(其中是的导函数),若,则的大小关系为( )A. B. C.D.(二)应用导数研究函数的极值1.(2016·河北名校模拟)若函数在处取得极值,则________2.函数的极值点是( ) A. B. C.或或 D.3.已知函数有极大值和极小值,则实数的取值范围( ) A. B. C. D.4.(2017·福州质检)若函数()32132x a f x x x =-++在区间上有极值点,则实数的取值范围( )A.B .C.D.(三)函数单调性求参数范围 (一)分参1.函数在上单调递增,则实数的取值范围________2.(2015·沈阳市四校联考)已知函数()331f x ax x =-+对于[]1,1x ∈-,总有()0f x ≥成立,则实数取值集合为________3.已知函数()22ln 2x f x ax x =+-,若在区间上是增函数,则的取值范围________4.若函数()()()1ln 10,01xf x ax x a x-=++≥>+在区间上单调递增,则的取值范围________5.已知函数f (x )=ln x -a 2x 2+ax 在上是减函数,则正实数a 的取值范围( )A. B. C. D.6.(2016吉林白山三模)若关于的不等式有解,其中,则实数的最小值为________7.(2017·云南师大附中月考)若函数()323f x x tx x =-+在区间上单调递减,则实数的取值范围( )A. B.C.D.8.若函数()2sin f x x x =+对任意的恒成立,则的取值范围________(二)半分参1.(2018内蒙古呼和浩特市研)已知函数()3232f x x x mx m =-+--,若存在唯一的正整数,使得()00f x >,则的取值范围( )A.B. C.D.2.(2017课标3)已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则( )A.B.C.D.13.(2015·全国卷Ⅰ改编)设函数,若存在唯一的整数使得()00f x <,则a 的取值范围________三)不分参——讨论单调性 1.(2017·郑州质检)已知函数. (1)求函数的单调区间;2.已知函数()()21ln 0f x x a x a x=-+->.讨论的单调性.3.(2017·桂林、崇左联考)已知函数()()()21ln 02x f x a x a x a =-++>.(1)当时,求曲线在点处切线的斜率; (2)求函数的极值.4.(2016·重庆一中高三模拟)已知函数()()22ln a f x a x x a R x=++∈.(1)讨论的单调性;5.已知函数,讨论函数的单调性.6.(2016·江门模拟)已知函数()()ln 1ax f x x x a=+-+,是常数,且,讨论零点的个数.7.(2017·河南、河北、山西省质检(二))已知函数. (1)判断函数的单调性;8.(2017届山东省济宁市高三3月模拟考试)已知函数. (1)若,求曲线在点处的切线方程; (2)若()2,0x ∀∈-,()0f x ≤恒成立,求实数的取值范围;(3)当时,讨论函数的单调性.9.(2014高州市模拟)已知函数()()21ln f x x b x =-+,其中为常数.(1)当时,判断函数在定义域上的单调性;(2)若函数的有极值点,求的取值范围及的极值点;10.(云南省师范大学附属中学2018届高三高考适应性月考)已知函数()2ln f x x x b x =++.(1)若,求过原点与相切的直线方程; (2)判断在上的单调性并证明.(四)端点 1.已知函数.(1)当时,求曲线在点处的切线方程; (2)若当时,()0f x ≥恒成立,求实数的取值范围.2.(2016·全国甲卷)已知函数.(1)当时,求曲线在处的切线方程; (2)若当()1,x ∈+∞时,,求实数的取值范围.3.已知函数()sin 2cos xf x x=+.(1)求的单调区间; (2)如果对,都有()f x ax ≤,求实数的取值范围.4.(2015·山西省三诊)已知函数. (1)当时,求函数的单调区间;(2)令,若函数在区间上是减函数,求实数的取值范围.5.(2015·临川一中高三检测)已知函数()1ln xf x x ax-=+(其中0, 2.7182a e >=).(1)若函数在上为增函数,求实数的取值范围;三.三次函数1.(2016·潍坊模拟)方程3269100x x x -+-=的实根个数( ) A.3B.2C.1D.02.设函数()23252x f x x x =--+,若对任意,都有,则实数的取值范围________3.若函数()33f x x x a =-+有3个不同的零点,则实数的取值范围________4.已知函数的图象与轴恰有两个公共点,则________5.已知函数()3221f x x bx cx =+++有两个极值点,且,则的取值范围( )A.B.C.D.6.(2017·开封一模)已知函数()331f x ax x =-+对总有()0f x ≥成立,则实数的取值范围________7.(2013·新课标全国卷Ⅱ)已知函数()32f x x ax bx c =+++,下列结论中错误的是( )A.()00,0x R f x ∃∈=B.函数图象是中心对称图形C.若是的极小值点,则在区间单调递减D.若是的极值点,则()0'0f x =8.(2014蓟县校级一模)已知函数. (1) 若在处取得极值,求实数的值;(2) 在(1)的条件下,若关于的方程在上恰有两个不同的实数根,求实数的取值范围;四. 图象1.(2015·长春名校联考)若函数的导函数的图象如图所示,则的图象可能为( )2.设函数在上可导,其导函数为,且函数的图象如图所示,则下列结论中一定成立的是( ) A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值3.(2015·山东潍坊模拟)已知,为的导函数,的图象是( )4.(2016·江西师大模拟)设曲线上任一点处切线斜率为,则函数()2y x g x =的部分图象可能为( )5.设函数在上可导,其导函数为,且函数在处取得极小值,则函数()'y xf x =的图象可能是( )五.构造函数(一)运算法则构造1.已知是定义在上的可导函数,且对于任意恒成立,则( )A. B. C. D.2.(2015·烟台市高三检测)已知定义在上的函数满足()()0f x f x -+=,当(),0x ∈-∞时,不等式恒成立,若,则的大小关系为( ) A. B. C.D.3.(2015·淄博市高三统考)已知定义在上的函数的导函数为,且()()'f x f x <,,则不等式的解集为( ) A. B.C.D.4.(2015·衡水中学四调)已知定义在上的函数,是它的导数,且恒有()()'tan f x f x x <⋅,则下列说法正确的是( )A. B. C.D.5.已知为上的可导函数,且有()()'0f x f x x+>,则对于,当时,有( )A.B.C.D.6.(2016·甘肃张掖一模)函数在定义域内可导,若,且当(),1x ∈-∞时,,设()()10,,32a f b f c f ⎛⎫=== ⎪⎝⎭,则( )A.B.C.D.7.(2016·湖南衡阳二模)是定义在()(),00,ππ-的奇函数,其导函数为,且,当()0,x π∈时,,则关于的不等式()2sin 6f x f x π⎛⎫< ⎪⎝⎭的解集为( )A.B.C.D.8.函数的导函数为,对,都有()()2'fx f x >成立,则( )A. B. C.D.与()22ln3f的大小不能确定9.设函数是定义在2上的可导函数,其导函数为,且,则不等式()()()220182018420x f x f ++-->的解集为( )A .B.C.D .10.(2016·兰州高三诊断)已知函的导函数为,若,且,则下列结论正确的是( )A.在()0,6上单调递减 B.在()0,6上单调递增C.在()0,6上有极小值D.在()0,6上有极大值11.(2016·江门模拟)函数的导函数为,若,且,则( )A.的最小值为B.的最大值为C.的最小值为D.的最大值为 12.若定义在上的函数满足,则不等式 (为自然对数的底数)的解集为( )A. B.C.()(),00,-∞+∞D.13.(2016·郑州模拟)定义在上的奇函数满足()30f =,且不等式在上恒成立,则函数的零点个数为( ) A.4B.3C.2D.114.(2018·太原模拟)定义在上的函数的导函数为,且,则不等式()11230x f x e--+>的解集为________15.(2016·河北唐山模拟)已知函数,若存在,使得,则实数b 的取值范围( )A. B. C. D.变式:已知函数,若对,使得恒成立,则实数b 的取值范围( )A. B. C. D.16.(2016·福建漳州八校模拟)已知函数是函数的导函数,, 且()()3'3f x f x =-,则()()4'f x f x >的解集为( )A.B.C.D.17.已知函数,满足()()2'e xfx f x x+=,,则当时,则( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值18.(2015·深圳市五校一联)已知函数是定义在上的奇函数,,当时,有成立,则不等式的解集为( ) A. B.C. D. 19.设函数是函数的导函数,,且,则()()()3201520152730x f x f +++->的解集为________20.若满足,则时,( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值 (二)现象构造1.已知定义域为的函数满足f (4)=-3,且对任意的总有()'3f x <,则不等式()315f x x <-的解集为________ 2.(2016·衡水中学模拟)已知函数,,且的导数,则不等式 的解集为________ 3.(2015·焦作市调研)定义在上的函数满足:,且对任意的,都有,则不等式()lg 1lg 2x f x +>的解集为________4.已知定义域为的函数满足()12015f -=,对任意的,都有()2'3f x x <成立,则不等式()32016f x x <+的解集为( ) A. B.C. D. 5.已知定义在上的奇函数的导函数为,在上()2'0x f x ->,若()()()333131f m m f m m -+≥+-,则实数的取值范围( ) A.B. C.D.6.已知函数的定义域为,是的导数.,对,有()f x e '≤-( 2.71828e =⋅⋅⋅是自然对数的底数),不等式()2215ln 24f x x x x <-的解集为( ) A. B. C. D.。

数学1.1.3《导数的几何意义》教案1(新人教A版选修2-2)

数学1.1.3《导数的几何意义》教案1(新人教A版选修2-2)

§1.1.3导数的几何意义教学目标1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一.创设情景(一)平均变化率、割线的斜率 (二)瞬时速度、导数我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 二.新课讲授(一)曲线的切线及切线的斜率:如图3.1-2,当(,()(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个图3.1-2确定位置的直线PT 称为曲线在点P 处的切线.问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? ⑵切线PT 的斜率k 为多少? 容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. (二)导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标;②求出函数在点0x 处的变化率0000()()()limx f x x f x f x k x∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程. (二)导函数:由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ',即: 0()()()limx f x x f x f x y x∆→+∆-''==∆注:在不致发生混淆时,导函数也简称导数.(三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。

20152016学年高中数学 113导数的几何意义教案 新人教A版选修22

20152016学年高中数学 113导数的几何意义教案 新人教A版选修22

1、1、3导数的几何意义教学建议1、教材分析教材从割线入手,观察割线的变化趋势,揭示了平均变化率与割线斜率之间的关系,通过逼近方法,将割线趋于的确定位置的直线定义为切线,从而将切线斜率与导数相联系,发现了导数的几何意义、本节的重点就是理解导数的几何意义,难点就是过曲线上某一点的切线斜率的求解方法、2、主要问题及教学建议(1)切线的定义、建议教师运用信息技术演示割线的动态变化趋势,让学生观察、思考,并引导学生共同分析,直观获得切线的定义、(2)导数的几何意义、建议教师通过数形结合,将切线斜率与导数相联系,发现导数的几何意义,引导学生体会用数形结合的方法解决问题的优势、备选习题1、若函数y=ax2+1的图象与直线y=x相切,则a=()A、B、C、D、1解析:根据题意y'===(2ax+a·Δx)=2ax,设切点为(x0,y0),则2ax0=1,且y0=a+1,y0=x0,解得a=、答案:B2、已知函数y=f(x)=-1(a>0)的图象在x=1处的切线为l,求l与两坐标轴围成的三角形面积的最小值、解:∵Δy=-1-+1=,∴、当Δx无限趋近于0时,趋近于,即f'(x)=、∴f'(1) =、又f(1)=-1,∴f(x)在x=1处的切线l的方程就是y-+1=(x-1)、∴l与两坐标轴围成的三角形的面积S==×(2+2)=1、当且仅当a=,即a=1时,直线l与两坐标轴围成的三角形的面积最小,最小值为1、3、过点P(-1,0)作抛物线f(x)=x2+x+1的切线,求切线方程、解:f(x)=x2+x+1,设抛物线上一点M(x1,y1),则该点处的切线斜率k=f'(x1)==2x1+1,于就是过点(x1,y1)的切线方程就是y-y1=(2x1+1)(x-x1)、又∵y1=f(x1)=+x1+1,①且点(-1,0)在切线上,∴-y1=(-1-x1)(2x1+1)、②由①②联立方程组,可解得x1=0或x1=-2,于就是y1=1或y1=3,即切点为(0,1)或(-2,3)、过(0,1)的切线方程为y-1=x,即x-y+1=0;过点(-2,3)的切线方程为y-3=-3(x+2),即3x+y+3=0、。

人教版高中数学选修2-2:1.1.3导数的几何意义讲案(教师用)

人教版高中数学选修2-2:1.1.3导数的几何意义讲案(教师用)

课题: 1.1.3导数的几何意义 课时:第1课时【学习目标】(1)了解导数的几何意义.(2)会利用导数的几何意义解决有关问题。

第一环节:导入学习知识点1 导数的几何意义设函数y =f (x )的图象如图1所示.AB 是过点A (x 0,f (x 0))与点B (x 0+Δx ,f (x 0+Δx ))的一条割线,此割线的斜率是Δy Δx=f (x 0+Δx )-f (x 0)Δx .可见曲线割线的斜率就是函数的平均变化率.当点B 沿曲线趋近于点A 时,割线AB 绕点A 转动,它的极限位置为直线AD ,这条直线AD 叫做此曲线在点A 处的切线.于是,当Δx →0时,割线AB 的斜率趋向于过点A 的切线AD 的斜率,即错误!未指定书签。

f (x 0+Δx )-f (x 0)Δx=切线AD 的斜率.由导数意义可知,曲线y =f (x )过点(x 0,f (x 0))的切线的斜率等于f ′(x 0).函数y =f (x )在点x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是f ′(x 0).相应地切线方程为:y -y 0=f ′(x 0)(x -x 0).注意:∵函数在某点处的导数值就是曲线在该点处切线的斜率,∴当导数大于零时,则说明在该点处的切线斜率大于0,在该点附近,曲线是上升的;当导数等于0时,则说明在该点处的切线斜率等于0,在该点附近曲线比较平滑,几乎没有升降;当导数小于零时,则说明在该点处的切线斜率小于0,在该点附近曲线是下降的.知识点2 利用导数求曲线的切线方程利用导数的几何意义求曲线的切线方程的步骤: (1)求出函数y =f (x )在点x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 知识点3 导函数如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时,对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成一个新的函数f ′(x ),我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=错误!未指定书签。

数学高二-选修2教案 导数的几何意义

数学高二-选修2教案  导数的几何意义

2.2.2 导数的几何意义 教学设计一、学习目标1、通过函数的图像直观地理解导数的几何意义;2、理解曲线在一点的切线的概念;3、会求简单函数在某点处的切线方程。

二、教学重点 了解导数的几何意义教学难点:求简单函数在某点出的切线方程三、教学方法 探析归纳,讲练结合 四、教学过程 复 习 回 顾1.平均变化率.],[)()()(0)(00000的平均变化率在为函数称时,比值当及其附近有定义,在点已知函数x x x x f xx f x x f x y x x x x f y ∆+∆-∆+=∆∆≠∆== 2.瞬时变化率.)()()(0x 000的瞬时变化率在点则这个常数称为函数常数,时,平均变化率当x x f xx f x x f →∆-∆+→∆ 3.导数的定义xx f x x f x f y x f x x x f x x x x ∆-∆+='''=→∆=)()((lim )(|)()(00000000,故或记作处的导数在为的瞬时变化率,就定义函数在4.点斜式直线方程:y-y0=k(x-x0)曲线的切线y=f(x)y0=f(x0), y1=f(x1)当自变量从x0变化到x1时,相应的函数值从f(x0)变化到f(x1)自变量的增量△x= x1- x0函数值的增量△y= f(x1)- f(x0)Q(x0+ △x,y0+ △y)△y=f(x0+ △x)-f(x0)曲线在某一点处的切线的定义设曲线C是函数y=f(x)的图象,在曲线C上取一点(x0,y0)及邻近一点(x0+△x,y0+△y) 过P,Q两点作割线当点Q沿着曲线无限接近于点P即△x→0时, 如果割线PQ有一个极限位置PT, 那么直线PT 叫做曲线在点P 处的切线。

曲线在某一点处的切线的斜率公式设割线PQ 的倾斜角为β,切线PT 的倾斜角为α tanβ=x y ∆∆xx f x x f ∆-∆+=)()(00当△x→0时,割线PQ 的斜率的极限,就是曲线在点P 处的切线的斜率,即 tan α=x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(0000lim lim切线斜率求曲线L :y=f(x)在点M(x0,y0)处切线的斜率。

数学:1.1.3《导数的几何意义》教案(新人教A版选修2-2)

数学:1.1.3《导数的几何意义》教案(新人教A版选修2-2)

§教学目标1.了解平均转变率与割线斜率之间的关系; 2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一.创设情景(一)平均转变率、割线的斜率 (二)瞬时速度、导数咱们知道,导数表示函数y =f (x )在x =x 0处的瞬时转变率,反映了函数y =f (x )在x =x 0附近的转变情况,导数0()f x '的几何意义是什么呢? 二.新课教学(一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的转变趋势是什么?们发现,当点n P 沿咱着曲线无穷接近点P 即0时,割线n PP 趋Δx →近于肯定的位置,这个肯定位置的直线PT 称为曲线在点P 处的切线. ⑴割线n PP 的斜问题:率nk 与切线PT 的斜率k 有什么关系?⑵切线PT 的斜率k 为多少?图3.1-2容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无穷接近点P 时,n k 无穷趋近于切线PT 的斜率k ,即0000()()lim()x f x x f x k f x x∆→+∆-'==∆说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.这个概念: ①提供了求曲线上某点切线的斜率的一种方式; ②切线斜率的本质—函数在0x x =处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要按照割线是不是有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并非必然与曲线只有一个交点,可以有多个,乃至可以无穷多个. (二)导数的几何意义:函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()limx f x x f x f x k x∆→+∆-'==∆说明:求曲线在某点处的切线方程的大体步骤: ①求出P 点的坐标;②求出函数在点0x 处的转变率0000()()()limx f x x f x f x k x∆→+∆-'==∆ ,取得曲线在点00(,())x f x 的切线的斜率;③利用点斜式求切线方程. (二)导函数:由函数f (x )在x =x 0处求导数的进程可以看到,那时,0()f x ' 是一个肯定的数,那么,当x 转变时,即是x 的一个函数,咱们叫它为f (x )的导函数.记作:()f x '或y ',即: 0()()()limx f x x f x f x y x∆→+∆-''==∆注:在不致发生混淆时,导函数也简称导数.(三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的几何意义
教学目标
1.了解平均变化率与割线斜率之间的关系;
2.理解曲线的切线的概念;
3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;
教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
教学难点:导数的几何意义.
教学过程:
一.创设情景
(一)平均变化率、割线的斜率
(二)瞬时速度、导数
我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢?
二.新课讲授
(一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?
我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线.
问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?
⑵切线PT 的斜率k 为多少?
容易知道,割线n PP 的斜率是00
()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限图3.1-2
趋近于切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x
∆→+∆-'==∆ 说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在0x x =处的导数.
(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
(二)导数的几何意义:
函数y =f (x )在x =x 0处的导数等于在该点处的切线的斜率,
即 0000()()()lim x f x x f x f x k x
∆→+∆-'==∆ 说明:求曲线在某点处的切线方程的基本步骤:
①求出P 点的坐标;
②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x
∆→+∆-'==∆ ,得到曲线在点00(,())x f x 的切线的斜率;
③利用点斜式求切线方程.
(二)导函数:
由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ',
即: 0()()()lim x f x x f x f x y x
∆→+∆-''==∆ 注:在不致发生混淆时,导函数也简称导数.
(三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。

1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。

2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f(x)的导函数
3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是 求函数
在点0x 处的导数的方法之一。

三.典例分析
例1:(1)求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.
(2)求函数y =3x 2在点(1,3)处的导数.
解:(1)222
100[(1)1](11)2|lim lim 2x x x x x x y x x
=∆→∆→+∆+-+∆+∆'===∆∆, 所以,所求切线的斜率为2,因此,所求的切线方程为22(1)y x -=-即20x y -=
(2)因为222211113313(1)|lim lim lim3(1)611
x x x x x x y x x x =→→→-⋅-'===+=-- 所以,所求切线的斜率为6,因此,所求的切线方程为36(1)y x -=-即630x y --=
(2)求函数f (x )=x x +-2
在1x =-附近的平均变化率,并求出在该点处的导数. 解:x x
x x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim (3)3x x y x x f x x x
→→∆--+∆+-+∆-'-===-∆=∆∆V V 例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数
2() 4.9 6.510h x x x =-++,根据图像,请描述、比
较曲线()h t 在0t 、1t 、2t 附近的变化情况.
解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲
线()h t 在上述三个时刻附近的变化情况.
(1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于
x 轴,所以,在0t t =附近曲线比较平坦,几
乎没有升降.
(2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近曲线下降,
即函数2() 4.9 6.510h x x x =-++在1t t =附近单调递减.
(3) 当2t t =时,曲线()h t 在2t 处的切线2l 的斜率2()0h t '<,所以,在2t t =附近曲线下降,
即函数2() 4.9 6.510h x x x =-++在2t t =附近单调递减.
从图3.1-3可以看出,直线1l 的倾斜程度小于直线2l 的倾斜程度,这说明曲线在1t 附近比在2t 附近下降的缓慢.
例3.(课本例3)如图3.1-4,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min )变化的图象.根据图像,估计0.2,0.4,0.6,0.8t =时,血管中药物浓度的瞬时变化率(精确到0.1).
解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度()f t 在此时刻的导数,从图像上看,它表示曲线()f t 在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.
作0.8t =处的切线,并在切线上去两点,如(0.7,0.91),(1.0,0.48),则它的斜率为:
0.480.91 1.41.00.7
k -=≈-- 所以 (0.8) 1.4f '≈-
下表给出了药物浓度瞬时变化率的估计值: t 0.2
0.4 0.6 0.8 药物浓度瞬时变化率'()f t
0.4
0 -0.7 -1.4 四.课堂练习
1.求曲线y =f (x )=x 3在点(1,1)处的切线; 2.求曲线y x =(4,2)处的切线.
五.回顾总结
1.曲线的切线及切线的斜率;
2.导数的几何意义
六.布置作业。

相关文档
最新文档