高三数学(理)配套黄金练习:4.3(含答案)
(优质试题)凯里一中2019届高三模拟考试《黄金卷三》理科数学答案
k 2 4 ……………………8 分
∴ S ABD
1 2
|
AB
|
d
4
(k 2 4)3 32
∴ ABC 面积的取值范围是[32, ) .……………………………………………………………………12 分
21、解:(Ⅰ)
f
、(x)
1
ax
(a
1)
a(x
1 )( x a
1)
………………………………………………1
分
x
x
a 1, x [1, e] f 、(x) 0 ,所以 f (x) 在区间[1, e] 上为单调递增. ………………………………2 分
所以[ f
( x )]min
f (1)
1 a (a 1) 5 a 8 ,又因为 a 2
8 1,所以 a 的值为 8………………4 分
由 g(x) 有两个极值点 x1, x2 ,等价于方程 ln x (a 1)x 0 有两个不同实根 x1, x2 .
由 ln x (a 1)x 0 得: a 1 ln x …………………………………………………………………7 分 x
令 h(x) ln x x
(
x
0)
,则
又函数 f (x) 的最小值为1, k 0 ,所以| k 1| 3 ,解得 k 2 ,即 a b c 2 ,
x2 2
(x x2 )
2
2
解
y
y
x12 4 x22 4
x1 2
(x
高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)
1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。
第88题+频率分布直方图-2018精品之高中数学(理)黄金100题系列+Word版含解析
第88题 频率分布直方图I .题源探究·黄金母题【例1】若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是 ( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 【答案】A【例2】如图是某城市100位居民去年的月均用水量(单位:t )的频率分布直方图,月均用水量在区间[)1.5,2.5的居民大约有 ( )A .37位B .40位C .47位D .52位 【答案】C【解析】由频率分布直方图月均用水量在区间[)1.5,2的频率为0.450.50.225⨯=,月均用水量在区间[)2,2.5的居民的频率 为0.50050.25⨯=..月均用水量在区间[)1.5,2.5的居民的频数大约为精彩解读【试题来源】例1:人教A 版必修3P 70改编;例2:人教A 版必修3P 65例题改编.【母题评析】这类题主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用. 【思路方法】用样本估计总体是统计的基本方法:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.()0.2250.2510047+⨯=,故选C.II.考场精彩·真题回放【例1】【2017高考新课标3理3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A客量波动性大,D选项正确.故选A.【例2】【2017高考新课标1文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【命题意图】这类重点题考查分层抽样和系统抽样的计算.考查考生基本计算能力.【考试方向】这类试题在考查题型上,主要以选择题或填空题为主,属于中低档题.【难点中心】1.将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.2.分清几个样本特征数:众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B.【例3】【2017高考山东文8】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为A.3,5 B.5,5 C.3,7 D.5,7【答案】A得3x .故选A.【例4】【2017高考北京文17】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.3.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.4.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数学不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例. 【答案】(Ⅰ)0.4;(Ⅱ)20;(Ⅲ):32.(Ⅱ)根据题意,样本中分数不小于50的频率为(0.010.020.040.02)100.9+++⨯=,分数在区间[40,50)内的人数为1001000.955-⨯-=.所以总体中分数在区间[40,50)内的人数估计为540020100⨯=. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为(0.020.04)1010060+⨯⨯=,所以样本中分数不小于70的男生人数为160302⨯=. 所以样本中的男生人数为30260⨯=,女生人数为1006040-=,男生和女生人数的比例为60:403:2=.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3:2.III .理论基础·解题原理⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1. ⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等. ②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写. 3.总体特征数的估计:⑴平均数:nx x x x x n++++=321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211;注意:频率分布表计算平均数要取组中值.⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=-=ni ix xns ;标准差:21)(1∑=-=ni ix xns注:方差与标准差越小,说明样本数据越稳定.平均数反映数据总体水平;方差与标准差反映数据的稳定水平.IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等. 【技能方法】1.解题模板:第一步,根据频率分布直方图计算出相应的频率;第二步,运用样本的频率估计总体的频率;第三步,得出结论.2.用样本估计总体是统计的基本思想.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.3.(1)众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量,与每个样本数据有关,这是中位数、众数所不具有的性质.(2)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大. 4.茎叶图、频率分布表和频率分布直方图都可直观描述样本数据的分布规律. 【易错指导】1.在使用茎叶图时,一定要注意看清楚所有的样本数据,弄清楚这个图中的数字特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.2.利用频率分布直方图求众数、中位数与平均数时,应注意这三者的区分:(1)最高的矩形的中点横坐标即众数;(2)中位数左边和右边的直方图的面积是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.直方图与条形图不要搞混频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.V .举一反三·触类旁通考向1 茎叶图及其应用【例1】【2018黑龙江齐齐哈尔高三第一次模】某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是A .24B .26C .27D .32 【答案】CC . 【例2】【2018江西上饶高三下学期二模】如图1是某学习小组学生在某次数学考试中成绩的茎叶图,1号到20号同学的成绩依次为1220,,,a a a ,图2是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该框图的输出结果是( )A .8B .9C .11D .12 【答案】A【例3】某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【答案】(1)75,75;(2)0.1,0.16;(3)该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.规律方法 (1)茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况. (2)①作样本的茎叶图时先要根据数据特点确定茎、叶,再作茎叶图;作“叶”时,要做到不重不漏,一般由内向外,从小到大排列,便于数据的处理.②根据茎叶图中数据数字特征进行分析判断考查识图能力,判断推理能力和创新应用意识;解题的关键是抓住“叶”的分布特征,准确提炼信息. 【跟踪练习】1.【2018河南安阳高三二模】在某校连续5次考试成绩中,统计甲,乙两名同学的数学成绩得到如图所示的茎叶图.已知甲同学5次成绩的平均数为81,乙同学5次成绩的中位数为73,则x y +的值为( )A .3B .4C .5D .6 【答案】A 【解析】77728680908105x x +++++=∴=因为乙同学5次成绩的中位数为73,所以33,y x y =∴+=选A .2.【2018山西平遥中学高三3月高考适应性调研】某学校A、B两个班的数学兴趣小组在一次数学对抗赛中的成绩绘制茎叶图如下,通过茎叶图比较两班数学兴趣小组成绩的平均值及方差①A班数学兴趣小组的平均成绩高于B班的平均成绩②B班数学兴趣小组的平均成绩高于A班的平均成绩③A班数学兴趣小组成绩的标准差大于B班成绩的标准差④B班数学兴趣小组成绩的标准差大于A班成绩的标准差其中正确结论的编号为()A.①③B.①④C.②③D.②④【答案】B【解析】A班:53,63,64,76,74,78,78,76,81,85,86,88,82,92,95;B班:45,48,51,3.【2018湖北武汉武昌区高三1月调研】将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为91,现场作的7个分数的茎叶图有一个数据模糊,无法辨认,在图中以x表示,则5个剩余分数的方差为________.【答案】6【解析】依题意8793909190915x+++++=,解得4x=.则方差为1641965+++=.【名师点睛】本题主要考查茎叶图的分辨,考查平均数的计算,考查方差的计算.从茎叶图可以看出最低分是87,最高分是99,去掉这两个分数后,可利用平均数的公式列方程来求出x的值.根据前面求出的值再利用方差的计算公式()211n i i x x n =-∑来计算方差.考向2 频率分布直方图【例4】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A .56B .60C .120D .140【答案】D【解析】由频率分布直方图可知每周自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,则每周自习时间不少于22.5小时的人数为0.7×200=140,故选D .【例5】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如下图所示),则分数在[70,80)内的人数是 .【答案】30【解析】由频率分布直方图知小长方形面积为对应区间概率,所有小长方形面积和为1,因此分数在[70,80)内的概率为3.010)005.0010.02015.0025.0(1=⨯++⨯+-,人数为301003.0=⨯【例6】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.【答案】(1)0.30;(2)36 000;(3)2.04.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.又前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【名师点睛】(1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率和条形图混淆.(2)“命题角度二”的例题中抓住频率分布直方图中各小长方形的面积之和为1,这是解题的关键.而利用频率分布直方图可以估计总体分布.【跟踪练习】1.【2018江西高三毕业班新课程教学质量监测】如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是()A .0.9B .0.75C .0.8D .0.7 【答案】B同样可得,60分及以上的频率=(0.015+0.03+0.025+0.005)×10=0.75 估计这次数学竞赛竞赛的及格率(大于或等于60分为及格)为75%, 故选:B .【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.【2018贵州黔东南州联考】近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在[)30,40岁的有2500人,年龄在[)20,30岁的有1200人,则m 的值为( )A .0.013B .0.13C .0.012D .0.12 【答案】C3.【2018河南六市高三第一次联考(一模)】为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[]10,50,其中支出金额在[]30,50的学生有117人,频率分布直方图如图所示,则n =( )A .180B .160C .150D .200 【答案】A【解析】[]30,50对应的概率为()10.010.025100.65-+⨯=,所以117=1800.65n =,选A . 4.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[)2500,3500(元)月收入段应抽出 人.【答案】40【解析】由图(2500,3500元/月)收入段的频率是0.0005×500+0.0003×500=0.4,故用分层抽样方法抽出100人作进一步调查,则在(2500,3500元/月)收入段应抽出人数为0.4×100=40. 考向3 样本的数字特征【例7】【2018内蒙古呼和浩特高三第一次质量调研】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A .3球以下(含3球)的人数B .4球以下(含4球)的人数C .5球以下(含5球)的人数D .6球以下(含6球)的人数 【答案】C【解析】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图故选C .【例8】【2018湖南衡阳高三第二次联考(二模)】已知样本12,,,n x x x 的平均数为x ;样本12,,,m y y y 的平均数为()y x y ≠,若样本12,,,n x x x ,12,,,m y y y 的平均数()z ax 1a y =+-;其中10a 2<<,则()*,,n m n m N ∈的大小关系为( ) A .n m = B .n m ≥ C .n m < D .n m > 【答案】C【解析】由题得()11,,n n n z nx my x y a n m n m n m n m ⎛⎫=+=+-∴= ⎪++++⎝⎭110,0,.22n a n m n m <<∴<<∴<+故选C .【例9】【2018长沙一中高三模拟】某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b )(a ,b ),(a ,b ),(a ,b ),(a ,b ).其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.(2)记E ={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.【名师点睛】(1)平均数反映了数据的中心,是平均水平,而方差和标准差反映的是数据围绕平均数的波动大小.进行平均数与方差的计算,关键是正确运用公式;(2)平均数与方差所反映的情况有着重要的实际意义,一般可以通过比较甲、乙两组样本数据的平均数和方差的差异,对甲、乙两品种可以做出评价或选择. 【跟踪练习】1.【2018贵州黔东南州高三下学期二模】甲乙两名同学6次考试的成绩统计如下图,甲乙两组数据的平均数分别为x 甲、x 乙,标准差分别为σσ甲乙,,则A .x x σσ<<甲乙甲乙,B .x x σσ甲乙甲乙,C .x x σσ><甲乙甲乙,D .x x σσ>>甲乙甲乙,【答案】C【解析】由图可知,甲同学除第二次考试成绩略低与乙同学,其他次考试都远高于乙同学,可知x x >甲乙,图中数据显示甲同学的成绩比乙同学稳定,故σσ<甲乙.故选C .2.【2018云南昆明高三教学质量检查(二统)】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值 【答案】D【解析】根据走势图可知:这半年中,网民对该关键词相关的信息关注度不呈周期性变化,A 错;这半年中,网民对该关键词相关的信息关注度增减不确定,B 错;从网民对该关键词的搜索指数来看,去年10月份的搜索指数的稳定性小于11 月份的搜索指数的稳定性,所以去年10月份的方差大于11 月份的方差,C 错;从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值,D正确,故选D.3.【2018陕西榆林高三二模】为了反映各行业对仓储物流业务需求变化的情况,以及重要商品库存变化的动向,中国物流与采购联合会和中储发展股份有限公司通过联合调查,制定了中国仓储指数.由2016年1月至2017年7月的调查数据得出的中国仓储指数,绘制出如下的折线图.根据该折线图,下列结论正确的是()A.2016年各月的合储指数最大值是在3月份B.2017年1月至7月的仓储指数的中位数为55C.2017年1月与4月的仓储指数的平均数为52D.2016年1月至4月的合储指数相对于2017年1月至4月,波动性更大D【答案】则这5 天中,每天最高气温较为稳定(方差较小)的城市为_______.(填甲或乙). 【答案】甲【解析】甲、乙两个城市的最高气温平均值都是30,甲的方差为419914.85++++=,乙的方差为2516116369318.6,55++++==∴每天最高气温较为稳定(方差较小)的城市为甲,故答案为甲.5.【2018山东枣庄高三二模】随着高校自主招生活动的持续开展,我市高中生掀起了参与数学兴趣小组的热潮.为调查我市高中生对数学学习的喜好程度,从甲、乙两所高中各随机抽取了40名学生,记录他们在一周内平均每天学习数学的时间,并将其分成了6个区间:(]0,10、(]10,20、(]20,30、(]30,40、(]40,50、(]50,60,整理得到如下频率分布直方图:根据一周内平均每天学习数学的时间t ,将学生对于数学的喜好程度分为三个等级:(Ⅰ)试估计甲高中学生一周内平均每天学习数学的时间的中位数m 甲(精确到0.01);(Ⅱ)判断从甲、乙两所高中各自随机抽取的40名学生一周内平均每天学习数学的时间的平均值X 甲与X 乙及方差2S 甲与2S 乙的大小关系(只需写出结论),并计算其中的X 甲、2S 甲(同一组中的数据用该组区间的中点值作代表);(Ⅲ)从甲高中与乙高中随机抽取的80名同学中数学喜好程度为“痴迷”的学生中随机抽取2人,求选出的2人中甲高中与乙高中各有1人的概率.【答案】(Ⅰ) 26.67m ≈甲;(Ⅱ)答案见解析;(Ⅲ)37. 【解析】试题分析:()1根据频率分布直方图,由样本估计总体的思想可求得()0.50.10.2200.3m -+=+甲1026.67⨯≈;()2根据所给数据求出X 甲,X 乙,2S 甲,2S 乙,然后对比即可得到答案;()3求出甲高中随机选取的40名学生中“痴迷”的学生的个数,记为1A ,2A ;乙高中随机选取的40名的概率解析:(Ⅰ)由样本估计总体的思想,甲高中学生一周内平均每天学习数学的时间的中位数()0.50.10.2200.3m -+=+甲 1026.67⨯≈;(Ⅱ)X X <甲乙;22S S >甲乙;50.1150.2250.3X =⨯+⨯+⨯甲 350.2450.15550.0527.5+⨯+⨯+⨯=;()()221[527.5400.140S =⨯-⨯⨯甲 ()()21527.5400.2+-⨯⨯ ()()22527.5400.3+-⨯⨯ ()()23527.5400.2+-⨯⨯ ()()24527.5400.15+-⨯⨯ ()()25527.5400.05]+-⨯⨯178.75=.(Ⅲ)甲高中随机选取的40名学生中“痴迷”的学生有()400.005102⨯⨯=人,记为1A ,2A ;乙高中随机选取的40名学生中“痴迷”的学生有()400.015106⨯⨯=人,记为1B ,2B ,3B ,4B ,5B ,6B .随机选出2人有以下28种可能:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()14,A B ,()15,A B ,()16,A B , ()21,A B ,()22,A B ,()23,A B ,()24,A B ,()25,A B ,()26,A B ,()12,B B , ()13,B B ,()14,B B ,()15,B B ,()16,B B ,()23,B B ,()24,B B ,()25,B B , ()26,B B ,()34,B B ,()35,B B ,()36,B B ,()45,B B ,()46,B B ,()56,B B ,所以,从甲、乙两所高中数学喜好程度为“痴迷”的同学中随机选出2人,选出的2人中甲、乙两所高中各有1人的概率为123287=. 6.【2018海南高三第二次联合考试】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[)50,150内的用户记为A 类用户,标记为低用电家庭,用电量在区间[)250,350内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1)0.0044x =,186(2)23,没有【解析】试题分析:(1)由矩形面积和为1,求得x ,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;试题解析: 解:(1)1(0.0060.00360.002450x =-++ 20.0012)0.0044⨯+=, 按用电量从低到高的六组用户数分别为6,9,15,11,6,3, 所以估计平均用电量为675912515175112256275332550⨯+⨯+⨯+⨯+⨯+⨯ 186=度.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85分的概率为2163391528C C C =. ②12因为2K的观测值()22469631212915k⨯⨯-⨯=⨯⨯⨯1.6 3.841=<,所以没有95%的把握认为“满意与否与用电量高低有关”.【名师点睛】利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.。
【KS5U推荐】第13题+函数的图像-2018精品之高中数学(理)黄金100题系列+Word版含解析
第13题函数的图像I .题源探究·黄金母题【例1】下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.【解析】图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.精彩解读 【试题来源】人教版A 版必修1第23页练习第2题 【母题评析】本题考查了函数的表示法之一—图像法,意在培养学生的数形结合思想,也考察了学生的分析问题和解决问题的能力,同时告诉了学生生活之中处处有数学,数学来源于生活又应用与生活。
【思路方法】数形结合思想是高中数学中主要的解题思想之一,提别是在解决函数的问题中,函数图像是强有力的工具,这种思想是近几年高考试题常常采用的命题形式。
【例2】函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么?精彩解读【试题来源】人教版A 版必修1第25页(3)r 取何值时,只有唯一的p 值与之对应?【解析】(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.习题1.2B 组第1题 【母题评析】本题以分段函数的图像为载体考察了函数定义域、值域的求法,加强学生对函数概念及函数三要素的理解,这对以后学习函数的性质有很大的帮助。
【思路方法】函数图像解决函数问题是强有力的工具,因此培养学生的读图、识图能力很重要。
高三数学练习题含答案
高三数学练习题含答案1. 题目:已知函数$f(x)=2x^2-3x+5$,求函数$f(x)$的最小值及对应的$x$值。
解析:函数$f(x)$是一个二次函数,其对应的抛物线开口朝上。
根据二次函数的性质,最小值出现在抛物线的顶点处。
首先,我们需要找到抛物线的顶点。
对于二次函数$ax^2+bx+c$,其中$a>0$,顶点的横坐标可以通过公式$x=-\frac{b}{2a}$来计算。
根据题目中给出的函数$f(x)=2x^2-3x+5$,可以得到$a=2$,$b=-3$。
代入公式,得到$x=-\frac{-3}{2(2)}=\frac{3}{4}$。
接下来,我们将$x=\frac{3}{4}$代入函数$f(x)$中,计算最小值。
即$f\left(\frac{3}{4}\right)=2\left(\frac{3}{4}\right)^2-3\left(\frac{3}{4}\right)+5=\frac{39}{8}$。
因此,函数$f(x)$的最小值为$\frac{39}{8}$,对应的$x$值为$\frac{3}{4}$。
2. 题目:已知等差数列$\{a_n\}$的公差为$d$,前三项依次为$a_1=3$,$a_2=6$,$a_3=9$。
求等差数列的通项公式。
解析:等差数列的通项公式可以表示为$a_n=a_1+(n-1)d$。
我们可以利用已知的前三项来确定公差$d$。
根据题目中给出的前三项$a_1=3$,$a_2=6$,$a_3=9$,我们可以得到以下方程组:$a_2=a_1+d$,即$6=3+d$;$a_3=a_1+2d$,即$9=3+2d$。
解方程组,可以得到$d=3$。
将$d=3$代入通项公式$a_n=a_1+(n-1)d$中,得到$a_n=3+(n-1)3=3n$。
因此,等差数列$\{a_n\}$的通项公式为$a_n=3n$。
3. 题目:已知等比数列$\{b_n\}$的首项为$b_1=2$,公比为$r$,前三项的乘积为$64$。
2019-2020年高三数学 黄金考点汇编11 定积分的概念与微积分基本定理 理(含解析)
2019-2020年高三数学 黄金考点汇编11 定积分的概念与微积分基本定理 理(含解析)【考点分类】热点1 定积分的基本计算1.【xx 江西高考理第8题】若则 ( ) A . B . C . D .12.【xx 陕西高考理第3题】定积分的值为 ( )3.【xx 年普通高等学校招生全国统一考试(江西卷)理】若 ,则s 1,s 2,s 3的大小关系为 ( ) A . s 1<s 2<s 3B . s 2<s 1<s 3C . s 2<s 3<s 1D . s 3<s 2<s 14.【xx 年普通高等学校招生全国统一考试(湖南卷)】若 . 【答案】3.【解析】∵⎠⎛0T x 2dx =13x 3⎪⎪⎪T0=T 33=9,∴T =3.5.【xx 福建理15】当时,有如下表达式: 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式: 23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算: 0122311111111()()...()_____2223212n n n n n nn C C C C +⨯+⨯+⨯++⨯=+【方法规律】计算简单定积分的步骤:(1)把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差; (2)利用定积分的性质把所求的定积分化为若干个定积分的和或差; (3)分别用求导公式求出F(x),使得F ′(x)=f(x); (4)利用牛顿-莱布尼兹公式求出各个定积分的值; (5)计算所求定积分的值. 【解题技巧】 求定积分的常用技巧:(1)求被积函数,要先化简,再求积分;(2)求被积函数为分段函数的定积分,依据定积分“对区间的可加性”,分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值号才能积分;(4)若f (x )是偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x ;若f (x )是奇函数,则⎠⎛-aa f (x )d x =0热点2 定积分几何意义的应用1.【xx 山东高考理第6题】直线在第一象限内围成的封闭图形的面积为 ( ) A. B . C . D .4 【答案】【解析】由已知得,,故选. 考点:定积分的应用.2.【xx 年普通高等学校招生全国统一考试北京卷理】直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 ( ) A . B .2 C . D .【方法规律】1.定积分的几何意义:定积分表示在区间上的曲线与直线、以及轴所围成的平面图形(曲边梯形)的面积的代数和,即.(在轴上方的面积取正号,在轴下方的面积取负号). 2.求由两条曲线围成的图形的面积的解题步骤:(1)画出图形,确定图形的范围,通过解方程组求出交点的横坐标.定出积分的下、下限; (2)确定被积函数,特别要注意分清被积函数的下、下位置; (3)写出平面图形面积的定积分的表达式;(4)运用微积分基本定理计算定积分,求出平面图形的面积.利用定积分求曲边图形面积时,一定要找准积分上限、下限及被积函数.当图形的边界不同时,要分不同情况讨论. 【易错点睛】 概念理解错误例.【xx 北京西城】求曲线f (x )=sin x ,x ∈[0,54π]与x 轴围成的图形的面积.热点3 定积分物理意义的应用1.【xx年普通高等学校招生全国统一考试湖北卷理7】一辆汽车在高速公路下行驶,由于遇到紧急情况而刹车,以速度(t的单位:s,v的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是()B.C. D.【答案】C.【解析】令,则,汽车刹车的距离是,故选C.【方法规律】利用定积分解决变速直线运动问题和变力做功问题时,关键是求出物体做变速直线运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.①变速直线运动的路程:作变速直线运动的物体所经过的路程,等于其速度函数在时间区间上的定积分,即.②变力作功:物体在变力的作用下做直线运动,并且物体沿着与相同的方向从移动到,那么变力所作的功.【易错点睛】如xx湖北卷理7试题可能出现以下错误:(1)未形成应用定积分解题的意识,造成思维受阻.(2)不知如何确定刹车后汽车继续行驶的时间,从而不能正确确定积分区间.(3)求错被积函数的原函数致误.防范措施:(1)学习数学,要知道知识方法形成的背景以及应用的方面,不能孤立地看待一个知识方法,要用联系的观点去认识;(2)分析刹车的过程,可以发现,由速度为零可以得到汽车继续行驶的时间.由此可见,分析过程可以发现规律.【考点剖析】1.最新考试说明:(1)考查定积分的概念,定积分的几何意义,微积分基本定理.(2)利用定积分求曲边形面积、变力做功、变速运动的质点的运动路程.2.命题方向预测:从近两年的高考试题看,本节内容要求较低,定积分的简单计算与利用定积分求平面图形的面积是考查的重点,与几何概型概率的计算相结合是近几年高考的亮点,题型为选择题或填空题,难度中等偏下.预测xx 年利用定积分求曲边图形的面积和解决一些简单的物理问题等是定积分命题的主要方向,一般以客观题形式出现. 3.课本结论总结:(1)用定义求定积分的一般方法是:①分割:n 等分区间[a ,b ];②近似代替:取点ξi ∈[x i -1,x i ];③求和:∑n i =1f (ξi )·b -an;④取极值:⎠⎛ab f (x )d x =limn →∞∑n i =1f (ξi )·b -a n.(2)定积分的性质 性质1:;性质2:(为常数)(定积分的线性性质); 性质3:1212b b b aaaf x f x dx f x dxf x dx (定积分的线性性质); 推广:1212b b b b m m aaaaf x f xf x dx f x dx f x dxf x dx性质4:(其中)(定积分对积分区间的可加性) 推广:121kb c c b aac c f x dxf x dxf x dxf x dx说明:定积分的定义中,限定下限小于上限,即a <b ,为了方便计算,人们把定积分的概念扩大,使下限不一定小于上限,并规定:,0b a a abaf x dxf x dx f x dx .(3)微积分基本定理一般地,如果f (x )在区间[a ,b ]上连续,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (x )| b a =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式. (4)常用定积分公式: ①(为常数);②;③;④; ⑤;⑥;⑦;⑧; ⑨;⑩.4.名师二级结论: 一种思想定积分基本思想的核心是“以直代曲”,用“有限”的步骤解决“无限”过程的问题,其方法是“分割求近似,求和取极限”,利用这种方法可推导球的表面积和体积公式等.恩格斯曾经把对数的发明、解析几何的创始以及微积分的建立并称为17世纪数学的三大成就.一种关系由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算. 三条性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差;(3)积分可分段进行. 四种求定积分的方法①利用定义求定积分;②利用微积分基本定理求定积分;③利用定积分的几何意义求定积分.如:定积分⎠⎛011-x 2d x 的几何意义是求单位圆面积的14,所以⎠⎛011-x 2d x =π4;④利用积分的性质.两类典型的计算曲边梯形面积的方法 (1)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(1));②由一条曲线与直线以及轴所围成的曲边梯形的面积:(如图(2)); ③由一条曲线,当时,;当时,与直线以及轴所围成的曲边梯形的面积: (如图(3));④由两条曲线(与直线所围成的曲边梯形的面积:[]()()()().bb baaaS f x dx g x dx f x g x dx =-=-⎰⎰⎰(如图(4)) (2)型区域:①由一条曲线与直线以及轴所围成的曲边梯形的面积,可由得,然后利用求出(如图(5)); ②由一条曲线与直线以及轴所围成的曲边梯形的面积,可由先求出,然后利用求出(如图(6)); ③由两条曲线与直线所围成的曲边梯形的面积,可由先分别求出,,然后利用求出(如图(7));5.课本经典习题:(1)【人教新课标A 版2-2第47页例1】利用定积分的定义,计算的值.【经典理由】典型的应用定义计算定积分(2)【人教新课标A 版2-2第56页,例1】计算由曲线所围成图形的面积. 【变式】由曲线所围成图形的面积为____________.分,∴2211,143443x dx s πππ-=∴=-+=-⎰.6.考点交汇展示:(1) 定积分计算与几何概型交汇例1【广东省梅州市xx 届高三3月质检】.如图,设D 是图中边长为2的正方形区域.,E 是函数的图像与x 轴及围成的阴影区域,项D 中随机投一点,则该点落入E 中的概率为 ( )A .B .C .D .(2) 定积分的计算与函数的性质交汇例2【xx 年高考原创预测卷(浙江理科)】.若,则等于 . 【答案】【解析】,2ln 12ln )0()0504()2016(0+=+==+=∴e f f f . (3) 定积分的计算与二项式定理的应用交汇例3【xx 届安徽六校教育研究会高三2月联考数学理】.已知则二项式的展开式中的系数为 .xyO【考点特训】1.【河南省安阳一中xx 届高三第一次月考8】如图是函数在一个周期内的图象,则阴影部分的面积是( ) A . B . C . D . 【答案】B2.【河北省“五个一名校联盟” xx 届高三教学质量监测(一)13】直线与抛物线所围图形的面积等于_____________ 【答案】 【解析】3.【xx 届高三原创预测卷理科数学试卷4(安徽版)】设235111111,,a dx b dx c dx xxx===⎰⎰⎰,则下列关系式成立的是 ( ) A . B . C . D .4.【高考冲刺关门卷新课标全国卷(理)】由直线,曲线以及轴围成的封闭图形的面积为________.5.【广州市珠海区xx年高三8月摸底考试12】图中阴影部分的面积等于.【答案】1.【解析】由定积分的几何意义得:.考点:定积分的几何意义.6.【xx年哈尔滨师大附中东北师大附中辽宁省实验中学高三第一次联合模拟考试】( )A.0 B.C.D.7.【唐山一中xx下学期调研考试试卷】直线的方向向量为且过抛物线的焦点,则直线与抛物线围成的封闭图形面积为( )A.B.C.D.8.【稳派xx年普通高等学校招生全国统一考试模拟信息卷(五)】设,若曲线与直线,,所围成封闭图形的面积为2,则()A.2 B.e C.2e D.9.【xx黑龙江哈尔滨】下列值等于的定积分是()10.【xx 辽宁】如图,阴影部分的面积是 ( )A .2 3B .2- 3C .323D .353【答案】C .【解析】直线y=2x 与抛物线y=3﹣x 2,解得交点为(﹣3,﹣6)和(1,2),抛物线y=3﹣x 2与x 轴负半轴交点(﹣,0).设阴影部分面积为s ,则==,所以阴影部分的面积为 ,故答案选:C .【思路点拨】求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.11.【xx 山西山大附中高三5月月考理科】 ( ) A . B . C .D .12.【xx 湖南雅礼中学模拟】曲线和曲线围成一个叶形图(如图所示阴影部分),其面积是 ( )A .1B .12C .22 D .1313.【xx 江西师大附中高三三模理科】已知等差数列的前n 项和为,又知,且,,则为 ( ) A .33B .46C .48D .5014.【xx 南京调研】给出如下命题:①⎠⎛b a d x =⎠⎛ab d t =b -a (a ,b 为常数且a <b );②;③曲线y =sin x ,x ∈[0,2π]与直线y =0围成的两个封闭区域的面积之和为2. 其中正确命题的个数为( )A .0B .1C .2D .3 【答案】B【解析】由定积分的性质知①错;对于②,两个积分都表示14个单位圆的面积,15.【xx 浙江五校联考】已知函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则( )A .2B .1C .3D .416.【xx 广州综合测试】函数F (x )=⎠⎛0x t (t -4)d t 在[-1,5]上 ( )A .有最大值0,无最小值B .有最大值0,最小值-323C .有最大值-323,无最大值 D .既无最大值也无最小值【答案】B .17.【xx 福建莆田高三质检】如图,由函数f (x )=e x -e 的图象,直线x =2及x 轴所围成的阴影部分面积等于 ( ) A .e 2-2e -1 B .e 2-2e C .e 2-e2D .e 2-2e +1 【答案】B【解析】面积S =⎠⎛12f (x )d x =⎠⎛12(e x -e)d x =(e x -e x )|21=(e 2-2e)-(e 1-e)=e 2-2e .18.【xx 山东淄博模拟】已知等差数列{a n }的前n 项和为S n ,且S 10=⎠⎛03(1+2x )d x ,S 20=17,则S 30为( )A .15B .20C .25D .3019.【xx 湖北孝感高中高三5月摸底理科】若在R 上可导,,则____________.20.【xx 中山一模】设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0,若f [f (1)]=1,则a =________.【答案】1.【解析】∵f (1)=lg 1=0,∴f [f (1)]=f (0)=0+⎠⎛0a 3t 2d t =t 3| a 0=a 3,∴a 3=1得a =1.21.【xx 上海模拟】已知函数y =f (x )的图像是折线段ABC ,其中A (0,0)、B (12,5)、C (1,0).函数y =xf (x )(0≤x ≤1)的图像与x 轴围成的图形的面积为________.22.【xx 湖北孝感高中高三5月摸底理科】如图, 甲、乙、丙中的四边形ABCD 都是边长为2的正方形, 其中甲、乙两图中阴影部分分别以AB 的中点、B 点为顶点且开口向上的抛物线(皆过D 点)下方的部分, 丙图中阴影部分是以C 为圆心、半径为2的圆弧下方的部分. 三只麻雀分别落在这三块正方形木板上休息, 且它们落在所在木板的任何地方是等可能的, 若麻雀落在甲、乙、丙三块木板上阴影部分的概率分别是, 则的大小关系是 .23.【海淀区高三年纪第二学期其中练习理】函数的图象与轴所围成的封闭图形的面积等于_______.24.【河北省邯郸市xx届高三上学期第二次模拟考试】= _______.25.【xx年辽宁省大连市高三双基考试】_______.26.【xx江西鹰潭】设,若曲线与直线,所围成封闭图形的面积为2,则.【知识点】定积分在求面积中的应用.【答案解析】解析:解:如图,27.【xx吉林一中】设,则二项式展开式中的项的系数为【考点预测】1.【热点1预测】若则等于()A.B.C.D.【答案】D.【解析】.2.【热点2预测】曲线与直线y=围成的封闭图形的面积为()A.B.C.D.3.【热点3预测】一辆汽车在笔直的公路上变速行驶,设汽车在时刻t的速度为v(t)=-t2+4,(t)(t的单位:h,v的单位:km/h)则这辆车行驶的最大位移是______km。
【2015高考复习参考】高三数学(理)配套黄金练习:9.2(含答案)
第九章9.2 第2课时高考数学(理)黄金配套练习一、选择题1.点(1,-1)到直线x-y+1=0的距离是()A.12 B.32C.22 D.322答案 D解析由d=|1+1+1|2=3222.过点(-1,3)且平行于直线x-2y+3=0的直线方程为() A.x-2y+7=0 B.2x+y-1=0C.x-2y-5=0 D.2x+y-5=0答案 A解析因为直线x-2y+3=0的斜率是12,故所求直线的方程为y-3=12(x+1),即x-2y+7=0.3.若直线l:y=kx-1与直线x+y-1=0的交点位于第一象限,则实数k的取值范围是()A.(-∞,-1) B.(-∞,-1]C.(1,+∞) D.[1,+∞)答案 C解析如图,作出直线x+y-1=0的图象,它与x轴、y轴交点分别为(1,0)、(0,1),直线y=kx-1过点(0,-1),因此,直线y=kx-1与直线x+y-1=0的交点在第一象限时,k>1,选择C.4.若l1:x+(1+m)y+(m-2)=0,l2:mx+2y+6=0的图象是两条平行直线,则m的值是()A.m=1或m=-2 B.m=1C.m=-2 D.m的值不存在答案 A解析法一:据已知若m=0,易知两直线不平行,若m≠0,则有1m=1+m2≠m-26⇒m=1或m=-2.法二:由1×2=(1+m)m,得:m=-2或m=1,当m=-2时,l1:x-y-4=0,l2:-2x+2y+6=0,平行当m=1时,l1:x+2y-1=0,l2:x+2y+6=0,平行5.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1 答案 C解析 由已知条件可知线段AB 的中点(1+m2,0)在直线x +2y -2=0上,把中点坐标代入直线方程,解得m =3.6.将一张坐标纸折叠一次,使点(2,0)与点(2,4)重合,则与点(-4,1)重合的点是( )A .(4,-1)B .(-4,3)C .(-4,-3)D .(8,3) 答案 B解析 以点(2,0)与(2,4)为端点的线段的垂直平分线为y =2,即为对称轴,故与点(-4,1)重合的点是(-4,3).7.已知直线l 1:y =x ·sin α和直线l 2:y =2x +c ,则直线l 1与l 2( ) A .通过平移可以重合 B .不可能垂直C .可能与x 轴围成等腰直角三角形D .通过绕l 1上某一点旋转可以重合 答案 D解析 ∵k 1≠k 2,∴l 1与l 2相交.选D.8.若直线x a +yb =1通过点M (cos α,sin α),则( ) A .a 2+b 2≤1 B . a 2+b 2≥1 C.1a 2+1b 2≤1 D.1a 2+1b 2≥1 答案 D解析 直线x a +yb =1通过点M (cos α,sin α),我们知道点M 在单位圆上,此问题可转化为直线x a +yb =1和圆x 2+y 2=1有公共点,圆心坐标为(0,0),由点到直线的距离公式有|-1|1a 2+1b 2≤1⇒1a 2+1b 2≥1,故选D.二、填空题9.点P (-1,3)到直线l :y =k (x -2)的距离的最大值等于________. 答案 3 2解析 解法一:直线l :y =k (x -2)的方程化为kx -y -2k =0,所以点P (-1,3)到该直线的距离为d =3|k +1|k 2+1=3k 2+2k +1k 2+1=31+2k k 2+1,由于2kk 2+1≤1,所以d ≤3 2.即距离的最大值等于3 2.解法二:直线l : y =k (x -2)过定点Q (2,0),所以所求距离的最大值即为|PQ |=3 2.10.直线(2λ+1)x +(λ-1)y +1=0(λ∈R ),恒过定点________.答案 (-13,23)解析 整理为x -y +1+λ(2x +y )=0令⎩⎨⎧x -y +1=02x +y =0得⎩⎪⎨⎪⎧x =-13y =23∴恒过点(-13,23)11.若函数y =ax +8与y =-12x +b 的图象关于直线y =x 对称,则a +b =________.答案 2解析 直线y =ax +8关于y =x 对称的直线方程为x =ay +8,所以x =ay +8与y =-12x +b 为同一直线,故得⎩⎨⎧a =-2b =4,所以a +b =2.12.若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________.答案 16解析 根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b =1,所以-2(a +b )=ab .又ab >0,故a <0,b <0.根据基本不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,即ab 的最小值为16.三、解答题13.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a 、b 的值.(1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.答案 (1)⎩⎨⎧ a =2b =2 (2)⎩⎨⎧a =2,b =-2或⎩⎪⎨⎪⎧a =23b =2解析 (1)∵l 1⊥l 2,∴a ·(a -1)-b =0,① 又∵l 1过点(-3,-1),∴-3a +b +4=0② 由①,②解得:a =2,b =2. (2)∵l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在,∴k 1=k 2,即ab =1-a ③ 又∵坐标原点到这两条直线的距离相等,l 1∥l 2,∴l 1、l 2在y 轴上的截距互为相反数.即4b =b ,④由③④联立解得⎩⎨⎧a =2,b =-2,或⎩⎪⎨⎪⎧a =23,b =2.14.直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2,且l 1与l 2的距离为5,求l 1、l 2的方程.解析 若l 1,l 2的斜率都存在时,设直线的斜率为k , 由斜截式得l 1的方程y =kx +1,即kx -y +1=0,由点斜式可得l 2的方程y =k (x -5),即kx -y -5k =0. 在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k 2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1:12x -5y +5=0, l 2:12x -5y -60=0. 若l 1、l 2的斜率不存在,则l 1的方程为x =0,l 2的方程为x =5,它们之间的距离为5.同样满足条件. 则满足条件的直线方程有以下两组: ⎩⎨⎧ l 1:12x -5y +5=0,l 2:12x -5y -60=0;或⎩⎨⎧l 1:x =0,l 2:x =5.15.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积. 解析 (1)y ′=2x +1.直线l 1的方程为y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,所以直线l 2的方程为y =-13x -229.(2)解方程⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎪⎨⎪⎧x =16,y =-52.所以直线l 1和l 2的交点的坐标为(16,-52). l 1、l 2与x 轴交点的坐标分别为(1,0)、(-223,0). 所以所求三角形的面积为S =12×253⎪⎪⎪⎪⎪⎪-52=12512.拓展练习·自助餐1.已知直线l :x -y -1=0,l 1:2x -y -2=0.若直线l 2与l 1关于l 对称,则l 2的方程为( )A .x -2y +1=0B .x -2y -1=0C .x +y -1=0D .x +2y -1=0 答案 B解析 在l 1上取两点(0,-2),(1,0),则易求它们关于直线l 的对称点为(-1,-1),(1,0),∴l 2的方程为y +10+1=x +11+1,即x -2y -1=0.2.若实数x ,y 满足x +2y -3=0,则x 2+y 2的最小值是________.答案 95解析 可用消元法:x =3-2y 代入x 2+y 2化为一元函数求最值;或用解析法:将x 2+y 2视为直线x +2y -3=0上的点P (x ,y )与原点O (0,0)距离的平方.其最小值为原点到直线x +2y -3=0距离的平方,故(x 2+y 2)min =(|-3|5)2=95.3.三角形的两条高所在直线的方程为2x -3y +1=0和x +y =0,且A (1,2)是其一个顶点.求BC 边所在直线的方程.解析 可以判断A 不在两条高所在的直线上,不妨设AB 、AC 边上的高所在的直线方程分别为2x -3y +1=0和x +y =0,则AB 、AC 所在的直线方程可求得:y -2=-32(x -1),y -2=x -1,即3x +2y -7=0,y -x -1=0.由⎩⎨⎧ 3x +2y -7=0x +y =0,得B (7,-7), 由⎩⎨⎧y -x -1=02x -3y +1=0,得C (-2,-1). 所以直线BC 的方程为2x +3y +7=0.教师备选题1.试求三条直线ax +y +1=0,x +ay +1=0,x +y +a =0构成三角形的条件. 思路分析 三条线构成三角形,则任意两直线相交且不能交于一点. 解析 解法一:任意两直线相交, 得a 1≠1a ,a 1≠11,∴a ≠±1且三直线不共点. 由⎩⎨⎧x +ay +1=0x +y +a =0得交点(-1-a,1), 此交点不在直线ax +y +1=0上, 即a (-1-a )+1+1≠0,∴a 2+a -2≠0,∴a ≠-2且a ≠1. 综上所述,a ≠-2且a ≠±1.解法二:三条直线能构成三角形,∴三条直线两两相交且不共点,即任意两条直线都不平行且三线不共点, 若l 1、l 2、l 3交于一点,则l 1x +y +a =0与l 2:x +ay +1=0交点P (-a -1,1)在直线l 3:ax +y +1=0上, ∴a (-a -1)+1+1=0, ∴a =1或a =-2.若l 1∥l 2则有-1a =-1,a =1; 若l 1∥l 3则有-a =-1,a =1;若l 2∥l 3则有-1a =-a ,a =±1,∴l 1,l 2,l 3构成三角形时,a ≠±1且a ≠-2.2.(1)在直线l :3x -y -1=0上求一点P ,使得P 到A (4,1)和B (0,4)的距离之差最大;(2)在直线l :3x -y -1=0上求一点Q ,使得Q 到A (4,1)和C (3,4)的距离之和最小.解析甲(1)如图甲所示,设点B 关于l 的对称点B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3·b -4a =-1. ∴a +3b -12=0.①又由于线段BB ′的中点坐标为(a 2,b +42),且在直线l 上,∴3×a 2-b +42-1=0, 即3a -b -6=0.②解①②,得a =3, b =3,∴B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0. 解⎩⎨⎧ 3x -y -1=0,2x +y -9=0,得⎩⎨⎧x =2,y =5, 即l 与AB ′的交点坐标为P (2,5).(2)如图乙所示,设C 关于l 的对称点为C ′,求出C ′的坐标为(35,245).∴AC′所在直线的方程为19x+17y-93=0,AC′和l交点坐标为(117,267),故Q点坐标为(117,267).3.将一枚骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设两条直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,则复数P1+P2i所对应的点P与直线l2:x+2y=2的位置关系是() A.P在直线l2上B.P在直线l2的左下方C.P在直线l2的右上方D.无法确定答案 B解析易知当且仅当ab≠12时两条直线只有一个交点,而ab=12的情况有三种:a=1,b=2(此时两直线重合),a=2,b=4(此时两直线平行),a=3,b=6(此时两直线平行),而投掷两次的所有情况有6×6=36种,所以两条直线相交的概率P2=1-336=1112;两条直线平行的概率为P1=236=118,P1+P2i所对应的点为P(118,1112),易判断P(118,1112)在l2:x+2y=2的左下方,选B.名师指引本题融合了直线、线性规划、概率及复数等有关知识,在处理方法上可采用枚举法处理,注意不要忽视了直线重合这种情况,否则会误选.。
高考数学专题06考前必做难题30题(理)-高考数学走出题海之黄金30题系列(解析版)
2014年高考数学走出题海之黄金30题系列1.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围是 ( ). A.9,24⎛⎤-- ⎥⎝⎦B .[-1,0]C .(-∞,-2] D.9,4⎛⎫--∞ ⎪⎝⎭【答案】A2.已知以4T =为周期的函数21,(1,1]()12,(1,3]x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。
若方程3()f x x =恰有5个实数解,则m 的取值范围为()A .⎪⎪⎭⎫⎝⎛3,315B .15(,7)3C .48(,)33D.()7,2【答案】B【考点定位】考察学生运用函数的图像分析函数图像和性质的能力,考察数形结合的能力.zxxk 学科网 3.定义在R 上的可导函数()f x ,当(1,)x ∈+∞时,()'()'()f x f x xf x +<恒成立,1(2),(3),(21)(2)2a fb fc f ===+,则,,a b c 的大小关系为()A .c a b <<B .b c a <<C .a c b <<D .c b a <<【答案】A4.设函数21(),()(,,0)f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是A.当0a <时,12120,0x x y y +<+>B.当0a <时,12120,0x x y y +>+<C.当0a >时,12120,0x x y y +<+<D.当0a >时,12120,0x x y y +>+> 【答案】:B【考点定位】本题从最常见了两类函数出发进行了巧妙组合,考查数形结合思想、分类讨论思想,函数与方程思想等,难度很大,不易入手,具有很强的区分度5.已知函数2342013()1...2342013x x x x f x x =+-+-++,2342013()1 (2342013)x x x x g x x =-+-+--,设函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,则-b a 的最小值为() A 、11B 、10C 、9D 、8 【答案】B 【解析】试题分析:'2320122201232011()11()f x x x x x x x x x x =-+-++=+++-+++零点在(1,2)上,函数()(3)(4)F x f x g x =+⋅-,且函数()F x 的零点均在区间),,](,[Z ∈<b a b a b a 内,(3)f x +的零点在(4,3)--上,(4)g x -的零点在(5,6)上,-b a 的最小值为6410-=.【考点定位】1、导数的应用,2、根的存在性定理.6.已知数列a n :12132143211121231234,,,,,,,,,,…,依它的前10项的规律,则a 99+a 100的值为()A.3724B.76C.1115D.715【答案】A【考点定位】数列及归纳推理. 7.现有两个命题:(1)若lg lg lg()x y x y +=+,且不等式2y x t >-+恒成立,则t 的取值范围是集合P ; (2)若函数()1xf x x =-,()1,x ∈+∞的图像与函数()2g x x t =-+的图像没有交点,则t 的取值范围是集合Q ;则以下集合关系正确的是() A .PQ B.Q P C.P Q = D.P Q =∅【答案】C 【解析】对(2):作出函数()1xf x x =-,()1,x ∈+∞的图像与函数()2g x x t =-+的图像如图所示:对()1xf x x =-求导得:21()(1)f x x '=--.由21()2(1)f x x '=-=--得212x =+.由此得切点为2(1,12)2++.代入()2g x x t =-+得223t =+.由图可知223t <+时,函数()1xf x x =-,8.函数2sin 8(,)1sin x x x f x x θθθ--+=--(x >2)的最小值()A.4222142+142-+【答案】A 【解析】试题分析:令1sin (0)x t t θ--=>,则81sin y t tθ=+++42+1+sin θ≥,又sin 1θ≥-,所以42y ≥当且仅当22x =22k πθπ=-时取“=”.zxxk 学科网【考点定位】1、基本不等式;2、正弦函数的有界性.9.设实数,x y满足2025020x yx yy--≤⎧⎪+-≥⎨⎪-≤⎩,则22x yuxy+=的取值范围是()A.5[2,2]B.510[,]23C.10[2,]3D.1[,4]4【答案】C10.如图,正方体1111DCBAABCD-的棱长为3,以顶点A为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于()A.65πB.32πC.πD.67π【答案】A【解析】11.已知A、B 是椭圆22 22x yab+=1(a>b>0)和双曲线2222x ya b-=1(a>0,b>0)的公共顶点.P是双曲线上的动点,M是椭圆上的动点(P、M都异于A、B),且满足AP+BP=λ(AM+BM),其中λ∈R,设直线AP、BP、AM、BM的斜率分别记为k1、k2、k3、k4,k1+k2=5,则k3+k4=________.【答案】-5【考点定位】直线与圆锥曲线.12.已知等差数列{}n a的首项11a=,公差0d>,且2a、5a、14a分别是等比数列{}n b的2b、3b、4b. (1)求数列{}n a和{}n b的通项公式;(2)设数列{}n c对任意正整数n均有12112nnncc cab b b++++=成立,求122014c c c+++的值.【答案】(1)21na n=-,13nnb-=;(2)20143.【解析】试题分析:(1)将2a、5a、14a利用1a与d表示,结合条件2a、5a、14a成等比数列列式求出d的值,再根据等差数列的通项公式求出数列{}n a的通项公式,根据条件22b a=、35b a=求出等比数列{}n b的通项公式;(2)先令1n =求出1c 的值,然后再令2n ≥,由12112n n n c c c a b b b ++++=得到112121n n c c c b b b --++()12232n n n c b n -∴==⋅≥,13,123,2n n n c n -=⎧∴=⎨⋅≥⎩, 则12201411220143232323c c c -+++=+⋅+⋅++⋅()()201312201320143133233332313-=+⋅+++=+⨯=-.【考点定位】1.等差数列与等比数列的通项公式;2.定义法求通项;3.错位相减法求和13.设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T . (Ⅰ)若114,2a q,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n ,证明:120122()13q <<.(Ⅲ)证明:nn S T (1,2,3,n )的充分必要条件为1,a q N N .【答案】(Ⅰ),6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥;(Ⅱ)答案详见解析;(Ⅲ)答案详见解析.【解析】zxxk 学科网所以14b ,22b ,31b ,且当3n 时,[]0n n b a .即,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥(Ⅱ)证明:因为201421()n T n n =+≤,所以113b T ,120142(2)n n n b T T n -=-=≤≤.因为[]nn b a ,所以1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. 由21a q a =,得1q <.zxxk 学科网 因为201220142[2,3)a a q =∈,所以20122223qa >≥, 所以2012213q <<,即120122()13q <<. (Ⅲ)证明:(充分性)因为1a N ,q N ,zxxk 学科网所以11nna a q N ,所以[]n n n b a a 对一切正整数n 都成立.因为12nn S a a a ,12n n T b b b ,所以必然存在一个整数()k k N ,使得1a 能被k r 整除,而不能被1k r +整除.又因为111211k k k k a p a a q r++++==,且p 与r 的最大公约数为1.所以2ka Z ,这与n a N (n N )矛盾.zxxk 学科网所以q *∈N . 因此1a N ,q *∈N .【考点定位】1、等比数列的通项公式;2、数列前n 项和;3、充要条件.14.如图,四棱锥P ABCD -中,底面ABCD 是平行四边形,︒=∠90CAD ,PA ⊥平面ABCD ,1PA BC ==,2AB =,F 是BC 的中点.(1)求证:DA ⊥平面PAC ;(2)若以A 为坐标原点,射线AC 、AD 、AP 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,已经计算得)1,1,1(=n 是平面PCD 的法向量,求平面PAF 与平面PCD 所成锐二面角的余弦值. 【答案】(1)参考解析;(2)155【解析】(2)通过平面几何图形性质或者解线性方程组,计算得平面PAF 一个法向量为(1,2,0)m =, 又平面PCD 法向量为(1,1,1)n =,所以||15cos ,5||||m n m n m n ⋅<>==∴所求二面角的余弦值为15.zxxk 学科网 【考点定位】1.线面垂直的证明2.二面角.3.空间向量的运算.4.运算的能力.15.如图,直三棱柱ABC -A 1B 1C 1中,D 、E 分别是棱BC 、AB 的中点,点F 在棱CC 1上,已知AB =AC ,AA 1=3,BC =CF =2.(1)求证:C 1E ∥平面ADF ;(2)设点M 在棱BB 1上,当BM 为何值时,平面CAM ⊥平面ADF? 【答案】(1)见解析(2)当BM =1时【解析】(1)证明:连结CE 交AD 于O ,连结OF.因为CE,AD为△ABC中线,所以O为△ABC的重心,123CF COCC CE==.【考点定位】空间线、面间的位置关系.16.在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为线段BC的中点,E、F为线段AC的三等分点(如图①).将△ABD沿着AD折起到△AB′D的位置,连结B′C(如图②).(1)若平面AB′D⊥平面ADC,求三棱锥B′-ADC的体积;(2)记线段B′C的中点为H,平面B′ED与平面HFD的交线为l,求证:HF∥l;(3)求证:AD⊥B′E.【答案】(1)18(2)见解析(3)见解析【解析】(1)解:在直角△ABC中,D为BC的中点,所以AD=BD=CD.又∠B=60°,所以△ABD是等边三角形.取AD中点O,连结B′O,所以B′O⊥AD.因为平面AB′D⊥平面ADC,平面AB′D∩平面ADC=AD,B′O 平面AB′D,所以B′O⊥平面ADC.在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为BC的所以EO =2232306AE AO AE AOcos ⋅︒+-=. 所以AO 2+EO 2=AE 2.所以AD ⊥EO.又B ′O ⊂平面B ′EO ,EO ⊂平面B ′EO ,B ′O ∩EO =O , 所以AD ⊥平面B ′EO.zxxk 学科网 又B ′E ⊂平面B ′EO ,所以AD ⊥B ′E.【考点定位】1、几何体的体积;2、空间线、面间的位置关系.17.如图,正三棱柱111ABC A B C -所有棱长都是2,D 棱AC 的中点,E 是1CC 棱的中点,AE 交1A D 于点H.(1)求证:AE ⊥平面1A BD ; (2)求二面角1D BA A --的余弦值; (3)求点1B 到平面1A BD 的距离.【答案】(1)参考解析;(2)515;(3)255【解析】(3)点到平面的距离,转化为直线与法向量的关系,再通过解三角形的知识即可得点到平面的距离.本小题关键是应用解三角形的知识.试题解析:(1)证明:建立如图所示,)0,2,1( )0,1,2(1-=--=D A AE)3,0,0(-=BD ∵10AE A D ⋅=0AE BD ⋅=∴BD AE D A AE ⊥⊥,1即AE ⊥A 1D ,AE ⊥BD ∴AE ⊥面A 1BD(2)由⎩⎨⎧=++-=-⇒=⋅=⋅020)3(0 0111111y x z BD n D A n ∴取1(2,1,0)n =【考点定位】1.空间坐标系的建立.2.线面垂直的证明.4.二面角的求法.5.点到平面的距离公式.18.已知点12(1,0),(1,0)F F -分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点2(1,2P 在椭圆上C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线12:,:,l y kx m l y kx m =+=-若1l 、2l 均与椭圆C 相切,试探究在x 轴上是否存在定点M ,点M 到12,l l 的距离之积恒为1?若存在,请求出点M 坐标;若不存在,请说明理由.【答案】(1)1222=+y x ;(2)满足题意的定点B 存在,其坐标为(1,0)-或(1,0) 【解析】试题解析:(1)法一:由12(1,0),(1,0)F F -,得1c =,1分222211211a b a b ⎧⎪⎪+=⎨⎪=+⎪⎩2分 2,1a b ==∴椭圆C 的方程为1222=+y x 4分法二:由12(1,0),(1,0)F F -,得1c =,1分把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=10分 前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±; 综上所述,满足题意的定点B 存在,其坐标为(1,0)-或(1,0)12分【考点定位】1.椭圆的标准方程;2.椭圆的定义;3.两点间的距离公式;4.点到直线的距离公式. 19.如图,已知抛物线x y 42=的焦点为F ,过F 的直线交抛物线于M 、N 两点,其准线l 与x 轴交于K 点.(1)求证:KF 平分∠MKN ;(2)O 为坐标原点,直线MO 、NO 分别交准线于点P 、Q ,求PQ MN +的最小值. 【答案】(1)见解析;(2)8. 【解析】由0444122=--⇒⎩⎨⎧=+=my y xy my x ,∴12124,4y y m y y +==-.4分 设KM 和KN 的斜率分别为21,k k ,显然只需证021=+k k 即可.∵)0,1(-K , ∴0)4)(4()4)((414142121212122221121=++++=+++=+y y y y y y y y y y k k ,6分(2)设M 、N 的坐标分别为221212(,),(,)44y y y y ,由M ,O ,P 三点共线可求出P 点的坐标为)4,1(1y --,由N ,O ,Q 三点共线可求出Q 点坐标为)4,1(2y --,7分 设直线MN 的方程为1+=my x 。
【2015高考复习参考】高三数学(理)配套黄金练习:2.7(含答案)
第二章 2.7 第7课时高考数学(理)黄金配套练习一、选择题1.函数y =ln 1|2x -3|的图象为( )答案 A解析 易知2x -3≠0,即x ≠32,排除C 、D 项.当x >32时,函数为减函数,当x <32时,函数为增函数,所以选A.2.下列函数的图像中,经过平移或翻折后不能与函数y =log 2x 的图象重合的函数是( )A .y =2xB .y =log 12xC .y =4x2 D .y =log 21x +1答案 C3.若函数f (x )在(4,+∞)上为减函数,且对任意的x ∈R ,有f (4+x )=f (4-x ),则( )A .f (2)>f (3)B .f (2)>f (5)C .f (3)>f (5)D .f (3)>f (6) 答案 D解析 依题意,由f (x +4)=f (4-x )知,f (x )的对称轴为x =4,所以f (2)=f (6),f (3)=f (5),由于f (x )在(4,+∞)上是减函数,所以f (3)=f (5)>f (6),选D.4.设a <b ,函数y =(x -a )2(x -b )的图象可能是( )答案 C解析 由解析式可知,当x >b 时,y >0;当x ≤b 时,y ≤0,故选C.5.已知下图①的图象对应的函数为y =f (x ),则图②的图象对应的函数在下列给出的四式中,只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)答案 C6.函数f (x )=11+|x |的图象是( )答案 C解析 本题通过函数图象考查函数的性质.f (x )=11+|x |=.当x ≥0时,x 增大,11+x减小,所以f (x )当x ≥0时为减函数;当x <0时,x 增大,11-x 增大,所以f (x )当x <0时为增函数.本题也可以根据f (-x )=11+|-x |=11+|x |=f (x )得f (x )为偶函数,图象关于y 轴对称,选C. 7.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如下图所示,则函数f (|x |)的图象大致是( )答案 B8.若对任意x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ) A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 答案 B9.f (x )定义域为R ,对任意x ∈R ,满足f (x )=f (4-x )且当x ∈[ 2,+∞)时,f (x )为减函数,则( )A .f (0)<f (1)<f (5)B .f (1)<f (5)<f (0)C .f (5)<f (0)<f (1)D .f (5)<f (1)<f (0) 答案 C解析 ∵f (x )=f (4-x ),∴f (x +2)=f (2-x ). ∴f (x )的图像关于直线x =2对称 又x ∈[2,+∞)时,f (x )为减函数 ∴x ∈(-∞,2]时,f (x )为增函数而f (5)=f (-1),∴f (5)<f (0)<f (1),选C. 二、填空题10.若函数y =(12)|1-x |+m 的图像与x 轴有公共点,则m 的取值范围是________. 答案 -1≤m <0 解析首先作出y =(12)|1-x |的图像(如右图所示),欲使y =(12)|1-x |+m 的图像与x 轴有交点,则-1≤m <0.11.若直线y =x +m 和曲线y =1-x 2有两个不同的交点,则m 的取值范围是________.答案 1≤m < 2解析 曲线y =1-x 2表示x 2+y 2=1的上半圆(包括端点),如图. 要使y =x +m 与曲线y =1-x 2有两个不同的交点,则直线只能在l 1与l 2之间变动,故此1≤m < 2.12.设函数f (x )、g (x )的定义域分别为F 、G ,且F G .若对任意的x ∈F ,都有g (x )=f (x ),则称g (x )为f (x )在G 上的一个“延拓函数”.已知函数f (x )=(12)x (x ≤0),若g (x )为f (x )在R 上的一个延拓函数,且g (x )是偶函数,则函数g (x )的解析式为________.答案 g (x )=2|x |解析 画出函数f (x )=(12)x (x ≤0)的图象关于y 轴对称的这部分图象,即可得到偶函数g (x )的图象,由图可知:函数g (x )的解析式为g (x )=2|x |三、解答题13.作图: (1)y =a |x -1|,(2)y =log |(x -1)|a ,(3)y =|log a (x -1)|(a >1). 答案解析 (1)的变换是:y =a x→y =a |x |→y =a |x -1|,而不是:y =a x →y =a x -1→y =a |x -1|,这需要理解好y =f (x )→y =f (|x |)的交换.(2)题同(1),(3)与(2)是不同的变换,注意区别.14.已知函数f (x )=|x 2-4x +3|(1)求函数f (x )的单调区间,并指出其增减性;(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.解析f(x)=⎩⎨⎧(x -2)2-1,x ∈-∞,1]∪[3,+-(x -)2+1,x ∈,作出图象如图所示.(1)递增区间为[1,2],[3,+∞),递减区间为(-∞,1],[2,3].(2)原方程变形为|x 2-4x +3|=x +a ,于是,设y =x +a ,在同一坐标系下再作出y =x +a 的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +ay =-x 2+4x -3⇒x 2-3x +a +3=0.由Δ=9-4(3+a )=0.得a =-34.由图象知当a ∈[-1,-34]时方程至少有三个不等实根.。
【2015高考复习参考】高三数学(理)配套黄金练习:10-10(含答案)
第十章10.10 第十课时一、选择题1.关于正态曲线性质的叙述:(1)曲线关于直线x=μ对称,这个曲线在x轴上方;(2)曲线关于直线x=σ对称,这个曲线只有当x∈(-3σ,3σ)时才在x轴上方;(3)曲线关于y轴对称,因为曲线对应的正态密度函数是一个偶函数;(4)曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低;(5)曲线的对称轴由μ确定,曲线的形状由σ确定;(6)σ越大,曲线越“矮胖”,σ越小,曲线越“高瘦”.上述说法正确的是()A.只有(1)(4)(5)(6)B.只有(2)(4)(5)C.只有(3)(4)(5)(6) D.只有(1)(5)(6)答案 A2.下列函数是正态密度函数的是()A.f(x)=12πσe(x-μ)22σ2,μ、σ(σ>0)都是实数B.f(x)=2π2πe-x22C.f(x)=12 2πe-x-σ4D.f(x)=-12πex22答案 B解析A中的函数值不是随着|x|的增大而无限接近于零.而C中的函数无对称轴,D中的函数图象在x轴下方,所以选B.3.已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤4)=0.84,则P(ξ≤0)=() A.0.16 B.0.32C.0.68 D.0.84答案 A解析利用正态分布图象的对称性,P(ξ≤0)=1-P(ξ≤4)=1-0.84=0.16.4.已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.6826,则P(X>4)=()A.0.1588 B.0.1587C.0.1586 D.0.1585答案 B解析P(X>4)=12[1-P(2≤X≤4)]=12×(1-0.6826)=0.1587.5.抽样调查表明,某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,已知P(400<ξ<450)=0.3,则P(550<ξ<600)等于() A.0.3B.0.6 C.0.7D.0.4答案 A6.设随机变量ξ~M(μ,σ2),且P(ξ≤C)=P(ξ>C)=P,则P的值为() A.0 B.1C.12D.不确定与σ无关答案 C解析∵P(ξ≤C)=P(ξ>C)=P,∴C=μ,且P=1 2.二、填空题7.已知随机变量x~N(2,σ2),若P(x<a)=0.32,则P(a≤x<4-a)=________.答案0.36解析由正态分布图象的对称性可得:P(a≤x<4-a)=1-2P(x<a)=0.36.8.随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=________.答案0.7解析由题意可知,正态分布的图象关于直线x=1对称,所以P(ξ<2)=P(ξ<0)+P(0<ξ<1)+P(1<ξ<2),又P(0<ξ<1)=P(1<ξ<2)=0.2,所以P(ξ<2)=0.7.9.若随机变量ξ~N(0,1),且ξ在区间(-3,-1)和(1,3)内取值的概率分别为P1,P2,则P1,P2的大小关系为________.答案P1=P2解析如图所示,由正态分布图象的对称性可得,两阴影部分面积相等,即在区间(-3,-1)和(1,3)内取值的概率P1=P2.10.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N(100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案100解析∵数学考试成绩ξ-N(100,σ2),作出正态分布图象,可以看出,图象关于直线x=100对称.显然P(80≤ξ≤100)=P(100≤ξ≤120)=13;∴P(ξ≤80)=P(ξ≥120),又∵P(ξ≤80)+P(ξ≥120)=1-P(80≤ξ≤100)-P(100≤ξ≤120)=13,∴P(ξ≥120)=12×13=16,∴成绩不低于120分的学生约为600×16=100(人).11.若随机变量ξ~N(μ,σ2),则η=ξ-32服从参数为________的正态分布.答案 (μ-32,σ2)解析 ∵ξ~N (μ,σ2),∴Eξ=μ,Dξ=σ2.而η=ξ-32也服从正态分布,即Eη=E (ξ-32)=12Eξ-32=μ-32Dη=D (ξ-32)=14Dξ=σ24∴Dη=σ2服从(μ-32,σ2)的正态分布. 三、解答题12.设X ~N (1,22),试求(1)P (-1<X ≤3);(2)P (3<X ≤5);(3)P (X ≥5). 解析 ∵X ~N (1,22),∴μ=1,σ=2. (1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)=0.6826.(2)∵P (3<X ≤5)=P (-3<X ≤-1),∴P (3<X ≤5)=12[P (-3<X ≤5)-P (-1<X ≤3)] =12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =12×(0.9544-0.6826)=0.1359. (3)∵P (X ≥5)=P (X ≤-3),∴P (X ≥5)=12[1-P (-3<X ≤5)] =12[1-P (1-4<X ≤1+4)] =12[1-P (μ-2σ<X ≤μ+2σ)] =12[1-0.954]=0.023.13.如下图所示,是一个正态曲线,试根据图象写出其正态分布密度曲线的解析式,并求出正态总体随机变量的均值和方差.解析 从给出的正态曲线可知,该正态曲线关于直线x =20对称,最大值为12 π,所以μ=20.由12πσ=12 π,解得σ= 2.于是正态分布密度曲线的解析式是φμ,σ(x)=12πe-(x-20)24,x∈(-∞,+∞).均值和方差分别是20和2.14.灯泡厂生产的白炽灯寿命X(单位:h),已知X~N(1000,302),要使灯泡的平均寿命为1000 h的概率为99.7%,问灯泡的平均寿命应控制在多少小时以上?解析因为灯泡寿命X~N(1000,302)故X在(1000-3×30,1000+3×30)的概率为99.7%,即在(910,1090)内取值的概率为99.7%,故灯泡最低使用寿命应控制在910 h以上.15.某市有210名学生参加一次数学竞赛,随机调阅了60名学生的答卷,成(1)(2)若总体服从正态分布,求此正态曲线近似的密度函数.解析(1)平均成绩x=160(4×6+5×15+6×21+7×12+8×3+9×3)=6,S2=160[6×(4-6)2+15×(5-6)2+21×(6-6)2+12×(7-6)2+3×(8-6)2+3×(9-6)2]=1.5,S=1.22.即样本平均成绩为6分,标准差为1.22.(2)以x=6,S=1.22作为总体学生的数学平均成绩和标准差估计值,即μ=6,σ=1.22.正态曲线密度函数近似地满足y=11.22 2πe-(x-6)22×1.5.拓展练习·自助餐1.若随机变量ξ的密度函数为f(x)=12πe-x22,ξ在(-2,-1)和(1,2)内取值的概率分别为P1,P2,则P1,P2的关系为()A.P1>P2B.P1<P2C.P1=P2D.不确定答案 C解析由题意知,μ=0,σ=1,所以曲线关于x=0对称,根据正态曲线的对称性,可知P1=P2.2.正态总体N(0,49),数值落在(-∞,-2)∪(2,+∞)的概率为()A.0.46 B.0.9974 C.0.03 D.0.0026 答案 D解析P(-2<ξ≤2)=P(0-3×23<ξ≤0+3×23)=P(μ-3σ<ξ≤μ+3σ)=0.9974,∴数值落在(-∞,2)∪(2,+∞)的概率为:1-0.9974=0.0026.3.已知三个正态分布密度函数φi(x)=12πσie-(x-μi)22σ2i(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3D.μ1<μ2=μ3,σ1=σ2<σ3答案 D解析正态分布密度函数φ2(x)和φ3(x)的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x)的对称轴的横坐标值比φ1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x)和φ2(x)的图象一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3.4.设随机变量ξ~N(2,9),若P(ξ>c+1)=P(ξ<c-1),求c的值.解析由ξ~N(2,9)可知,密度函数关于直线x=2对称(如图所示),又P(ξ>c+1)=P(ξ<c-1),故有2-(c-1)=(c+1)-2,∴c=2.。
【2015高考复习参考】高三数学(理)配套黄金练习:9.1(含答案)
第九章 9.1 第1课时高考数学(理)黄金配套练习一、选择题1.已知直线l 的倾斜角为α,且sin α+cos α=15,则直线l 的斜率是( )A .-43B .-34C .-43或-34D .±43答案 A解析 ∵α为倾斜角,∴0≤α<π.∵sin α+cos α=15,∴sin α=45,cos α=-35∴tan α=-43.2.两直线x m -y n =1与x n -y m =1的图象可能是图中的哪一个( )答案 B3.若直线ax +by +c =0,经过第一、二、三象限,则( )A .ab >0且bc >0B .ab >0且bc <0C .ab <0且bc <0D .ab <0且bc >0答案 C解析 显然b ≠0,∴y =-a b x -c b∵直线过一、二、三象限,∴-a b >0,-c b >0∴ab <0且bc <0,故选C4.过点M (1,-2)的直线与x 轴、y 轴分别交于P 、Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0答案 B解析 设P (x 0,0),Q (0,y 0),∵M (1,-2),为线段PQ 中点∴x 0=2 y 0=-4,∴直线PQ 的方程为x 2+y -4=1.即2x -y -4=0.5.直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1答案 D解析 由条件得a +2=a +2a 解之得a =-2或1.6.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32 D.23答案 B解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎨⎧ a +7=2b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13,选B. 二、填空题7.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角α为钝角,则实数a 的取值范围为________.答案 (-2,1)解析 k =tan α=a -12+a<0,∴-2<a <1. 8.直线ax +by +c =0(a ≠0)的倾斜角为α,则直线ax -by +c =0(a ≠0)的倾斜角为__________.答案 π-α9.过点(1,3)作直线l ,若经过点(a,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的l 的条数为________.答案 2解析 解法一 由题意1a +3b =1⇒(a -1)(b -3)=3.有两个解⎩⎨⎧ a =2b =6或⎩⎨⎧a =4b =4解法二 利用斜率相等知3-b 1=31-a⇒(a -1)(b -3)=3. 以下同解法一.10.点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则α的取值范围是________答案 [0,π2)∪[3π4,π)解析 设P (x ,y ),y ′=3x 2-1,∴tan α=3x 2-1∈[-1,+∞).∴0≤α<π2或3π4≤α<π.11.过点P (1,2),在x 轴,y 轴上截距相等的直线方程为______________ 答案 y =2x 或x +y -3=0.解析 设所求直线l 在x 轴,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(1,2),∴l 方程为y =2x ;若a ≠0,设l 方程为x +y =a ,则a =1+2=3,∴l 方程为x +y -3=0.12.直线x +a 2y -a =0(a >0),当此直线在x ,y 轴上的截距和最小时,a 的值为________.答案 2解析 方程可化为x a +y 1a=1,因为a >0,所以截距之和t =a +1a ≥2,当且仅当a=1a ,即a =1时取等号,故a 的值为2.评析 本题考查直线的方程、截距以及由基本不等式求最值等数学基础知识,属于目前高考选择题中典型的小综合题.三、解答题13.一束光线从点P (0,1)出发,射到x 轴上一点A ,经x 轴反射,反射光线过点Q (2,3),求点A 的坐标.解析 Q (2,3)关于x 轴的对称点为Q ′(2,-3)则P 、A 、Q ′三点共线,设A (x 0,0)则-1x 0=1-(-)0-2,∴x 0=12,即 A (12,0) 14.在△ABC 中,已知A (1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.解析 K AC =-2,K AB =23∴AC :y -1=-2(x -1),即2x +y -3=0AB :y -1=23(x -1),即2x -3y +1=0 由⎩⎨⎧ 2x +y -3=03x +2y -3=0得C (3,-3) 由⎩⎨⎧2x -3y +1=0x -2y =0得B (-2,-1) ∴BC :2x +5y +9=0.15.已知实数x ,y 满足2x +y =8(2≤x ≤3),试求2y 2x -5(x ≠52)的取值范围. 解析如图,设P (x ,y ).∵2x +y =8,且2≤x ≤3,∴P (x ,y )在线段AB 上移动.易得A (2,4),B (3,2),因2y 2x -5=y x -52的几何意义是直线MP 的斜率,且M (52,0).∵k MA =-8,k MB =4,由图象知,k MP≤-8或k MP≥4,∴2y2x-5的取值范围是(-∞,-8]∪[4,+∞).。
【2015高考复习参考】高三数学(理)配套黄金练习:2.2(含答案)
第二章 2.2 第2课时高考数学(理)黄金配套练习一、选择题1.函数y =x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先减后增D .先增后减答案 C解析 对称轴为x =3,函数在(2,3]上为减函数,在[3,4)上为增函数.2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 2)-f (x 1)x 2-x 1<0”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)答案 A解析 满足f (x 2)-f (x 1)x 2-x 1<0其实就是f (x )在(0,+∞)上为减函数,故选A. 3.若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,那么实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3答案 B解析 对称轴x =1-a ≥4.∴a ≤-3.4.下列函数中既是偶函数,又是区间[-1,0]上的减函数的是( )A .y =cos xB .y =-|x -1|C .y =ln 2-x 2+xD .y =e x +e -x 答案 D5.函数y =log a (x 2+2x -3),当x =2时,y >0,则此函数的单调递减区间是( )A .(-∞,-3)B .(1,+∞)C .(-∞,-1)D .(-1,+∞)答案 A解析 当x =2时,y =log a (22+2·2-3)∴y =log a 5>0,∴a >1由复合函数单调性知单减区间须满足⎩⎪⎨⎪⎧ x 2+2x -3>0x <-1,解之得x <-3.6.已知奇函数f (x )的定义域为(-∞,0)∪(0,+∞),且不等式f (x 1)-f (x 2)x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立.在下列不等式中,正确的是( )A .f (-5)>f (3)B .f (-5)<f (3)C .f (-3)>f (-5)D .f (-3)<f (-5)答案 C解析 由f (x 1)-f (x 2)x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立,可知,f (x )在(0,+∞)上为增函数,又f (x )为奇函数,故f (x )在(-∞,0)上也为增函数,故选C.7.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的一个递增区间是( )A .(3,8)B .(-7,-2)C .(-2,-3)D .(0,5)答案 B解析 令-2<x +5<3,得:-7<x <-2. 8.已知函数f (x )=⎩⎪⎨⎪⎧ x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案 C解析 y =x 2+4x =(x +2)2-4在[0,+∞)上单调递增;y =-x 2+4x =-(x -2)2+4在(-∞,0)上单调递增.又x 2+4x -(4x -x 2)=2x 2≥0,∴f (2-a 2)>f (a )⇒2-a 2>a ⇒a 2+a -2<0⇒-2<a <1,故选C.9.给定函数①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( )A .①②B .②③C .③④D .①④答案 B解析 ①是幂函数,其在(0,+∞)上为增函数,故此项不符合题意;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因原函数在(0,+∞)上为减函数,故此项符合题意;③中的函数图象是函数y =x -1的图象保留x 轴上方的部分,下方的图象翻折到x 轴上方而得到的,由其图象可知函数符合题意;④中的函数为指数函数,其底数大于1,故其在R 上单调递增,不符合题意,综上可知选择B.二、填空题10.给出下列命题①y =1x 在定义域内为减函数;②y =(x -1)2在(0,+∞)上是增函数;③y =-1x 在(-∞,0)上为增函数;④y =kx 不是增函数就是减函数.其中错误命题的个数有________.答案 3解析 ①②④错误,其中④中若k =0,则命题不成立.11.函数f (x )=|log a x |(0<a <1)的单调递增区间是________.答案 [1,+∞)解析 函数图象如图12.函数f (x )=-x 2+|x |的递减区间是________.答案 ⎣⎢⎡⎦⎥⎤-12,0与⎣⎢⎡⎭⎪⎫12,+∞ 解析 数形结合13.在给出的下列4个条件中, ①⎩⎪⎨⎪⎧ 0<a <1x ∈(-∞,0) ②⎩⎪⎨⎪⎧ 0<a <1x ∈(0,+∞) ③⎩⎪⎨⎪⎧ a >1a ∈(-∞,0) ④⎩⎪⎨⎪⎧a >1x ∈(0,+∞) 能使函数y =log a 1x 2为单调递减函数的是________.(把你认为正确的条件编号都填上).答案 ①④解析 利用复合函数的性质,①④正确.14.若奇函数f (x )在(-∞,0]上单调递减,则不等式f (lg x )+f (1)>0的解集是________.答案 (0,110)解析 因为f (x )为奇函数,所以f (-x )=-f (x ),又因为f (x )在(-∞,0]上单调递减,所以f (x )在[0,+∞)上也为单调递减函数,所以函数f (x )在R 上为单调递减函数.不等式f (lg x )+f (1)>0可化为f (lg x )>-f (1)=f (-1),所以lg x <-1,解得0<x <110.三、解答题15.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.答案 (1)略 (2)0<a ≤1解析 (1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述知0<a ≤1.16.函数f (x )对任意的a 、b ∈R ,都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R 上的增函数;(2)若f (4)=5,解不等式f (3m 2-m -2)<3.答案 (1)略 (2){m |-1<m <43}解 (1)证明:设x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0,∴f (x 2-x 1)>1.f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0.∴f (x 2)>f (x 1).即f (x )是R 上的增函数.(2)∵f (4)=f (2+2)=f (2)+f (2)-1=5,∴f (2)=3,∴原不等式可化为f (3m 2-m -2)<f (2),∵f (x )是R 上的增函数,∴3m 2-m -2<2,解得-1<m <43,故m 的解集为{m |-1<m <43}.拓展练习·自助餐1.函数f (x )=log 0.5(x +1)+log 0.5(x -3)的单调递减区间是( )A .(3,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,-1)答案 A解析由已知易得⎩⎪⎨⎪⎧ x +1>0,x -3>0,即x >3,又0<0.5<1,∴f (x )在(3,+∞)上单调递减.2.设函数f (x )=2x +1x -1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数答案 A解析 当x <0时,-x >0,-(2x +1x )=(-2x )+(-1x )≥2(-2x )·(-1x )=22,即2x +1x ≤-22,2x +1x -1≤-22-1,即f (x )≤-22-1,当且仅当-2x =-1x ,即x =-22时取等号,此时函数f (x )有最大值,选A.3.已知f (x )为R 上的减函数,则满足f (|1x |)<f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案 C解析 由已知得:|1x |>1⇒-1<x <0或0<x <1,故选C.4.函数f (x )=x 2x -1(x ∈R 且x ≠1)的单调增区间是______. 答案 (-∞,0)和(2,+∞)解析 将原函数y =x 2x -1变形为y =(x -1)+1x -1+2 显然x -1在区间(-∞,-1)和(1,+∞)内取值时,函数单调递增,即得x 在区间(-∞,0)和(2,+∞)内取值时,函数单调递增.5.函数f (x )=⎩⎪⎨⎪⎧ ax 2+1,x ≥0(a 2-1)e ax ,x <0在(-∞,+∞)上单调,则a 的取值范围是________.答案 (-∞,- 2 ]∪(1, 2 ]解析 因为f (x )为单调函数,若a >0,则当x ≥0时,f (x )=ax 2+1是单调递增函数,故当x <0时,f (x )也是单调递增函数,又a >0时,e ax 为单调递增函数,所以a 2-1>0,又f (x )在(-∞,+∞)上单调,故还应满足(a 2-1)·e 0≤a ×02+1,即需满足⎩⎪⎨⎪⎧ a >0a 2-1>0⇒1<a ≤2a 2-1≤1同理,当a <0时,满足⎩⎪⎨⎪⎧ a <0a 2-1>0⇒a ≤- 2.a 2-1≥1 综上得1<a ≤2或a ≤- 2.6.已知函数f (x )自变量取值区间A ,若其值域区间也为A ,则称区间A 为f (x )的保值区间.(1)求函数f (x )=x 2形如[n ,+∞)(n ∈R )的保值区间;(2)g (x )=x -ln(x +m )的保值区间是[2,+∞),求m 的取值范围.解析 (1)若n <0,则n =f (0)=0,矛盾.若n ≥0,则n =f (n )=n 2,解得n =0或1,所以f (x )的保值区间为[0,+∞)或[1,+∞).(2)因为g (x )=x -ln(x +m )的保值区间是[2,+∞),所以2+m >0,即m >-2,令g ′(x )=1-1x +m>0,得x >1-m , 所以g (x )在(1-m ,+∞)上为增函数,同理可得g (x )在(-m,1-m )上为减函数.若2≤1-m即m≤-1时,则g(1-m)=2得m=-1满足题意.若m>-1时,则g(2)=2,得m=-1,矛盾.所以满足条件的m值为-1.。
【2015高考复习参考】高三数学(理)配套黄金练习:10-7(含答案)
第十章 10.7 第七课时高考数学(理)黄金配套练习一、选择题1.某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=1)等于( )A .0 B.12C.13D.23答案 D解析 设失败率为p ,则成功率为2p ,分布列为由p +2p =1,得p =13,∴2p =23.2.设随机变量ξ的概率分布列为P (ξ=i )=a (23)i ,i =1,2,3,则a 的值是( )A.1738B.2738C.1719D.2719答案 B解析 1=p (ξ=1)+p (ξ=2)+p (ξ=3) =a [23+(23)2+(23)3] 解得a =2738.3.已知随机变量ξ的分布列为:P (ξ=k )=12k (k =1,2,…).则P (2<ξ≤4)等于( )A.316B.14C.116D.516答案 A解析 P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=123+124=316.二、填空题4.设随机变量X 的概率分布为则P =(|X -3|=1)=答案5 12解析13+m+14+16=1,解得m=14,P(|X-3|=1)=P(X=2)+P(X=4)=14+16=512.5.随机变量则①x=答案①0②0.45③0.456.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则ξ的分布列为________.解析ξ可能取的值为0,1,2,3,P(ξ=0)=C23C24C24C26=15,P(ξ=1)=C13C24+C23C12C14C24C26=715,又P(ξ=3)=C13C24C26=130,∴P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=1-15-715-130=310.∴ξ的分布列为7.盒中装有82个来用,用ξ的分布列.答案解析“ξ=2”所以在取球时已经将原来2个旧球全部取出,∴P(ξ=2)=C22C28=128.“ξ=3”表明原来2个旧球只取1个,∴P(ξ=3)=C16C12C28=37.“ξ=4”表明原来2个旧球1个不取.∴P(ξ=4)=C26C28=1528.三、解答题8.从一批含有13只正品,2只次品的产品中,不放回任取3件,求取得次品数为ξ的分布列.解析本题是超几何分布,可利用超几何分布的概率公式求解.设随机变量ξ表示取出次品的个数,则ξ服从超几何分布,其中N=15,M=2,n=3.它的可能的取值为0,1,2.相应的概率依次为P(ξ=0)=C02C313C315=2235,P(ξ=1)=C12C213C315=1235,P(ξ=2)=C22C113C315=135.所以ξ的分布列为9.某地有A、B、C、D其中只有A到过疫区,B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是12.同样也假定D受A、B和C感染的概率都是13.在这种假定之下,B、C、D中直接..受A感染的人数X就是一个随机变量.写出X 的分布列(不要求写出计算过程).解析随机变量X10.有5元、30元、40元、50元.从中任取3支,若以ξ表示取到的圆珠笔中的最高标价,试求ξ的分布列.解析ξ的可能取值为30,40,50.P(ξ=30)=1C35=110,P(ξ=40)=C23C35=310,P(ξ=50)=C24C35=35,分布列为11.从一批含有10一件一件地抽取产品,设各个产品被抽到的可能性相同,在下列三种情况下,分别求出直到取出合格品为止时所需抽取次数ξ的分布列:(Ⅰ)每次取出的产品都不放回此批产品中;(Ⅱ)每次取出的产品都立即放回此批产品中,然后再取出一件产品;(Ⅲ)每次取出一件产品后总以一件合格品放回此批产品中.解析(Ⅰ)随机变量X的取值为1,2,3,4,且有P(X=1)=1013,P(X=2)=313×1012=526,P(X=3)=313×212×1011=5143,P(X=4)=313×212×111×1010=1286,∴X的分布列为(Ⅱ)Y 的取值为且P (Y =1)=1013,P (Y =2)=313×1013,P (Y =3)=313×313×1013,……,P (Y =n )=(313)n -1×1013,(n =1,2,3……)(Ⅲ)Z 的取值为1,2,3,4且P (Z =1)=1013,P (Z =2)=313×1113=33132P (Z =3)=313×213×1213=72133,P (Z =4)=313×213×113×1313=6133,∴Z 的分布列为12.50名一线教师参加,(1)从这(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机变量ξ的分布列.解析 (1)从50名教师中随机选出2名的方法数为C 250=1225.选出2人使用版本相同的方法数为C 220+C 215+C 25+C 210=350.故2人使用版本相同的概率为:P =3501225=27.(2)∵P (ξ=0)=C 215C 235=317, P (ξ=1)=C 120C 115C 235=60119,P (ξ=2)=C 220C 235=38119, ∴ξ的分布列为13.亚洲联合馆(一)A 片区与C 片区:其中亚洲联合馆(一)包括马尔代夫馆、东帝汶馆、吉尔吉斯斯坦馆、孟加拉馆、塔吉克斯坦馆、蒙古馆等6个展馆;欧洲联合馆(一)包括马耳他馆、圣马力诺馆、列支敦士登馆、塞浦路斯馆等4个展馆.某旅游团拟从亚洲联合馆(一)与欧洲联合馆(一)中的10个展馆中选择4个展馆参观,参观每一个展馆的机会是相同的.(1)求选择的4个展馆中恰有孟加拉馆与列支敦士登馆的概率;(2)记X为选择的4个展馆中包含有亚洲联合馆(一)的展馆的个数,写出X的分布列并求X的数学期望.解析(1)旅游团从亚洲联合馆一与欧游联合馆一中的10个展馆中选择4个展馆参观的总结果数为C410=210,记事件A为选择的4个展馆中恰有孟加拉馆与列支敦士登馆,依题意可知我们必须再从剩下的8个展馆中选择2个展馆,其方法数是C28=28,所以P(A)=28210=215.(2)根据题意可知X可能的取值为0,1,2,3,4.X=0表示只参观欧洲联合馆一中的4个展馆,不参观亚洲联合馆一中的展馆,这时P(X=0)=1C410=1210,X=1表示参观欧洲联合馆一中的3个展馆,参观亚洲联合馆一中的1个展馆,这时P(X=1)=C34C16C410=24210,X=2表示参观欧洲联合馆一中的2个展馆,参观亚洲联合馆一中的2个展馆,这时P(X=2)=C24·C26C410=90210,X=3表示参观欧洲联合馆一中的1个展馆,参观亚洲联合馆一中的3个展馆,这时P(X=3)=C14·C36C410=80210,X=4表示参观亚洲联合馆中的4个展馆,这时P(X=4)=C46C410=15210.所以XX的数学期望为EX=0×1210+1×24210+2×90210+3×80210+4×15210=252105. 拓展练习·自助餐1.某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.解析(1)由题设知,X的可能取值为10,5,2,-3,且P(X=10)=0.8×0.9=0.72,P(X=5)=0.2×0.9=0.18,P(X=2)=0.8×0.1=0.08,P(X=-3)=0.2×0.1=0.02.由此得X(2)设生产的44-n件.由题设知4n-(4-n)≥10,解得n≥14 5,又n∈N,得n=3,或n=4.所以P=C34×0.83×0.2+C44×0.84=0.8192.故所求概率为0.8192.2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1)取出的3件产品中一等品件数X的分布列.(2)取出的3件产品中一等品件数多于二等品件数的概率.解析(1)由于从10件产品中任取3件的结果数为C310,从10件产品中任取3件,其中恰有k件一等品的结果数为C k3C3-k7,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)=C k3C3-k7C310,k=0,1,2,3.所以随机变量X(2)设“取出的3”为事件A.“恰好取出1件一等品和2件三等品”为事件A1,“恰好取出2件一等品”为事件A2,“恰好取出3件一等品”为事件A3.由于事件A1,A2,A3彼此互斥,且A=A1∪A2∪A3,而P(A1)=C13C23C310=340,P(A2)=P(X=2)=740,P(A3)=P(X=3)=1120,所以取出的3件产品中一等品件数多于二等品件数的概率为P(A)=P(A1)+P(A2)+P(A3)=340+740+1120=31120.3.一个盒子中装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sin x,f5(x)=cos x,f6(x)=2.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行.求抽取次数ξ的分布列和数学期望.解析(1)记事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,所以P(A)=C23C26=15.(2)ξ可取1,2,3,4.P(ξ=1)=C13C16=12,P(ξ=2)=C13C16·C13C15=310,P(ξ=3)=C13C16·C12C15·C13C14=320,P (ξ=4)=C 13C 16·C 12C 15·C 11C 14·C 13C 13=120; 故ξ的分布列为Eξ=1×12+2×310+3×320+4×120=74.答:ξ的数学期望为74.4.某地区试行高考改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是13,每次测试时间间隔合理,且每次测试通过与否互相独立.(1)求该生考上大学的概率; (2)如果考上大学或参加完5次测试就结束高考,记该生参加测试的次数为X ,求X 的分布列及X 的数学期望.解析 (1)记“该生考上大学”为事件A ,其对立事件为A -,则P (A -)=C 15×(13)×(23)4+(23)5=112243,∴P (A )=1-112243=131243.(2)参加测试的次数X 的可能取值为2,3,4,5,P (X =2)=(13)2=19, P (X =3)=C 12×13×23×13=427,P (X =4)=C 13×13×(23)2×13=427,P (X =5)=C 14×13×(23)3+(23)4=1627.故X 的分布列为:EX =2×19+3×427+4×427+5×1627=389.即该生考上大学的概率为131243,所求数学期望是389.。
【2015高考复习参考】高三数学(理)配套黄金练习:8.8(含答案)
第八章 8.8 第8课时高考数学(理)黄金配套练习一、选择题1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120° 答案 B解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系. 设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF→=(0,-1,1),BC 1→=(2,0,2) ∴EF →·BC 1→=2,记EF →,BC 1→所成为θ 则cos θ=22×22=12.∴EF 和BC 1所成角为60°.2.在直角坐标系中,A (-2,3),B (3,-2),沿x 轴把直角坐标系折成120°的二面角,则AB 的长度为( )A. 2 B .211 C .3 2 D .4 2 答案 B解析 设A 、B 在x 轴上的射影分别为C 、D ,则AC =3,BD =2,CD =5,又AB →=AC →+CD →+DB →,AC →,DB →所夹的角为60°易求得|AB→|=(AC →+CD →+DB →)2=211.3.如右图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于( )A.105B.155C.45D.23 答案 B解析 本题考查空间向量的运算.设正方体的边长为2,建立如右图所示的坐标系,O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1),∴cos <FD 1→,OE →> =FD 1→·OE →|FD 1→|·|OE →|=1+0+25·3=155.4.已知二面角α—l —β的大小为60°,m 、n 为异面直线,且m ⊥α,n ⊥β,由m 、n 所成的角为( )A .30°B .60°C .90°D .120° 答案 B解析 画出图形可得B 正确. 5.如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足为A ′、B ′,则AB:A ′B ′等于( )A .2:1B .3:1C .3:2D .4:3 答案 A解析 在Rt △ABB ′中,AB ′=AB ·sin π4=22AB .在Rt △ABA ′中,AA ′=AB ·sin π6=12AB .在Rt △AA ′B ′中,A ′B ′=AB ′2-AA ′2=12AB . ∴AB :A ′B ′=2:1. 6.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 、F 分别是BC 、DD 1的中点,则B 1到平面ABF 的距离为( )A.33B.55C.53D.255 答案 D解析 建立如图所示的空间直角坐标系,则A (1,0,1),B 1(1,1,0),设F (0,0,12),E (12,1,1),B (1,1,1)AB →=(0,1,0),B 1E →=(-12,0,1),AF →=(-1,0,-12).∵AF →·B 1E →=(-1,0,-12)·(-12,0,1)=0, ∴AF →⊥B 1E →,又AB →⊥B 1E →,∴B 1E →⊥平面ABF ,平面ABF 的法向量为B 1E →=(-12,0,1),AB 1→=(0,1,-1). B 1到平面ABF 的距离为⎪⎪⎪⎪⎪⎪⎪⎪AB 1→·B 1E →|B 1E →|=255. 7.等腰Rt △ABC 中,AB =BC =1,M 为AC 中点,沿BM 把它折成二面角,折后A 与C 的距离为1,则二面角C —BM —A 的大小为( )A .30°B .60°C .90°D .120° 答案 C解析 如图,由AB =BC =1, ∠ABC =90°,得AC = 2.∵M 为AC 中点,∴MC =AM =22, 且CM ⊥BM ,AM ⊥BM .∴∠CMA 为二面角C -BM -A 的平面角.∵AC =1,MC =MA =22,∴∠CMA =90°.8.已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,CC 1=2,则直线BC 1和平面DBB 1D 1所成角的正弦值为( )A.32B.52C.105D.1010 答案 C解析 连结A 1C 1交B 1D 1于O 点,由已知条件得C 1O ⊥B 1D 1,且平面BDD 1B 1⊥平面A 1B 1C 1D 1,所以C 1O ⊥平面BDD 1B 1.连结BO ,则BO 为BC 1在平面BDD 1B 1上的射影,∠C 1BO 即为所求,OC 1=12A 1C 1=12AC =22,BC 1=42+22=2 5.通过计算得sin ∠C 1BO =OC 1BC 1=105.9.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( )A.23B.33C.23D.63 答案 D解析 B B 1与平面ACD 1所成的角等于DD 1与平面ACD 1所成的角,在三棱锥D -ACD 1中,由三条侧棱两两垂直得点D 在底面ACD 1内的射影为等边三角形ACD 1的垂心即中心H ,连接D 1H ,DH ,则∠DD 1H 为DD 1与平面ACD 1所成的角,设正方体棱长为a ,则cos ∠DD 1H =63a a =63,故选D二、填空题10.正四棱锥S —ABCD 的侧棱长为2,底面的边长为3,E 是SA 的中点,则异面直线BE 和SC 所成的角等于________.答案 60°解析 建立如图所示空间直角坐标系,由于AB =3,SA =2,可以求得SO =22.B (32,32,0),A (32,-32,0), C (-32,32,0),S (0,0,22). 由于E 为SA 的中点,∴E (34,-34,24), ∴BE→=(-34,-334,24),SC →=(-32,32,-22), ∵BE →·SC→=-1,|BE →|=2,|SC →|= 2. ∴cos BE →,SC →=-12×2=-12,BE →,SC →=120°.∴异面直线BE 与SC 所成的角为60°. 三、解答题11.已知:正四棱柱ABCD —A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别为棱AB 、BC 的中点.(1)求证:平面B 1EF ⊥平面BDD 1B 1; (2)求点D 1到平面B 1EF 的距离. (1)证明建立如右图所示的空间直角坐标系,则D (0,0,0), B (22,22,0),E (22,2,0), F (2,22,0),D 1(0,0,4), B 1(22,22,4).EF→=(-2,2,0),DB →=(22,22,0),DD 1→=(0,0,4), ∴EF →·DB →=0,EF →·DD 1→=0. ∴EF ⊥DB ,EF ⊥DD 1,DD 1∩BD =D , ∴EF ⊥平面BDD 1B 1.又EF ⊂平面B 1EF ,∴平面B 1EF ⊥平面BDD 1B 1.(2)解析 由(1)知D 1B 1→=(22,22,0),EF →=(-2,2,0),B 1E →=(0,-2,-4) 设平面B 1EF 的法向量为n ,且n =(x ,y ,z )则n ⊥EF →,n ⊥B 1E →即n ·EF →=(x ,y ,z )·(-2,2,0)=-2x +2y =0, n ·B 1E →=(x ,y ,z )·(0,-2,-4)=-2y -4z =0,令x =1,则y =1,z =-24,∴n =(1,1,-24),∴D 1到平面B 1EF 的距离d =|D 1B 1→·n ||n |=|22+22|12+12+(-24)2=161717.12.如图,在五面体ABCDEF 中,四边形ADEF 是正方形,F A ⊥平面ABCD ,BC ∥AD ,CD =1,AD =22,∠BAD =∠CDA =45°.(1)求异面直线CE 与AF 所成角的余弦值; (2)证明:CD ⊥平面ABF ;(3)求二面角B -EF -A 的正切值. 解析 (1)因为四边形ADEF 是正方形,所以F A ∥ED .故∠CED 为异面直线CE 与AF 所成的角.因为F A ⊥平面ABCD ,所以F A ⊥CD ,故ED ⊥CD .在Rt △CDE 中,CD =1,ED =22,CE =CD 2+ED 2=3,故cos ∠CED =EDCE =223.所以异面直线CE 与AF 所成角的余弦值为223. (2)过点B 作BG ∥CD ,交AD 于点G ,则∠BGA =∠CDA =45°.由∠BAD =45°,可得BG ⊥AB .从而CD ⊥AB .又CD ⊥F A ,F A ∩AB =A ,所以CD ⊥平面ABF .(3)由(2)及已知,可得AG = 2.即G 为AD 的中点.取EF 的中点N ,连接GN .则GN ⊥EF .因为BC ∥AD ,所以BC ∥EF .过点N 作NM ⊥EF ,交BC 于M ,则∠GNM 为二面角B -EF -A 的平面角.连接GM ,可得AD ⊥平面GNM ,故AD ⊥GM .从而BC ⊥GM .由已知,可得GM =22.由NG ∥F A ,F A ⊥GM ,得NG ⊥GM .在Rt △NGM 中,tan ∠GNM =GM NG =14.所以二面角B -EF -A 的正切值为14. 13.如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成的角的余弦值; (Ⅲ)是否存在点E 使得二面角A -DE -P 为直二面角?并说明理由. 解析解法一 (Ⅰ)∵P A ⊥底面ABC , ∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC ,∴BC ⊥平面P AC , (Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(Ⅰ)知,BC ⊥平面P AC , ∴DE ⊥平面P AC ,垂足为点E ,∴∠DAE 是AD 与平面P AC 所成的角. ∵P A ⊥底面ABC ,∴P A ⊥AB .又P A =AB ,∴△ABP 为等腰直角三角形,∴AD =12AB .在Rt △ABC 中,∠ABC =60°.∴BC =12AB ,∴Rt △ADE 中,sin DAE =DE AD =BC 2AD =24,∴cos ∠DAE =144. (Ⅲ)∵DE ∥BC ,又由(Ⅰ)知,BC ⊥平面P AC , ∴DE ⊥平面P AC .又∵AE ⊂平面P AC ,PE ⊂平面P AC , ∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°,∴在棱PC 上存在一点E ,使得AE ⊥PC . 这时,∠AEP =90°.故存在点E 使得二面角A -DE -P 是直二面角.解法二 如图,以A 为原点建立空间直角坐标系A -xyz .设P A =a ,由已知可得A (0,0,0),B (-12a ,32a,0),C (0,32a,0),P (0,0,a ).(Ⅰ)∵AP→=(0,0,a ),BC →=(12a,0,0), ∴BC →·AP →=0,∴BC ⊥AP . 又∵∠BCA =90°,∴BC ⊥AC , ∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC , ∴E 为PC 的中点,∴D (-14a ,34a ,12a ),E (0,34a ,12a ). 又由(Ⅰ)知,BC ⊥平面P AC , ∴DE ⊥平面P AC ,垂足为点E ,∴∠DAE 是AD 与平面P AC 所成的角. ∵AD→=(-14a ,34a ,12a ),AE →=(0,34a ,12a ), ∴cos DAE =AD →·AE →|AD →|·|AE →|=144.(Ⅲ)同解法一. 14.已知等腰直角三角形RBC ,其中∠RBC =90°,RB =BC =2.点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△P AD 位置.(1)求证:BC ⊥PB ;(2)求二面角A -CD -P 的余弦值. 解析 (1)∵点A 、D 分别是RB 、RC 的中点,∴AD ∥BC 且AD =12BC .∴∠P AD =∠RAD =∠RBC =90°, ∴P A ⊥AD 又P A ⊥AB ,DA ∩AB =A ∴P A ⊥面ABCD ,∴P A ⊥BC∵BC ⊥AB ,P A ∩AB =A ,∴BC ⊥平面P AB . ∵PB ⊂平面P AB ,∴BC ⊥PB .(2)法一:取RD 的中点F ,连结AF 、PF . ∵RA =AD =1,∴AF ⊥RC .又由(1)知P A ⊥面ABCD ,而RC ⊂平面ABCD , ∴P A ⊥RC .∵AF ∩P A =A , ∴RC ⊥平面P AF .∴∠AFP 是二面角A -CD -P 的平面角.在Rt △RAD 中,AF =12RD =12RA 2+AD 2=22,在Rt △P AF 中,PF =P A 2+AF 2=62,∴cos ∠AFP =AF PF =2262=33.∴二面角A -CD -P 的余弦值是33.法二:建立如图所示的空间直角坐标系A -xyz ,则D (-1,0,0),C (-2,1,0),P (0,0,1).∴DC→=(-1,1,0),DP →=(1,0,1),设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DC →=-x +y =0n ·DP →=x +z =0,令x =1,得y =1,z =-1,∴n =(1,1,-1). 显然,P A →是平面ACD 的一个法向量P A →=(0,0,-1).∴cos 〈n ,P A →〉=|n ·P A →||n |·P A →|=13×1=33∴二面角A -CD -P 的余弦值是33. 15.如图,在五棱锥P -ABCDE 中,P A ⊥平面ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC =45°,AB =22,BC =2AE =4,三角形P AB 是等腰三角形.(1)求证:平面PCD ⊥平面P AC ;(2)求直线PB 与平面PCD 所成角的大小; (3)求四棱锥P -ACDE 的体积.解析 (1)证明:在ΔABC 中,因为∠ABC =45°,BC =4,AB =22,所以AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=8,因此AC =22,故BC 2=AC 2+AB 2 所以∠BAC =90°.又P A ⊥平面ABCDE ,AB ∥CD , 所以CD ⊥P A ,CD ⊥AC ,又P A ,AC ⊂平面P AC ,且P A ∩AC =A , 所以CD ⊥平面P AC ,又CD ⊂平面PCD , 所以平面PCD ⊥平面P AC .(2)解法一:因为ΔP AB 是等腰三角形, 所以P A =AB =22, 因此PB =P A 2+AB 2=4. 又AB ∥CD ,所以点B 到平面PCD 的距离等于点A 到平面PCD 的距离, 由于CD ⊥平面P AC ,在Rt ΔP AC 中,P A =22,AC =22, 所以PC =4,故PC 边上的高为2,此即为点A 到平面PCD 的距离. 设直线PB 与平面PCD 所成的角为θ,则sin θ=h PB =24=12,又θ∈[0,π2],所以θ=π6.解法二:由(1)知AB ,AC ,AP 两两相互垂直,分别以AB 、AC 、AP 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由于ΔP AB 是等腰三角形,所以P A =AB =22, 又AC =22,因此A (0,0,0),B (22,0,0), C (0,22,0),P (0,0,22), 因为AC ∥ED ,CD ⊥AC ,所以四边形ACDE 是直角梯形, 因为AE =2,∠ABC =45°,AE ∥BC ,所以∠BAE =135°, 因此∠CAE =45°,故CD =AE ·sin 45°=2×22=2, 所以D (-2,22,0). 因此C P →=(0,-22,22),C D →=(-2,0,0), 设m =(x ,y ,z )是平面PCD 的一个法向量,则m ·CP →=0,m ·CD →=0,解得x =0,y =z , 取y =1,得m =(0,1,1), 又BP →=(-22,0,22),设θ表示向量BP →与平面PCD 的法向量m 所成的角,则cos θ=m ·BP →|m ||BP →|=12,所以θ=π3,因此直线PB 与平面PCD 所成的角为π6. (3)因为AC ∥ED ,CD ⊥AC , 所以四边形ACDE 是直角梯形, 因为AE =2,∠ABC =45°,AE ∥BC , 所以∠BAE =135°,因此∠CAE =45°,故CD =AE ·sin 45°=2×22=2,ED =AC -AE ·cos 45°=22-2×22=2,所以S 四边形ACDE =2+222×2=3.又P A ⊥平面ABCDE ,所以V P -ACDE =13×3×22=2 2.拓展练习·自助餐1.以等腰Rt △ABC 的斜边BC 上的高AD 为折痕,将△ABC 折起(如图),使折起后的△ABC 恰好为等边三角形.M 为高AD 的中点,则直线AB 与CM 所成角的余弦值为( )A.22B.66C.1010 D .-1010 答案 C 解析设直角边AB =AC =2,则BC =2 2. 取BD 中点N ,连结MN ,则MN ∥AB ,所以∠NMC 即为所求.∵MN =12AB =1,MC =102=NC ,在△NCM 中,由余弦定理可得cos ∠NMC =1010.2.在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( )A .30°B .45°C .60°D .90° 答案 C解析 如图是三棱柱ABC -A 1B 1C 1,不妨设各棱长为1.取BC 的中点E ,连接AE ,DE ,∵CC 1⊥底面ABC ,∴侧面BB 1C 1C ⊥底面ABC ,又E 为BC 的中点,且△ABC 为正三角形,∴AE ⊥BC ,由两平面垂直的性质定理知,AE ⊥平面BB 1C 1C ,∴∠ADE 的大小就是AD 与平面BB 1C 1C 所成角的大小.容易计算∠ADE =60°.3.如图,在正方体ABCD -A 1B 1C 1D 1中,P 为棱AB 上一点,过P 点在空间作直线l ,使l 与面ABCD 和ABC 1D 1均成30°角,则这样的直线的条数为( )A .1B .2C .3D .4 答案 B解析 由于二面角C 1-AB -C 的大小为45°,所以可在二面角内过棱上一点P 作两条直线.均能与平面ABCD 和ABC 1D 1成30°角.4.P 是二面角α-AB -β棱上的一点,分别在α、β平面上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________.答案 90°解析 不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F ,如图: ∵∠EPM =∠EPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN→-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF→ =ab cos60°-a ×22b cos45°-22ab cos45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α-AB -β的大小为90°. 另外,本题也可不用向量法,由二面角的定义求解. 5.如右图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥底面ABCD ,SA =AB =BC =1,AD =12.求面SCD 与面SBA 所成二面角的余弦值.解析 以A 为坐标原点,BA 、AD 、AS 所在直线分别为x 、y 、z 建立如图所示的空间直角坐标系,则S (0,0,1),C (-1,1,0),D (0,12,0).∴SC→=(-1,1,-1),SD →=⎝ ⎛⎭⎪⎫0,12,-1.设平面SCD 的法向量为n =(x ,y ,z ).∵n ⊥SC→,n ⊥SD →, ∴n ·SC →=0,n ·SD →=0. 即⎩⎪⎨⎪⎧-x +y -z =0,y 2-z =0.解得x =z ,y =2z .令z =1,则n =(1,2,1).又∵平面SAB 的法向量为AD →=⎝ ⎛⎭⎪⎫0,12,0, ∴cos 〈n ,AD →〉=n ·AD →|n |·|AD →|=0+1+06×12=63.由题意知,二面角为锐角,所以二面角的大小等于两法向量的夹角.∴所求二面角的大小为arccos 63. 6.如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°,E 为线段AB 的中点,将△ADE 沿直线DE 翻折成△A ′DE ,使平面A ′DE ⊥平面BCD ,F 为线段A ′C 的中点.(1)求证:BF ∥平面A ′DE ;(2)设M 为线段DE 的中点,求直线FM 与平面A ′DE 所成角的余弦值.解析(1)取A ′D 的中点G ,连结GF ,GE ,由条件易知FG ∥CD ,FG =12CD ,BE ∥CD ,BE =12CD ,所以FG ∥BE ,FG =BE ,故四边形BEGF 为平行四边形, 所以BF ∥EG .因为EG ⊂平面A ′DE ,BF ⊄平面A ′DE , 所以BF ∥平面A ′DE .(2)在平行四边形ABCD 中,设BC =a ,则AB =CD =2a ,AD =AE =EB =a ,连CE ,因为∠ABC =120°,在△BCE 中,可得CE =3a ,在△ADE 中,可得DE =a , 在△CDE 中,因为CD 2=CE 2+DE 2,所以CE ⊥DE , 在正三角形A ′DE 中,M 为DE 中点,所以A ′M ⊥DE . 由平面A ′DE ⊥平面BCD ,可知A ′M ⊥平面BCD ,A ′M ⊥CE .取A ′E 的中点N ,连结NM ,NF ,所以NF ⊥DE ,NF ⊥A ′M . 因为DE 交A ′M 于M ,所以NF ⊥平面A ′DE , 则∠FMN 为直线FM 与平面A ′DE 所成角.在Rt △FMN 中,NF =32a ,MN =12a ,FM =a ,则cos ∠FMN =12,所以直线FM 与平面A ′DE 所成角的余弦值为12. 7.如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,CF =AB =2CE ,AB ∶AD ∶AA 1=1∶2∶4.(1)求异面直线EF 与A 1D 所成角的余弦值; (2)证明AF ⊥平面A 1ED ;(3)求二面角A 1-ED -F 的正弦值.解析 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =1,依题意得D (0,2,0),F (1,2,1),A 1(0,0,4),E (1,32,0).(1)易得EF →=(0,12,1),A 1D →=(0,2,-4). 于是cos EF →,A 1D →=EF →·A 1D →|EF →||A 1D →|=-35.所以异面直线EF 与A 1D 所成角的余弦值为35.(2)连接ED ,易知AF →=(1,2,1),EA 1→=(-1,-32,4),ED →=(-1,12,0),于是AF →·EA 1→=0,AF →·ED→=0.因此,AF ⊥EA 1,AF ⊥ED .又EA 1∩ED =E , 所以AF ⊥平面A 1ED .(3)设平面EFD 的一个法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·EF →=0,u ·ED →=0,即⎩⎪⎨⎪⎧12y +z =0,-x +12y =0.不妨令x =1,可得u =(1,2,-1).由(2)可知,AF →为平面A 1ED 的一个法向量. 于是cos <u ,AF →>=u ·AF →|u ||AF →|=23,从而sin <u ,AF→>=53.所以二面角A 1-ED -F 的正弦值为53.教师备选题1.将正方形ABCD 沿对角线BD 折成一个120°的二面角,点C 到达C 1点,这时异面直线AD 与BC 1所成角的余弦值是( )A .-34B .-34 C.34 D.34 答案 D解析 如图,设正方形边长为1,则BC =BC 1=1.∵AD ∥BC ,∴∠CBC 1就是异面直线AD 与BC 1所成的角.在△BC 1C 中,CC 1=22,使用余弦定理,即可得出cos ∠CBC 1=34.2.如图所示,已知四面体顶点A (2,3,1),B (4,1,-2),C (6,3,7)和D (-5,-4,8),求从顶点D 所引的四面体的高h =________.答案 11解析 由题意知AB→=(2,-2,-3),AC→=(4,0,6),DA →=(7,7,-7). 设平面ABC 的法向量为n =(x ,y ,z ),则由AB →·n =0及AC →·n =0得⎩⎨⎧2x -2y -3z =04x +6z =0⇒⎩⎪⎨⎪⎧x =-32z ,y =-3z . 令z =2,则有n =(-3,-6,2).又∵DA →·n =(7,7,-7)·(-3,-6,2)=-77.而|n |=7,∴h =|DA →·n ||n |=11. 3.如图所示,ABCD —EFGH 为边长等于1的正方体,若点P 在正方体的内部且满足AP →=34AB →+12AD →+23AE →.则点P 到直线AB 的距离为________.答案 56 解析建立空间坐标系,则B (0,1,0),D (-1,0,0),A (0,0,0),E (0,0,1), AP→=34AB →+12AD →+23AE → =(-12,34,23),P 点到AB 的距离为(-12)2+(23)2=56.。
专题01 经典母题30题-数学(理)走出题海之黄金30题系列
母题1【集合运算】(2016甲卷理2)已知集合{123}A =,,,{|(1)(2)0}B x x x x =+-<∈Z ,,则AB =( ).A.{}1B.{12},C.{}0123,,,D.{10123}-,,,, 【答案】C【解析】 因为()(){}120Z B x x x x =+-<∈,{}12Z x x x =-<<∈,,所以{}01B =,,所以{}0123A B =,,,.故选C.母题2【充分条件和必要条件】(2016四川理7)设p :实数,y 满足22(1)+(1)2x y --;:实数,y 满足111yx yx y -⎧⎪-⎨⎪⎩,则p 是的( ). A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 【答案】A母题3【函数的性质】(2016甲卷理12)已知函数()()f x x ∈R 满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1miii x y =+=∑( ).A. B.m C. 2m D. 4m 【答案】B【解析】 由()()2f x f x -=-得,()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,所以对于每一组对称点有0i i x x '+=,=2i i y y '+,所以()111m m mi i i ii i i x y x y ===+=+=∑∑∑022mm +⋅=.故选B. 母题4【函数的图象】(2016乙卷理7)函数22e xy x =-在[]2,2-的图像大致为( ).-221Oxy-221Oxy -221Oxy -221OxyA. B. C.D.【答案】D 分析 对于函数图像识别题一般是利用函数性质排除不符合条件的选项.母题5【三角形函数的图象和性质】(2016全国乙理12)已知函数π()sin()0,2f x x ωϕωϕ⎛⎫=+> ⎪⎝⎭,π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π1836⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ). A.11 B. C. D. 【答案】B【解析】 依题意,可得()π2124T k =⋅+,k ∈N ,且5ππ36182T-,即π6T . 故2112k +,k ∈N ,即112k,k ∈N .当5k =时,2π11T =.又ππ2π3π5π184114436<-=<,因此()f x 在π5π,1836⎛⎫⎪⎝⎭上不单调.当4k =时,2π9T =,且π2πππ5π,49361836⎛⎫-=∉ ⎪⎝⎭.又ππ5ππ5π,49361836⎛⎫-=∉ ⎪⎝⎭,因此()f x 在π5π,1836⎛⎫⎪⎝⎭上单调,则ω的最大值为9.故选B. 母题6【平面向量数量积】(2016天津理7)已知ABC △是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ).A. 58-B.18C.14D.118【答案】B【解析】 由题意作图,如图所示.则()AF BC AE EF BC ⋅=+⋅=111cos60448AC BC ⋅==.故选B.FEDCBA母题7【内切球】(2016全国丙理10)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( ). A.4π B.9π2C.6πD.32π3【答案】B【解析】 如图所示,假设在直三棱柱111ABC A B C -中,有一个球与平面11ABB A ,平面11BCC B ,平11AAC C 面相切,其俯视图如图所示.设其球的半径为,则16822,11(6810)22ABC ABCS r C ⨯⨯===⨯++△△且123r AA =,得32r.因此,直三棱柱内球的半径最大值为32,则33max 4439πππ3322V r ⎛⎫=== ⎪⎝⎭.故选B.母题8【平面与平面平行的判定】(2016全国乙理11)平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,所成角的正弦值为( ). A.32 B.22 C. 33 D.13【答案】AABCDA 1B 1C 1D 1EFD 1C 1B 1A 1DCBAB ACC 1B 1A 1CBA母题9【直线和双曲线位置关系】2016天津理6)已知双曲线()2224=10y b bx ->,以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ).A.22443=1y x - B.22344=1y x - C.2244=1y x - D.2224=11x y - 【答案】D【解析】 根据对称性,不妨设A 在第一象限,(),A A A x y ,联立2242x y b y x⎧+=⎪⎨=⎪⎩,得2244,244b A b b ⎛⎫⋅ ⎪++⎝⎭.所以216422A A b b x y b =⋅=+,得212b =. 故双曲线的方程为2224=11x y -.故选D. 母题10【直线和抛物线位置关系】(2016四川理8)设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( ). A.33 B.23C.22D. 母题11【程序框图】(2016全国丙理7)执行右图的程序框图,如果输入的4,6a b ==,那么输出的n =( ).A. B. C. D.停止s=s +a ,n =n +1b =b-an =0,s =0否a =b-a输入a ,b开始s >16输出n是a =b+a【答案】B母题12【排列和组合】(2016全国甲理5)如图所示,小明从街道的E 处出发,先到处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( ).A.24B.18C.12D.9【答案】B【解析】 从→E F 的最短路径有种走法,从→F →G 的最短路径有种走法,由乘法原理知,共6318⨯=种走法.故选B .母题13【几何概型】(2016全国乙理4)某公司的班车在7:00,8:00,8:30发车,学.小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ). A. B.12 C.23 D. 34【答案】B母题14【复数的运算及概念】(2016全国乙理2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( ).23【答案】B【解析】 由()1i 1i x y +=+,得1x y ==,所以i 1i 2x y +=+=故选B.母题15【导数的几何意义】(2016甲卷理16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线()ln 1y x =+的切线,则b = . 【答案】1ln2-【解析】 ln 2y x =+的切点为()11ln +2x x ,,则它的切线为111ln 1y x x x =⋅++.()ln 1y x =+的切点为()22ln +2x x ,,则它的切线为:()22221ln 111xy x x x x =++-++, 所以()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,212x =-,所以1ln 11ln 2b x =+=-.母题16【二项式定理】(2016全国乙理14)()52x x+的展开式中,3x 的系数是 (用数字填写答案). 【解析】()52x x+的展开式的通项公式为()()55555221555C 2C 2C 20,1,,5k k k kkkk kk kk T x x xxk -+----+====.令532k -=,得4k =.故3x 的系数是4545C 210-=. 母题17【直线和圆】(2016全国丙理16)已知直线:330l mx y m ++-=与圆2212x y +=交于A ,B 两点,过A ,B 分别做的垂线与轴交于C ,D 两点,若23AB =,则CD =__________________.【解析】 解法一:根据直线与圆相交弦长公式有22223AB r d =-=,得223r d -=,又212r =,得3d =.因此圆心()0,0O 到直线:330mx y m ++-=的距离23331m d m -==+,解得3.3m =-因此直线的方程为3233y x =+.所以直线的倾斜角为30.如图所示,过点C 作CE BD ⊥于点E ,A DCxOy E B则234cos30cos3032CE AB CD ====.母题18【线性规划】(2016全国乙卷理16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用个工时;生产一件产品需要甲材料0.5kg ,乙材料0.3kg ,用个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元,该企业现有甲材料150kg ,乙材料90kg ,则在不超过600个工时的条件下,生产产品A ,产品B 的利润之和的最大值为 元.【答案】216000母题19【平面向量坐标运算】(2016全国乙理13)设向量(,1)m =a ,(1,2)=b ,且222+=+a b a b ,则m = .【答案】2-【解析】 因为()2222222222==++=++=+a +b a +b a b ab a b ab a b ,故20=ab ,即0=ab .所以()(),11,220m m =⋅=+=ab ,得2m =-.母题20【等比数列通项公式和性质】(2016全国乙理15)设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 .【答案】64解法一:由1n a ,得4112n -⎛⎫⎪⎝⎭,得4n,且41a =.故当3n =或时,12n a a a 取得最大值, 即()321121231234max11164222n a a a a a a a a a a ---⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.解法二:()()211720121221211822n n n n n n nn a a a a q--+++++-⎛⎫==⋅= ⎪⎝⎭.故当3n =或时,12n a a a 取得最大值6264=.母题21【立体几何与空间向量】【2014高考北京理第17题】如图,正方体MADE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF与棱FD ,PC 分别交于G ,H . (1)求证:FG AB //;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.△的内角A,B,C的对边分别为a,,,已母题22【解三角形】(2016全国乙理17)ABC知2cos (cos cos ).C a B+b A c = (1)求C ; (2)若7c =,ABC △的面积为332,求ABC △的周长. 【解析】(1)由已知及正弦定理得,2cos (sin cos sin cos )sin C A B B A C +=,即2cos sin()sin C A B C +=,故2sin cos sin C C C =,可得1cos 2C =,所以3C π=.母题23【等差数列通项公式和数列求和】(2016全国甲理17)n S 为等差数列{}n a 的前项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg 991=.(1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和.【解析】 (1)设{}n a 的公差为,74728S a ==,所以44a =,所以4113a a d -==,所以1(1)n a a n d n =+-=.所以[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101lg lg1012b a ===.(2)当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =. 所以1000121000=T b b b =++⋅⋅⋅+[][][]121000lg lg lg =a a a ++⋅⋅⋅+091902900311893⨯+⨯+⨯+⨯=.母题24【数列递推公式和数列求和】(2016山东理18)已知数列{}n a 的前项和238n S n n =+,{}n b 是等差数列,且1.n n n a b b +=+(1)求数列{}n b 的通项公式;(2)令1(1).(2)n n n nn a c b ++=+求数列n C 的前项和n T .【解析】 (1)由题意知当2n 时,165n n n a S S n -=-=+,当1n =时,1111a S ==,所以()*65n a n n =+∈N .设数列{}n b 的公差为d,由112223a b b a b b ⎧⎨⎩=+=+,即111121723b db d=+⎧⎨=+⎩,解得14b =,3d =,所以()*31n b n n =+∈N .(2)由(1)知11(66)3(1)2(33)n n n nn c n n +++==+⋅+,又123n n T c c c c =+++⋅⋅⋅+, 得23413[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,345223[223242(1)2]n n T n +=⨯⨯+⨯+⨯+⋅⋅⋅++⨯,两式作差,得:234123[22222(1)2]n n n T n ++-=⨯⨯+++⋅⋅⋅+-+⨯=224(21)3[4(1)2]3221n n n n n ++-⨯+-+⨯=-⋅-,所以232n n T n +=⋅.母题25【空间向量与立体几何】(2016全国乙理18)如图所示,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.FEDC BA(1)求证:平面ABEF ⊥平面EFDC ; (2)求二面角E BC A --的余弦值.由(1)知DFE ∠为二面角D AF E --的平面角,故60DFE ∠=︒,则2DF =,3DG =,可得(140)A ,,,(340)B -,,,(300)E -,,,(003)D ,,.由已知,AB EF ,所以AB 平面EFDC . 又平面ABCD 平面EFDC CD =,故ABCD ,CD EF .由BEAF ,可得BE ⊥平面EFDC ,所以CEF ∠为二面角C BE F --的平面角,母题26【离散型随机变量的分布列和期望】(2016全国乙理19)某公司计划购买台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替台机器更换的易损零件数发生的概率,记X 表示台机器三年内共需更换的易损零件数,n 表示购买台机器的同时购买的易损零件数. (1)求X 的分布列; (2)若要求()0.5P Xn ,确定n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?【解析】(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为,,10,11的概率分别为0.2,0.4,0.2,0.2. 从而:(16)0.20.20.04P X ==⨯=;(17)20.20.40.16P X ==⨯⨯=;(18)20.20.20.40.40.24P X ==⨯⨯+⨯=;(19)20.20.220.40.20.24P X ==⨯⨯+⨯⨯=; (20)20.20.40.20.20.2P X ==⨯⨯+⨯=;(21)20.20.20.08P X ==⨯⨯=;(22)0.20.20.04P X ==⨯=.所以X 的分布列为:X 16 17 18 19 20 21 22P0.040.160.240.240.20.08 0.04(2)由(1)知,(18)0.44P X =≤,(19)0.68P X =≤,故的最小值为19. (3)记Y 表示台机器在购买易损零件上所需的费用(单位:元). 当19n =时,192000.68(19200500)0.2EY =⨯⨯+⨯+⨯+(192002500)0.08(192003500)0.04⨯+⨯⨯+⨯+⨯⨯4040=.当20n =时,202000.88(20200500)0.08EY =⨯⨯+⨯+⨯+(202002500)0.044080⨯+⨯⨯=. 可知当19n =时所需费用的期望值小于20n =时所需费用的期望值,故应选19n =.母题27【直线和椭圆位置关系】(2016全国甲理20)已知椭圆E:2213x y t +=的焦点在轴上,A是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥. (1)当4t =,AM AN =时,求AMN △的面积; (2)当2AM AN =时,求k 的取值范围.解法二:设点()00M x y ,,且MN 交轴于点D . 因为AM AN =,且AM AN ⊥,所以MD AD ⊥,MD AD = .由2200+143x y =,得2001232x y -=.又0022AD x x =--=+,所以20012322x x -=+,解之得02x =-或27-. 所以127AD = ,所以211214422749AMN S ⎛⎫=⨯⨯= ⎪⎝⎭△.因为2AM AN =,所以()222322222332616112113332122m m ma ma m a m m a m a m m --+=+⇒=>⇒<<++-所以)312k m=∈,.解法二:设直线AM 的方程为()y k x t=+,联立()2213x y t y k x t ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk xt tk x t k t +++-=,解得x t=-或2233t tk t x tk -=-+,所以22222361133t tk t t AM k t k tk tk -=+-+=+⋅++,所以2613t AN k t k k=+⋅+.因为2AM AN =,所以2226621133t tk k t tk k k⋅+⋅=+⋅++,整理得,23632k k t k -=-. 因为椭圆E 的焦点在x 轴,所以3t >,即236332k k k ->-,整理得()()231202k k k +-<-,解得322k <<. 母题28【导数的综合运用】(2016乙卷理21)21.已知函数2()(2)e (1)x f x x a x =-+-有两个零点.(1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,求证:122x x +<.(ⅱ)当()ln 21a -=,即e2a =-时, 当1x 时,10x -,1e 2e e 0x a +-=,所以()0f x '.同理1x >时,()0f x '>. 故()f x 的单调增区间为(),-∞+∞; (ⅲ)当()ln 21a -<,即e02a -<<时.令()0f x '>,则()ln 2x a <-或1x >, 所以()f x 的单调增区间为()(),ln 2a -∞-和()1,+∞,同理()f x 的单调减区间为()()ln 2,1a -.综上所述,当e2a <-时,()f x 的单调增区间为(),1-∞和()()ln 2,a -+∞,单调减区间为()()1,ln 2a -;当e2a =-时,()f x 的单调增区间为(),-∞+∞; 当e02a -<<时,()f x 的单调增区间为()(),ln 2a -∞-和()1,+∞,单调减区间为()()ln 2,1a -;当0a 时,()f x 的单调增区间为()1,+∞,单调减区间为(),1-∞.(2)若()f x 有两个零点,则0a >,且()f x 在(),1-∞上单调递减,在()1,+∞上单调递增. 要证明122x x +<,不妨设12x x <,且121x x <<.只需证明:122x x <-,因为()f x 在(),1-∞上单调递减, 所以()()122f x f x >-,又()()12f x f x =,则()()222f x f x >-,即令()()()()21g x f x f x x =-->,()()()()()()22222e 122e 212e e x x x x g x x a x x a x x x --=-+-------=-+,因为()10g =,()()()()()()22221e e e 1e 1e 1e e x x x x x x x g x x x x x x ----'=-+-=-+-=--, 当1x >时,10x ->且2e e x x ->,所以()0g x '>,所以函数()g x 在()1,+∞上单调递增,因此()()10g x g >=,故()()()21f x f x x >->,即有()()222f x f x >-,则()()122f x f x >-, 又()y f x =在(),1-∞上单调递减,则122x x <-.故122x x +<.证毕.母题29【坐标系与参数方程】(2016全国乙理23)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t=⎧⎨=+⎩(为参数,0a >).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=.(1)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(2)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .又12,C C 公共点都在3C 上,故3C 的方程即为公共弦24210x y a -+-=. 又3C 为0θα=,0tan 2α=,即为2y x =,从而可知1a =. 母题30【不等式选讲】(2016全国甲理24)已知函数11()22f x x x =-++,M 为不等式()2f x <的解集.(1)求M ;(2)证明:当a b M ∈,时,1a b ab +<+.【解析】 (1)当12x <-时,()112222f x x x x =---=-<,所以112x -<<-;。
【2015高考复习参考】高三数学(理)配套黄金练习:1.3(含答案)
第一章 1.3 第3课时高考数学(理)黄金配套练习一、选择题1.下列全称命题中假命题的个数()①2x+1是整数(x∈R);②对所有的x∈R,x>3;③对任意一个x∈Z,2x2+1为奇数;④任何直线都有斜率.A.1B.2C.3 D.4答案 C解析①②④是假命题.2.下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.任意两个等边三角形都是相似的D.3是方程x2-9=0的一个根答案 B3.下列命题中正确的是()A.对所有正实数t,有t<tB.不存在实数x,使x<4,且x2+5x-24=0C.存在实数x,使|x+1|≤1且x2>0D.不存在实数x,使x3+x+1=0答案 C解析选项A不正确,如t=14时,有t>t;选项B不正确,如x=3<4,而x2+5x-24=0;选项D不正确,设f(x)=x3+x+1,f(-1)=-1<0,f(0)=1>0,故方程x3+x+1=0在(-1,0)上至少有一个实数根.对于C,x=-1时即满足条件,故选C.4.已知命题p:∀x∈R,x2+x-6<0,则命题綈p是()A.∀x∈R,x2+x-6≥0B.∃x∈R,x2+x-6≥0C.∀x∈R,x2+x-6>0D.∃x∈R,x2+x-6<0答案 B解析全称命题的否定为特称命题,选B.5.已知a>0,函数f(x)=ax2+bx+c.若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是()A.∃x∈R,f(x)≤f(x0) B.∃x∈R,f(x)≥f(x0)C.∀x∈R,f(x)≤f(x0) D.∀x∈R,f(x)≥f(x0)答案 C解析由题知:x0=-b2a为函数f(x)图象的对称轴方程,所以f(x0)为函数的最小值,即对所有的实数x,都有f(x)≥f(x0),因此∀x∈R,f(x)≤f(x0)是错误的,选C.6.已知命题p:∃x∈R,mx2+1≤0,命题q:∀x∈R,x2+mx+1>0.若p∨q 为假命题,则实数m的取值范围为()A.m≥2 B.m≤-2C.m≤-2或m≥2 D.-2≤m≤2答案 A解析若p∨q为假命题,则p、q均为假命题,则綈p:∀x∈R,mx2+1>0与綈q:∃x∈R,x2+mx+1≤0均为真命题.根据綈p:∀x∈R,mx2+1>0为真命题可得m≥0,根据綈q:∃x∈R,x2+mx+1≤0为真命题可得Δ=m2-4≥0,解得m≥2或m≤-2.综上,m≥2.二、填空题7.命题“存在实数x0,y0,使得x0+y0>1”,用符号表示为________;此命题的否定是________(用符号表示),是________(填“真”或“假”)命题.答案∃x0,y0∈R,x0+y0>1;∀x,y∈R,x+y≤1;假8.命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案对任何x∈R,都有x2+2x+5≠09若命题“∃x∈R,2x2-3ax+9<0”为假命题,则实数a的取值范围是________.答案-22≤a≤2 2解析因为“∃x∈R,2x2-3ax+9<0”为假命题,则“∀x∈R,2x2-3ax+9≥0”为真命题.因此Δ=9a2-4×2×9≤0,故-22≤a≤2 2.10.已知命题p1:函数y=2x-2-x在R为增函数,p2:函数y=2x+2-x在R 为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2和q4:p1∧(綈p2)中,真命题是________.答案q1,q4解析p1是真命题,则綈p1为假命题;p2是假命题,则綈p2为真命题;∴q1:p1∨p2是真命题,q2:p1∧p2是假命题,∴q3:(綈p1)∨p2为假命题,q4:p1∧(綈p2)为真命题.∴真命题是q1,q4.11.已知:p:1x2-x-2>0,则綈p对应的x的集合为______________.答案{x|-1≤x≤2}解析p:1x2-x-2>0⇔x>2或x<-1∴綈p:-1≤x≤212.设命题p:若a>b,则1a<1b;命题q:1ab<0⇔ab <0.给出下面四个复合命题:①p∨q;②p∧q;③(綈p)∧(綈q);④(綈p)∨(綈q).其中真命题的个数有________个.答案2个解析p假,q真,故①④真三、解答题13.已知p:∀x∈R,2x>m(x2+1),q:∃x0∈R,x20+2x0-m-1=0,且p∧q为真,求实数m 的取值范围.答案 -2≤m ≤-1解析 2x >m (x 2+1)可化为mx 2-2x +m <0.若p :∀x ∈R,2x >m (x 2+1)为真,则mx 2-2x +m <0对任意的x ∈R 恒成立.当m =0时,不等式可化为-2x <0,显然不恒成立;当m ≠0时,有⎩⎪⎨⎪⎧ m <0,4-4m 2<0,∴m <-1.若q :∃x 0∈R ,x 20+2x 0-m -1=0为真,则方程x 2+2x -m -1=0有实根,∴4+4(m +1)≥0,∴m ≥-2.又p ∧q 为真,故p 、q 均为真命题. ∴⎩⎪⎨⎪⎧ m <-1,m ≥-2,∴-2≤m <-1. 14.已知命题p :|x 2-x |≥6; q :x ∈Z ,若“p ∧q ”与“綈q ”同时为假命题,求x 的值.答案 -1,0,1,2解析 ∵“p 且q ”为假,∴p 、q 中至少有一个命题为假命题;又“綈q ”为假,∴q 为真,从而知p 为假命题故有⎩⎪⎨⎪⎧ |x 2-x |<6,x ∈Z 即⎩⎪⎨⎪⎧ x 2-x -6<0,x 2-x +6>0,x ∈Z得⎩⎪⎨⎪⎧ -2<x <3,x ∈R ,x ∈Z .∴x 的值为:-1,0,1,2 15.设命题p :函数f (x )=lg(ax 2-x +14a )的定义域为R ;命题q :不等式3x -9x <a 对一切正实数均成立.如果命题“p ∨q ”为真命题,“p ∧q ”为假命题,求实数a 的取值范围.答案 0≤a ≤1解析 若命题p 为真,即ax 2-x +14a >0恒成立,则⎩⎪⎨⎪⎧ a >0Δ<0,有⎩⎪⎨⎪⎧ a >01-a 2<0,∴a >1.令y =3x -9x =-(3x -12)2+14,由x >0得3x >1,∴y =3x -9x 的值域为(-∞,0).∴若命题q 为真,则a ≥0.由命题“p ∨q ”为真,“p ∧q ”为假,得命题p 、q 一真一假.当p 真q 假时,a 不存在;当p 假q 真时,0≤a ≤1.拓展练习·自助餐1.下列命题中正确的是( )A .若p ∨q 为真命题,则p ∧q 为真命题B .“x =5”是“x 2-4x -5=0”的充分不必要条件C .命题“若x <-1,则x 2-2x -3>0”的否定为:“若x ≥-1,则x 2-2x -3≤0”D .已知命题p :∃x ∈R ,x 2+x -1<0,则綈p :∃x ∈R ,x 2+x -1≥0答案 B解析 若p ∨q 为真命题,则p 、q 有可能一真一假,此时p ∧q 为假命题,故A 错;易知由“x =5”可以得到“x 2-4x -5=0”,但反之不成立,故B 正确;选项C 错在把命题的否定写成了否命题;特称命题的否定是全称命题,故D 错.2.命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“綈p ”形式的命题是( )A .存在实数m ,使方程x 2+mx +1=0无实根B .不存在实数m ,使方程x 2+mx +1=0无实根C .对任意的实数m ,方程x 2+mx +1=0无实根D .至多有一个实数m ,使方程x 2+mx +1=0有实根答案 C解析 特称命题的否定是全称命题.3.命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是________.答案 存在x ∈R ,使得|x -2|+|x -4|≤3解析 由定义知命题的否定为“存在x ∈R ,使得|x -2|+|x -4|≤3”4.已知命题p :关于x 的函数y =x 2-3ax +4在[1,+∞)上是增函数,命题q :函数y =(2a -1)x 为减函数,若“p 且q ”为真命题,则实数a 的取值范围是( )A .a ≤23B .0<a <12C.12<a ≤23D.12<a <1答案 C解析 命题p 等价于3a 2≤1,3a ≤2,即a ≤23.命题q :由函数y =(2a -1)x 为减函数得:0<2a -1<1,即12<a <1.因为“p 且q ”为真命题,所以p 和q 均为真命题,所以取交集得12<a ≤23,因此选C.。
【2015高考复习参考】高三数学(理)配套黄金练习:2.5(含答案)
第二章 2.5 第5课时高考数学(理)黄金配套练习一、选择题1.下列大小关系正确的是( )A .0.43<30.4<log 40.3B .0.43<log 40.3<30.4C .log 40.3<0.43<30.4D .log 40.3<30.4<0.43答案 C解析 ∵log 40.3<0,0<0.43<1,30.4>1,∴选C.2.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( )A .0B .1C .2D .3答案 B解析 依题意知log 2(α+1)=1,则α+1=2,故α=1.3. log 2sin π12+log 2cos π12的值为( ) A .-4 B .4C .-2D .2答案 C解析 log 2sin π12+log 2cos π12=log 2sin π12cos π12=log 212sin π6=log 214=-2,故选C. 4.设a =log 3π,b =log 23,c =log 32,则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a 答案 A 解析 ∵a =log 3π>log 33=1,b =log 23<log 22=1,∴a >b ,又b c =12log 2312log 32=(log 23)2>1,∴b >c ,故a >b >c ,选A.5.设log b N <log a N <0,N >1,且a +b =1,则必有( )A .1<a <bB .a <b <1C .1<b <aD .b <a <1答案 B解析 0>log a N >log b N ⇒log N b >log N a ,∴a <b <1 6.0<a <1,不等式1log a x>1的解是( ) A .x >a B .a <x <1C .x >1D .0<x <a答案 B解析 易得0<log a x <1,∴a <x <17.下列四个数中最大的是( )A .(ln 2)2B .ln(ln 2)C .ln 2D .ln 2答案 D解析 0<ln2<1,0<(ln2)2<ln2<1,ln(ln2)<0, ln 2=12ln2<ln2. 8.已知实数a ,b 满足log 12a =log 13b ,给出五个关系式:①a >b >1,②0<b <a <1,③b >a >1,④0<a <b <1,⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个答案 B解析 当a =b =1时,显然满足题意.故⑤a =b 有可能成立;当a ≠1且b ≠1时,根据log 12a =log 13b 得lg a lg 12=lg b lg 13,因此lg a =lg 12lg 13lg b =(log 1312)lg b .因为log 1312<log 13131,所以0<lg a <lg b ,或lg b <lg a <0,故③b >a >1和②0<b <a <1有可能成立.二、填空题9.若x log 32=1,则4x +4-x =________.答案 829 解析 由已知得x =1log 32=log 23,所以4x +4-x =22x +2-2x =22log 23+2-2log23=9+19=829. 10.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是__________.解析 ∵a 2+1>1, log a (a 2+1)<0,∴0<a <1.又log a 2a <0,∴2a >1,∴a >12 ∴实数a 的取值范围是(12,1) 11.若正整数m 满足10m -1<2512<10m ,则m =__________.(lg2≈0.3010)答案 155解析 由10m -1<2512<10m 得m -1<512lg2<m ∴m -1<154.12<m∴m =15512.已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x +1).则f (2+log 23)=________.答案 124 解析 由于1<log 23<2,则f (2+log 23)=f (2+log 23+1)=f (3+log 23)=(123+log 23=(12)3·(12)log 23=18·2-log 23=18·2log 213=18·13=124. 13.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(4-x ),x ≤0f (x -1)-f (x -2),x >0,则f (3)的值为________.答案 -2解析 由题知,f (3)=f (2)-f (1),f (2)=f (1)-f (0),则f (3)=-f (0)=-2.三、解答题14.设2a =5b =m ,且1a +1b=2,求m 的值. 答案 10 解析 a =log 2 m ,b =log 5 m ,代入已知,得log m 2+log m 5=2,即log m 10=2,所以m =10. 15.已知函数f (x )=-x +log 21-x 1+x. (1)求f (-12007)+f (-12008)+f (12007+f (12008的值. (2)若x ∈[-a ,a ](其中a ∈(0,1)),试判断函数f (x )是否存在最大值或最小值? 答案 (1)0(2)有最小值f (a )=-a +log 21-a 1+a ,有最大值为f (-a )=a +log 21+a 1-a解析 (1)由1-x 1+x>0得函数的定义域是(-1,1), 又f (-x )+f (x )=log 21+x 1-x +log 21-x 1+x=log 21=0, ∴f (-x )=-f (x )成立,∴函数f (x )是奇函数,∴f (-12007)+f (12007)=0, f (-12008)+f (12008)=0, ∴f (-12007)+f (-12008)+f (12007)+f (12008)=0. (2)f (x )=-x +log 2(1-x )-log 2(1+x ),∴f ′(x )=-1+-1(1-x )ln2-1(1+x )ln2<0, 有最小值f (a )=-a +log 21-a 1+a ,有最大值为f (-a )=a +log 21+a 1-a. 评析 本题可以运用单调函数的定义域来证明函数单调递减,但相对来说,在许多情况下应用导数证明函数的单调性比运用定义证明函数的单调性,运算量小得多.16.设f (x )=log 121-ax x -1为奇函数,a 为常数.(1)求a 的值;(2)证明f (x )在区间(1,+∞)内单调递增;(3)若对于区间[3,4]上的每一个x 的值,不等式f (x )>(12)x +m 恒成立,求实数m 的取值范围.解析 (1)∵f (x )是奇函数,∴f (-x )=-f (x ),即log 121+ax -1-x =-log 121-ax x -1, 即log 121+ax -x -1=log 12x -11-ax,∴1+ax -x -1=x -11-ax , 化简整理得(a 2-1)x 2=0,∴a 2-1=0,a =±1,经检验a =-1,f (x )是奇函数,∴a =-1.(2)证明 由(1)得f (x )=log 12x +1x -1设1<x 1<x 2,则x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1)>0, ∴x 1+1x 1-1>x 2+1x 2-1>0, 从而log 12x 1+1x 1-1<log 12x 2+1x 2-1,即f (x 1)<f (x 2), ∴f (x )在(1,+∞)内单调递增.(3)原不等式可化为f (x )-(12)x >m , 令φ(x )=f (x )-(12)x ,则φ(x )>m 对于区间[3,4]上的每一个x 都成立等价于φ(x )在[3,4]上的最小值大于m .∵φ(x )在[3,4]上为增函数,∴当x =3时,φ(x )取得最小值,log 123+13-1-(12)3=-98m <-98.拓展练习·自助餐1.若集合A= 则∁R A =( )A .(-∞,0]∪⎝ ⎛⎭⎪⎫22 B.⎝ ⎛⎭⎪⎫22,+∞ C .(-∞,0]∪[22,+∞) D .[22,+∞) 答案 A2.若log a (π-3)<log b (π-3)<0,a 、b 是不等于1的正数,则下列不等式中正确的是( )A .b >a >1B .a <b <1C .a >b >1D .b <a <1答案 A解析 ∵0<π-3<1,log a (π-3)<log b (π-3)<0,∴a ,b ∈(1,+∞)且b >a ,∴选A.3.当0<x <1时 ,下列不等式成立的是( )A .(12x +1>(12)1-x B .log (1+x )(1-x )>1 C .0<1-x 2<1 D .log (1-x )(1+x )>0答案 C解析 法一:考察答案A :∵0<x <1,∴x +1>1-x ,∴(12)x +1<(12)1-x ,故A 不正确;考察答案B :∵0<x <1,∴1+x >1,0<1-x <1,∴log (1+x )(1-x )<0,故B 不正确;考察答案C :∵0<x <1,∴0<x 2<1,∴0<1-x 2<1,故C 正确;考察答案D :∵0<1-x <1,1+x >1.∴log (1-x )(1+x )<0,故D 不正确.法二:(特值法)取x =12,验证立得答案C. 4.f (x )=a x ,g (x )=log a x (a >0,且a ≠1),若f (3)·g (3)<0,则y =f (x )与y =g (x )在同一坐标内的图象可能是下图中的( )答案 D解析 由于指数函数与对数函数互为反函数,所以,f (x )与g (x )同增或同减,排除A 、C.由于f (3)·g (3)<0,即当x =3时,f (x )、g (x )的图象位于x 轴的两侧,排除B ,选D.5.若0<a <1,在区间(0,1)上函数f (x )=log a (x +1)是( )A .增函数且f (x )>0B .增函数且f (x )<0C .减函数且f (x )>0D .减函数且f (x )<0答案 D解析 ∵0<a <1时,y =log a u 为减函数又u =x +1为增函数,∴f (x )为减函数;又0<x <1时,x +1>1,又0<a <1,∴f (x )<0.选D.教师备选题1.已知函数f (x )=log a 1-mx x -1是奇函数(a >0,a ≠1). (1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性并加以证明;(3)当a >1,x ∈ (r ,a -2)时,f (x )的值域是(1,+∞),求a 与r 的值.答案 (1)m =-1(2)a >1时减,0<a <1时增(3)r =1,a =2+ 3解析 (1)∵f (x )是奇函数,∴f (-x )=-f (x )在其定义域内恒成立,即log a1+mx -x -1=-log a 1-mx x -1, ∴1-m 2x 2=1-x 2恒成立,∴m =-1或m =1(舍去),故m =-1.(2)由(1)得f (x )=log a x +1x -1(a >0,a ≠1), 任取x 1,x 2∈(1,+∞).设x 1<x 2,令t (x )=1+x x -1, 则t (x 1)=x 1+1x 1-1, t (x 2)=x 2+1x 2-1, ∴t (x 1)-t (x 2)=x 1+1x 1-1-x 2+1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1), ∵x 1>1,x 2>1,x 1<x 2,∴x 1-1>0,x 2-1>0,x 2-x 1>0.∴t (x 1)>t (x 2),即x 1+1x 1-1>x 2+1x 2-1, ∴当a >1时,log a x 1+1x 1-1>log a x 2+1x 2-1, f (x )在(1,+∞)上是减函数;当0<a <1时,f (x )在(1,+∞)上是增函数.(3)当a >1时,要使f (x )的值域是(1,+∞),则log a x +1x -1>1,∴x +1x -1>a , 即(1-a )x +a +1x -1>0, 而a >1,∴上式化为x -a +1a -1x -1<0. ① 又f (x )=log a x +1x -1=log a (1+2x -1), ∴当x >1时,f (x )>0;当x <-1时,f (x )<0.因而,欲使f (x )的值域是(1,+∞),必须x >1, 所以对于不等式①,当且仅当1<x <a +1a -1时成立,∴⎩⎪⎨⎪⎧ r =1,a -2=a +1a -1,a >1,解得r =1,a =2+ 3.。
2021届高三下学期《黄金卷》第四套模拟考试数学(理)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若集合 ,则 ( )
Байду номын сангаасA. B. C. D.
2.已知复数 满足 ,则 的最小值为( )
A. B. C. D.
11.集合 ,从集合 中各取一个数,能组成( )个没有重复数字的两位数?
A.52B.58C.64D.70
12.定义:如果函数 的导函数为 ,在区间 上存在 , 使得 , ,则称 为区间 上的“双中值函数“ 已知函数 是 上的“双中值函数“,则实数m的取值范围是
A. B. C. D.
由余弦定理可得:2abcosC(acosB+bcosA)=abc,
∴2cosC(sinAcosB+sinBcosA)=sinC,
∴2cosCsin(A+B)=sinC,
2cosCsinC=sinC,
∵sinC≠0,
∴cosC= ,
又∵C∈(0,π),
∴C=
点睛:(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.
A.4B.5C.6D.7
8.某几何体的三视图如图所示,若图中的小正方形的边长为1,则该几何体外接球的表面积为( )
A. B. C. D.
9.定义运算: ,将函数 的图像向左平移 个单位,所得图像对应的函数为偶函数,则 的最小值是( )
A. B. C. D.
10.已知双曲线 的一条渐近线恰好是曲线 在原点处的切线,且双曲线 的顶点到渐近线的距离为 ,则曲线 的方程为( )
江西省金太阳联考2023-2024学年高三下学期3月月考数学试卷含答案
江西省2024届高三3月28日大联考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.双曲线22162y x -=的渐近线方程为A.13y x =±B.3y x =±C.3y x =±D.y =2.设集合2{N ||3},|02x A x xB x x -⎧⎫=∈=⎨⎬+⎩⎭∣,则A B ⋂=A.{0,1}B.{0,1,2}C.{1,2}D.{1,0,1,2}-3.已知圆锥的母线长为6,其侧面展开图是一个圆心角为23π的扇形,则该圆锥的表面积为 A.8πB.12πC.16πD.24π4.古希腊数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分隔率,黄金分割率的值也可以用2sin18︒表示,2sin18︒=,设m =则2tan811tan 81︒︒=+ A.4mB.2m C.m5.已知实数a ,b 满足1522,log 3aa b +==,则 A.a b >B.a b <C.a b =D.a ,b 的大小无法判断6.过点(1,1)P -的直线与圆22:64120C x y x y +--+=相切于点M ,则PC PM ⋅=A.4B.16D.177.若一个四位数的各位数字之和为4,则称该四位数为“F 数”,这样的“F 数”有 A.20个B.21个C.22个D.23个8.C 是椭圆()2222:10x y E a b a b+=>>上一点,A ,B 是椭圆E 的左、右顶点,若:CA CB :||2:1:AB =则E 的离心率为A.7B.10C.5D.10二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()sin 23f x x π⎛⎫=+⎪⎝⎭.则 A.()f x 在区间,03π⎡⎤-⎢⎥⎣⎦上单调递增B.对13,()3x f x f π⎛⎫∀∈⎪⎝⎭R C.()f x 关于点,03π⎛⎫⎪⎝⎭对称D.将()f x 的图象向左平移6π个单位长度,所得到的函数是偶函数 10.复数z 满足31z =,且1z ≠,则 A.||1z =B.2z z =C.2()z z =-D.12*0,n n n z z z n N ++=++∈11.已知函数(),()f x g x 及其导函数(),()f x g x ''的定义域均为R ,若(21)f x -的图象关于直线1x =对称,()(1)1,(1)()f x g x x f x g x x ++=++=-+,且(2)1g =,则A.()f x 为偶函数B.()g x 的图象关于点(3,3)对称C.(202)1g '=D.1()4949ni g i ==∑三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.样本数据5,11,6,8,14,8,10,5的40%分位数为_____________.13.如图,在正三棱锥D ABC -中,侧棱1,30AD BDC ︒=∠=,过点A 作与棱DB ,DC 均相交的截面AEF.则AEF 周长的最小值为_____________,记此时AEF 的面积为S ,则2S =_____________.14.若不等式322xa bx bx ⋅+++在[0,2]x ∈上恒成立,则a b -的最大值为____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)设某厂有甲、乙、丙三个车间生产同一种产品,已知各车间的产量分别占全厂产量的30%,30%,40%,并且各车间的次品率依次为2%,3%,2%.(1)从该厂这批产品中任取一件,求取到次品的概率;(2)从该厂这批产品中有放回地抽取100次,每次抽取1件,且每次抽取均相互独立,用X 表示这100次抽取的零件中是次品的总件数,试估计X 的数学期望EX .16.(15分)已知数列()n a 的前n 项和为n S ,且4(21)1n n S n a =++.(1)求{}n a 的通项公式;(2)已知*k N ∈,集合{}**2121,k n k a n N-+∈∣中元素个数为kb,求12k b b b +++.17.(15分)如图,在三棱柱111ABC A B C -中,2AB AC BC ===,侧面11BB C C 是正方形,P 是平面111A B C 上一点,且AP BC ⊥.(1)证明:点P 到直线11A B 和11AC 的距离相等. (2)已知二面角1A BC B --的大小是23π,求直线AB 与平面11ACC A 所成角的正弦值.18.(17分)在直角坐标系xOy 中,点P 到直线2x =-的距离等于点P 到原点O 的距离,记动点P 的轨迹为W . (1)求W 的方程;(2)点A ,B ,C ,D 在W 上,A ,B 是关于x 轴对称的两点,点A 位于第一多限,点C 位于第三象限,直线AC 与x 轴交于点G ,与y 轴交于点,H AH HG =,且B ,H ,D 三点共线,证明:直线CD 与直线AC 的斜率之比为定值. 19.(17分)已知函数()xf x ae x a =--. (1)讨论()f x 的单调性;(2)若()f x ≥0恒成立,求a 的取值集合;(3)若存在12022x x ππ-<<<<,且()()()()1112221cos 1cos 0f x x x f x x x +-=+-=,求a 的取值范围.高三数学试卷参考答案1.D 由题可知双曲线22162y x -=的渐近线方程为y =. 2.B 依题得{0,1,2,3},{22}A B x x ==-<∣,则{0,1,2}A B ⋂=.3.C 设圆锥的母线长为l ,底面半径为r ,由于圆锥底面圆的周长等于扇形的弧长,则23lπ=2r π,解得2r =,所以该圆锥的表面积为2212261623πππ⨯+⨯⨯=. 4.A 222tan81sin81cos8111sin162sin181tan 81sin 81cos 81224m ︒︒︒︒︒︒︒︒=====++.5.A 因为()2xf x x =+在R 上单调递增,且11222f ⎛⎫=+<⎪⎝⎭,所以12a >.又16161log 3log 42b =<=,所以a b >.6.B 圆22:64120C x y x y +--+=,即圆22:(3)(2)1C x y -+-=的圆心为(3,2)C ,半径r 1=,点(1,1)P -到圆心(3,2)C的距离d ==所以||PM= 4.PC PM =⋅=2||||||cos ||||||||PM PC PM CPM PC PM PM PC ⋅∠=⋅⋅=16=. 7.A 易知440003100=+++=+++220021101111=+++=+++=+++,当四位数由4,0,0,0构成时,共有1种情况,当四位数由3,1,0,0构成时,共有2232C A 6=种情况,当四位数由2,2,0,0构成时,共有23C 3=种情况,当四位数由2,1,1,0构成时,共有1133CC 9=种情况,当四位数由1,1,1,1构成时,共有1种情况,所以这样的“F数”有20个. 8.D 由题可知cos 147CABCBA ∠==∠==,则tan CAB ∠=tan 52CBA ∠=.由题意不妨设()00,C x y ,又00(,0),(,0),tan y A a B a CAB x a-∠=+,22000220tan ,1y x y CBA a x a b ∠=+=-,所以tan tan CAB CBA ∠⋅∠=200022000y y y a x x a a x ⋅==-+- ()2222022220310b a x b a a x a -==-,则E =9.AC 当,03x π⎡⎤∈-⎢⎥⎣⎦时,2,333x πππ⎡⎤+∈-⎢⎥⎣⎦,因为,33ππ⎡⎤-⎢⎥⎣⎦是正弦函数的单调递增区间,所以()f x 在区间,03π⎡⎤-⎢⎥⎣⎦上单调递增,A 选项正确; 1327sin 033f ππ⎛⎫== ⎪⎝⎭,B 选项错误;sin 03f ππ⎛⎫== ⎪⎝⎭,C 选项正确; 将()f x 的图象向左平移6π个单位长度,得函数2()2sin 22sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,其中2(0)2sin3g π==不是函数最值,y 轴不是函数图象的对称轴,()g x 不是偶函数,D 选项错误.10.ABD 由31z =,可得()2(1)10z z z -++=,则210z z ++=,解得1i 22z =-±,所以|z|()1221.10n n n n z z z z z z ++=++=++=,故选项A,D 正确.当122z =-+时,22,()z z z =z =,当12z =--时,22,()z z z z ==,故选项B 正确,选项C 错误.11.BCD 由(21)f x -的图象关于直线1x =对称,可得(1)f x -的图象关于直线2x =对称,即()f x 的图象关于直线1x =对称.由()(1)1f x g x x ++=+,可得(1)()f x g x --+-x =-,又(1)()f x g x x +=-+,所以(1)(1)0f x f x --++=,所以()f x 的图象关于点(0,0)对称,即()f x 为奇函数,周期为4(10)4-=.由()(1)1f x g x x ++=+,可得(f x +5)(6)6g x x ++=+,因为()f x 的周期为4,所以(5)(1)f x f x +=+,则()g x x -++(6)6g x x +=+,即()(6)6g x g x -++=,所以()g x 的图象关于点(3,3)对称.因为()f x 的图象关于直线1x =对称,则(2)()f x f x -=,所以(2)()f x f x ''--=,所以(1)0f '=,因为()f x 的周期为4,所以()f x '的周期也为4.由()(1)1f x g x x ++=+,可得()f x '+(1)1g x '+=,所以(202)1(201)1(1)1g f f '''=-=-=.由()(1)1f x g x x ++=+,可得()(1)g x x f x =--,所以(2)2(1)g f =-,即991(1)1,(2)(0)0,(3)1,()i f f f f g i =====-∑(12399)=++++[(0)(1)(98)]4950(0)(1)(2)4949f f f f f f -+++=---=.12.8840% 3.2⨯=,将样本数据按从小到大的顺序排列为5,5,6,8,8,10,11,14,故40%分位数为8.3把正三棱锥D ABC -的侧面展开,两点间的连接线1AA 是截面周长的最小值.正三棱锥D ABC -中,30BDC ︒∠=,所以1,1AD A D AD ⊥=+,所以1AA =故AEF+又111111sin 21sin 2A DE ADEA D ED EDA SA E AA AE SAD ED EDA⨯∠====⨯∠,所以AE=⨯1A E=则1A F ==221 3.2S ⎡⎢=⨯=⎢⎣14.6 由322xa bxb x ⋅+++,可得321xa b x ⋅++,令函数3(),[0,2]1x f x x x =∈+,则2223(1)ln 333[(1)ln 31]3[ln 31]()0(1)(1)(1)x x x x x x f x x x x '+-+--==>+++,故()f x 在[0,2]上单调递增,即3[1,3]1xx ∈+,所以22,232a b a b -+-+.故(3)2()a b a b a b -=+-+6,当且仅当2,4a b ==-时,上式成立.所以a b -的最大值为6.15.解:(1)记事件A 为“任取一件产品,恰好是次品”,事件1B 为“取到甲车间生产的产品”,事件2B 为“取到乙车间生产的产品”,事件3B 为“取到丙车间生产的产品”,则()10.3P B =,()()()()()231230.3,0.4,0.02,0.03,0.02,P B P B P A B P A B P A B =====∣∣∣ (3)分所以由全概率公式得()()31()0.30.020.30.030.40.02iii P A P BP AB ===⨯+⨯+⨯=∑∣0.023,故从该厂这批产品中任取一件,取到次品的概率为0.023.……………………..……………………..…..…………..6分 (2)X 的可能取值为0,1,2,3,,100,且X 服从二项分布.由(1)知,()0.023P A =. ……..………………..………………..…………………………………..…………8分因为~(100,0.023)X B ,所以1000.023 2.3EX =⨯=.……..………………..………………..………………..…………13分16.解:(1)令1n =,得11a =.……..………………..………………..………………..……………………………..………………..…2分当2n 时,因为4(21)1n n S n a =++,所以114(21)1n n S n a --=-+,两式相减得14(21)(21)n n n a n a n a -=+--,……..………………..………………………..………………..…………3分即1(23)(21)n n n a n a --=-,所以12123n n a n a n --=-,……..………………..………………..………………..………………..……4分 所以2312135211323n n a a a n a a a n --⋅⋅=⨯⨯⨯-,即121na n a =-,……..………………..………………..………………..…5分 所以()*212,n a n n n =-∈N .……..………………..……………………..………………..…………6分又11a =,符合上式,所以()*21n a n n =-∈N .……..………………..………………..………………..………………..…………7分(2)由212121k k n --+,可得121k k n -+,所以()1121122k k k b k k --=+-+=-+.……..………………..………………..………………..…………11分21212(3)32112222k kk k k k k b b b --+++=-=-+--.……..………………..………………..…………15分17.(1)证明:当P 和1A 重合时,显然符合题意,当P 和1A 不重合时,连接1A P ,延长1A P 交11B C 于点1M ,因为11BB C C 是正方形,所以1BB BC ⊥,又因为11//BB AA ,所以1AA BC ⊥……..………………..…………2分因为1,AP BC AP A A A ⊥⋂=,所以BC ⊥平面1AA P .……..………………..………………..………4分 又1A P ⊂平面1AA P ,所以1BC A P ⊥,则1111B C A M ⊥.……..………………..………..…………5分 因为AB AC =,所以1M 为11B C 的中点,且11A M 为111C A B ∠的角平分线. ……..………………..…6分 所以点P 到直线11A B 和11AC 的距离相等.……..………………..…………..…………7分(2)解:取BC 的中点M ,连接1,MM AM ,所以1,MM BC AM BC ⊥⊥,所以1AMM ∠为二面角1A BC B --的平面角, ……..………………..………………..……………………8分 因为二面角1A BC B --的大小是23π,所以123AMM π∠=.……..………………..………………..……9分 过M 作平面ABC 的垂线,交11A M 于点N ,分别以,,MA MB MN 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,由题可得1(2,0,0),(0,1,0),(0,1,0)A A C B -,所以1(2,1,0),(1,0,3),(2,1,0)AC AA AB =--=-=-,…………11分设平面11ACC A 的法向量为(,,)x y z =n ,则10,0,AA AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x x y⎧-+=⎪⎨--=⎪⎩令x =则1y z =-=,所以=-n , 直线AB 与平面11ACC A 所成的角为α, 则sin |cos ,|AB α=〈〉=n ||4||||16AB AB ⋅==n n 所以直线AB 与平面11ACC A (15)分 18.(1)解:设(,)P x y ,则|2|x +=,………………..………………..………………..……….3分两边平方,化简得244y x =+,故W 的方程为244y x =+.………………..…………..…………..………………..…………..……….5分 (2)证明:设点()()1122,,,,(0,),C x y D x y H t AC 的方程为()x m y t =-,则(,0)G mt -,因为AH HG =,所以(,2),(,2),0,0A mt t B mt t t m ->>.………………..……………………………..…………..……….7分从而直线BD 的方程为()3mx y t =--.………………..………………..…..…………..……….8分 联立2(),44,x m y t y x =-⎧⎨=+⎩可得24440y my mt -+-=,所以14A y y m +=,则142y m t =-, 所以1(43)x m m t =-.………………..……………………………..………………..…………..……….10分联立2(),344,m x y t y x ⎧=--⎪⎨⎪=+⎩可得2444033y my mt +--=,所以243B y y m +=-,则243y m =-2t +,所以2433m x m t ⎛⎫=--+ ⎪⎝⎭.………………..………………………..………………..…………..……….12分 所以直线CD 的斜率为1212y y x x -=-44223342(43)33mm t t m m m m m t t -+-=⎛⎫-+-+ ⎪⎝⎭.……………….……….15分 所以直线CD 与直线AC 的斜率之比为33212m m=.……………..…………………..………….17分19.解:(1)()e 1xf x a '=-.……………..……………………..…………..……………..………….1分 当0a 时,()0f x '<,所以()f x 在R 上单调递减.…..………..…………..………..………..……3分 当0a >时,令()0f x '>,解得ln x a >-,所以()f x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增...………..…..……..………..………..………..………..………..……5分(2)因为(0)0f =,所以0a >.6分由(1)可知min ()(ln )1ln f x f a a a =-=+-,……..…………..……8分 令函数11()1ln ,()1a h a a a h a a a'-=+-=-=, 易知()h a 在(0,1)上单调递增,在(1,)+∞上单调递减,且(1)0h =,要使得()0f x 恒成立,则1a =,即a 的取值集合为{1}.……..…………..………..…………..……10分 (3)由()()()()1112221cos 1cos 0f x x x f x x x +-=+-=,可得1211e cos e xxa x x a a --=-22cos 0x x a -=.设函数()e cos ,,22xg x a x x a x ππ⎛⎫=--∈-⎪⎝⎭,即()g x 在,02π⎛⎫- ⎪⎝⎭和0,2π⎛⎫⎪⎝⎭上存在零点.记()g x ''是()g x '的导数,()g x '''是()g x ''的导数,(4)()g x 是()g x '''的导数. ()e cos sin ,()e 2sin cos x x g x a x x x g x a x x x '''=-+=++,在0,2π⎛⎫ ⎪⎝⎭上,若0a ,则()0g x <,若1a ,则()0,()(0)0g x g x g '>>=,矛盾.13分因此(0,1)a ∈,此为必要条件,下证充分性:在0,2π⎛⎫ ⎪⎝⎭上,2()0,(0)10,e 022g x g a g a πππ''''⎛⎫>=-<=+> ⎪⎝⎭, 即()g x '先负后正,因此()g x 先减后增,由2(0)0,e 102xg g a π⎛⎫⎛⎫==-> ⎪ ⎪⎝⎭⎝⎭,可知()g x 在区间0,2π⎛⎫ ⎪⎝⎭上有唯一零点. ……..…………..…………..…………..……..…………..…………..…………..…………..……15分 在,02π⎛⎫-⎪⎝⎭上,(4)()e 3cos sin ,()e 4sin cos 0x x g x a x x x g x a x x x '''=+-=-->. 由2e 0,(0)3022g a g a πππ-''''''⎛⎫-=-<=+> ⎪⎝⎭,可知()g x '''先负后正,因此()g x ''先减后增,2e 20,(0)02g a g a ππ-''''⎛⎫-=-<=> ⎪⎝⎭, 可知()g x ''先负后正,()g x '先减后增.由2e 0,(0)1022g a g a πππ-''⎛⎫-=+>=-< ⎪⎝⎭,可知()g x '先正后负,因此()g x 先增后减,由2e 10,(0)02xg a g π-⎛⎫⎛⎫-=-<= ⎪ ⎪⎝⎭⎝⎭,可知()g x 在区间,02π⎛⎫-⎪⎝⎭上有唯一零点,符合题意. 所以a 的取值范围为(0,1).……..…………..…………..…………..……………..…………..……17分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 4.3 第3课时高考数学(理)黄金配套练习一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于()A.12 B.33C.22 D.32答案 A解析原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=1 2.2.已知sinα=1213,cosβ=45,且α是第二象限角,β是第四象限角,那么sin(α-β)等于()A.3365 B.6365C.-1665D.-5665答案 A解析因为α是第二象限角,且sinα=1213,所以cosα=-1-144169=-513.又因为β是第四象限角,cosβ=45,所以sinβ=-1-1625=-35.sin(α-β)=sinαcosβ-cosαsinβ=1213×45-(-513)×(-35)=48-1565=3365.3.设α∈(0,π2),若sinα=35,则2cos(α+π4)等于()A.75 B.15C.-75D.-15答案 B解析因为α∈(0,π2),sinα=35,所以cosα=1-925=45.所以2cos(α+π4)=2(cosαcosπ4-sinαsinπ4)=2(22cosα-22sinα)=cosα-sinα=45-35=154.化简cos(α-β)cosβ-sin(α-β)sinβ的结果为() A.sin(2α+β) B.cos(α-2β)C.cosαD.cosβ答案 C解析等式即cos(α-β+β)=cosα5.设a =sin14°+cos14°,b =sin16°+cos16°,c =62,则a 、b 、c 的大小关系是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a 答案 B解析 a =2sin(45°+14°)=2sin59° b =2sin(45°+16°)=2sin61°c =62=2sin60°,∴b >c >a .6.在△ABC 中,C =120°,tan A +tan B =233,则cos A cos B =( ) A.14 B.34 C.12 D .-14 答案 B解析 tan A +tan B =sin A cos A +sin Bcos B=sin A cos B +cos A sin B cos A cos B=sin (A +B )cos A cos B =sin60°cos A cos B =32cos A cos B =233∴cos A cos B =347.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝ ⎛⎭⎪⎫α+π4等于( )A.1318B.1322C.322D.16 答案 C解析 因为α+π4+β-π4=α+β,所以α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4,所以tan ⎝ ⎛⎭⎪⎫α+π4=tan ⎣⎢⎡⎦⎥⎤(α+β)-⎝ ⎛⎭⎪⎫β-π4 =tan (α+β)-tan ⎝ ⎛⎭⎪⎫β-π41+tan (α+β)tan ⎝ ⎛⎭⎪⎫β-π4=322.8.若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23 D .-2 答案 A解析 3sin α=-cos α⇒tan α=-13.1cos 2α+sin2α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+191-23=103.二、填空题 9.cos84°cos24°-cos114°cos6°的值为________.答案 12解析 cos84°cos24°-cos114°cos6°=cos84°cos24°+cos66°sin84°=cos84°cos24°+sin24°sin84°=cos(84°-24°)=cos60°=12.10.已知α为第三象限的角,cos 2α=-35,则tan (π4+2α)=________.答案 -17解析 由cos 2α=2cos 2α-1=-35,且α为第三象限角,得cos α=-55,sin α=-255,则tan α=2,tan2α=-43,tan(π4+2α)=1+tan 2α1-tan 2α=-17.11.如图,角α的顶点在原点O ,始边在x 轴的正半轴,终边经过点P (-3,-4).角β的顶点在原点O ,始边在x 轴的正半轴,终边OQ 落在第二象限,且tan β=-2,则cos ∠POQ 的值为________.答案 -55 解析tan β=tan(π-θ1)=-tan θ1=-2,∴tan θ1=2,tan θ2=43. tan ∠POQ =tan θ1+tan θ21-tan θ1·tan θ2=-2=sin ∠POQcos ∠POQ.又由sin 2∠POQ +cos 2∠POQ =1,得cos ∠POQ =-55.12.化简:sin (3α-π)sin α+cos (3α-π)cos α=________. 答案 -4cos2α解析 原式=-sin3αsin α+-cos3αcos α= -sin3αcos α+cos3αsin αsin αcos α=-sin4αsin αcos α= -4sin αcos α·cos2αsin αcos α=-4cos2α.13.不查表,计算1sin10°-3sin80°=________.(用数字作答) 答案 4解析 原式=cos10°-3sin10°sin10°cos10°=2(12cos10°-32sin10°)sin10°cos10°=4(sin30°cos10°-cos30°sin10°)2sin10°cos10°=4sin (30°-10°)sin20°=4. 三、解答题14.求(tan10°-3)·cos10°sin50°的值.解析 (tan10°-3)·cos10°sin50°=(tan10°-tan60°)·cos10°sin50°=(sin10°cos10°-sin60°cos60°)·cos10°sin50°=sin10°cos60°-sin60°cos10°cos10°cos60°·cos10°sin50°=-sin (60°-10°)cos10°·cos60°·cos10°sin50°=-1cos60°=-2. 15.已知sin(α+π4)=45,且π4<α<3π4.求cos α的值.解析 sin(α+π4)=45且π4<α<3π4 ∴π2<α+π4<π∴cos(α+π4)=-1-sin 2(α+π4)=-35∴cos α=cos[(α+π4)-π4]=cos(α+π4)cos π4+sin(α+π4)sin π4=-35×22+45×22=210.16.已知tan2θ=34(π2<θ<π),求2cos 2θ2+sin θ-12cos (θ+π4)的值.解 ∵tan2θ=2tan θ1-tan 2θ=34,∴tan θ=-3或tan θ=13,又θ∈(π2,π),∴tan θ=-3,∴2cos 2θ2+sin θ-12cos (θ+π4)=cos θ+sin θcos θ-sin θ=1+tan θ1-tan θ=1-31+3=-12. 拓展练习·自助餐1.化简sin15°cos9°-cos66°sin15°sin9°+sin66°的结果是( )A .tan9°B .-tan9°C .tan15°D .-tan15° 答案 B解析 sin15°·cos9°-cos66°sin15°sin9°+sin66°=sin15°·cos9°-sin24°sin15°·sin9°+cos24° =sin15°·cos9°-sin15°·cos9°-cos15°·sin9°sin15°·sin9°+cos15°·cos9°-sin15°·sin9° =-cos15°·sin9°cos15°·cos9°=-tan9°2.函数f (x )=sin2x -cos2x 的最小正周期是( ) A.π2 B .π C .2π D .4π 答案 B解析 f (x )=2sin(2x -π4),∴T =2π2=π. 3.若cos α+2sin α=-5,则tan α=( ) A.12 B .2C .-12 D .-2 答案 B解析考查三角函数的运算与转化能力,已知正弦和余弦的一个等量关系,可以结合正弦余弦平方和等于1,联立方程组解得正弦余弦的值,再利用tanα=sinαcosα求得,但运算量较大,作为选择题不适合.也可以利用三角变换处理,原等式即5sin(α+φ)=-5,其中tanφ=12,0<φ<π2,∴sin(α+φ)=-1,∴α+φ=2kπ+3π2,k∈Z,∴tanα=cotφ=2.也可观察得到答案.4.已知sin(x+π4)sin(π4-x)=16,x∈(π2,π),求sin4x的值.分析由题设注意到π4+x+π4-x=π2,因此需交换后再用公式求解.解析∵sin(x+π4)sin(π4-x)=sin(π4+x)cos[π2-(π4-x)]=sin(x+π4)cos(π4+x)=12sin(2x+π2)=12cos2x=16,∴cos2x=13.∵x∈(π2,π),∴2x∈(π,2π),∴sin2x=-223.∴sin4x=2sin2x cos2x=-429.探究(1)一般说来,在题目中有单角、倍角,应将倍角化为单角,同时应注意2α,2α-π2,α-π4等之间关系的运用.(2)在求cos2x的过程中,本题也可采用如下方法:sin(x+π4)sin(π4-x)=(22sin x+22cos x)(22cos x-22cos x-22sin x)=12(cos2x-sin2x)=12cos2x=16,从而得cos2x=13.教师备选题1.已知在△ABC中,cos B cos C=1-sin B·sin C,那么△ABC是()A.锐角三角形B.等腰三角形C.直角三角形D.钝角三角形答案 B解析由条件知cos B cos C+sin B sin C=1,cos(B-C)=1,B-C=0,∴B=C. 2.在△ABC中,“cos A=2sin B sin C”是“△ABC为钝角三角形”的() A.必要不充分条件B.充要条件C.充分不必要条件D.即不充分也不必要条件答案 C解析在△ABC中,A=π-(B+C)∴cos A=-cos(B+C)又∵cos A=2sin B sin C即-cos B cos C+sin B sin C=2sin B sin C∴cos(B-C)=0,∴B-C=π2,∴B为钝角.3.设α∈(0,π3),β∈(π6,π2),且α、β满足53sin α+5cos α=8,2sin β+6cos β=2,求cos(α+β)的值.解析 ∵53sin α+5cos α=8,∴sin(α+π6)=45.∵α∈(0,π3),∴(α+π6)∈(π6,π2),∴cos(α+π6)=35.又∵2sin β+6cos β=2,∴sin(β+π3)=22,∵β∈(π6,π2),∴(β+π3)∈(π2,5π6),∴cos(β+π3)=-22,∴sin[(α+π6)+(β+π3)]=sin(α+π6)cos(β+π3)+cos(α+π6)sin (β+π3)=-210, ∴cos(α+β)=-210.。